
Finding Compiler Bugs with Random Testing
Xuejun Yang, Yang Chen, Eric Eide, John Regehr

School of Computing, University of Utah
{jxyang, chenyang, eeide, regehr}@cs.utah.edu

Good Vs Bad Programs

int g[1];

int *p = &g[0];

int *q = &g[0];

int main(void)

{

g[0] = 1;

*p = 0;

*p = *q;

printf("%d\n", g[0]);

}

End result of g[0]:

Expected: 0

GCC: 1

The work behind the scene that avoids generating

bad programs in randprog

A GCC Bug A LLVM Bug randprog - the tool

short g, i ;

void f()

{

short l[5];

for (i=0; i<1; i++)

l[i] = 0;

lbl:

l[0] ^= 1;

assert(&g != 0);

goto lbl;

}

Compiler Crashed

• A random C program generator

• Detects incorrectness of compilers by voting

• We used it to find numerous compilers bugs

randprog

Compiler 1 Compiler 2 Compiler 3 …

vote
minoritymajority

C program

results

A program that

can be compiled
Good program

A program can be

compiled And

Has ZERO

undefined or

unspecified

behavior

Good program

Undefined behavior (such as divide by 0) or

unspecified behavior (such as order of evaluation)

gives compilers freedom to diverge, causing failure

to our voting mechanism

int f(void)

{

int a[5];

int i, j;

int* p;

a[0] = *p;

j = 6;

a[j] = 5;

goto lbl;

p = &j;

lbl:

a[1] = *p;

}

Bad program example

dead pointer dereference

array index out of bound

Jump over variable

initialization

• a context-sensitive flow-sensitive inter-

procedural point-to analyzer

• tracks the point-to relationship between

variables. For example:

x = &y => x -> {y}

• the analysis is performed on-the-go after

each statement generation

• randprog consults the analyzer to avoid

null/dead pointer dereferencing

Pointer Analysis Control Flow Analysis

• a control flow analyzer that can

handle abnormal edges created by

jump statements (goto / break /

continue)

• Preemptively analyze possible

effects a new jump statement would

cause, and reject it if undefined

behavior is introduced

• Backward jumps are treated as loop

creator. Possible undefined behaviors

are identified after a fixed point

analysis

Out-of-bound array indexing is avoided by taking modulo

How we helped a compiler to be more reliable

Functional Errors we found in LLVM

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276282103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

