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Abstract 
Background: Repeated measures analysis of variance (ANOVA) is frequently used to model longitudinal 
data but does not appropriately account for within-person correlations over time, does not explicitly 
model time, and cannot flexibly handle missing data. In contrast, mixed-effects regression addresses 
these limitations. In this commentary, we compare these two methods using openly available tools. 
 
Methods: We emulated a real developmental study of elite skiers, tracking national rankings from 2011 
to 2018. We constructed unconditional models of time (establishing the “pattern” of change), 
conditional models (identifying factors that affect change over time) and contrasted these models 
against comparable repeated measures ANOVAs. 
 
Results: Mixed-effects regression allowed for linear and non-linear modeling of the skiers’ longitudinal 
trajectories despite missing data. Missing data is still a concern in mixed-effects regression models, but 
in the present dataset missingness could be accounted for by skiers’ ages, satisfying the missing at 
random assumption.  
 
Discussion: Although ANOVA and mixed-effects regression are both suitable for time-series data, their 
applications differ. ANOVA will be most parsimonious when the research question focuses on group-
level mean differences at arbitrary time points. However, mixed-effects regression is more suitable 
where time is inherently important to the outcome, and where individual differences are of interest. 
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Evaluating change over time is a common aspect of research in motor learning and development. 

These might be changes during life-span development (e.g., the emergence of fundamental motor 

skills), changes due to experience (e.g., learning the coordination to juggle through practice), or changes 

following illness and injury (e.g., recovery of motor functions following a stroke). There are numerous 

designs (e.g., cohort studies, longitudinal studies, time to event analyses) and analysis methods available 

for studying change over time. In this commentary, our contention is that motor learning and 

development researchers continue to be overly reliant on analysis of variance (ANOVA) approaches 

relative to other methods that are available.  

To illustrate this point, we conducted a review of four motor behavior journals (JMLD, Human 

Movement Science, Journal of Motor Behavior, and Motor Control) over the last 5 years. Of the 2041 

articles found on Google Scholar from January 1st 2014 to June 20th 2019, we found that 758 used 

descriptors for ANOVA-based methods (viz., “repeated-measures”, “mixed-factor”, “mixed-factorial”), 

whereas only 15 used descriptors for mixed-effect regression models (viz., “mixed-effect”, “multilevel 

model” or “MLM”, “hierarchical linear model” or “HLM”). Of the 15 articles that employed mixed-effects 

regression only two were longitudinal designs (Cantin et al., 2014; Angell et al., 2018), while the 

remainder had other nested data structures (e.g., Dixon et al., 2019). Thus, we estimate about 35% of all 

articles in these journals used ANOVA-based methods for managing repeated observations, whereas less 

than 1% used  mixed-effects regression-based methods. 

Contrast of Mixed Effects Regression and Repeated-Measures Analysis of Variance 

Both of these methods, mixed-effects regression and repeated measures ANOVA, are valid 

approaches to the analysis of repeated observations. However, they each have unique strengths and 

limitations that make them more appropriate in different situations. The problems that arise in 

evaluating change vary with data structure and trade-offs one may face in selecting from available 
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methods. Garcia and Marder (2017) discuss three problems common to longitudinal data: (1) 

correlations within the data, (2) irregularly timed measurements, and (3) missing data. Correlations 

within data can exist when individuals are measured repeatedly over time or when individuals are 

clustered within the data. Irregular timing can result from variations in measurement of planned time 

points, such as actual measurements of a 1-month follow-up ranging from three to seven weeks, and 

from designation of critical events such as hospital discharge, achieving a motor milestone (e.g., 

walking), or the end of a competitive season. Finally, missing data are a reality for virtually every study, 

with implications that vary by type of missingness, data structure, and analytic method. 

In weighing the effects of these different constraints, Garcia & Marder (2017) discuss other methods 

beyond mixed-effect regressions and repeated measures ANOVA (i.e., change scores, multivariate 

ANOVA, and generalized estimating equations), but the key distinction between ANOVA and other 

methods is that ANOVA addresses questions of differences, but does not explicitly model time. In 

contrast, mixed-effects regression explicitly models trajectories that are fit to the available data. 

Modelling these trajectories also means that mixed-effects regression can account for the correlations 

between data points within a person (as data tend to be more correlated for more proximal time 

points). Similarly, by explicitly modeling time as a continuous variable, mixed-effects regression can 

account for timing irregularities that are inherent in most research. While RM ANOVA treats repeated 

measurements in an arbitrary way (e.g., Time 1 versus Time 2), linear mixed-effects regression explicitly 

models important variability in time (e.g., the second time point may be Day 15 for one participant and 

Day 21 for another). Missing data is an issue for all methods, but the methods differ in how they are 

affected by, or capable of, addressing the consequences of missing data. In linear mixed-effects 

regression, missing data can reduce statistical power and produce bias. Data that are missing completely 

at random reduce power but do not bias parameter estimates. Data that are missing at random is when 

the outcome is subject to missingness, but this missingness can be accounted for by variables included 
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in the model (e.g., younger participants tend to be missing more data). In contrast, data are missing not 

at random when outcome values are missing due to the values in and of themselves (e.g., depression 

measures are more likely to be missing for more depressed individuals; Curran et al., 2010). In contrast 

to ANOVA, mixed-effects regression can handle missing data but still relies on the data satisfying the 

missing at random assumption (for missing not at random approaches, see Enders, 2011).   

