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ABSTRACT

In this dissertation, we study extensions of graded affine Hecke algebra modules. In

particular, based on an explicit projective resolution on graded affine Hecke algebra mod-

ules, we prove a duality result for Ext-groups. This duality result with analysis on some

parabolically induced modules gives a new proof of the fact that all higher Ext-groups

between discrete series vanish. Finally, we study a twisted Euler-Poincaré pairing and show

the pairing depends on the Weyl group structure of graded affine Hecke algebra modules.
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CHAPTER 1

INTRODUCTION

1.1 Background

Graded affine Hecke algebras were defined by Lusztig [Lu1] for the study of the repre-

sentations of affine Hecke algebras and p-adic groups. The relation between affine Hecke

algebras and their graded ones can be thought of as an analogue of the relation between Lie

groups and Lie algebras, and so graded affine Hecke algebras are simpler in certain aspects.

The classification of irreducible graded Hecke algebra modules has been studied exten-

sively in the literature. A notable result is the Kazhdan-Lusztig geometric classification

[KL] for equal parameter cases. In arbitrary parameters, a general result is the Langlands

classification [Ev] which states that every irreducible module can be built from a tempered

module. The classification of tempered modules can be understood from the classification

of discrete series by Opdam-Solleveld [OS2] and the decomposition of relevant parabolically

induced modules for tempered modules by Delorme-Opdam [DO]. There are also some

other classification results [CK, Ka, Kr, KR].

The main goal of this dissertation is to study the extensions of graded affine Hecke

algebra modules, that is, to understand some reducible modules rather than irreducible

ones. Since we ultimately want to apply our study to understand the extensions of smooth

representations in p-adic group, we also give connections of extensions in the relevant

categories in Chapters 2 to 4.

There are some studies and applications of the extension problem in the literature [AP,

BW, Me, OS1, OS3, Or, Pr, SS, So]. In the p-adic group setting, Adler-Prasad [AP] recently

computed extensions of certain smooth representations and Prasad [Pr] also studies an Ext-

analogue of the branching problem. Motivated by the study of the étale cohomology of p-adic

domains, Orlik [Or] also computed the Ext-groups of generalized Steinberg representations.

In the affine Hecke algebra setting, Opdam-Solleveld [OS1, OS3] computed the extensions

of tempered modules of an affine Hecke algebra and applied the result to study an Arthur’s

formula and Kazhdan’s orthogonality conjecture.
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While our work is motivated from some results in the setting of p-adic groups and affine

Hecke algebras, our approach is self-contained in the theory of graded affine Hecke algebras.

Moreover, because of the algebraic nature of our approach, it applies to the graded Hecke

algebra of noncrystallographic types (see [Kr] and [KR]). It is also possible to extend some

results to some similar algebraic structures such as degenerate affine Hecke-Clifford algebras

[Na] and graded Hecke algebras for complex reflection groups [SW].

1.2 Main results

Let H be a graded affine Hecke algebra (see Definition 3.3.25). Our study of the extension

problem begins with an explicit construction of a projective resolution on H-modules. This

projective resolution is an analogue of the classical Koszul resolution for relative Lie algebra

cohomology for (g,K)-modules.

The first application of the projective resolution is to prove a duality result for Ext-

groups of H-modules. To state the result, we need to introduce three operations ∗, •, ι on

H (see Section 6.2 and Section 6.5 for the detailed definitions).

The first anti-involution ∗ arises naturally from the study of unitary duals for the Hecke

algebra of a p-adic group (see [BM1]), but we remove the complex conjugation from the

original definition for the purpose of our study on complex parameters. The second anti-

involution • is studied in a recent paper of Barbasch-Ciubotaru [BC2] as an Hecke algebra

analogue of the compact-star operation for (g,K)-modules in [ALTV, Ye], but again we

remove the complex conjugation from their definition. The •-operation is also studied by

Opdam [Op] in the Macdonald theory for affine Hecke algebras. The last operation ι on

H is the Iwahori-Masumoto involution, which plays the role of tensoring with the sign

representation on the level of Weyl groups and is shown by Evens-Mirković [EM] to have

close connection with the geometric Fourier-Deligne transform.

For each of the operations ∗, •, ι, it induces a map from the set of H-modules to the set

of H-modules. For an H-module X, we denote by X∗, X• and ι(X) (see Section 6.2 and

Section 6.5) for the corresponding dual H-modules, respectively.

Our first main theorem of the dissertation is the following duality on the Ext-groups:

Theorem 1.2.1. (Theorem 6.6.63) Let Π be a based root datum (X , R,Y, R∨,∆) (see

Section 3.1). Let H be the graded affine Hecke algebra associated to a based root datum Π

and an arbitrary parameter function (Definition 3.3.25). Let V = C⊗ZX and let n = dimV .

Let X and Y be finite dimensional H-modules. Then there exists a natural nondegenerate

pairing
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ExtiR(H)(X,Y )× Extn−iR(H)(X
∗, ι(Y )•)→ C.

Here, the ExtiR(H)-groups are taken in the category R(H) of H-modules.

(For some comments on the formulation and the proof of Theorem 1.2.1, see Remark 6.6.64.)

Theorem 1.2.1 is an analogue of the Poincaré duality for real reductive groups ([BW, Ch.I

Proposition 2.9], [Kn2, Theorem 6.10]). One may also compare with the duality result in

[SS, pg 133] by Schneider-Stuhler.

The second result of this dissertation is about the extensions of discrete series. Those

discrete series are defined algebraically in terms of weights (Definition 7.1.73) and corre-

spond to discrete series of p-adic groups when the parameter function is positive and equal.

Since discrete series are basic building blocks of irreducible H-modules, it may be important

to first understand the extensions among them. Our second main result states that:

Theorem 1.2.2. (Theorem 8.1.93) Let Π be a based root datum (X , R,Y, R∨,∆) (see

Section 3.1). Let H be the graded affine Hecke algebra associated to a based root datum

Π and an arbitrary parameter function (Definition 3.3.25). Let V = C ⊗Z X . Assume R

spans V . Let X be an irreducible tempered module and let Y be an irreducible discrete series

(Definition 7.1.73). Then

ExtiR(H)(X,Y ) =

{
C if X ∼= Y and i = 0
0 otherwise .

Since a discrete series is also tempered, the statement covers the case for X and Y being

discrete series. The statement for affine Hecke algebra setting is proven by Opdam-Solleveld

[OS1], and the one for p-adic group setting is proven by Meyer [Me]. Ciubotaru-Trapa

deduce the result from [OS1] for the graded setting using results of Solleveld. The method

we prove Theorem 1.2.2 with is different from theirs and essentially makes use of Theorem

1.2.1. For the outline of the proof, see the beginning of Chapter 8.

To state the last result of the dissertation, we need some more notations. Let δ be an

automorphism on the root system with δ(∆) = ∆. We assume δ is either the identity map

or the map arising from the longest element in the Weyl group. (In the latter case, that

is the map θ in Section 6.1.) The action of δ can be extended to the Weyl group, and

then extended to H. For Ho 〈δ〉-modules X and Y , we define the δ-twisted Euler-Poincaré

pairing on X and Y (regarded as H-modules):

EPδH(X,Y ) =
∑
i

(−1)itrace(δ∗ : ExtiR(H)(X,Y )→ ExtiR(H)(X,Y )).
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Here, δ∗ is a natural map induced from the action of δ on X and Y . We now state our

last theorem, which was previously proven by Reeder [Re] and independently by Odpam-

Solleveld [OS1] in other settings:

Theorem 1.2.3. (Proposition 9.1.97, Theorem 9.3.104) Suppose δ : H → H is either the

identity map or the map θ in Section 6.1. For any finite dimensional H o 〈δ〉-modules X

and Y , EPδH(X,Y ) depends only on the Weyl group structure of X and Y . Furthermore,

EPδH(X,Y ) can be expressed in terms of the characters of the Weyl group (see Theorem

9.3.104 for the explicit formula).

Theorem 1.2.3 suggests that EPδH is simpler for the study than each individual ExtiR(H)-

group. Some consequences of Theorem 1.2.3 are given at the end of Chapter 9.

1.3 Future direction

We list some possible research projects built from this dissertation:

1. Extensions among discrete series have been studied in Chapter 7. Thus, it is natural to

next study the extensions among tempered modules. Indeed, Opdam-Solleveld [OS3]

have shown that the extensions of tempered modules can be reduced to calculations

involving only finite group representations. Their proof is again in the affine Hecke

algebra setting and so it is desirable if we can have a self-contained theory in the

graded affine Hecke algebra. We believe intertwining operators will be the main tool

for such calculations (as what we see in [OS3, So]).

2. After computing the extensions of tempered modules (or simply applying the results

of Opdam-Solleveld [OS3]), we may try to look at more modules other than tempered

modules. From the calculations from Chapters 7 and 8, the known information, such

as composition factors in standard modules [Ci2, Lu3, CKK] and the duality result

(Theorem 1.2.1), may be useful. Along the way, it is also natural to think about

a homological interpretation of the Kazhdan-Lusztig type polynomials (for graded

Hecke algebras) analogous to classical ones (see [Hu1, Section 8.11]).

3. In Chapter 4, we will see the relations of the extensions of smooth representations

of p-adic groups and extensions of graded affine Hecke algebra modules. However,

to translate the results to the level of p-adic groups, one may have to go through

explicitly the equivalence of categories. It may be interesting to see how the results

may be formulated more explicitly in some p-adic groups of small ranks or in GL(n, F ).

Some examples of Hecke algebra isomorphisms are in [Ki, Lu2, Mo].
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1.4 Outline of the dissertation

This dissertation is mainly divided into two parts. Each chapter begins with an intro-

duction giving a more detailed guide.

The first part includes Chapters 2 to 4, which explain the connections between p-adic

groups, affine Hecke algebras and graded affine Hecke algebras. The central ideas of the

connection are around the theory of types (Section 2.5), Hecke algebra isomorphisms and

the Lusztig’s reduction theorem (Section 3.4). Emphasis on the connection of Ext-groups

is in Chapter 4.

The second part includes Chapters 5 to 9, which study some aspects of extensions of

graded affine Hecke algebra modules. Chapter 5 (with some parts in Chapter 4) serves as

the groundwork for the study. Chapter 6 proves a duality result for Ext-groups. Chapter

7 reviews the Langlands classification, from which we get some general information on

extensions. Chapter 8 computes the extensions of discrete series by using results in Chapters

6 and 7. Chapter 9 studies the Euler-Poincaré pairing and gives applications at the end.



CHAPTER 2

SMOOTH REPRESENTATIONS OF

P -ADIC GROUPS

This chapter is devoted to seeing how the study of smooth representations of p-adic

groups can be transferred to the study of some related algebras. The main references for

this chapter are [BK], [HK], [BH, Chapter 4] and [Ro].

2.1 Representations of p-adic groups

Let G be a reductive p-adic group (over a field of characteristic 0). A (complex) repre-

sentation of G is a pair (π,X) consisting of a complex vector space X and a homomorphism

π : G → GL(X) from G to the set GL(X) of invertible linear automorphisms on X. We

may sometimes only write π or X for the representation. A subspace Y of a representation

X is said to be a subrepresentation if Y is G-invariant, meaning that π(g)Y ⊂ Y for all

g ∈ G. A representation (π,X) of G is said to be irreducible if there is no nontrivial proper

G-invariant subspace of X.

Let (π,X) be a representation of G. Let Z ⊂ Y be subrepresentations (possibly 0 or the

entire space) of X. Then, there is a natural G-representation structure πY/Z on the space

Y/Z determined by

πY/Z(g)(y + Z) = π(g)y + Z.

Then the G-representation (πY/Z , Y/Z) is said to be a subquotient of X.

A representation (π,X) of G is said to be smooth if for every vector v in V there is an

open compact subgroup of G such that π(g)v = v for all g ∈ G. Let R(G) be the category

of smooth representations of G. A representation (π,X) is said to be admissible if for every

open compact subgroup K, the K-invariant subspace of X is finite-dimensional.

2.2 The Hecke algebra

The Hecke algebra H(G) of G is the convolution algebra of locally constant complex-

valued functions on G with compact support. Fix a Haar measure. We shall use ∗ to denote
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the convolution of H(G). An H(G)-module V is said to be nondegenerate if H(G)V = V .

Let R(H(G)) be the category of nondegenerate H(G)-modules. For each compact open

subgroup of K, denote by H(G,K), the bi-K-invariant functions in H(G):

H(G,K) =
{
f ∈ H(G) : f(kgk′) = f(g) for any k, k′ ∈ K and g ∈ G

}
. (2.1)

Denote by eK the normalized characteristic function of K i.e.,

eK(g) =

{
vol(K)−1 for g ∈ K
0 for g /∈ K.

The element eK is an idempotent in H(G) and H(G,K) = eK ∗ H(G) ∗ eK .

Local constancy and compact support of functions in H(G) implies that for each f ∈

H(G), there exists compact open subgroup K1 and K2 such that f(k1g) = f(g) = f(gk2)

for all k1 ∈ K1, k2 ∈ K2 and g ∈ G. Hence, since f has compact support, one sees that f

is a finite linear combination of characteristic functions of double cosets KgK. Hence,

H(G) =
⋃
K

H(G,K) =
⋃
K

eK ∗ H(G) ∗ eK ,

where K runs over all the compact open subgroups of G. Then for a nondegenerate H(G)-

module X,

X =
⋃
K

eKX,

where K again runs over all the compact open subgroups of G.

Proposition 2.2.4. The category R(G) of smooth representations of G is equivalent to

the category R(H(G)) of nondegenerate H-modules. In particular, the set of irreducible

smooth representations of G is in natural bijection with the set of nondegenerate simple

H(G)-modules.

Proof. We follow the proof of [BH, Ch. 4 Sec.1 Proposition 1]. Fix a Haar measure onG. Let

(π, V ) be a smooth representation of G. Any function f ∈ H(G) defines an endomorphism

on V via the map

πH : H → End(V ), f 7→
∫
g∈G

f(g)π(g)dg.

Note that
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πH(f1 ∗ f2) =

∫
h∈G

∫
g∈G

f1(hg−1)f2(g)π(h)dgdh

=

∫
h′∈G

∫
g∈G

f1(h′)f2(g)π(h′g)dgdh′

=

∫
h′∈G

f1(h′)

∫
g∈G

f2(g)π(h′) ◦ π(g)dgdh′

=

(∫
h′∈G

f1(h′)π(h′)dh′
)
◦
(∫

g∈G
f2(g)π(g)dg

)
= πH(f1) ◦ πH(f2).

Hence, πH defines an H-module structure on V . The H-module structure on V is indeed

nondegenerate since V =
⋃
K V

K by the smoothness of V and πH(eK)V K = V K .

