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Good Vs Bad Programs

int g[1]; 

int *p = &g[0]; 

int *q = &g[0]; 

int main(void) 

{ 

g[0] = 1; 

*p = 0; 

*p = *q; 

printf("%d\n", g[0]);

} 

End result of g[0]:

Expected: 0

GCC: 1 

The work behind the scene that avoids generating 

bad programs in randprog

A GCC Bug A LLVM Bug randprog - the tool

short g, i ; 

void f() 

{ 

short l[5]; 

for (i=0; i<1; i++) 

l[i] = 0; 

lbl:

l[0] ^= 1; 

assert(&g != 0); 

goto lbl; 

}

Compiler Crashed

• A random C program generator 

• Detects incorrectness of compilers by voting 

• We used it to find numerous compilers bugs

randprog
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Undefined behavior (such as divide by 0) or 

unspecified behavior (such as order of evaluation) 

gives compilers freedom to diverge, causing failure 

to our voting mechanism 

int f(void)

{

int a[5];

int i, j;

int* p;

a[0] = *p;

j = 6;

a[j] = 5;

goto lbl;   

p = &j;

lbl:

a[1] = *p;

}

Bad program example

dead pointer dereference

array index out of bound

Jump over variable 

initialization

• a context-sensitive flow-sensitive inter-

procedural point-to analyzer 

• tracks the point-to relationship between 

variables. For example: 

x = &y   =>   x -> {y}

• the analysis is performed on-the-go after 

each statement generation

• randprog consults the analyzer to avoid 

null/dead pointer dereferencing

Pointer Analysis Control Flow Analysis

• a control flow analyzer that can 

handle abnormal edges created by 

jump statements (goto / break / 

continue)

• Preemptively analyze possible 

effects a new jump statement would 

cause, and reject it if undefined 

behavior is introduced

• Backward jumps are treated as loop 

creator.  Possible undefined behaviors 

are identified after a fixed point 

analysis 

Out-of-bound array indexing is avoided by taking modulo

How we helped a compiler to be more reliable

Functional Errors we found in LLVM
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