A summary of the conceptual differences between repeated measures ANOVA and mixed-effects 

regression for longitudinal data is presented in Table 1. In general, we argue that mixed-effects 

regression is a preferable approach for modeling change over time for its advantages in: (1) correlations 

within the data, (2) irregularly timed measurements, and (3) missing data. However, employing mixed-

effects regression is not suitable for all situations and does come with trade-offs (Garcia & Marder, 

2017; Molenberghs & Verbeke, 2001). To use mixed-effects regression, researchers need additional 

knowledge of how to specify appropriate models and need to appreciate the implications of choices 

made in the model-building process. Researchers also need access to adequate computing resources 

and the skill to use them. Fortunately, resources are readily available to develop the requisite 

knowledge and skill (Long, 2012; Singer & Willet, 2003).  
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Table 1. Comparison of strengths and limitations of repeated measures analysis of variance and mixed- effects regression for modeling 
longitudinal data. 

 RM ANOVA Mixed-Effects Regression 

Model concept • Compares means of a continuous outcome stratified by 
one or more categorical variable(s) to the grand mean.  

• Individuals are treated as a factor with error aggregated 
from each individual’s mean of repeated measures and 
partitioned as intra-individual variance from the error 
term. 
 

• Accounts for correlations in data with clustered or 
nested structure.  

• In longitudinal models, change over time is considered 
a within-person factor accounting for within-person 
correlations across time points and estimating error as 
residuals from each individual’s trajectory, and 
between-person error is accounted for as random 
effects in a correlation matrix, which can be explained 
by fixed covariate associations with trajectory 
parameters.  

Modeling of the outcome over 
time 

• Addresses questions about mean difference. 

• Time is not inherently captured in the repeated 
measure, instead discrete time points are treated as 
levels of a categorical variable with a mean for each 
time point. 

• Mean differences between time points do not 
represent change over time, since time is an not explicit 
part of the model. 

• Time is modeled explicitly for the outcome variable as a 
trajectory of change. 

• The model assumes a common pattern of change for 
the group (fixed effects), but individuals can vary from 
that pattern (random effects). 

• The shape of the trajectory is determined by fitting 
progressively more complex mathematical functions 
that are likely to fit the pattern of raw data scores, and 
testing a fit statistic (e.g., Akaike Information Criterion 
or Bayesian Information Criterion). 

• Of particular use is the ability to estimate the 
magnitude and timing of a plateau or other milestone 
on the trajectory.  

Variability in timing of data 
points  

• Requires common, discreet time points; variability in 
actual timing may contribute to measurement error in 
categorized time points.  

• Measurement error may accrue within time points if 
outcome measurement varies by time within a time 
point, e.g., measurement at a time point varies by ± 
time units around that point. Individuals’ scores on an 
increasing trajectory may be overestimated if captured 
before the time point or underestimated if captured 
after.   

• Can accommodate variability in spacing of time points 
and in the actual timing of individual data collection. 

• Time points can be spaced farther apart where little 
change is expected, and closer together where more 
change is expected 

• Individual measurement can vary from the target time 
points. If, for example, 5 weekly measurements are 
planned over 4 weeks, a time variable defined in days 
can capture the actual day of measurement, rather 
than collapsing to the weekly time point.  
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Data missing on the outcome  • Missing outcome data cannot be accommodated, 
without complicated statistical adjustments (such as 
multiple imputation) when data are missing at random.  

• Including only cases with complete data will reduce 
statistical power and risk bias to the model if data are 
missing not at random (MNAR). 

• Depending on the method employed, imputing missing 
values may not bias parameter estimates, but may 
reduce standard errors risking Type I errors in 
hypothesis tests. 

• Data that is if missing at random (MAR) can be 
accommodated without excluding cases.  

• However, models can be biased if important time 
points are missing (e.g., no data where important 
change occurs).  

• Models with data that is MNAR can be fit, but models 
may be biased. For example, an unbalanced data set is 
one in which later time points are more likely to be 
missing, which can occur due to drop out, or outcome 
measurement that is performed during an intervention 
that varies for individuals.  

• Imputation of outcome data is not recommended. 

Data missing on covariates  • Missing between-person covariate data cannot be 
accommodated.  

• Cases are either dropped from analysis or retained by 
imputing missing values. 

• Missing between-person covariate data cannot be 
accommodated.  

• Cases are either dropped from analysis or retained by 
imputing missing values. 

Time-varying covariates • Time varying covariates cannot be accommodated in a 
RM ANOVA model. 

• Time varying covariates can be included, but you need 
to careful about collinearity and variance at both the 
between- and within-subject levels. 
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Our goal in this commentary is to illustrate the advantages of mixed-effects regression over 

repeated measures ANOVA for researchers studying questions of change over time in motor learning 

and development. This article is meant to be an introduction to the topic and more thorough treatments 

are available elsewhere (Long, 2012; Raudenbush & Bryk, 2002; Singer & Willet, 2003). Some aspects we 

will discuss in detail such as the interpretation of fixed- and random-effects, but others (such as model 

comparison, methods of estimation, and truly nonlinear models) are topics that we will only address 

superficially in the interests of space. We hope that by providing an illustrative example we will motivate 

researchers to consider using mixed-effects regression, when appropriate, and to acquire the skills to do 

so in their own studies. Furthermore, by providing reproducible data and code for implementing these 

models in the open source software environment R (R Core Team, 2019; Bates, Maechler, Bolker, & 

Walker, 2015; Wickham, 2016), we hope to give researchers an affordable approach to start using these 

models. For users less familiar with R, however, it is important to point out that mixed-effects regression 

models can be implemented in most major statistical software packages. All data and code necessary to 

recreate the analyses below are available from: https://github.com/keithlohse/LMER_v_RM_ANOVA. 