We now define a smooth G-representation structure for each nondegenerate H(G)-

module (πH, X). First there is a canonical map from H(G)⊗H(G) X to X. It is clear that

the map is surjective. To see the map is also injective, we pick an element
∑m

i=1 fi ⊗ xi ∈

H(G) ⊗H(G) X in the kernel of the map. Then we pick a compact open subgroup K such

that eK ∗ fi ∗ eK = fi and πH(eK)xi = xi for all i. Then we have

m∑
i=1

fi ⊗ xi = eK ⊗
m∑
i=1

πH(fi)xi = 0.

Hence, H(G) ⊗H(G) X is isomorphic to X. Then the left translation on H(G) induces

an action on X. Explicitly, for x ∈ X, choose a compact open subgroup K such that

eK ∗ x = x. Then we define the action of g is by π(g)x = vol(K)−1πH(chgK)x, where chgK

is the characteristics function of the set gK.

With these maps and Lemma 2.2.5 below, one can check the equivalence of categories.

�

Lemma 2.2.5. Let (π,X) be a smooth representation of G. Let K be a compact open

subgroup of G. Then for x ∈ X, π(k)x = x for all k ∈ K if and only if πH(eK)x = x.

Proof.

πH(eK)x =

∫
G
eK(g)π(g)x dg

=

∫
K
π(g)x dg

=

∫
K
π(gk−1)π(k)x dg for any k ∈ K

=

∫
G
eK(g)π(g)π(k)x dg

= πH(eK)π(k)x.
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The equality implies the if direction. For the only if direction, the second expression is

equal to x if π(k)x = x.

�

Proposition 2.2.4 allows us to reduce the study of smooth representations of p-adic

groups to the study of nondegenerate H(G)-modules. The Hecke algebra H(G) is not a

unital algebra, but it has a lot of idempotents. It may be useful for us to have a more

general definition here, which may also be applied to some other context later.

Definition 2.2.6. An associative algebra A over C is idempotented if A has a countable

set of idempotents e such that A is the union of all the sets eAe. An A-module X is said

to be nondegenerate if AX = X. Since a submodule of a nondegenerate A-module is still

nondegenerate, the category of nondegenerate A-modules is abelian.

Let A be an idempotented algebra and let e be an idempotent element. Then eAe is

an algebra with an unit. Let R(A) be the category of nondegenerate A-modules and let

R(eAe) be the category of eAe-modules. Let the restriction functor and induction functor

be, respectively, as follows:

r : R(A)→ R(eAe), X 7→ eX,

i : R(eAe)→ R(A), X 7→ A ⊗eAe X.

Note that for M ∈ R(eAe), r(i(M)) = M , which follows from the fact that ea = (eae)e ∈

eAe for a ∈ A. The relation between A-modules and eAe-modules is given below:

Proposition 2.2.7. Let Irr(A, e) be the set of irreducible A-modules X with the property

that eX 6= 0. Let Irr(eAe) be the set of irreducible eAe-modules. Then r gives a canonical

bijection between Irr(A, e) and Irr(eAe).

Proof. We first see that r gives a well-defined map i.e., for X ∈ Irr(A, e), r(X) is irreducible.

Let N be a nonzero eAe-submodule of r(X). Then AN = X by the irreducibility of X.

Hence, (eA)N = eX = r(X). On the other hand, N = (eAe)N = (eA)N . Hence, N = r(X)

as desired.

Let M be an irreducible eAe-module. Let N be a maximal submodule of i(M) such

that HomeAe(M, r(N)) = 0. (The existence of the maximal submodule is guaranteed by

Zorn’s Lemma.) We first show that N is the maximal submodule of i(M). Let N ′ be a eAe-
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submodule of M properly containing N . Then we have the exact sequence 0→ N ′ → i(M)

and so

0→ HomA(i(M), N ′)→ HomA(i(M), i(M)).

By Frobenius reciprocity and our choice of N ′, HomA(i(M), N ′) = HomeAe(M, r(N ′)) 6= 0.

On the other hand, by Frobenius reciprocity again we also have

HomA(i(M), i(M)) = HomeAe(M, r(i(M))) = HomeAe(M,M) = C.

Then the above exact sequence implies that there exists a composition of maps i(M) →

N ′ → i(M) such that the composition is an isomorphism and the second map is the natural

injection. This implies the second map is also surjective and so is an isomorphism. Hence,

N ∼= i(M). This shows N is the unique maximal submodule of i(M) and defines a map

s : Irr(eAe)→ Irr(A, e).

We then show that r ◦ s is an identity. For M ∈ Irr(eAe), r ◦ s(M) ⊆ r(i(M)) = M .

Since r ◦ s(M) 6= 0 and M is irreducible, we have r ◦ s(M) = M . To conclude r and s are

bijections, it suffices to show that r is injective. By Frobenius reciprocity,

HomeAe(r(M1), r(M2)) = HomA(i ◦ r(M1),M2) 6= 0.

However, by the uniqueness of the maximal submodule, M1
∼= M2. This completes the

proof.

�

We now formulate the above result in terms of smooth representations of p-adic groups,

which follows from Lemma 2.2.5 and Proposition 2.2.7.

Corollary 2.2.8. Let K be a compact open subgroup of G. The set of irreducible smooth

representations of G with K-fixed vectors is bijective to the set of simple nondegenerate

H(G,K)-modules.

It is also natural to ask if Proposition 2.2.7 can be formulated in the level of categories.

The answer is likely to be negative in general but we have the following equivalent conditions

in Proposition 2.2.9 below. We define one more notation. Let R(A, e) be the full subcategory

of R(A) whose objects are nondegenerate A-modules generated by e-fixed vectors i.e.,

R(A, e) = {X ∈ R(A) : X = AeX} .

Proposition 2.2.9. The following statements are equivalent:
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(1) i(R(eAe)) = R(A, e) as full subcategories,

(2) R(A, e) is closed under subquotients,

(3) R(eAe) ∼= R(A, e).

Proof. We first prove (1) implies (3). By Frobenius reciprocity, HomA(i(X), i(Y )) =

HomeAe(X, r(i(Y ))) = HomeAe(X,Y ). Hence, i(R(eAe)) ∼= R(eAe). This proves (1)

implies (3). That (3) implies (2) is clear as R(eAe) is closed under subquotients.

It remains to consider (2) implies (1). Since for any object M in R(eAe), r(i(M)) = M

and M generates the A-module i(M), i(R(eAe)) is a subcategory of R(A, e). We now

prove R(A, e) is a subcategory of i(R(eAe)). Let Y be an object in R(A, e). Now we have

seen that i(r(X)) is also an object in R(A, e). By Frobenius reciprocity, we have a natural

surjective map from i(r(X)) to X. Let N be the kernel of the surjective map. By the fact

that R(A, e) is closed under subquotient, Y is an object in R(A, e). On the other hand,

since r is an exact functor, r(Y ) = 0 and hence Y = 0. This implies X = i(r(X)), as

desired.

�

2.3 The Bernstein decomposition

The Bernstein decomposition, roughly speaking, expresses the category of smooth rep-

resentations of G into the product of indecomposable full subcategories. The goal of this

section is to describe such a decomposition.

We first review a construction of irreducible smooth representations of G by using

parabolic induction. Let P = MPUP be a parabolic subgroup of G with a Levi subgroup

MP and a unipotent radical UP . The Levi subgroup MP is still a reductive p-adic group.

Then define IndGP to be a functor from R(MP ) to R(G) such that for an object (σ,Xσ) in

R(MP ),

IndGPXσ =

{
f : G→ Xσ :

f is locally constant and f(mug) = σ(m)f(g)
for all m ∈MP and u ∈ UP

}
,

and G acts on IndGPXσ by a right translation. IndGP admits a left adjoint functor, usually

called Jacquet functor with respect to U .

An irreducible smooth representation of G is supercuspidal if it is not a subquotient

of any proper parabolically induced representations. Equivalently a smooth representation

(π,Xπ) is supercuspidal if and only if the Jacquet functor on Xπ, with respect to any

nontrivial unipotent radical U , is zero.
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The following result says that each irreducible smooth representation of G appears in

the parabolic induction from a supercuspidal representation of some Levi subgroup of G in

a unique way (up to conjugation).

Theorem 2.3.10. (Jacquet) (see [Ro, Proposition 1.7.2.1, Corollary 1.10.4.3]) Let (π,Xπ)

be an irreducible smooth representation of G. Then

(1) there exists a parabolic subgroup P = MPUP and a supercuspidal representation

(σ, Vσ) of M such that (π,Xπ) is a subquotient of the parabolic induced representation

IndGP (σ,Xσ).

(2) Suppose (P1, (σ1, Xσ1)) and (P2, (σ2, Xσ2)) are two pairs of data satisfying the condi-

tion in (1). Then there is a g ∈ G such that gP1g
−1 = P2 and (gσ1, X1) ∼= (σ2, X2).

Here, gσ1 is a representation of MP2 such that gσ1(m) = σ1(g−1mg) for any m ∈MP2.

(3) Let P and P ′ be parabolic subgroups containing the same Levi subgroup M . Then

IndGP (σ,Xσ) and IndGP ′(σ,Xσ) have the same irreducible composition factors.

Thus, a classification of irreducible smooth representations of G can be achieved by

realizing all the supercuspidal representations and decomposing all the parabolically induced

representation IndGP (σ,Xσ) for all supercuspidal representations (σ,Xσ) of MP . This is the

Harish Chandra’s philosophy of cusp forms.

In order to describe the Bernstein decomposition, we also need the notion of unramified

characters for a Levi subgroup M of G. Roughly speaking, an unramified character of M

is a character of M that is trivial on a certain normal subgroup of M . Since we will not

directly use it except in the description of Bernstein decomposition, we refer readers to

[BW, Chapter X Section 2] or [Ro, Section 1.4.1] for the precise definition. We denote the

set of those characters by Xnr(M).

We first describe the set which parametrizes the indecomposable subcategories in the

Bernstein decomposition.

Definition 2.3.11. Let M be a set of pairs (M,σ) consisting of a Levi subgroup M of

G and a supercuspidal representation σ of M . Define the following equivalence relation

in M : (M1, σ1) ∼ (M2, σ2) if and only if there is g ∈ G and some unramified character

ν ∈ Xnr(M2) such that

gM1g
−1 and gσ1

∼= σ2ν.

Denote by [M,σ]G the equivalence classes containing the pair (M,σ) in M . Denote by

B(G) the set of all equivalence classes of M .



13

Recall from Proposition 2.3.10(1) that each irreducible π is a subquotient of a paraboli-

cally induced representation IndGPσ for a parabolic subgroup P and a supercuspidal represen-

tation σ of MP . Then we can associate such irreducible representation π to the equivalence

class [MP , σ]G in B(G). Proposition 2.3.10 (2) guarantees such association is well-defined.

We say that [MP , σ]G is the inertia class of π.

We are now ready to describe the subcategories in the Bernstein decomposition. For

each s ∈ B(G), let Rs(G) be the full subcategory of R(G) whose objects are (not necessarily

irreducible) representations π for which all irreducible subquotients have inertia support s.

Then the Bernstein decomposition of R(G) is as follows:

Theorem 2.3.12. The category R(G) of smooth representations of G can be decomposed

into the product of full subcategories as follows:

R(G) =
∏

s∈B(G)

Rs(G).

Moreover, each Rs(G) is an indecomposable full subcategory of R(G).

2.4 Representations of Iwahori-fixed vectors

We assume G = G(F ) to be a split p-adic group, which is the F -rational points of a

connected split reductive group G over a p-adic field F . Let o be the ring of integers in F

and let p be the maximal ideal in o. The residue field o/p is isomorphic to a finite field

Fq of order q. Let K = G(o) be a maximal compact subgroup of G. There is a natural

surjective homomorphism from K to G(o/p). The Iwahori subgroup I is the inverse image

of the Borel subgroup of G(o/p). Moreover, I is a compact open subgroup of G.

For a smooth representation (π,X) of G, let πI or XI be the set of I-fixed vectors of I

i.e.,

XI = {x ∈ X : π(g)x = x for all g ∈ I } .

We state the following Borel-Casselman equivalence of categories:

Theorem 2.4.13. [Bo] Let G be a split p-adic group. Let B be a Borel subgroup of G. Let

t = [B, trivial]G ∈ B(G). We have the following:

(1) Let π be an irreducible smooth representation of G. Then πI 6= 0 if and only if π is

an object in Rt(G).

(2) Rt(G) is equivalent to R(H(G, I)).
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For the proof of Theorem 2.4.13, one refers to [Bo] or [HK, Corollary 4.2]. We explain

how (2) can be obtained from (1) and the Bernstein decomposition.

Proof for (2) (from (1)). Let R(G, I) be the subcategory of R(G) whose objects are smooth

representations of G generated by I-fixed vectors. We first show that Rs(G) = R(G, I).

Let X be an object in R(G, I). Then by the Bernstein decomposition, decompose X as

X =
⊕

s∈B(G)

Xs.

Then by (1), (Xs)I = 0 for s 6= [B, trivial]G. Hence, XI = (X t)I . Then X is generated by

(X t)I and so is an object in Rt(G). We now let X be an object in Rt(G). Let Y be the

representation generated by XI . Then we have a short exact sequence,

0→ Y → X → Z → 0,

and we want to show that Z = 0. Since taking the I-fixed vectors is an exact functor,

we have ZI = 0. Then by (1) and the Bernstein decomposition, Z ∈
⊕

s∈B(G)\{t}R
s(G).

Since X ∈ Rt(G), we conclude that Z = 0 from the surjective map from X to Z. Hence,

Z = Y is an object in R(G, I). This completes the proof for Rt(G) = R(G, I). By

Proposition 2.2.4 and Lemma 2.2.5, we also have R(G, I) ∼= R(H(G), eI). Since we also

proved Rt(G) = R(G, I), R(H(G), eI) is closed under subquotients. By Proposition 2.2.9,

we have

Rt(G) = R(G, I) ∼= R(H(G), eI) = R(H(G, I)).

2.5 Spherical function algebras and
theory of types

It is natural to extend the result of the previous section to other Bernstein components

Rs(G). For this reason, we introduce another algebra, that is the spherical function algebra

below. The theory relating those spherical function algebras and the Bernstein components

is indeed the theory of types by Bushnell-Kutzko [BK] and others.

Definition 2.5.14. Let K be a compact open subgroup of G. Let ρ : K → GL(U) be a

representation of K. Let H(G, ρ) be the convolution algebra of the compactly supported

functions f : G→ End(U). Define

eK,ρ(g) =

{
ρ(g)

vol(K) for g ∈ K
0 for g /∈ K.
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eρ,K is an idempotent. Then define the algebra H(G,K, ρ) with an unit to be

H(G,K, ρ) = eρ,K ∗ H(G, ρ) ∗ eK,ρ.

Let R(G, ρ) be a full subcategory of R(G) whose objects are smooth representations of G

generated by the K-isotypic components of ρ∨. Here, ρ∨ is the contragradient representation

of ρ.

Definition 2.5.15. (c.f Proposition 2.2.9) A pair (K, ρ) as in Definition 2.5.14 is called a

type in G if R(G, ρ) is closed under subquotients.

The following is an extension of the Iwahori subgroup case in Theorem 2.4.13:

Theorem 2.5.16. [BK, Proposition 3.3, Theorem 4.3] Suppose (K, ρ) is a type in G. Then

we have the followings:

(1) R(G, ρ) is equivalent to R(H(G,K, ρ)).

(2) There exists a finite subset S of B(G) such that the categories
∏

s∈SRs(G) and

R(H(G,K, ρ)) are equivalent.



CHAPTER 3

AFFINE HECKE ALGEBRAS AND THEIR

GRADED VERSION

An affine Hecke algebra is, roughly speaking, a deformation of an affine Weyl group. Its

importance for the study of p-adic group representations comes from the fact that many

spherical function algebras (discussed in Section 2.5) are often closely related to an affine

Hecke algebra. Moreover, various important information in the harmonic analysis of p-adic

groups such as Plancherel measures (e.g., [HO]) and unitarity (e.g., [BM1], [BC1]) can also

be recovered from the representation theory of an affine Hecke algebra.

The graded affine Hecke algebra was introduced by Lusztig [Lu1] from a filtration of the

affine Hecke algebra. The graded Hecke algebra can be thought to be the linear counterpart

of the affine Hecke algebra as an analogue of the relation between a reductive Lie group and

its Lie algebra, and so is simpler for some study compared with the affine Hecke algebra.

Lusztig [Lu1] showed that the representation theory of an affine Hecke algebra is essentially

equivalent to that of its graded version, and classified all simple modules for geometric

parameters.

In this chapter, we review several definitions related to affine Hecke algebras and their

graded ones. We will also see how the study of representations of affine Hecke algebras can

be reduced to the study of the representations of graded affine ones. The main references

for this chapter are [Lu1] and [OS2, Section 2].

3.1 Root data and affine Weyl groups

Let R be a reduced crystallographic root system. Let W be the reflection group

associated to R. Let ∆ be a fixed choice of simple roots of R. Let V0 be a real vector

space containing R and let V ∨0 = HomR(V0,R). Let R+ be the set of positive roots in R

determined by ∆. For α ∈ R, let sα be the reflection associated to α and let α∨ ∈ V ∨0 such

that

sα(v) = v − 〈v, α∨〉α,
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where 〈v, α∨〉 = α∨(v). Let R∨ ⊂ V ∨0 be the collection of all α∨. The crystallographic

condition on R means that 〈α, β∨〉 ∈ Z for any α ∈ R and β∨ ∈ R∨.

Let X ⊂ V0 and Y ⊂ V ∨0 be lattices with the following properties:

(1) X and Y span V0 and V ∨0 , respectively;

(2) the paring 〈., .〉 : X × Y → Z defined by 〈x, y∨〉 = y∨(x) is perfect;

(3) R ⊂ X and R∨ ⊂ Y.

The quadruple (X , R,Y, R∨) is called a root datum and the collection (X , R,Y, R∨,∆)

is called a based root datum.

Let V = C⊗R V0 and let V ∨ = C⊗R V
∨

0 . Extend 〈, 〉 to a bilinear form on V × V ∨.

Example 3.1.17. Let Q = ZR be the root lattice of R and let P∨ is the coweight lattice

of R i.e.,

P∨ =
{
λ∨ ∈ V ∨0 : 〈α, λ∨〉 ∈ Z for all α ∈ R

}
.

Then (Q, R,P∨, R∨) is an example of root data.

The affine Weyl group W aff associated to R is the group Q oW , where Q is the root

lattice. Let W (X ) = X oW . We may sometimes call W (X ) an extended or generalized

affine Weyl group. For any element x ∈ X , we shall write ax for the corresponding element

in X oW in order to avoid confusion of the multiplication in X (i.e., ax1ax2 = ax1+x2). For

the element w ∈W , we keep writing w for the corresponding element in W (X ).

Example 3.1.18. Let R be of type A1. Then the group W aff is generated by two reflections

and there is no relation between the two reflections. The affine Weyl group is sometimes

called an infinite dihedral group.

Define the affine root system R̃ associated to R to be the set R∨ × Z. For α ∈ ∆,

set α̃ = (α∨, 0), and for the longest element α0 ∈ R, set α̃0 = (−α∨0 , 1) and set ∆̃ =

{α̃ : α ∈ ∆} ∪ {α̃0}. We call the elements in ∆̃ simple affine roots. Define the set R∨,+ to

be the set of positive coroots in R∨ and the set R∨,− to be the set of negative coroots in

R∨. Define the set R̃+ of positive affine roots and the set R̃− of negative affine roots:

R̃+ = R∨,+ × {0} ∪R∨ × Z+,

R̃− = R∨,− × {0} ∪R∨ × Z−.

The affine roots in R∨ × Z can be viewed as the linear transformations on X given by

the action (α∨, k).λ = α∨(λ) + k. The action of W (X ) on R̃ is given by (w(α∨, k))(λ) =
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(α∨, k)(w−1λ). If we write w in the form aλw′ for λ ∈ X and w′ ∈W , then (w′aλ)(α∨, k) =

(w′(α∨), k − α∨(λ)).

Define the length function l : W (X )→ N by

l(w) = |w(R̃+) ∩ R̃−|,

which is the number of positive affine roots sent to negative affine roots by w. Define the

subgroup

Ω = {w ∈W (X ) : l(w) = 0} .

It is known that Ω is abelian and is isomorphic to the quotient X/Q. Moreover,

W (X ) ∼= W aff o Ω.

Example 3.1.19. Note that in the case of type A1, let P be the weight lattice which is the

Z-span of 1
2α. The groups W (P) and W (Q) are isomorphic, but their length functions are

not the same under such isomorphism. Denote by sα,r the reflection along the hyperplane

(or simply a point) r
2α. The element sα,r can also be written of the form sαa

rα
2 . Then

Ω(P) = 〈sα,−1〉,

and

Ω(Q) = trivial.

3.2 Affine Hecke algebras

We keep using the notation in the previous section.

Define an equivalence relation on S̃ such that s ∼ s′ if and only if s and s′ are W (X )-

conjugate. For each equivalence class [s] in S̃, let q([s]) be an indeterminate. For s ∈ S̃, set

q(s) = q([s]). We sometimes call such q a parameter function. Define Λ = C[q([s]), q([s])−1 :

s ∈ S̃]. The parameter function q can be naturally extended to a multiplicative function

from W (X ) to Λ× still denoted q such that q(ww′) = q(w)q(w′) whenever l(ww′) = l(w) +

l(w′). The parameter q defined on W (X ) is also W (X )-invariant, which can be checked by

an inductive argument on the length of w.

Example 3.2.20. In type A1, if X is the root lattice, then Λ is generated by two indeter-

minates over C. If X is the weight lattice, then Λ is generated by one indeterminate over

C.

We shall later write qw for q(w) (w ∈W (X )) for simplicity.
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We first introduce a generic affine Hecke algebra as in [OS2], from which it is more

convenient to construct a graded affine Hecke algebra.

Definition 3.2.21. Let Π = (X , R,Y, R∨,∆) be a based root datum and let q : S̃ → Λ×

be a W (X )-invariant parameter function as above. The generic affine Hecke algebra H =

H(Π, q) associated to Π and q is the complex associative algebra with an unit generated by

the symbols {Tw : w ∈W (X )} and the algebra Λ subject to the following relations:

(1) TwTw′ = Tww′ if l(ww′) = l(w) + l(w′),

(2) (Ts − q(s)2)(Ts + 1) = 0 for s ∈ S̃,

(3) q([s])Tw = Twq([s]) for any s ∈ S̃ and w ∈W (X ).

Here, CTe is identified with C i.e., 1 = Te. We may also sometimes regard H as Λ-algebra.

The set {Tw : w ∈W (X )} forms a Λ-basis for H (see [Hu1, Theorem 7.1]).

Definition 3.2.22. Let H be a generic affine Hecke algebra as in the notation of Definition

3.2.21. Let q0 : S̃ → C× be a W -invariant function. Let L be the ideal in H generated by

the elements q([s]) − q0(s) for all s ∈ S̃. Then the affine Hecke algebra Hq0 := H(Π, q0) is

the algebra H/L.

We now introduce the Bernstein presentation for H. Let

Xdom =
{
x ∈ X : 〈x, α∨〉 ≥ 0 for all α ∈ ∆

}
.

For x ∈ Xdom, define θx = q(x)−1Tx. For any x ∈ X , x can be uniquely written as

x = x1 − x2 for x1, x2 ∈ Xdom. Then define θx = θx1θ
−1
x2 . Note that for x1, x2 ∈ X ,

l(ax1ax2) = l(ax1) + l(ax2) and so Tax1Tax2 = Tax1ax2 = Tax2Tax1 . Hence, x ∈ X 7→ θx

defines a group homomorphism.

Denote by A the algebra generated by θx (x ∈ Xdom) and the algebra Λ in H. Denote

by Z be the center of H.

Theorem 3.2.23. (Bernstein) (see [Lu1, Sec. 3], [OS2, Theorem 1.3])

(1) The elements in {θxTw : x ∈ X , w ∈W} form a Λ-basis for H.

(2) The algebra A is isomorphic to the group algebra of X over Λ.

(3) The center Z is generated by Λ and the elements of the form
∑

x∈M θx, where M runs

over all W orbits in X .
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The commutation relation between Tw and θx is given as follow:

Proposition 3.2.24. (see [Lu1, Proposition 3.6]) Let x ∈ X . For α ∈ ∆, let s = sα ∈

W ⊂W (X ). We have the following:

(1) If α∨ /∈ 2Y,

θxTs − Tsθs(x) = (q2
s − 1)

θx − θs(x)

1− θ−α
.

(2) If α∨ ∈ 2Y,

θxTs − Tsθs(x) =
(
(q2
s − 1) + θ−α(qsqs̃ − qsq−1

s̃ )
) θx − θs(x)

1− θ−2α
.

Here, s̃ is defined as in [Lu1, 2.4].

The condition that α∨ ∈ 2Y occurs for the affine Weyl group of type Cn (n ≥ 1). In

that case, θx − θs(x) = θx − θxθ−〈x,α∨〉α = θx(1 − θ2n
−α∨) for n = 1

2〈x, α
∨〉 ∈ Z. Thus,

the expression in the left-hand-side is well-defined and is in A. Similarly, (1) is also a

well-defined expression in A.

3.3 Graded affine Hecke algebra

We begin with a general definition for the graded affine Hecke algebra and then discuss

how to construct a graded affine Hecke algebra from an affine Hecke algebra.

Definition 3.3.25. [Lu1] Let Π = (X , R,Y, R∨,∆) be a based root datum. Let V = C⊗ZX ,

as in Section 3.1. Let S be the set of simple reflections of W . Let k : S → C be a parameter

function such that k(s) = k(s′) if s and s′ are W -conjugate. Write ks = k(s). The graded

affine Hecke algebra H = H(Π, k) is the associative complex algebra with an unit generated

by the symbols {tw : w ∈W} and {fv : v ∈ V } satisfying the following relations:

(1) The map w 7→ tw from C[W ] = ⊕w∈WCw → H is an algebra injection.

(2) The map v 7→ fv from S(V )→ H is an algebra injection.

For simplicity, we shall simply write v for fv from now on.

(3) The generators satisfy the following relation:

tsαv − sα(v)tsα = ksα〈v, α∨〉 α ∈ ∆, v ∈ V.

We say the parameter function k is equal if k is a constant function.
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From (1) to (3), one also deduces that H is naturally isomorphic to the skew group

ring S(V ) oW as vector spaces. More precisely, if we fix a basis {v1, . . . vn} for V , then

{twvm1
1 . . . vmnn : w ∈W, m1, . . . ,mn ∈ Z} is a basis of H.

We now briefly review the Lusztig’s construction of the graded affine Hecke algebra from

an affine Hecke algebra in [Lu1]. We specify some properties for Lusztig’s construction for

the simplification of the exposition. (Precisely, we specify t0 = 1 in the notation of [Lu1,

Ch. 4].)

Let H be a generic affine Hecke algebra associated to Π = (X , R,Y, R∨,∆) and a

parameter function q. Recall that A is an commutative algebra generated by θx (x ∈ X)

and q([s]), q([s])−1 (s ∈ S̃). Let I be the ideal in A generated by the elements of the θx− 1

for x ∈ X and q([s]) − 1 (s ∈ S̃). Let Ai = Ii/Ii+1. Then we define the graded algebra

A :=
⊕

i∈ZAi. The graded algebra A has the following properties:

(i) I is a maximal ideal in A.

(ii) Denote vx as the image of θx− 1 in A1 = I/I2. Then for x, x′ ∈ X, since θx+x′ − 1 =

(θx − 1)(θx′ − 1) + (θx − 1) + (θx′ − 1), vx+x′ = vx + vx′ . Thus, there is a natural

isomorphism between A1 and V × Cp as vector spaces, where V = C ⊗Z X and p is

the number of equivalence classes [s] in S̃.

(iii) From (ii), A is naturally isomorphic to the polynomial ring of V × Cp.

We then have a filtration on H

H ⊃ IH ⊃ I2H ⊃ . . . ⊃ IrH ⊃ . . .

This filtration is compatible with the multiplication of H (i.e., (IiH)(IjH) ⊂ IiIjH) ([Lu1,

Proposition 4.2]), which can be deduced from Proposition 3.2.24. Hence, we have the graded

C-algebra

H :=
⊕
i∈Z
Hi,

where Hi = IiH/Ii+1H. For w ∈ W , let tw be the image of Tw in H. Then we have the

following:

(iv) From Proposition 3.2.23, Ii ∩ Ii+1H = Ii+1. Hence, A is a natural subalgebra of H.

(v) Fix a Z basis of X, namely x1, . . . , xn. Recall that vxi is the image of θxi−1 in A and

set vi = vxi . For s ∈ S̃, let rs be the image of q([s])− 1 in A. Let Λ be the subalgebra

generated by all rs. Then H has a Λ-basis

{twvm1
i . . . vmnn : w ∈W, m1, . . . ,mn,m ∈ Z≥0} .
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(vi) twtw′ = tww′ for w,w′ ∈W .

(vii) There is a natural W -action on V = C⊗Z X. By (i), V is a natural subspace of A1.

Then there is also a natural W -action on A1 with w(rs) = rs for all w ∈W and s ∈ S̃.

Then for v ∈ V ⊂ A1 and α ∈ ∆, we have the following relations in H:

(a) if α /∈ 2Y,

vtsα − tsαsα(v) = 2rsα〈v, α∨〉;

(b) if α ∈ 2Y,

vtsα − tsαsα(v) = (rsα + raαsα)〈v, α∨〉.

(viii) Denote by Z the center of H. The center Z is AW .

The details of (iv)-(viii) are in [Lu1, Section 4.3] by Lusztig.