Simulated Dataset 

 In order to create a data set that presents some of the structure, patterns, and problems likely 

to be encountered by motor learning and development researchers, we chose to emulate data from a 

retrospective study of developmental trajectories in elite skiers (Cowan et al., 2019; Fawver et al., in 

press). These simulated data emulate the real data set with respect to fixed-effects and variance 

components, but we chose to simulate a comparable data set (N = 170 participants, k = 830 

observations collected at yearly intervals) so that the data could be freely shared and disseminated. The 

outcome variable is United States Ski Association (USSA) points, which are used nationally to rank 

competitors, establish start orders, and score races, with lower scores indicating better performance. As 

https://github.com/keithlohse/LMER_v_RM_ANOVA
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shown in the spaghetti plot in Figure 1A, skiers’ USSA points generally reduced (i.e., improved) over 

time, but the rate of reduction depended on the age of the participant in 2018. We centered the Time 

variable on 2018 to represent the most current rankings. Visually, older participants tended to have 

lower intercepts in 2018 and flatter slopes, suggesting a greater rate of improvement for younger 

athletes early in their career. Alternatively, these data can be presented more discretely, as shown in 

the boxplots by year in Figure 1B. Although information about individual trajectories is lost, this method 

of presentation can be very useful for showing measures of central tendency and spread at the group 

level. 

 

Figure 1. (A) Spaghetti plot showing the improvement over time with a line for each participant. The 
spaghetti plot is visually consistent with the linear mixed-effects regression approach, where a unique 
regression line is fit for each participant. This can be contrasted against (B) where a boxplot is shown for 
each year, with USSA points color-coded based on the age of each participant in 2018. The boxplots are 
visually more consistent with the ANOVA approach, in which group means at each timepoint are 
compared against the grand mean. 



10 

 

Statistical Analysis 

In the subsequent sections we will focus on the interpretation of our models with respect to the 

statistical significance of their parameters and their substantive interpretation for applied researchers. 

However, we want to stress that evaluating a mixed-effects regression model is a complex process with 

steps and terms that might be unfamiliar to researchers. We refer readers to more thorough discussions 

of the topic that we will heavily summarize here (Long, 2012; Singer & Willett, 2003). As a useful 

analogue, we want to focus on the similarities between “traditional” ordinary least-squares regression 

and mixed-effect regression. In least squares regression, parameters are estimated to minimize the 

residuals. In mixed-effect regression, parameters are estimated to minimize the deviance. Deviance is 

related to the residuals in that it is a measure of error, but it is a more generalized form of the least-

squares. This generalizability, however, comes at the cost of increased complexity.  

One form of complexity that users are likely to encounter is the difference between full maximum 

likelihood estimation and restricted maximum likelihood estimation. As their names imply, both of these 

methods estimate the parameters that are most likely to have led to the observed data, but they differ 

in how they reach that conclusion. Full maximum likelihood takes all fixed- and random-effects (defined 

below) of the model into account, whereas restricted maximum likelihood focuses specifically on the 

fixed-effects (while treating the random-effects as a “nuisance” parameter through a transformation of 

the full likelihood function). The method a researcher uses will largely depend on their research 

question. Importantly, maximum likelihood estimation allows researchers to compare the relative 

deviance of models that have different fixed- or random-effects. These sorts of model comparisons are a 

common problem for applied researchers as we often want to compare models that have different 

fixed-effects (“What happens if I control for age?”) or random-effects (“How much variation is there in 

individual trajectories?”). As such, all of our analyses will use full maximum likelihood estimation and we 

will use a model comparison approach to make decisions about parameters.  
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In contrast, however, an experimental researcher might know exactly which factors they want to 

include in their model (i.e., the experimental manipulations), so model comparison is less of a concern. 

In those circumstances, it would be acceptable and perhaps even preferred to use restricted maximum 

likelihood estimation. This is especially true in smaller samples, because it has been shown that full 

maximum likelihood is biased to underestimate variance components in small samples (Kenward & 

Roger, 1997). Thus, full maximum likelihood enables model comparisons, but is biased in small samples. 

Restricted maximum likelihood avoids this bias but cannot be used to compare models with different 

fixed-/random-effects. 

Unconditional Models of Time. In mixed-effects regression, change in each individual’s USSA points 

can be represented as a trajectory. In various texts, the equations for these trajectories are broken into 

multiple levels (hence the terms “multilevel” or “hierarchical” model). In our example, data points and 

time at “Level 1” can vary within individuals. One level higher, the slopes and intercepts at “Level 2” vary 

between individuals. Within a single individual, the regression equation is like that for ordinary least-

squares regression, but the data are indexed by both time point (i) and by participant (j). Residual error 

(𝜀𝑖𝑗) is represented as the within-person difference of each individual’s observed scores (𝑦𝑖𝑗) relative to 

their trajectory: 

Eq 1.  𝐿𝑒𝑣𝑒𝑙 1: 𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗(𝑥𝑖𝑗) + 𝜀𝑖𝑗  

The parameters that define the average “group-level” trajectory are represented by the fixed-effects 

of the model (𝛾’s). The variability of individual’s parameter estimates are in turn represented by the 

random-effects (𝑈𝑗′𝑠). Similarly, error at the between-person level (“Level 2”) is represented by a 

variance-covariance matrix of the random-effects.  