Now we pick r0(s) ∈ C for each s ∈ S̃ such that r0(s) = r0(s′) if [s] = [s′]. Let L be the

ideal generated by rs−r0(s) (s ∈ S̃) in H. Then the relations (iii)-(vii) determine that H/L

is isomorphic to a graded affine Hecke algebra in Definition 3.3.25. The appropriate value

r0(s) we have to pick to make meaningful correspondence will be determined by specifying

q([s]) to a certain number in C×. The next section will see how the study of some affine

Hecke algebra modules can be reduced to the study of the graded affine Hecke algebra

modules.

3.4 Lusztig’s reduction theorem

In this section, we will state a variation of the Lusztig’s reduction theorem given in [OS2,

Theorem 2.8], whose proof is due to Luszitg [Lu1].

Let T = Hom(X ,C×). Fix t0 ∈ T. Assume for any α ∈ ∆,

θα(t0) > 0. (4.1)

Let q0 : S̃ → C× be a parameter function such that q0(s) = q0(s′) if [s] = [s′]. The

space of parameter functions can be identified with (C×)p. (Recall that p is the number of

equivalence classes in S̃.) Here, we will fix a parameter function q0 and assume

q0(s) > 0 for all s ∈ S̃. (4.2)

We sometimes call q0 is a positive real parameter function.

We shall naturally identify A with the coordinate ring of T× (C×)p and consider (t0, u0)

as a point in T× (C∗)p . We also identify Z with the coordinate ring of (T× (C×)p)/W (see
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Theorem 3.2.23(3)) and consider the W -orbit of (t0, u0) as a point in (T×(C×)p))/W . Here,

the W -action on T × (C×)p is determined by θx(w(t)) = θw−1(x)(t) (t ∈ T) and w(u′) = u′

(u′ ∈ (C×)p)). Then define the maximal ideal

JW (t0,q0) := {f ∈ Z : f(t0, q0) = 0} .

Let ẐW (t0,q0) be the JW (t0,q0)-adic completion of Z. Let

Â = ẐW (t0,q0) ⊗Z A,

Ĥ = ẐW (t0,q0) ⊗Z H.

We now further assume that t0 is positive real, meaning that t0 ∈ Hom(X ,R>0) ⊂

Hom(X ,C×). This assumption is for the consistency of our simplified construction in the

last section and is not necessary for [OS1, Theorem 2.8] (only the assumption (4.1) is

required for t0 in [OS1, Theorem 2.8]).

Let ζ0 be the unique element in V0 = R⊗Z X such that α(t) = eα(ζ0). (The uniqueness

is guaranteed by (4.1)). Define the function r0 : S̃ → C such that r0(s) = log q0(s). In fact,

r0(s) ∈ R, but we want to consider r0(s) as a point in C and so r0 can be considered as a

point in Cp.

The algebra A is identified with the coordinate ring of V ∨ ×Cp and we consider (ζ, r0)

as a point V ∨ × Cp. We again identify Z with the coordinate ring of (V ∨ × Cp)/W (see

(viii) in Section 3.3) and consider the W -orbit of (ζ0, r0) as a point in (V ∨×Cp)/W . Here,

the W -action on V ∨ × Cp is determined by θx(w(t)) = θw(x)(t) (t ∈ T) and w(r′0) = r′0

(r′0 ∈ Cp). Then define the maximal ideal

JW (ζ0,r0) :=
{
f ∈ Z : f(ζ0, r0) = 0

}
.

Let ẐW (ζ0,r0) be the JW (ζ0,r0)-adic completion of Z. Let

Â = ẐW (ζ0,r0) ⊗Z A,

Ĥ = ẐW (ζ0,r0) ⊗Z H.

We now turn to graded affine Hecke algebras in order to make some suitable identifi-

cations later. Define the parameter function k0 : S → C as follows (c.f. (vii) in Section

3.3):

(1) If α /∈ 2Y, then

k0(sα) = 2 log(q0(sα)). (4.3)
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(2) If α ∈ 2Y, then

k0(sα) = log(q0(sα)) + log(q0(aαsα)). (4.4)

From the W (X )-invariance of q0, we also have that k0 is also W -invariant. The k0 will be

the parameter function for the corresponding graded affine Hecke algebra from H.

The following theorem an its consequence are the main goal of this chapter:

Theorem 3.4.26. ([OS2, Theorem 2.8], [Lu1, Theorem 9.3]) We retain the setting above.

In particular, we are assuming (4.1) and (4.2). Then we have the following:

(1) There are natural compatible C-algebra isomorphisms between Ẑ and Ẑ, between Â

and Â, and between Ĥ and Ĥ.

(2) Let L be the ideal generated by rs − r0(s) (s ∈ S̃) in H. Then there are natural com-

patible C-algebra isomorphisms between the center of H/L and the center of H(W,k0),

between A/(A ∩ L) and S(V ), and between H/L and H(W,k0).

Corollary 3.4.27. ([Lu1, Section 10.9], [OS2, Corollary 2.9]) With the setting above, we

have the following:

(1) The category of finite-dimensional H-modules whose irreducible subquotients have cen-

tral character W (t0, q0) is equivalent to the category of finite-dimensional H-modules

whose irreducible subquotients have central character W (ζ0, r0).

(2) Let L be the ideal generated by qs−q0(s) (s ∈ S̃) in H. Let L be the ideal generated by

rs − r0(s) (s ∈ S̃) in H. Then the category of finite-dimensional H/L-modules whose

irreducible subquotients have central character Wt0 is equivalent to the category of

finite-dimensional H/L-modules whose irreducible subquotients have central character

Wζ0.

(3) The category of finite-dimensional H/L-modules whose irreducible subquotients have

central character Wζ0 is equivalent to the category of finite-dimensional H(W,k0)-

modules whose irreducible subquotients have the corresponding central character.

Proof. We briefly explain how to obtain the statements. Let Ĵ (resp. Ĵ ) be the maximal

ideal in ẐW (t0,q0) (resp. ẐW (ζ0,r0)) and set J = JW (t0,q0). Since Ĥ/Ĵ iĤ is isomorphic to

H/J iH, there is a bijection between finite-dimensional Ĥ-modules which are annihilated

by Ĵ i and finite dimensional H-modules which are annihilated by J i. The latter modules
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are also bijective to the finite-dimensional H-modules whose irreducible subquotients have

central characters W (t0, q0). We then have a similar statement for Ĥ and H. Combining

with Theorem 3.4.26 (1), we have (1). For (2), we trace the isomorphism of Theorem

3.4.26 in the proof and see the isomorphism sends ẐW (t0,q0)⊗Z L to ẐW (ζ0,r0)⊗Z L. Hence,

Ĥ/(ẐW (t0,q0)⊗Z L) ∼= Ĥ/(ẐW (ζ0,r0)⊗Z L). Then we obtain (2) by similar argument as (1).

For (3), it follows from the construction of H.

�



CHAPTER 4

EXT-GROUPS IN VARIOUS CATEGORIES

Given modules X,Y of an algebra, a module Z is called an extension of X by Y if there

exists a short exact sequence:

0→ X → Z → Y → 0.

Those equivalence classes of short exact sequences can be equipped with a natural abelian

group structure and form a group isomorphic to Ext1(X,Y ), the first dervied functor of

Hom(·, Y ). The higher Ext-groups also have interpretations in terms of long exact sequences.

In this chapter, we apply discussions in the previous two chapters to transfer informa-

tion of Ext-groups among several categories. However, we will not make any attempt to

understand the Ext-groups in a specific category until next chapter. Indeed, we shall only

focus the Ext-groups in only one specific category, that is the graded affine Hecke algebra

modules. Results in this chapter are explicitly or implicitly known in the literature (e.g.,

[AP, OS4, So]).

4.1 Ext-groups and projective objects

Since we are going to work through Ext-groups over various categories, it is convenient

for us to discuss the notation of Exti once and for all (see for example [We, Chapter 2] for

details).

Let R be an abelian category. Recall that an object P in R is projective if HomR(P, .)

is an exact functor. Assume R has enough projective objects. For objects X,Y in R, define

ExtiR as follows: Let P • be a projective resolution for X

P • → X → 0.

Then ExtiR(X,Y ) is defined to be the i-th homology of the complex HomR(X,Y ). It is a

general fact in homological algebra that the ExtiR(X,Y ) does not depend on the choice of
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the projective resolution of X. It is immediate from the definitions that if R1 and R2 are

two equivalent abelian categories of enough projective objects, then

ExtiR1
(X,Y ) ∼= ExtiR2

(F (X), F (Y )),

where F is the functor from R1 to R2 for the equivalence of categories.

We now refine our consideration to the category of nondegenerate A-modules for some

algebra A.

Proposition 4.1.28. Let A be an idempotented algebra as defined in Definition 2.2.6. Then

the category R(A) of nondegenerate A-modules has enough projective objects.

Proof. Let e be an idempotent in A and let X be a nondegenerate A-module. We consider

the A-module Ae⊗CV with A acting on the first factor. Note that AA = A and so Ae⊗CV

is nondegenerate. On the other hand, we note that HomA(Ae⊗C Y,X) = eX ⊗ Y ∗, where

Y ∗ is the dual space of Y . Then for nondegenerate A-modules X,X ′ and for a surjective

map f : X → X ′, f induces a surjective map from eX ⊗ Y ∗ to eX ′ ⊗ Y ∗ and then by

naturality, f induces a surjection from HomA(Ae⊗C Y,X) to HomA(Ae⊗C Y,X
′). Hence,

Ae⊗C Y is a projective object in R(G). Then for any A-module X, the module⊕
e

Ae⊗C eX

is projective, where A acts on the first factor, and naturally surjects onto X =
⋃
eX. Here,

e runs for all the idempotents of A. This shows the category has enough projective objects.

�

Corollary 4.1.29. Suppose A is one of the following algebras:

(1) the Hecke algebra in Section 2.2,

(2) the spherical function algebra in Definition 2.5.14,

(3) the generic affine Hecke algebra in Definition 3.2.21,

(4) the graded affine Hecke algebra in Definition 3.3.25.

The category R(A) of nondegenerate A-modules has enough projective objects.

Proof. The Hecke algebra is an idempotented algebra and other algebras have an unit.

�
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Corollary 4.1.30. Let G be a p-adic group and let B(G) be the set parametrizing the

Bernstein components in Definition 2.3.11. Then we have the following:

(1) The category R(G) of smooth representations of G has enough projective objects.

(2) For each s ∈ B(G), Rs(G) has enough projective objects.

(3) Let X and Y be objects in R(G). Use Bernstein decomposition to decompose X into⊕
s∈B(G)X

s and similarly decompose Y into
⊕

s∈B(G) Y
s. Then

ExtiR(G)(X,Y ) ∼=
⊕

s∈B(G)

ExtiRs(G)(X
s, Y s).

Proof. (1) follows from Corollary 4.1.29 (1) and Proposition 2.2.4. For (2), let X be an

object in Rs(G) and let P be a projective object such that there exists a surjection from

P to X. Let P s be the factor of P in the Bernstein component Rs(G) of the Bernstein

decomposition. Then we also have a surjection P s to X. By the Bernstein decomposition,

we can also check P s is projective in Rs(G). This shows (2).

For (3), let P • be a projective resolution for X. Then by the Bernstein decomposition,

we can write the resolution as the form:⊕
s∈B(G)

(P s)• →
⊕

s∈B(G)

Xs.

Then each sequence (P s)• is a projective resolution of Xs. Then by definitions, we obtain

(3).

�

4.2 Central characters and Ext-groups

We deal with the issue of central characters in this section. Corollary 4.2.34 will allow

us to focus on modules of the same central characters for computing Ext-groups later. We

work over a general setting in this section, but the major examples are affine Hecke algebras

and graded affine Hecke algebras, where we have explicitly known their centers.

Let A be a C-algebra with an unit and let Z be the center of A. An A module X is

said to have a central character if there is a function χX : Z → C such that for any x ∈ X,

z.x = χX(z)x.

Lemma 4.2.31. Let A be an C-algebra with an unit. Let X1, X2 be A-modules. Then the

left multiplication of z ∈ Z on X1 and X2 determines two algebra maps z1 : X1 → X1 and

z2 : X2 → X2, respectively. Then the induced maps z1 and z2 on ExtiR(A)(X1, X2) coincide.
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Proof. We prove by induction similar to the proof in [BW, Ch.I Sec.4 Lemma 4.4]. For

i = 0, ExtiR(A)(X1, X2) = HomR(A)(X1, X2). Thus, for f ∈ HomR(A)(X1, X2), (z1f)(x) =

f(zx) = zf(x) = (z2f)(x). Hence, z1 = z2. Now assume i ≥ 1. Let P be a projective

A-module such that

0→ X ′ → P → X1 → 0.

Then the associated long exact sequence for the HomR(A)(·, X2) is as follows:

. . .← Exti−1
R(A)(P,X2)← ExtiR(A)(X1, X2)←Exti−1

R(A)(X
′, X2)

← Exti−1
R(A)(P,X2)← . . . .

By using P is projective, we have ExtiR(A)(X1, X2) = Exti−1
R(A)(X

′, X2). Then by induction

hypothesis, the action of z1 and z2 agree on ExtiR(A)(X1, X2) as desired.

�

Proposition 4.2.32. Let A be a C-algebra with an unit. Let X1, X2 be A-modules with the

central characters χX1 and χX2, respectively. If χX1 6= χX2, then ExtiR(A)(X1, X2) = 0 for

all i.

Proof. We follow the proof in [BW, Ch. I Sec. 4]. Since χX1 6= χX2 and A has an unit,

there exists an element z ∈ Z such that χX1(z) = 1 and χX2(z) = 0. Then z acts on

X1 as an identity and so induces an identity map on ExtiR(A)(X1, X2). Similarly z acts

on X2 as zero on X2 and so induces a zero map on ExtiR(A)(X1, X2). By Lemma 4.2.31,

ExtiR(A)(X1, X2) = 0 as desired.

�

Lemma 4.2.33. Let Xk (k = 1, 2) be A-modules of finite length. Fix an integer i. If

ExtiR(A)(X1, X2) 6= 0, then there exists an (irreducible) composition factor Y of X1 and a

composition factor Z of X2 such that ExtiR(A)(Y, Z) 6= 0.

Proof. If X1 and X2 have length 1, then the lemma is clear. We now assume X2 has length

1 and proceed induction on the length of X1. Assume the length of X1 is greater than or

equal to 2. Let Y 0 ⊂ Y 1 ⊂ . . . ⊂ Y r = X be a composition series of X1.
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If ExtiR(A)(Y
0, X2) 6= 0, then we are done. Otherwise, by considering the short exact

sequence

0→ Y 0 → X1 → X1/Y
0 → 0,

we have the associated long exact sequence

. . .← ExtiR(A)(Y
0, X2)← ExtiR(A)(X1, X2)← ExtiR(A)(X1/Y

0, X2)← . . .

and so we have ExtiR(A)(X1/Y
0, X2) 6= 0. By an induction on the length of the composition

series of X1, we obtain the statement.

We now consider X2 have length greater than or equal to 2. Indeed, this can be proven

by a similar inductive argument to the case of X1.

�

When A is an affine Hecke algebra or a graded affine Hecke algebra, any irreducible

A-module is finite-dimensional and so any irreducible A-module has a central character by

Schur’s lemma.

Corollary 4.2.34. Let A be an affine Hecke algebra or a graded affine Hecke algebra. Let

Xk (k = 1, 2) be A-modules of finite length such that all the irreducible subquotients of Xk

have the same central character, say χk. If χ1 6= χ2, then ExtiR(A)(X1, X2) = 0 for all i.

Proof. This follows from Proposition 4.2.32 and Lemma 4.2.33.

�

Corollary 4.2.35. Let A be an affine Hecke algebra or a graded affine Hecke algebra. Let

Rfin(A) be the category of A-modules of finite length. Let Υ be the set of functions χ : Z → C

which are the central characters of irreducible A-modules. For χ ∈ Υ, let Rfin,χ be the full

subcategory of Rfin,χ(A) whose irreducible subquotients have the central characters χ. Then

Rfin(A) can be decomposed into full subcategories as follows:

Rfin(A) =
⊕
χ∈Υ

Rfin,χ(A).

Proof. We proceed by an induction of the length of a module. It is nothing to prove for an

irreducible module (of length 1). We now consider an A-module X of length n and n ≥ 2.

Let Y be a submodule of X with length n − 1. By the induction hypothesis, Y can be

decomposed into
⊕

χ∈Υ Y
χ, where Y χ is the maximal submodule of Y whose irreducible

quotients have the central character χ. Note that Y χ is zero except for finitely many χ and
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let ΥY be the collection of χ ∈ Υ such that Y χ is nonzero. We now consider the irreducible

subquotient X/Y and let χ′ be the central character of X/Y . Let Y ′ =
⊕

χ∈ΥY \{χ′} Y
χ.

X/Y ′ has the central character χ′ and χ′ is not the central character of any irreducible

subquotients of Y ′, then ExtiA(Y ′, X/Y ′) = 0 for all i by Corollary 4.2.34. By the well-known

interpretation of Ext1
i in terms of short exact sequence (see for example [We, Theorem

3.4.3]), we have

0→ Y ′ → X → X/Y ′ → 0

splits and so X ∼= Y ′ ⊕X/Y ′ as desired. This completes the proof.

�

4.3 Ext-groups for affine Hecke algebras and
graded ones

In this section, we discuss the correspondence of the Ext-groups of affine Hecke algebra

modules and the graded affine Hecke algebra modules. From Corollary 3.4.27, we expect

the Ext-groups for those two algebras agree in a suitable sense whenever the equivalence of

categories holds. However, it may not be completely clear since the equivalence of categories

holds for finite-dimensional modules and the category of finite-dimensional modules may

not have enough projective objects. Hence, we still want to take the Ext-groups in the

categories R(H) and R(H). We are going to work out some detail. Most of the statements

are quite standard. In view of Theorem 3.4.26, it is also natural to consider the Ext-groups

for the formal completion of H and H.

We use similar notation as in Section 3.4. Let H be a generic affine Hecke algebra

(Definition 3.2.21). Let H be the algebra in Section 3.3. Set J = JW (t0,q0) and set J =

JW (ζ0,r0).

Lemma 4.3.36. Let Y be a finite-dimensional H-module and let Ŷ = ẐW (t0,q0)⊗Z Y . Then

HomĤ(Ĥ, Ŷ ) ∼= HomH(H, Y ) as vector spaces and the isomorphism is natural.

Proof. Since Ŷ is finite-dimensional, there exist an integer i such that J iY = 0. For

any z′ ∈ Ẑ, there exists z ∈ Z such that z′ − z ∈ ẐJ i. Hence, Ŷ and Y are iso-

morphic as H-modules via a natural map, say φ : Ŷ → Y . We now define a map

F : HomĤ(Ĥ, Ŷ )→ HomH(H, Y ) such that F (f)(h) = φ−1◦f(1⊗h). Similarly, define a map

F ′ : HomĤ(Ĥ, Ŷ )→ HomH(H, Y ) such that F ′(f)(z ⊗ h) = φ(zf(h)). It is straightforward

to check that F and F ′ are inverse of each other.

�
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Proposition 4.3.37. Let X and Y be finite-dimensional H-modules whose irreducible

subquotients have central characters W (t0, q0). Let X̂ = ẐW (t0,q0) ⊗Z X and let Ŷ =

ẐW (t0,q0) ⊗Z Y .

Exti
R(Ĥ)

(X̂, Ŷ ) ∼= ExtiR(H)(X,Y ).

Proof. We first construct a projective resolution for X as follow:

. . .→ H⊗C ker dr−1
dr→ H⊗C kerdr−2 → . . .→ H⊗C ker d0

d1→ H⊗C X
d0→ X → 0 (3.1)

Here, dr is defined as dr(h⊗x) = hx. We now take the exact functor Ẑ⊗Z ([AM, Proposition

10.14]). Then we have the resolution

. . .→ Ĥ ⊗C ker dr−1
dr→ Ĥ ⊗C kerdr−2 → . . .→ Ĥ ⊗C ker d0

d1→ Ĥ ⊗C X
d0→ X̂, Ŷ → 0

Each Ĥ⊗Cker dr and Ĥ⊗CX is still a projective object in R(Ĥ). Now taking the HomĤ(., Ŷ )

functor ([AM, Proposition 10.14]), we have the complex HomĤ(Ĥ ⊗ ker dr, Ŷ ). Then we

also obtain a complex HomĤ(H⊗C ker dr, Ŷ ) by Lemma 4.3.36. By using the explicit map

F given in the proof of Lemma 4.3.36, one also checks that the complex also agrees with the

complex obtained by taking the HomH(·, Y ) functor on the resolution (3.1). This implies

Exti
R(Ĥ)

(X̂, Ŷ ) ∼= ExtiR(H)(X,Y ).

�

A similar proof of Lemma 4.3.36 and Proposition 4.3.37 then yields the following result:

Proposition 4.3.38. Let X and Y be finite-dimensional H-modules whose irreducible

subquotients have central characters W (t0, q0). Let X̂ = ẐW (ζ0,r0)⊗ZX and let Ŷ = Ẑ⊗ZY .

Exti
R(Ĥ)

(X̂, Ŷ ) ∼= Exti
R(H)

(X,Y ).

Corollary 4.3.39. Let Hq0 be an affine Hecke algebra associated to a parameter function

q0 : R → R>0. Let H be the corresponding graded affine Hecke algebra associated to a

parameter k0 defined in (4.3) and (4.4). Let XHq0 and YHq0 be finite-dimensional Hq0-

modules whose irreducible subquotients have positive real central characters and let XH and

YH be the corresponding finite-dimensional H-modules, respectively, under the equivalences

of categories in Corollary 3.4.27 (2) and (3). Then

ExtiR(Hq)(XHq0 , YHq0 ) ∼= ExtiR(H)(XH, YH).
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Proof. It suffices to consider XHq0 and YHq0 are indecomposable. We may further assume

the central characters of irreducible subquotients of both XHq0 and YHq0 are the same

(otherwise by Corollary 4.2.34, the Ext-groups vanish and we are done). Then Proposition

4.3.37, Proposition 4.3.38 and Corollary 3.4.27 imply the corollary.

�



CHAPTER 5

RESOLUTIONS FOR H-MODULES

Starting from this chapter, we study extensions of graded affine Hecke algebra modules

from elementary principles. Our goal is to develop an algebraic approach for the study and

we hope to bring another perspective to the extensions of smooth G-representations at the

end via the equivalence of categories. (However, we will not address the latter part in this

thesis apart from what we discussed in Chapter 4.)

In this chapter, we construct an explicit projective resolution for graded affine Hecke

algebra modules, which is the main tool for studying Ext-groups later.

We fix and recall some notations. Fix a root datum Π = (R,X , R∨,Y,∆) (see Section

3.1). Let V = C ⊗Z X and equip V with a natural W -action. For v ∈ V and w ∈ W ,

write w(v) to be the resulting element of the action w on v. Let k : S → C be a parameter

function such that k(s) = k(s′) if s and s′ are W -conjugate. Write kα = ksα = k(sα) for all

α ∈ ∆. Let H be the graded affine Hecke algebra associated to Π and k (Definition 3.3.25).

For any two complex vector spaces X1 and X2, we shall simply write X1 ⊗ X2 for

X1 ⊗C X2.

5.1 Projective objects and injective objects

In this section, we construct some projective objects and injective objects, which will be

used to construct explicit resolutions for H-modules in the next sections.

Let X be an H-module and let U be a finite-dimensional C[W ]-module. H acts on the

space H ⊗C[W ] U by the left multiplication on the first factor while H acts on the space

HomW (H, U) by the right translation, explicitly that is for f ∈ HomW (H, U), the action of

h′ ∈ H is given by:

(h′.f)(h) = f(hh′), for all h ∈ H .

Denote by ResW the restriction functor from H-modules to C[W ]-modules.
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Lemma 5.1.40. (Frobenius reciprocity) Let X be an H-module. Let U be a C[W ]-module.

Then

HomR(H)(X,HomW (H, U)) = HomW (ResWX,U),

and

HomR(H)(H⊗W U,X) = HomW (U,ResWX).

Proof. Let F : HomR(H)(X,HomW (H, U))→ HomW (ResWX,U) given by

(F (f))(x) = (f(x))(1).

Let G : HomW (ResWX,U)→ HomR(H)(X,HomW (H, U)) given by

((G(f)(x))(h) = f(hx).

It is straightforward to verify F and G are linear isomorphisms. This proves the second

equation. The proof for the second one is similar.

�

Lemma 5.1.41. Let U be a C[W ]-module. Then H⊗C[W ]U is projective and HomW (H, U)

is injective.

Proof. We consider H⊗C[W ] U . Every C[W ]-module is projective and so HomW (U, .) is an

exact functor. The functor ResW is also exact. Thus, the space HomW (U,ResW .), which

is the composition of the two functors HomW (U, .) and ResW , is also exact. Hence, by

the Frobenius reciprocity, the space HomH(H⊗C[W ] U, .) is also exact. Thus, H⊗C[W ] U is

projective. The proof for HomW (H, U) being injective is similar.

�

5.2 Koszul-type resolution on H-modules

Let X be an H-module. Define a sequence of H-module maps di as follows:

0→ H⊗C[W ] (ResW X ⊗ ∧nV )
dn−1→ . . .

di→ H⊗C[W ] (ResW X ⊗ ∧iV )

di−1→ . . .
d0→ H⊗C[W ] (ResW X)

ε→ X → 0 (2.1)

such that ε : H⊗C[W ] ResW X → X given by

ε(h⊗ x) = h.x



36

and for i ≥ 1, di : H⊗C[W ] (ResW X ⊗ ∧i+1V )→ H⊗C[W ] (ResW X ⊗ ∧iV ) given by

di(h⊗ (x⊗ v1 ∧ . . . ∧ vi+1)) (2.2)

=

i+1∑
j=1

(−1)j+1(hvj ⊗ x⊗ v1 ∧ . . . ∧ v̂j ∧ . . . ∧ vi+1 − h⊗ vj .x⊗ v1 ∧ . . . ∧ v̂j ∧ . . . ∧ vi+1).

(2.3)

In priori, we do not know di is a well-defined H-map, but we prove in the following:

Lemma 5.2.42. The above di are well-defined H-maps and d2 = 0 i.e., (2.1) is a well-

defined complex.

Proof. We proceed by induction on i. It is easy to see that ε is well-defined. For convenience,

we set d−1 = ε. We now assume i ≥ 0. To show di is independent of the choice of a

representative in H⊗C[W ] (ResWX ⊗ ∧i+1V ), the nontrivial one is to show

di(tw ⊗ (x⊗ v1 ∧ . . . ∧ vi+1) = di(1⊗ (tw.x⊗ w(v1) ∧ . . . ∧ w(vi+1))). (2.4)

For simplicity, set

Pw = di(tw ⊗ (x⊗ v1 ∧ . . . ∧ vi+1))

= tw

i+1∑
j=1

(−1)j+1vj ⊗ (x⊗ v1 ∧ . . . ∧ v̂j ∧ . . . ∧ vi+1)

−1⊗ (vj .x⊗ v1 ∧ . . . ∧ v̂j ∧ . . . ∧ vi+1)

and

Pw = di(1⊗ (tw.x⊗ w(v1) ∧ . . . ∧ w(vi+1))

=

i+1∑
j=1

(−1)j+1w(vj)⊗ (tw.x⊗ w(v1) ∧ . . . ∧ ŵ(vj) ∧ . . . ∧ w(vi+1))

−
i+1∑
j=1

(−1)j+1 ⊗ (w(vj).tw.x⊗ w(v1) ∧ . . . ∧ ŵ(vj) ∧ . . . ∧ w(vi+1).

To show the equation (2.4), it is equivalent to show Pw = Pw. Regard C[W ] as a natural

subalgebra of H. By using the fact that twv − w(v)tw ∈ C[W ] for w ∈ W , Pw − Pw

is an element of the form 1 ⊗ u for some u ∈ ResWX ⊗ ∧iV . Thus, it suffices to show

that u = 0. To this end, a direct computation (from the original expressions of Pw and
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Pw) shows that di−1(Pw − Pw) = 0. By induction hypothesis, di−1 is well-defined and so

di−1(1⊗ u) = di−1(Pw − Pw) = 0. Write 1⊗ u of the form

1⊗ u =
∑

1≤r1<...<ri≤n
1⊗ (xr1,...,ri)⊗ er1 ∧ . . . ∧ eri , (2.5)

where xr1,...,ri ∈ ResWX and e1, . . . , en is a fixed basis of V . By a direct computation of

di−1(1⊗ u) from the expression (2.5), we have

di−1(1⊗ u)

=
∑

1≤r1<...<ri≤n

i∑
j=1

(−1)j+1erj ⊗ (xr1,...,ri)⊗ er1 ∧ . . . ∧ êrj ∧ . . . ∧ eri)

−
∑

1≤r1<...<ri≤n

i∑
j=1

(−1)j+11⊗ erj .(xr1,...,ri)⊗ er1 ∧ . . . ∧ êrj ∧ . . . ∧ eri).

We have seen that di−1(1⊗ u) = 0 and so u = 0 by using linearly independence arguments.

Verifying d2 = 0 is straightforward.

�

Theorem 5.2.43. (1) For any H-module X, the complex (2.1) forms a projective reso-

lution for X.

(2) The global dimension of H is dimV .

Proof. From Lemma 5.2.42, it remains to show the exactness for (1). This can be proven

by an argument which imposes a filtration on H and uses a long exact sequence (see for

example [HP, Section 5.3.8] or [Kn2, Chapter IV Section 6]). We provide some detail. Let

Hr be the (vector) subspace of H spanned by the elements of the form

twv
n1
1 . . . vnll for w ∈W , v1, . . . , vl ∈ V ,

with n1 + n2 + . . .+ nl ≤ r. Note that Hr is still (left and right) invariant under the action

of W . Let

Er,s = Hr ⊗C[W ] (ResWX ⊗ ∧sV ).