Eq 2. 𝐿𝑒𝑣𝑒𝑙 2 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠: 𝛽0𝑗 = 𝛾00 + 𝑈0𝑗 

𝐿𝑒𝑣𝑒𝑙 2 𝑆𝑙𝑜𝑝𝑒𝑠: 𝛽1𝑗 = 𝛾10 + 𝑈1𝑗  
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 The equations can be written together in a single equation that combines the fixed-effects and 

the random-effects. Fixed-effects (the 𝛾’s) are the group-level effects which can be roughly interpreted 

as the average intercept or the average slope across participants. In contrast, the random-effects (the 

𝑈’s) are the individual deviations away from the group-level effects. Finally, the residuals (the 𝜖’s) are 

the difference between the model’s predictions and the actual data at each time point.   

Eq 3.  𝑦𝑖𝑗 = 𝛾00 + 𝑈0𝑗 + 𝛾10(𝑥ij) + 𝑈1𝑗(𝑥𝑖𝑗) + 𝜖𝑖𝑗  

This final mixed-effect equation most closely resembles the syntax that is entered into statistical 

programs. Although we specify only a single x-variable for time in the equation above, it is possible to 

add other fixed-effects to the model. For instance, we could add a curvilinear effect of time to the model 

(𝑥ij
2, 𝑥ij

3, or even 𝑥ij
4 depending on the number of data points available) or even adopt a truly nonlinear 

approach to the effect of time (discussed briefly below; see also Pinheiro et al., 2018; Lindstrom & Bates, 

1990). 

Properly accounting for the random-effects is key for drawing statistical inferences about the 

fixed-effects. Other conceptual definitions of fixed- and random-effects exist (see Gelman & Hill, 2007), 

but we think a useful definition for practitioners was advanced by Green & Tukey (1960): fixed-effects 

are those variables for which all levels of interest are represented; random-effects are those variables 

that are only a sample of larger population of potential values. For instance, in a randomized controlled 

trial, I would have a fixed-effect of Group (Treatment vs. Control), because those are the only two levels 

I am interested in, but a random-effect of Subject, because my subjects are a sample of a larger 

population. Depending on the research question, the same variable could be treated as either a fixed- or 

random-effect (e.g., treating stimulus type as a random-effect; Judd, Westfall, & Kenny, 2012).  

In order to determine how best to represent time, we need to compare models with different 

fixed- and random-effects of time. There are different strategies for comparing models and different 

metrics by which they can be compared. Here, we recommend an approach of visually inspecting the 
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data, then starting with the linear effect and progressively adding the higher order fixed- and random-

effects of time to our model (Long, 2012). In order to compare between models, we want to choose the 

model with the lowest deviance (i.e., the best approximation of the data). The simplest way to test the 

reduction in the deviance is with a chi-squared test. However, a concern as our model grows is that we 

might be overfitting; adding variables that do reduce the deviance, but at the expense of the model’s 

simplicity and generalizability. (E.g., If I add a fixed-effect of “Subject ID Number” to my model, I will 

explain my data very well and with many parameters, but that model won’t generalize to a new sample 

of subjects.) As such, we recommend that researchers use the Akaike’s Information Criterion (AIC) when 

comparing between models (Long, 2012). The AIC introduces a penalty for additional parameters, to 

reduce overfitting, and thus is a more conservative approach than the chi-square test alone (Vrieze, 

2012). In the simplest case, the model with the lower AIC should be selected as it is a better explanation 

of the data, although there are modifications to the AIC and other metrics can be used.  

In our ski data example, we explored models with linear, quadratic, and cubic effects of time, 

see Table 2. Comparing the linear to the quadratic models, the quadratic effect of Time significantly 

improved the fit of the model, χ2(1) = 9.36, p = 0.002. The reduction in the AIC agreed, ΔAIC = -6.54, 

suggesting that addition of the quadratic term explained more variance than it added in complexity. In 

contrast, adding a cubic term to the model did not reduce the deviance to a statistically significant 

degree, χ2(1) < 0.001, p = 0.981, and led to an increase in the AIC, ΔAIC = +2.00. An increase in the AIC 

suggests that a parameter added unnecessary complexity to the model. Additionally, we tested a truly 

nonlinear model of time that followed a negative exponential function. This nonlinear model also led to 

an increase in the AIC relative to the quadratic model, ΔAIC = +471.99. Note that a visual inspection of 

the data suggest that these data do not follow an exponential function, hence the very large AIC, but we 

wanted to fit this model for illustrative purposes that we will return to in the Discussion. For all 

subsequent analyses, we decided to retain a curvilinear model with linear and quadratic effects of time.   
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Table 2. Comparison between linear, quadratic, and cubic models.  

Model Fixed-Effects Random-Effects df AIC Deviance 

1 Time Time 6 8242.5 8230.5 

2 Time + Time2 Time 7 8236.0 8222.0 

3 Time + Time2 + Time3  Time 8 8238.0 8222.0 

4 Negative Exponential Rate, Asymptote 6 8707.9 8693.9 

*Note that we also tested a model with linear and quadratic random-effects of time, but that model 
generated a warning indicating that the fit was singular, i.e., one of the variance parameters was very 
close to zero on the boundary of the feasible parameter space. As such, the quadratic random-effect 
was dropped, leaving Model 2 as the most parsimonious model. AIC = Akaike’s Information Criterion.  
 

Conditional Models of Time. With the unconditional model for time selected, we can now add 

conditional fixed-effects to our model. That is, we have a very good approximation of how USSA points 

change overtime, regardless of other factors. Now, however, we need to see which factors explain 

variance in the intercepts and the slopes of our model. For instance, it is very plausible that skiers who 

spend more time in practice per year will have better ranks, controlling for age (Hodges et al., 2004). In 

our simulated dataset, we have the practice hours per year (in units of hundreds of hours) that the 

skiers estimated they spent in ski practice that year (as would be self-reported in a practice history 

questionnaire; Hendry et al., 2018). From these yearly totals, we can estimate several important values. 