Then the differential ds−1 defines a map from Er,s to Er+1,s−1. For convenience, also set

Er+s+1,−1 = X and there is a map from Er+s,0 to X and d−1 = ε. Then for a positive
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integer p, we denote by E(p) the complex {Er,s, ds−1}r+s=p,s≥−1. We now define a graded

structure. Let

Fr,s = Er,s/Er−1,s,

and let dr,s : Fr,s → Fr+1,s−1 be the induced map from ds−1. Then
{
Fr,s, dr,s

}
r+s=p

forms

a complex for each p. Denote by F(p) for such complex. In fact, F(p) forms a standard

Koszul complex and hence the homology H i(F(p)) = 0 for all i.

Now consider the following short exact sequences of the chain of complexes for p ≥ 1:

0

��

0

��

0

��

0 X

��

oo Ep−1,0

��

oo Ep−2,1

��

oo · · ·oo

0 X

��

oo Ep,0

��

oo Ep−1,1

��

oo · · ·oo

0 0oo

��

Fp,0oo

��

Fp−1,0

��

oo · · ·oo

0 0 0

The vertical map from Ep−s−1,s to Ep−s,s is the natural inclusion map. Then we have the

associated long exact sequence:

. . .→ Hk+1(F(p))→ Hk(E(p− 1))→ Hk(E(p))→ Hk(F(p))→ . . .

Since Hk(F(p)) = Hk+1(F(p)) = 0, Hk(E(p−1)) ∼= Hk(E(p)). It remains to see Hk(E(0)) =

0 for all k, but it follows from definitions.

We now prove (2). By (1), the global dimension of H is less than or equal to dimV.

We now show the global dimension attains the upper bound. Let γ ∈ V ∨ be a regular

element and let vγ be a vector with weight γ ∈ V ∨. Define X = IndH
S(V ) Cvγ . By Frobenius

reciprocity and using γ is regular, ExtiH(X,X) = ExtiS(V )(Cvγ ,Cvγ) 6= 0 for all i ≤ dimV.

This shows the global dimension has to be dimV.

�

5.3 Alternate form of the Koszul-type resolution

In this section, we give another form of the differential map di, which involves the terms

ṽ defined in (3.6). There are some advantages for computations later on.
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For v ∈ V , we define the following element in H:

ṽ = v − 1
2

∑
α∈R+ kα〈v, α∨〉tsα . (3.6)

This element is used by Barbasch-Ciubotaru-Trapa [BCT] for the study of the Dirac coho-

mology for graded affine Hecke algebras and is sometimes called the Drinfield presentation

[Dr]. It turns out it is quite useful in several aspects. An important property of the element

is the following:

Lemma 5.3.44. [BCT, Proposition 2.10] For any w ∈W and v ∈ V , twṽ = w̃(v)tw.

Proof. It suffices to show for the case that w is a simple reflection sβ ∈W .

tsβ ṽ = tsβ

v − 1

2

∑
α∈R+

kα〈v, α∨〉tsα


= sβ(v)tsβ + kβ〈v, β∨〉 −

1

2
kβ〈v, β∨〉 −

1

2

∑
α∈R+\{β}

kα〈v, α∨〉tsβ(α)tsβ

= sβ(v)tsβ −
1

2
kβ〈v, sβ(β∨)〉 − 1

2

∑
α∈R+\{β}

kα〈v, sβ(α∨)〉tsαtsβ

= sβ(v)tsβ −
1

2

∑
α∈R+

kα〈sβ(v), α∨〉tsαtsβ

= s̃β(v)tsβ .

�

We consider the maps d̃i : H ⊗C[W ] (ResW X ⊗ ∧i+1V ) → H ⊗C[W ] (ResW X ⊗ ∧iV ) as

follows:

d̃i(h⊗ (x⊗ v1 ∧ . . . ∧ vi+1)) (3.7)

=
i+1∑
j=1

(−1)j+1 (hṽj ⊗ x⊗ v1 ∧ . . . v̂j . . . ∧ vi − h⊗ ṽj .x⊗ v1 ∧ . . . v̂j . . . ∧ vi+1) . (3.8)

This definition indeed coincides with the one in the previous subsection:

Proposition 5.3.45. d̃i = di.

Proof. Recall that for v ∈ V ,

ṽ = v − 1

2

∑
α∈R+

kα〈v, α∨〉tsα .
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Then

ṽr ⊗ (x⊗ v1 ∧ . . . ∧ v̂r ∧ . . . ∧ vi+1)− 1⊗ (ṽr.x⊗ v1 ∧ . . . ∧ v̂r ∧ . . . ∧ vi+1)

= vr ⊗ (x⊗ v1 ∧ . . . ∧ v̂r ∧ . . . ∧ vi+1)− 1⊗ (vr.x⊗ v1 ∧ . . . ∧ v̂r ∧ . . . ∧ vi+1)

−1

2

∑
α∈R+

kα〈vr, α∨〉 ⊗ (tsα .x)⊗ sα(v1) ∧ . . . ∧ sα(v̂r) ∧ . . . ∧ sα(vi+1)

+
1

2

∑
α∈R+

kα〈vr, α∨〉 ⊗ (tsα .x)⊗ v1 ∧ . . . ∧ v̂r ∧ . . . ∧ vi+1

= vr ⊗ (x⊗ v1 ∧ . . . ∧ v̂r ∧ . . . ∧ vi+1)− 1⊗ (vr.x⊗ v1 ∧ . . . ∧ v̂r ∧ . . . ∧ vi+1)

−1

2

∑
α∈R+

∑
p<r

(−1)pkα〈vr, α∨〉〈vp, α∨〉 ⊗ (tsα .x)⊗

α ∧ sα(v1) ∧ . . . sα(v̂p) ∧ . . . sα(v̂r) ∧ . . . ∧ sα(vi+1)

−1

2

∑
α∈R+

∑
r<p

(−1)p−1kα〈vr, α∨〉〈vp, α∨〉 ⊗ (tsα .x)⊗

α ∧ sα(v1) ∧ . . . sα(v̂r) ∧ . . . sα(v̂p) ∧ . . . ∧ sα(vi+1).

The second equality follows from the expression of ṽr. Taking the alternating sum of the

above expression with some standard computations can verify d̃i = di.

�

5.4 Complex for computing Ext-groups

We now use the resolution in Section 5.2 to construct a complex for computing Ext-

groups. Let X and Y be H-modules.

Then taking the HomH(·, Y ) functor on the projective resolution of X as the one in

(2.1), we have the induced maps for i ≥ 1,

di : HomH(H⊗C[W ] (ResWX ⊗ ∧iV ), Y )→ HomH(H⊗C[W ] (ResWX ⊗ ∧i+1V ), Y ).

Then by using the Frobenius reciprocity, we have induced complex

0← HomW (ResW X ⊗ ∧nV,ResWY )
d∗n−1← . . .

d∗i← HomW (ResW X ⊗ ∧iV,ResWY )

d∗i−1← . . .
d∗0← HomW (ResW X,ResWY )← 0,

(4.9)

where the map d∗i can be explicitly written as:

d∗i (f)(x⊗ v1 ∧ · · · ∧ vi+1) =

i+1∑
j=1

(−1)j+1ṽj .f(x⊗ v1 ∧ . . . ∧ v̂j ∧ . . . ∧ vi+1)

−
i+1∑
j=1

(−1)j+1f(ṽj .x⊗ v1 ∧ . . . ∧ v̂j ∧ . . . ∧ vi+1),
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where the action of ṽj on the term f(x⊗ v1 ∧ . . .∧ v̂j ∧ . . .∧ vi+1) is via the action of ṽj on

Y and the action of ṽj on the term x is via the action of ṽj on X.

Thus, we obtain the following:

Proposition 5.4.46. Let X and Y be H-modules. Then ExtiH(X,Y ) is naturally isomorphic

to the i-th homology of the complex in (4.9).

An immediate consequence is the following:

Corollary 5.4.47. Let X and Y be finite-dimensional H-modules. Then

dimExtiH(X,Y ) <∞.

Proof. Since X and Y are finite dimensional, HomW (ResW X ⊗ ∧iV,ResWY ) is finite

dimensional. Then the statement follows from Proposition 5.4.46.

�

It is not hard to see that d∗i can be naturally extended to a map from HomC(ResW X ⊗

∧iV,ResWY ) to HomC(ResW X⊗∧i+1V,ResWY ). We denote the map by d
∗
i , which will be

used in Section 6.4.



CHAPTER 6

DUALITY FOR EXT-GROUPS

In this chapter, we prove a duality result for the Ext-groups of graded affine Hecke

algebra modules, which can be thought of as an analogue of some classical dualities such

as Poincaré duality or Serre duality (also see Poincaré duality for real reductive groups

in [Kn2, Theorem 6.10]). Along the way, we discuss several duals of graded affine Hecke

algebra modules involved in the duality result. The duality result is our first main theorem.

We keep using the notation from Chapter 5.

6.1 θ-action and θ-dual

We define an involution θ on H in this section. This θ is not needed in the duality result

(Theorem 6.6.63), but it closely relates to the ∗ and • operations defined in the next section.

Let w0 be the longest element in W . Let θ be an involution on H characterized by

θ(v) = −w0(v) for any v ∈ V , and θ(tw) = tw0ww
−1
0

for any w ∈W, (1.1)

where w0 acts on v as the reflection representation of W . Since θ(∆) = ∆, 〈., .〉 is

W -invariant and kα = kθ(α) for any α ∈ ∆, it is straightforward to verify θ defines an

automorphism on H.

Note that θ also induces an action on V ∨, still denoted as θ. For α ∈ R, since w0(α∨) =

w0(α)∨, we also have θ(α∨) = θ(α)∨. The action θ on V ∨ will be used in Chapter 7 when

we need to consider weights of an H-module.

Recall that for v ∈ V , ṽ is defined in (3.6).

Lemma 6.1.48. For any v ∈ V , θ(ṽ) = θ̃(v).

Proof.
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θ(ṽ) = θ

v − 1

2

∑
α∈R+

cα〈α, v〉sα


= θ(v)− 1

2

∑
α∈R+

cα〈α, v〉sθ(α)

= θ(v)− 1

2

∑
α∈R+

cθ(α)〈θ(α), v〉sα

= θ(v)− 1

2

∑
α∈R+

cα〈α, θ(v)〉sα

= θ̃(v).

�

Definition 6.1.49. For an H-module X, define θ(X) to be the H-module such that θ(X)

is isomorphic to X as vector spaces and the H-action is determined by:

πθ(X)(h)x = πX(θ(h))x,

where πX and πθ(X) are the maps defining the action of H on X and θ(X), respectively.

6.2 *-dual and •-dual

In this section, we study two anit-involutions on H. These two anti-involutions are

studied in [BC2], but we make a variation for our need. More precisely, those anti-involutions

are linear rather than Hermitian, and we will discuss how to recover the results for the

original anti-automorphisms at the end of this chapter. The linearity will make some

construction easier. For instance, it is easier to make the identification of spaces in Section

6.4.

Define ∗ : H→ H to be the linear anit-involution determined by

v∗ = tw0θ(v)t−1
w0

for v ∈ V , t∗w = t−1
w for w ∈W.

Define • : H→ H to be another linear anti-involution determined by

v• = v for v ∈ V , t•w = t−1
w for w ∈W.

It is straightforward to verify ∗ and • are well-defined maps. Indeed, for •-operation, we

have
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(tsαv − sα(v)tsα)• = vtsα − tsαsα(v) (α ∈ ∆, v ∈ V )

= −kα〈sα(v), α∨〉

= −kα〈sα(v), α∨〉

= −kα〈v, sα(α∨)〉

= (kα〈v, α∨〉)•.

For ∗-operation, we need the following equation (see e.g., [BCT, Lemma 2.6]):

v∗ = −v +
∑
β>0

kβ〈v, β∨〉tsβ .

Then

(tsαv − s(v)tsα)∗ = v∗tsα − tsαsα(v)∗ (α ∈ ∆, v ∈ V )

=

−v +
∑
β∈R+

kβ〈v, β∨〉tsβ

 tsα − tsα

−sα(v) +
∑
β∈R+

kβ〈sα(v), β∨〉tsβ


= tsαsα(v)− vtsα + 2kα〈v, α∨〉

= kα〈s(v), α∨〉+ 2kα〈v, α∨〉

= kα〈v, α∨〉

= (kα〈v, α∨〉)∗.

Definition 6.2.50. Let X be an H-module. A map f : X → C is said to be a linear

functional if f(λx1 + x2) = λf(x1) + f(x2) for any x1, x2 ∈ X and λ ∈ C. The ∗-dual of X,

denoted by X∗, is the space of linear functionals of X with the action of H determined

(h.f)(x) = f(h∗.x) for any x ∈ X. (2.2)

We similarly define •-dual of X, denoted by X•, by replacing h∗ with h• in equation (2.2).

Lemma 6.2.51. Let X be an H-module. Define a bilinear pairing 〈, 〉∗X : X∗ × X → C

(resp. •〈, 〉X : X•×X → C) such that 〈f, x〉∗X = f(x) (resp. •〈f, x〉X = f(x)). (We reserve

〈, 〉•X for the use of another pairing later.) Then

(1) for v ∈ V , 〈ṽ.f, x〉∗X = 〈f,−ṽ.x〉∗X (resp. •〈ṽ.f, x〉X = •〈f, ṽ.x〉X),

(2) for w ∈W , 〈tw.f, x〉∗X = 〈f, t−1
w .x〉∗X (resp. •〈tw.f, x〉X = •〈f, t−1

w .x〉X),

(3) 〈, 〉∗X (resp. •〈, 〉X) is nondegenerate.
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Proof. We first consider ∗-operation. Note that (ṽ)∗ = tw0θ(ṽ)t−1
w0

= w̃0θ(v) = −ṽ, where

the second equality follows from Lemma 5.3.44 and Lemma 6.1.48. This implies (1). Other

assertions follow immediately from the definitions.

For •-operation, we have (ṽ)• = ṽ from the definitions. This then implies (1). Other

assertions again follow from the definitions.

�

Lemma 6.2.52. Let X be an H-module. Then (X∗)• ∼= θ(X).

Proof. Let θ′ be an automorphism on H such that θ′(h) = (h∗)• = tw0θ(h)t−1
w0

for any h ∈ H.

Then we have θ′ sends H-modules to H-modules and we denote θ′(X) to be the image of

the map of an H-module X. Note that θ′(X) ∼= (X∗)• by definitions. Then it suffices

to show θ′(X) ∼= θ(X). We define a map F : X → X, x 7→ t−1
w0
.x. Then by definitions

θ(h).F (x) = F (θ′(h).x). This implies θ′(X) ∼= θ(X) as desired.