First, we can calculate a between-subjects (“Level 2”) variable which is the grand mean-centered 

number of hours per year, 𝐻𝑗: 

Eq. 5. 𝐻𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑗
=  �̅�𝑗 − �̿�  

This variable, which we will refer to as “Hours.Between.c” reflects how much a person practiced on 

average (in hundreds of hours per year) relative to the sample.  

However, there is also variability within a person over time, so we calculated a within-subjects 

(“Level 1”) variable, which was group mean-centered on each individual person’s average hours: 

 Eq. 6.  ℎ𝑤𝑖𝑡ℎ𝑖𝑛𝑖𝑗
=  𝑥𝑖𝑗 − �̅�𝑗 
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This variable, which we will refer to as “Hours.Within.c” reflects how much a person practiced in a given 

year, relative to their personal average. Used in this way, hours-within is a time-varying covariate that 

we can use to try and explain residual variance at Level 1 of the model. Importantly, by grand mean- 

centering the between-subjects variable and group mean-centering the within-subject variable, we have 

two different measures of hours of practice that are uncorrelated, avoiding potential collinearity.  

 With these two variables in place, we can build a mixed-effect regression model to test our 

major hypotheses. The effects of Year, Year2, Age, Hours.Between.c, and all of their interactions were 

added as fixed-effects. We also included the time-varying covariate of Hours.Within.c as a fixed-effect to 

explain residual variance in the model. Details of this model are presented in Table 3.  

These effects can be interpreted as in a traditional regression output. The intercept is the 

estimated number of USSA points when all the x-variables are equal to zero. The time-variable of year 

was centered on 2018 and all other continuous variables were centered about their respective means. 

As such, the estimated intercept of 112.99 reflects the estimated USSA points that a skier of the average 

age (15.88 years) and hours of training (642.47 hrs/year) had in 2018.  

The estimated slopes show the predicted change in the dependent variable for a 1-unit change 

in the explanatory variable. As year was centered on 2018, the negative coefficient for Year means that 

for every year we move backward (2017-2018 = -1), the estimated USSA points for that individual 

increase by -21.18*(-1) = 21.18 points. 

The main-effects of Age.c and Hours.Between.c show the effects that those variables have on 

the intercepts. As shown by the coefficients in Table 3, there was negative relationship between Age and 

USSA points in 2018, with older participants tending to have better ranks (i.e., lower intercepts; Figure 

2A). Similarly, there was a negative relationship between Hours.Between.c and USSA points in 2018, 

with individuals who had practiced more hours over their career tending to have better ranks (i.e., lower 

intercepts; Figure 2C).  
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Table 3. Results of the conditional mixed-effects model.  

Random Effects      
 

Groups Name Variance Std.Dev. Corr   

Subject Intercept 229.5 15.15    

 Year 105.9 10.29 0.23   

 Residual 348.3 18.66    

N = 832 observations in k = 170 individuals.  

      
 

Fixed Effects      
 

Name Estimate SE df t-value p-value  

Intercept 112.99 2.23 338.82 50.64 <0.001  

Year -21.18 2.11 660.77 -10.06 <0.001  

Hours.Between.c -31.75 1.98 245.80 -16.01 <0.001  

Age.c -6.88 1.52 229.32 -4.52 <0.001  

Year2 1.41 0.49 596.77 2.88 0.004  

Hours.Within.c -18.34 1.78 560.81 -10.31 0.001  

Year x Hours.Between.c 12.49 2.01 650.98 6.21 <0.001  

Year x Age.c 2.44 1.32 571.56 1.85 0.065  

Hours.Between.c x Age.c 4.48 1.46 234.05 3.06 0.002  

Year2 x Hours.Between.c 0.60 0.50 587.03 1.20 0.230  

Year2 x Age.c -0.28 0.28 656.10 -0.98 0.329  

Year x Hours.Between.c x Age.c -0.97 1.29 586.37 -0.75 0.451  

Year2 x Hours.Between.c x Age.c -0.28 0.31 662.88 -0.91 0.365  

Note that Age was centered around the mean age in 2018, such that higher values indicate relatively 
older individuals. Year and Year2 were also centered on 2018, so that intercepts in the model correspond 
the estimated rank in 2018. Estimation of all fixed- and random-effects used Maximum Likelihood 
estimation. 

 

Interactions between Year x Age.c and Year x Hours.Between.c show the effects that these 

variables have on individual slopes. As shown by the coefficients in Table 3, there was a positive 

relationship between Age and the effect of Year, such that older participants tended to show flatter (i.e., 

less negative slopes) than younger participants, controlling for their other variables. This result suggests 

that younger skiers generally improved at a faster rate than older skiers. Similarly, there was a positive 

relationship between Hours.Between.c and the effect of Year, such that participants who spent more 

time in practice per year tended to have flatter slopes than skiers who spent less time in practice, 
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controlling for the other factors in the model. This finding might seem counter-intuitive, but it is 

important to remember that (A) these data were simulated, so we don’t want to interpret them too 

much anyway and (B) the effects on the slopes need to be interpreted in light of the effects on the 

intercepts. More hours of practice per year were associated with less improvement from year to year, 

but they were also associated with higher ranks in 2018, controlling for the other variables. As such, this 

pattern of results suggests diminishing returns in the relationship between improvement and time in 

practice. An additional 100 hours of practice confers a larger benefit to someone of lower rank, but a 

higher ranked individual (who tends to practice more) will see much less of a benefit for an additional 

hundred hours of practice. This finding fits with the reality that increased effort is required to make 

progressively smaller gains as one rises to higher levels of competition.  