�

6.3 Pairing for ∧iV and ∧n−iV
Fix an ordered basis e1, . . . , en for V . We define a nondegenerate bilinear pairing 〈, 〉∧iV

as

∧iV × ∧n−iV → C

determined by

〈v1 ∧ . . . ∧ vi, vi+1 ∧ . . . ∧ vn〉∧iV = det(v1 ∧ . . . ∧ vn),

where det is the determinant function for the fixed ordered basis e1, . . . , en.

Define (∧iV )∨ to be the dual space of ∧iV . For ω ∈ ∧n−iV , define φω ∈ (∧iV )∨ by

φω(ω′) = 〈ω, ω′〉∧n−iV . (3.3)

By using det(w(v1) ∧ . . . ∧ w(vn)) = sgn(w) det(v1 ∧ . . . ∧ vn) for any w ∈ W , we see the

map ω 7→ φω from ∧n−iV to (∧iV )∨ defines a W -representation isomorphism from ∧n−iV

to sgn⊗(∧iV )∨.

We also define a pairing 〈, 〉(∧n−iV )∨ : (∧n−iV )∨ × (∧iV )∨ → C such that

〈φω, φω′〉(∧n−iV )∨ = 〈ω, ω′〉∧iV ,

where ω ∈ ∧iV and ω′ ∈ ∧n−iV .

By definitions, we have the following:
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Lemma 6.3.53. For ω ∈ ∧iV and ω′ ∈ ∧n−iV ,

〈φω, φω′〉(∧n−iV )∨
= 〈ω, ω′〉∧iV = φω(ω′).

Lemma 6.3.54. For any w ∈W ,

〈w.φv1∧...∧vi , w.φvi+1∧...∧vn〉(∧n−iV )∨ = sgn(w)〈φv1∧...∧vi , φvi+1∧...∧vn〉(∧n−iV )∨ .

Proof. As noted above,

w.φv1∧...∧vi = sgn(w)φw.(v1∧...∧vi),

w.φvi+1∧...∧vn = sgn(w)φw.(vi+1∧...∧vn).

Then

〈w.φv1∧...∧vi , w.φvi+1∧...∧vn〉(∧n−iV )∨ = 〈w.(v1 ∧ . . . ∧ vi), w.(vi+1 ∧ . . . ∧ vn)〉(∧n−iV )∨

= sgn(w)〈v1 ∧ . . . ∧ vi, vi+1 ∧ . . . ∧ vn〉(∧n−iV )∨

= sgn(w)〈φv1∧...∧vi , φvi+1∧...∧vn〉(∧n−iV )∨ .

�

The following technical lemma is a simple linear algebra consequence, but we shall use

it a number of times.

Lemma 6.3.55. Recall that e1, . . . , en is a fixed basis of V . Consider φek1∧...∧ekn−i ∈ (∧iV )∨

and φek′1
∧...∧ek′

i+1
∈ (∧n−i+1V )∨. Suppose all k1, . . . , kn−i are mutually distinct (otherwise

φek1∧...∧ekn−i ∈ (∧iV )∨ = 0) and also suppose all k′1, . . . , k
′
i+1 are mutually distinct. If

| {k1, . . . , kn−i} ∩
{
k′1, . . . , k

′
i+1

}
| ≥ 2, then for any p = 1, . . . , n− i and q = 1, . . . , i+ 1,

〈φek1∧...∧êkp∧...∧ekn−i , φek′1∧...∧ek′i+1
〉∧iV = 〈φek1∧...∧ekn−i , φek′1∧...∧êk′q∧...∧ek′i+1

〉∧iV = 0.

If | {k1, . . . , kn−i} ∩
{
k′1, . . . , k

′
i+1

}
| = 1, then there exists a unique pair of indices p and

q such that

〈φek1∧...∧êkp∧...∧ekn−i , φek′1∧...∧ek′i+1
〉(∧i−1V )∨

=(−1)n−i+p+q+1〈φek1∧...∧ekn−i , φek′1∧...∧êk′q∧...∧ek′i+1

〉(∧iV )∨

and the terms do not vanish, and for r 6= p or s 6= q,

〈φek1∧...∧êkr∧...∧ekn−i , φek′1∧...∧ek′i+1
〉(∧i−1V )∨

=〈φek1∧...∧ekn−i , φek′1∧...∧êk′s∧...∧ek′i+1

〉(∧iV )∨ = 0.
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Proof. It is straightforward to verify this lemma with the fixed basis. We only prove the

middle equality. Suppose | {k1, . . . , kn−i}∩
{
k′1, . . . , k

′
i+1

}
| = 1. Let e be the unique element

in the ordered basis {e1, . . . en} such that e = ekp = ek′q for the unique indexes kp and k′q.

Then

〈φek1∧...∧êkp∧...∧ekn−i , φek′1∧...∧ek′i+1
〉(∧iV )∨

= det(ek1 ∧ . . . ∧ êkp ∧ . . . ∧ ekn−i ∧ ek′1 ∧ . . . ∧ ek′i+1
)

=(−1)n−i+p+q+1 det(ek1 ∧ . . . ∧ ekn−i ∧ ek′1 ∧ . . . ∧ êk′q ∧ . . . ∧ ek′i+1
)

=(−1)n−i+p+q+1〈φek1∧...∧ekn−i , φek′1∧...∧êk′q∧...∧ek′i+1

〉(∧iV )∨ .

This proves the lemma.

�

6.4 Complexes involving duals

It is well-known that there is a natural identification between the spaces HomW (ResWX⊗

∧iV,ResWY ) and (X∗ ⊗ Y ⊗ (∧iV )∨)W (or (X• ⊗ Y ⊗ (∧iV )∨)W ). Here, we consider a

natural W -action on X∗ ⊗ Y ⊗ (∧iV )∨ and (X∗ ⊗ Y ⊗ (∧iV )∨)W is the W invariant space.

In order to prove Theorem 6.6.63 later, we need to construct some pairing, which will be

more convenient to be done for the spaces (X∗⊗ Y ⊗ (∧iV )∨)W (or (X•⊗ Y ⊗ (∧iV )∨)W ).

The goal of this section is to translate the differential maps d∗i in Section 5.4 into the

corresponding maps for (X∗ ⊗ Y ⊗ (∧iV )∨)W .

We define a (linear) map Di : X∗ ⊗ Y ⊗ (∧iV )∨ → X∗ ⊗ Y ⊗ (∧i+1V )∨ on the complex,

which is determined by

Di(f ⊗ y ⊗ φv1∧...∧vn−i)

=

n−i∑
j=1

(−1)j+1(f ⊗ ṽj .y ⊗ φv1∧...v̂j ...∧vn−i + ṽj .f ⊗ y ⊗ φv1∧...v̂j ...∧vn−i), (4.4)

for f ⊗ y ⊗ φv1∧...∧vn−i ∈ X∗ ⊗ Y ⊗ (∧iV )∨, where ṽj acts on f by the action on X∗ and ṽj

acts on y by the action on Y .

Note that there is a natural W -action on X∗ ⊗ Y ⊗ (∧iV )∨ (from the W -action of X∗,

Y and V ). Such W action commutes with Di and so Di sends (X∗ ⊗ Y ⊗ (∧iV )∨)W to

(X∗ ⊗ Y ⊗ (∧i+1V )∨)W . We denote the map Di restricted to (X∗ ⊗ Y ⊗ (∧iV )∨)W by Di.

If we want to emphasis the complexes that Di or Di refer to, we shall write DX∗⊗Y⊗(∧iV )∨

for Di and D(X∗⊗Y⊗(∧iV )∨)W for Di.

In the priori, we do not have D2 = 0, but we will soon prove it in Lemma 6.4.56.
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We define another map D
•
i : X• ⊗ Y ⊗ (∧iV )∨ → X• ⊗ Y ⊗ (∧i+1V )∨ determined by:

D
•
i (f ⊗ y ⊗ φv1∧...∧vn−i)

=

n−i∑
j=1

(−1)j+1(f ⊗ ṽj .y ⊗ φv1∧...v̂j ...∧vn−i − ṽj .f ⊗ y ⊗ φv1∧...v̂j ...∧vn−i).

Similar to Di, the restriction of D
•
i to (X• ⊗ Y ⊗ (∧iV )∨)W has image in (X• ⊗ Y ⊗

(∧i+1V )∨)W . Denote by D•i the restriction of D
•
i to (X• ⊗ Y ⊗ (∧iV )∨)W .

Define a linear isomorphism Ψ : X∗ ⊗ Y ⊗ (∧iV )∨ → HomC(X ⊗ ∧iV, Y ) as follows,

where we also regard X and Y as vector spaces: for f ⊗y⊗φv1∧...∧vn−i) ∈ X∗⊗Y ⊗ (∧iV )∨

has the action given by: for f ⊗ y ⊗ φvk,1∧...∧vk,n−i ∈ X∗ ⊗ Y ⊗ (∧iV )∨,

Ψ(f ⊗ y ⊗ φvk,1∧...∧vk,n−i)(x⊗ u1 ∧ . . . ∧ ui) = f(x)φv1∧...∧vn−l(u1 ∧ . . . ∧ ui)y ∈ Y

for x ⊗ u1 ∧ . . . ∧ ui ∈ X ⊗ ∧iV . The map Ψ indeed depends on i, but we shall suppress

the index i. By taking restriction on the space (X∗ ⊗ Y ⊗ (∧iV )∨))W , we obtain the linear

isomorphism:

Ψ : (X∗ ⊗ Y ⊗ (∧iV )∨)W → HomW (X ⊗ ∧iV, Y ).

Since X∗ and X• can be naturally identified as vector spaces, the maps Ψ and Ψ are also

defined for the corresponding spaces involving • instead of ∗.

Recall that d∗i and d
∗
i are defined in Section 5.4 and we remark that the ∗ on d∗i has

nothing to do with the ∗-involution on H.

Lemma 6.4.56. Let X and Y be H-modules. Then

(1) For any ω ∈ X∗ ⊗ Y ⊗ (∧iV )∨, Ψ(Di(ω)) = (−1)n−i+1d
∗
i (Ψ(ω)).

(2) For any ω ∈ X• ⊗ Y ⊗ (∧iV )∨, Ψ
•
(D
•
i (ω)) = (−1)n−i+1d

∗
i (Ψ

•
(ω)).

Proof. Recall that e1, . . . , en be the fixed basis for V . Let ω = f ⊗ y ⊗ φek1∧...∧ekn−i ∈

X∗ ⊗ Y ⊗ (∧iV )∨. By linearity, it suffices to check that

Ψ(Di(ω))(x⊗ ek′1 ∧ . . . ∧ ek′i+1
) = (−1)n−i+1d

∗
i (Ψ(ω))(x⊗ ek′1 ∧ . . . ∧ ek′i+1

)

for any x ∈ X and any indices k′1, . . . , k
′
i+1 ∈ {1, . . . , n}.
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Suppose | {k1, . . . , kn−i} ∩
{
k′1, . . . , k

′
i+1

}
| ≥ 2. By Lemma 6.3.53 and Lemma 6.3.55,

d
∗
iΨ(ω)(x⊗ ek′1 ∧ . . . ∧ ek′i+1

)

=0

=Ψ(Diω)(x⊗ ek′1 ∧ . . . ∧ ek′i+1
).

Suppose | {k1, . . . , kn−i} ∩
{
k′1, . . . , k

′
i+1

}
| = 1. Let kp and k′q be the unique pair of

indices such that ekp = ek′q . Then

d
∗
iΨ(ω)(x⊗ ek′1 ∧ . . . ∧ ek′i+1

)

=Ψ(ω)(di(x⊗ ek′1 ∧ . . . ∧ ek′i+1
))

=(−1)q+1f(x)φek1∧...∧ekn−i (ek′1 ∧ . . . ∧ êk′q ∧ . . . ∧ ek′i+1
)ẽk′q .y

− (−1)q+1f(ẽk′q .x)φek1∧...∧ekn−i (ek′1 ∧ . . . ∧ êk′q ∧ . . . ∧ ek′i+1
)y (by Lemma 6.3.55)

=(−1)n−i−pf(x)φek1∧...∧êkp∧...∧ekn−i (ek
′
1
∧ . . . ∧ ek′i+1

)ẽk′q .y

− (−1)n−i−pf(ẽk′q .x)φek1∧...∧êkp∧...∧ekn−i (ek
′
1
∧ . . . ∧ ek′i+1

)y

(by Lemma 6.3.53 and Lemma 6.3.55)

=(−1)n−i−pf(x)φek1∧...∧êkp∧...∧ekn−i (ek
′
1
∧ . . . ∧ ek′i+1

)ẽkp .y

− (−1)n−i−pf(ẽkp .x)φek1∧...∧êkp∧...∧ekn−i (ek
′
1
∧ . . . ∧ ek′i+1

)y (by ekp = ek′q)

=(−1)n−i−pf(x)φek1∧...∧êkp∧...∧ekn−i (ek
′
1
∧ . . . ∧ ek′i+1

)ẽkp .y

+ (−1)n−i−p−1(ẽkp .f)(x)φek1∧...∧êkp∧...∧ekn−i (ek
′
1
∧ . . . ∧ ek′i+1

)y (by Lemma 6.2.51)

=(−1)n−i+1Ψ(Di(f ⊗ y ⊗ φek1∧...∧ekn−i ))(x⊗ ek′1 ∧ . . . ∧ ek′i+1
) (by Lemma 6.3.55)

=(−1)n−i+1Ψ(Di(ω))(x⊗ ek′1 ∧ . . . ∧ ek′i+1
).

This completes the proof for (1).

The proof for (2) follows the same style of computations. (One of the differences is in

the fifth equality of the computation in the second case and that explains why the definition

of D
•
i and Di differs by a sign in a term.)

�

Lemma 6.4.57. We have the following:

(1) D2 = 0 and (D•)2 = 0,

(2) The complex HomW (ResWX⊗∧iV, Y ) with differentials d∗i is naturally isomorphic to

the complex (X∗ ⊗ Y ⊗ (∧iV ))W with differentials Di.
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(3) The complex HomW (ResWX⊗∧iV, Y ) with differentials d∗i is naturally isomorphic to

the complex (X• ⊗ Y ⊗ (∧iV ))W with differentials D•i .

Proof. By Lemma 6.4.56 (1) and the fact that Ψ is an isomorphism, Di = Ψ−1 ◦ d∗i ◦ Ψ.

Then (1) follows from Lemma 5.2.42. (2) follows from Lemma 6.4.56 (1). The proof for (3)

and another assertion about D• in (1) is similar.

�

Proposition 6.4.58. Let X,Y be H-modules.

ExtiR(H)(X,Y ) ∼= ExtiR(H)(Y
∗, X∗) ∼= ExtiR(H)(Y

•, X•) ∼= ExtiR(H)(θ(X), θ(Y )),

and the isomorphisms as vector spaces between them are natural.