Finally, we also need to interpret the effect of the time-varying covariate Hours.Within.c. This 

predictor explains residual variance at Level 1 of the model. That is, after accounting for the variation in 

the individual slopes and intercepts, there is still error in our model’s prediction at any given time-point. 

A time-varying covariate allows us to see if any of this residual variation can be explained. In our case, 

there is a negative relationship between hours practiced in a given year and USSA points in that year. 

Controlling for the other factors in our model, for every 100 hours of practice above a person’s average 

in a given year, our model estimates that their USSA point-ranking will improve by about -18.34 points. 
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Figure 2. Individual intercepts (rank in 2018) and slopes (rate of change) as a function of (A/B) age in 

2018 and average hours of practice per year over each person’s career (C/D).  

 

From this abbreviated introduction, we think mixed-effects regression provides many benefits 

as a method for studying longitudinal change. Mixed-effects regression allows researchers to explicitly 

model variation over time (at Level 1), variation between people (at Level 2), and cross-level interactions 

to see how the characteristics of different people affect their trajectories. Furthermore, characteristics 

of these data not only make the mixed-effects regression model useful but render the repeated 

measures ANOVA model difficult if not impossible. For instance, differences in the variability of the 

dependent variable over time would mean that a correction for heterogeneity of variance would need 

to be implemented (e.g., Greenhouse & Geisser, 1959). Different numbers of assessments per individual 
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require that individuals, observations, or both be trimmed from the dataset to create “complete” data. 

Finally, if a researcher wanted to measure the influence of a time-varying covariate, this is not 

implementable in repeated measures ANOVA at all.  

Comparison of ANOVA to Linear Mixed-Effects Regression in a Restricted Dataset  

 Due to the different number of observations per person, repeated measures ANOVA was not a 

viable analysis method for our full data set. In order to directly compare ANOVA to a linear mixed-

effects regression model, we need to restrict our dataset to a “complete” dataset with the same number 

of observations per person, regardless of their age. Naturally, researchers should be cautious with this 

kind of truncation to expediently deal with missing cases, but for the purposes of our commentary 

truncating the data is informative for directly comparing the two analysis methods. Excluding individuals 

without four years of observations and excluding cases of individuals with >4 years of observations 

produced a data set with 144 individuals and 576 observations. The truncated data are shown in Figure 

3. Note that in these truncated data, the quadratic effect of time no longer improved the fit of the 

model, so only a linear effect of Year was retained as both a fixed- and random-effect. 

 Another key difference between these analytic methods is that mixed-effects regression allows 

a researcher to look at explanatory variables either continuously or as categorical factors, whereas 

repeated measures ANOVA requires that explanatory variables be categorical factors. To accommodate 

this need, we converted Year into a factor with four levels (2015, 2016, 2017, 2018), and using median 

splits we converted Age (Younger, Older) and Hours.Between (Low, High) into categorical factors with 

two levels. Dichotomizing variables using median-splits is not recommended due to the negative effects 

on statistical power (McClelland et al, 2015), but as with the truncation of our dataset, it is illustrative 

for our comparison because the numerator degrees of freedom is 1 for both a single continuous 

predictor and a dichotomous categorical factor. Finally, the predictor of Hours.Within.c was removed 

from both models as a time varying covariate is not implementable in the ANOVA.  
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 As shown in Tables 4 and 5, we can compare the results of the two different analytic approaches 

with fixed-effects for the following variables: Year, Age, Hours, and all of their interactions.  

 

Table 4. Results of the conditional mixed-effects model analogous to the repeated measures ANOVA. 

Random Effects      
 

Groups Name Variance Std.Dev. Corr   

Subject Intercept 105.89 10.29    

 Year 51.04 7.15 -0.16   

 Residual 364.86 19.10    

N = 576 observations in k = 144 individuals.  

      
 

Fixed Effects      
 

Name Estimate SE df t-value p-value  

Intercept 102.44 1.80 144.03 56.82 <0.001  

Year -30.16 1.06 144.11 -28.55 <0.001  

Age -6.68 1.67 144.03 -4.00 <0.001  

Hours -31.27 1.76 144.03 -17.73 <0.001  

Year x Age 3.14 0.98 144.11 3.21 <0.001  

Year x Hours  10.25 1.03 144.11 9.92 <0.001  

Age x Hours 4.51 1.78 144.03 2.54 <0.001  

Year x Age x Hours  1.59 1.04 144.11 1.53 0.128  

Note that continuous variables were mean-centered prior to analysis with the exception of year, which 
was centered on 2018. 
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Table 5. Results of the repeated measures ANOVA analogous to the conditional mixed-effects model. 

Effect df F-value εGG p-valueGG  

Intercept 1, 140 2039.23 -- <0.001  

Hours 1, 140 137.11 -- <0.001  

Age 1, 140 29.47 -- <0.001  

Year 3, 420 303.55 0.84 <0.001  

Hours x Age 1, 140 2.24 -- 0.137  

Year x Hours 3, 420 27.15 0.84 <0.001  

Year x Age  3, 420 12.72 0.84 <0.001  

Year x Age x Hours 3, 420 1.19 0.84 0.312  

Note that Year is now a categorical factor in the RM ANOVA as opposed to a continuous variable in the 
linear mixed-effects regression. Within-subject effects were corrected for a violation of sphericity based 
on the Greenhouse-Geisser (GG) correction. 
 
 
 

 
Figure 3. (A) Spaghetti plot of the truncated dataset showing the improvement over time as a 

continuous variable as in linear mixed-effects regression. (B) Boxplots showing mean differences where 

year is treated as a categorical factor, as in RM ANOVA.  
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Discussion 

The purpose of this demonstration was to compare and contrast the strengths and limitations of 

mixed-effects regression and repeated measures ANOVA in modeling longitudinal data. In doing so, we 

have adapted a real data set of USSA point rankings for young skiers (making the dataset available to 

readers) and constructed three separate models for the comparison. Each model (linear mixed-effects 

regression with the full data set, linear mixed-effects regression with the truncated data set, and 

repeated measures ANOVA with the truncated dataset) highlights a different set of assumptions and 

trade-offs. As noted previously, the primary conceptual difference between the two approaches is that 

repeated measures ANOVA, compares group means against a grand mean, whereas linear mixed-effects 

regression explicitly models the outcome over time. Thus, neither approach is a substitute for the other.  

Repeated measures ANOVA has its place in analyses where individuals may vary across 

measurements at multiple arbitrarily defined time points and it is important to account for within-

person variance, but the omnibus test is one of group differences among those time points. In repeated 

measures ANOVA, ‘time’ is modeled implicitly only to categorize scores collected at successive arbitrarily 

defined points in time, as the model does not account for time intervals between the points. Conversely, 

mixed-effects regression explicitly models time and thus is appropriate for questions that address how 

individuals vary from a common trajectory over time. As parsimony is a consideration for all modeling 

activities, repeated measures ANOVA would be preferable where it provides a simpler solution to the 

question of interest.  

We have demonstrated, however, that in comparison to a fully specified mixed-effects 

regression model, repeated measures ANOVA may be inviable, inaccurate, or provide an answer to a 

conceptually different question. We produced a linear mixed-effects regression model with the full data 

set, but repeated measures ANOVA was not a viable option due to missing data on both years and cases. 

Thus, we cannot compare methods on the full data set. To generate a repeated measures ANOVA, we 
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had to reduce the dataset using list-wise deletion. (Note, an alternative approach would be using 

multiple imputation to replace the missing values, but this would require a complicated statistical 

procedure with its own set of assumptions.) We opted to remove cases without observations for years 

from 2015 to 2018, and to remove all observations from years 2011 through 2014, which removed 256 

observations and 26 cases. Retaining more years would have excluded progressively more cases and 

retaining more cases would have dramatically shortened our time frame. Additionally, if we want to 

include time varying covariates in the model, this necessitates the use of a mixed-effects model. 

A major benefit of mixed-effects regression is that it accounts for correlations within the data 

and irregular measurement timing. However, improperly specified models will still be subject to 

distortion and bias, and there are at least two characteristics of these data that warrant further scrutiny. 

First, we produced two linear mixed-effects regression models, one each from the complete and 

truncated data sets; but which one is right? The full model includes all available data, but the dataset is 

unbalanced, whereas the truncated dataset is balanced, but has arbitrarily excluded cases and 

observations. The unbalanced nature of the full dataset may meet the missing at random assumption, in 

that missingness is due to age (younger skiers are not ranked in earlier years), and age is included in the 

model (Curran et al., 2010). However, missingness in unbalanced datasets is often associated with the 

values of the missing outcome variable itself. For example, models of recovery for inpatient 

rehabilitation samples may be missing later time points because earlier rehabilitation discharge is 

associated with faster recovery, or recovery to a target outcome, such as independence with mobility 

(Hart et al., 2014; Kozlowski et al., 2013). As such, so we cannot be completely sure that our data are 

missing at random even after accounting for age.  

The absence of younger skiers for earlier years also hints at a second characteristic to scrutinize. 

Another assumption of linear mixed-effects regression is that the outcome variable is continuous. The 

“USSA points” that are used to rank skiers are based on the summation of “race points” and “penalty 
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points” for a skier’s two best races each year. Race points, 𝑅𝑃, for a single race are determined based on 

the following formula: 

Eq 7.  𝑅𝑃 = (
𝑇𝑅

𝑇𝑊
− 1) × 𝐹  

Where 𝑇𝑅 is the racer’s time in seconds, 𝑇𝑊 is the winning racers time in seconds, and 𝐹 is a 

constant, different for each skiing discipline, based on the average spread of race results in that 

discipline. However, these race points are balanced against the penalty points, which consider factors 

like the relative ranking of the other racers in the field. For instance, the winner in a race of poorly 

ranked skiers will get 0 race points, but have a larger number of penalty points added to their score, 

whereas the winner in a race of elite skiers will get 0 race points and then have few penalty points 

added to their score. The calculation of penalty points is beyond the scope of our discussion (see the US 

Ski and Snowboard 2019 Alpine Competition Guide), suffice it to say that these points are not truly 

continuous, and it is harder to improve one’s rank the fewer points one has (e.g., the difference 

between 102 and 101 is not the same as 2 and 1). In this instance, having an ordinal outcome does not 

have substantial consequences on the model given that our multi-level ordinal outcome has greater 

than 100 levels and we have a relatively large sample size (our full and truncated datasets include 170 

and 144 cases, and 832 and 576 observations, respectively). However, we want to point out that if our 

outcomes had only a small, fixed number of levels, we could run a generalized linear mixed-effect model 

as an ordinal logistic regression. There is not, however, an equivalent alternative in ANOVA when an 

ordinal outcome has only a small number of levels. 

Hopefully this discussion shows that the strengths of employing mixed-effects regression to 

model time-series data are balanced against some limitations and trade-offs. Advantages include 

increased control and statistical power for modeling the time parameter, options to address 

missingness, and interpretability of the pattern of change. Regarding interpretability, it is often easier to 

comprehend a curvilinear or truly nonlinear model than it is to comprehend a transformation of the 
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outcome or a transformation of the time variable. In our ski example, we found a curvilinear model to 

be superior to a truly nonlinear, negative exponential model. However, as shown in Figure 4, there are 

many applications in motor learning and development where researchers might find a benefit of 

nonlinear models.  

 

Figure 4. Simulated results illustrating how data might be modeled using a negative exponential function 

in a nonlinear mixed-effects model. In Panels A and B, we focus on dependent variables were negative 

changes in the outcome indicate improvement (e.g., error or movement speed). In Panels C and D, we 

show the analogous case but for dependent variables where positive changes indicate improvement 

(e.g., points or accuracy measures). The nonlinear mixed-effects model allows users to test for 

differences in both the rate of acquisition (shown in A and C) and in the performance asymptote (shown 

in B and D). 

 



26 

 

To illustrate this point, we simulated four different cases where nonlinear methods might be 

optimal due to floor or ceiling effects in the data. In Figure 4A/B we illustrate simulated data from two 

groups who show exponential decay as might be expected in situations where error or movement time 

is the outcome (i.e., there is a floor effect). In panel 4A, we can statistically model how these two groups 

differ in their rate of improvement. In panel 4B, we can statistically model how these two groups differ 

in their asymptote.  

Similarly, in Figure 4C/D we can test a nonlinear mixed-effect model in a situation where our 

outcome might be percent accuracy (i.e., there is a ceiling effect). In panel 4C, we can statistically model 

how these groups differ in their rate of improvement. In panel 4D, we can statistically model how these 

groups differ in their asymptotes.  

Naturally the nonlinear mixed model can address differences in rate and asymptote at the same 

time, but for the sake of clarity we have manipulated these parameters in separate samples. (The code 

for statistically testing these differences is provided at 

https://github.com/keithlohse/LMER_v_RM_ANOVA.) This sort of nonlinear relationship is common in 

many areas of motor learning and development, and as such nonlinear mixed-effect models have a lot 

of potential for researchers. Although nonlinear models are more complex than linear models (e.g., the 

researcher often has to provide “starting values” for the parameters to ensure the model converges on a 

solution; Pinheiro & Bates, 2006), they have many desirable properties such as a closer correspondence 

to the data and greater interpretability. For instance, we would argue it is usually easier to explain 

effects on asymptotes and rates of change than is to explain the effect of log-transformed ‘X’ on log-

transformed ‘Y’. Such interpretation may be important when translating results to clients, athletes, 

clinicians, patients, or other stakeholders.  

Despite these advantages, mixed-effect models are likely unfamiliar to many readers and some 

of the topics we have introduced here might feel quite unusual and complex. Although resources are 

https://github.com/keithlohse/LMER_v_RM_ANOVA
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available for guidance, fewer academics and clinicians have the training, experience, and tools available 

to employ mixed-effects regression. Although mixed-effects regression is available in most statistical 

software packages, the variety of mathematical functions that can be fit may be more limited. In terms 

of study design, fewer tools are available to estimate statistical power in mixed-effect models, but 

power calculators do exist (Westfall, Judd, & Kenny, 2014; Brysbaert & Stevens, 2018). Similarly, there is 

less consensus on how to calculate standardized effect-sizes in mixed-effect models. One can certainly 

calculate a proportional reduction in deviance that is like an r-squared (Singer & Willet, 2003), but the 

calculation and interpretation of these effects depends heavily on what random-effects are included in 

the model. For this reason, we would generally encourage researchers to focus on “raw” effect-sizes 

(e.g., β coefficients) and the precision with which they are estimated (e.g., 95% confidence intervals). 

Finally, it is also important to remember that determining the “best-fitting” model is based on the best-

fit to the available data, not necessarily the underlying construct or theory. Inaccurate results are likely if 

the data do not provide a complete picture of change over time, or the available functions are not 

sufficiently analogous to the underlying theory. For instance, in the absence of strong theory about 

trajectories, a quadratic curvilinear model may be enough, but if theory strongly predicts exponential 

relationship, then exponential models should be tested.  

Fortunately, mixed-effects regression is being applied more frequently across more academic 

domains. Resources are more readily available to help researchers develop the knowledge and skill to 

employ mixed-effects regression methodology to their specific circumstances. The capability is in many 

available software packages, although it may be more accessible in some than in others. In R, for 

example, linear and curvilinear models are readily available in the ‘lme4’ package, and guidance is 

available in a text resources (e.g., Long, 2012; Mirman, 2014). However, one will first need working 

knowledge and familiarity with the R programming language. Nonlinear models can also be fit with the 

‘nlme’ package in R (Pinheiro & Bates, 2006); however, tutorials and specifications for nonlinear 
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functions are less readily available. Thankfully, professional development opportunities, such as online 

videos and webinars, introductory courses and workshops, are also becoming more common. These 

workshops are a valuable complement to text references on various aspects of mixed-effects regression 

(Long, 2012; Mirman, 2014; Singer & Willet, 2003).  

Ultimately, we argue that mixed-effects regression is a valuable tool that deserves to be 

adopted by researchers in motor learning and development. Repeated measures ANOVA certainly has 

its place, but researchers need to understand what the limitations of these approaches are, and we 

encourage them to expand their toolkit. Mixed-effects regression provides a flexible and powerful 

method for understanding how individuals change over time and for modeling how these 

developmental trajectories are shaped by the characteristics of the person and their environment.  
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