Proof. We first prove that ExtiR(H)(X,Y ) = ExtiR(H)(Y
∗, X∗). By Lemma 6.4.57 (2),

ExtiR(H)(X,Y ) ∼= kerD(X∗⊗Y⊗(∧iV )∨)W / imD(X∗⊗Y⊗(∧i−1V )∨)W ,

and

ExtiR(H)(Y
∗, X∗) ∼= kerD((Y ∗)∗⊗X∗⊗(∧iV )∨)W / imD((Y ∗)∗⊗X∗⊗(∧i−1V )∨)W .

With (Y ∗)∗ ∼= Y , there is a natural isomorphism between the spaces (X∗⊗Y ⊗(∧n−iV )∨)W

and ((Y ∗)∗ ⊗ X∗ ⊗ (∧n−iV )∨)W . It is straightforward to verify the isomorphism induces

an isomorphism between the corresponding complexes by using (4.4). It can be poven

similarly for ExtiR(H)(X,Y ) = ExtiR(H)(X
•, Y •). For the equality of ExtiR(H)(X,Y ) =

ExtiR(H)(θ(X), θ(Y )), it follows from the two equalities we have just proven. Indeed,

ExtiR(H)(X,Y ) = ExtiR(H)(Y
∗, X∗) = ExtiR(H)((X

∗)•, (Y ∗)•) = ExtiR(H)(θ(X), θ(Y )),

where the last equality follows from Lemma 6.2.52.

�

6.5 Iwahori-Matsumoto dual

Definition 6.5.59. The Iwahori-Matsumoto involution ι is an automorphism on H deter-

mined by

ι(v) = −v for v ∈ V , ι(w) = sgn(w)w for w ∈W.

This defines a map, still denoted ι, from the set of H-modules to the set of H-modules.

Lemma 6.5.60. For any v ∈ V , ι(ṽ) = −ṽ.
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Proof. This follows from ι(sα) = −sα and definitions.

�

Lemma 6.5.61. Let κ be the natural (vector space) inclusion from Y to ι(Y ) so that

h.κ(y) = κ(ι(h).y). Let Y be an H-module. Define a bilinear pairing 〈, 〉•Y : Y × ι(Y )• → C

by 〈y, g〉•Y = g(κ(y)). Then

(1) for v ∈ V , 〈ṽ.y, g〉•Y = 〈y,−ṽ.g〉•Y ,

(2) for w ∈W , 〈tw.y, g〉•Y = sgn(w)〈y, t−1
w .g〉•Y ,

(3) 〈, 〉•Y is nondegenerate.

Proof. By a direct computation, ṽ• = ṽ and then (1) follows from Lemma 6.5.60 and the

definitions. (2) and (3) follow from the definitions.

�

Proposition 6.5.62. For H-modules X and Y , ExtiR(H)(X, ι(Y )) = ExtiR(H)(ι(X), Y ).

Proof. We sketch the proof. Let P i → X be a projective resolution of X. (To avoid confu-

sion, we do not use P • for projective resolutions as before.) Then ι(P i) is still a projective

object and ι(P i)→ ι(X) is a projective resolution of ι(X). There is a natural isomorphism

HomR(H)(ι(P
i), Y ) ∼= HomR(H)(P

i, ι(Y )). Hence, ExtiR(H)(ι(X), Y ) = ExtiR(H)(X, ι(Y )).

�

6.6 Duality theorem

In this section, we state and prove our first main result.

Theorem 6.6.63. Let H be the graded affine Hecke algebra associated to a based root

datum Π = (X , R,Y, R∨,∆) and a parameter function k : ∆ → C (Definition 3.3.25). Let

V = C⊗Z X and let n = dimV . Let X and Y be finite dimensional H-modules. Let X∗ be

the ∗-dual of X in Definition 6.2.50. Let ι(Y ) be the Iwahori-Matsumoto dual in Definition

6.5.59 and let ι(Y )• be the •-dual of ι(Y ) in Definition 6.2.50. Then there exists a natural

nondegenerate pairing

ExtiR(H)(X,Y )× Extn−iR(H)(X
∗, ι(Y )•)→ C.
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Proof. We divide the proof into a few steps.

Step 1: Construct nondegenerate bilinear pairings.

The space

HomW (X ⊗ ∧iV, Y )×HomW (X∗ ⊗ ∧n−iV, ι(Y )•)

is identified with

(X∗ ⊗ Y ⊗ (∧iV )∨)W × (X ⊗ ι(Y )• ⊗ (∧n−iV )∨)W

as in Section 6.4. Let 〈, 〉∗X be the bilinear pairing on X∗ ×X such that 〈f, x〉∗X = f(x) for

f ∈ X∗ and x ∈ X. Let 〈, 〉•Y be the bilinear pairing on Y ×ι(Y )• such that 〈y, g〉•Y = g(κ(y))

for g ∈ ι(Y )• and y ∈ Y . Here, κ is defined as in Lemma 6.5.61.

For each i, we first define the pairing 〈, 〉X,Y,∧iV on a larger space (X∗ ⊗ Y ⊗ (∧iV )∨)×

(X ⊗ ι(Y )• ⊗ (∧n−iV )∨) via the product of the pairings 〈, 〉∗X , 〈, 〉•Y and 〈, 〉(∧iV )∨ i.e.,

〈f ⊗ y ⊗ φv1∧...∧vn−i , x⊗ g ⊗ φvn−i+1∧...∧vn〉X,Y.∧iV

=〈f, x〉∗X〈y, g〉•Y 〈φv1∧...∧vn−i , φvn−i+1∧...∧vn〉(∧iV )∨ .

Since all the pairings 〈, 〉∗X , 〈, 〉•Y and 〈, 〉(∧iV )∨ are bilinear, 〈, 〉X,Y,∧iV is bilinear and well-

defined.

This pairing 〈, 〉X,Y,∧iV is nondegenerate because 〈, 〉∗X , 〈, 〉•Y and 〈, 〉(∧iV )∨ are nondegen-

erate. Note that 〈, 〉X,Y,∧iV is W -invariant, which follows from Lemma 6.2.51(2), Lemma

6.5.61(2) and Lemma 6.3.54.

In order to see 〈, 〉X,Y,∧iV restricted on (X∗⊗Y ⊗ (∧iV )∨)W × (X⊗ ι(Y )•⊗ (∧n−iV )∨)W

is still nondegenerate, we pick ω ∈ (X∗⊗Y ⊗ (∧iV )∨)W . There exists ω′ ∈ X⊗ (∧n−iV )∨⊗

ι(Y )•⊗ (∧n−iV )∨ such that 〈ω, ω′〉X,Y,∧iV 6= 0. Then by the W -invariance of 〈, 〉X,Y,∧iV , we

have 〈ω,
∑

w∈W w(ω′)〉X,Y,∧iV 6= 0, as desired. Hence, 〈, 〉X,Y,∧iV restricted on (X∗ ⊗ Y ⊗

(∧iV )∨)W × (X ⊗ ι(Y •)⊗ (∧n−iV )∨)W is still nondegenerate.

Step 2: Compute the adjoint operator of D for 〈, 〉X,Y,∧iV
Recall that D is defined in (4.4). For notational simplicity, set D

1
i = D(X∗⊗Y⊗(∧iV )∨)

and D
2
n−i−1 = D(X⊗ι(Y )•⊗(∧n−i−1V )∨), where we regard X = (X∗)∗. Recall that we fixed a

basis e1, . . . , en for V . We first show that

〈Di(f ⊗ y ⊗ φek1∧...∧ekn−i ), x⊗ g ⊗ φek′1∧...∧ek′i+1
〉X,Y,∧iV

=± 〈f ⊗ y ⊗ φek1∧...∧ekn−i , D
2
n−i−1(x⊗ g ⊗ φek′1∧...∧ek′i+1

)〉X,Y,∧i−1V (6.5)

( f ∈ X∗, x ∈ X, g ∈ Y ∗, y ∈ Y , φek1∧...∧ekn−i ∈ (∧iV )∨ and φek′1
∧...∧ek′

i+1
∈ ∧n−i−1V ).
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We divide into two cases. Suppose | {k1, . . . , kn−i} ∩
{
k′1, . . . , k

′
i+1

}
| ≥ 2. Then by

Lemma 6.3.55,

〈D1
i (f ⊗ y ⊗ φek1∧...∧ekn−i ), x⊗ g ⊗ φek′1∧...∧ek′i+1

〉X,Y,∧iV

=0

=(−1)n−i〈f ⊗ y ⊗ φek1∧...∧ekn−i , D
2
n−i−1(x⊗ g ⊗ φek′1∧...∧ek′i+1

))〉X,Y,∧i−1V .

For the second case, suppose | {k1, . . . , kn−i} ∩
{
k′1, . . . , k

′
i+1

}
| = 1. Let kp and k′q be

the unique pair of indices such that ekp = ek′q . Then

〈D1
i (f ⊗ y ⊗ φek1∧...∧ekn−i ), x⊗ g ⊗ φek′1∧...∧ek′i+1

〉X,Y,∧iV

=(−1)p+1〈ẽkp .f, x〉∗X 〈y, g〉•Y 〈φek1∧...∧êkp∧...∧ekn−i , φek′1∧...∧ek′i+1
〉(∧n−i−1V )∨

+ (−1)p+1〈f, x〉∗X 〈ẽkp .y, g〉•Y 〈φek1∧...∧êkp∧...∧ekn−i , φek′1∧...∧ek′i+1
〉(∧n−i−1V )∨

=(−1)p+1〈f,−ẽkp .x〉∗X 〈y, g〉•Y 〈φek1∧...∧ekn−i , φek′1∧...∧êk′q∧...∧ek′i+1

〉(∧n−iV )∨

+ (−1)p+1〈f, x〉∗X〈y,−ẽkp .g〉•Y 〈φek1∧...∧ekn−i , φek′1∧...∧êk′q∧...∧ek′i+1

〉(∧n−iV )∨

=(−1)n−i+q〈f,−ẽk′q .x〉
∗
X 〈y, g〉•Y 〈φek1∧...∧ekn−i , φek′1∧...∧êk′q∧...∧eki+1

〉(∧n−iV )∨

+ (−1)n−i+q〈f, x〉∗X 〈y,−ẽk′q .g〉
•
Y 〈φek1∧...∧ekn−i , φek′1∧...∧êk′q∧...∧eki+1

〉(∧n−iV )∨

=(−1)n−i〈f ⊗ y ⊗ φek1∧...∧ekn−i , D
2
n−i−1(x⊗ g ⊗ φek′1∧...∧ek′i+1

)〉X,Y,∧i−1V .

The first and last equalities follow from Lemma 6.3.55. The second equality follows from

Lemma 6.2.51 (1) and Lemma 6.5.61 (1). The third equality follows from ekp = ek′q . Hence,

we have shown the equation (6.5). By linearity, we have for ω1 ∈ (X∗⊗ Y ⊗ (∧iV )∨)W and

ω2 ∈ (X ⊗ Y ⊗ (∧n−i−1V )∨)W ,

〈D1
i ω1, ω2〉X,Y,∧i+1V = (−1)n−i〈ω1, D

2
n−i−1ω2〉X,Y,∧iV , (6.6)

where D1
i = D(X∗⊗Y⊗(∧iV )∨)W and D2

n−i−1 = D(X⊗ι(Y )•⊗(∧n−i−1V )∨)W .

Step 3: Descend the pairing to ExtiR(H)(X,Y )× Extn−iR(H)(X
∗, ι(Y )•)→ C.

We use implicitly the fact that X and Y are finite-dimensional for linear algebra results

below.

For U ⊂ (X ⊗ ι(Y )• ⊗ (∧n−iV )∨)W , let U⊥ to be a subspace of (X∗ ⊗ Y ⊗ (∧iV )∨)W

U⊥ =
{
ω ∈ (X∗ ⊗ Y ⊗ (∧iV )∨)W : 〈ω, ω′〉X,Y,∧iV = 0 for all ω′ ∈ U

}
.

For a subspace U ⊂ (X∗ ⊗ Y ⊗ (∧iV )∨)W , define U⊥ to be a subspace of (X ⊗ ι(Y )• ⊗

(∧n−i−1V )∨)W as

U⊥ =
{
ω′ ∈ (X ⊗ ι(Y )• ⊗ (∧n−iV )∨)W : 〈ω, ω′〉X,Y,∧iV = 0 for all ω ∈ U

}
.
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We first show the following two equations:

(kerD1
i )
⊥ = im ιD2

n−i−1 (6.7)

and

(imD1
i−1)⊥ = kerD2

n−i. (6.8)

For the inclusion (kerD1
i )
⊥ ⊆ imD2

n−i, we instead show the equivalent equation kerD1
i ⊇

(imD2
n−i−1)⊥. For ω ∈ (imD2

n−i−1)⊥, 〈ω,D2
n−i−1ω

′〉X,Y,∧iV = 0 for all ω′ ∈ (X ⊗ ι(Y )• ⊗

(∧n−i−1V )∨)W . Then with (6.6), we have 〈D1
i ω, ω

′〉X,Y,∧iV = 0 for all ω′ ∈ (X ⊗ ι(Y )• ⊗

(∧n−i−1V )∨)W . By the nondegeneracy of 〈, 〉X,Y,∧iV (shown in step 1), we have D1
i ω = 0

and so ω ∈ kerD1
i , as desired.

For another inclusion (kerD1
i )
⊥ ⊇ imD2

n−i−1, let ω′′ = D2
n−i−1ω

′ ∈ imD2
n−i−1. Then

for any ω ∈ kerD1
i , 〈ω,D2

n−i−1ω
′〉 = 〈D1

i ω, ω
′〉 = 0. Hence, ω′′ ∈ (kerD1

i )
⊥, as desired.

This completes the proof for the equation (6.7). The proof for the equation (6.8) is similar.

By (6.7), the pairing 〈., .〉X,Y.∧iV first descends to

kerD1
i × ((X ⊗ ι(Y )• ⊗ (∧n−iV )∨)W / imD2

n−i−1).

Then by (6.8), the pairing 〈., .〉X,Y.∧iV further descends to

kerD1
i / imD1

i−1 × kerD2
n−i/ imD2

n−i−1.

By Proposition 5.4.46 and Lemma 6.4.57(2), we have a natural nondegenerate pairing on

ExtiR(H)(X,Y )× Extn−iR(H)(X
∗, ι(Y )•)→ C.

�

Remark 6.6.64. We give few comments concerning the statement and the proof of Theo-

rem 6.6.63.

(1) If X and Y have the same central character, then X∗ and ι(Y •) also have the same

central character (see Example 6.7.68 below).

(2) The use of the element ṽ makes the computation in step 2 of the proof easier.

(3) The choice of the duals is necessary to compute the adjoint operator for the pairing

〈., .〉X,Y,∧iV in step 2. By Proposition 6.4.58, one also obtains a nondegenerate pairing

ExtiR(H)(X,Y )× Extn−iR(H)(X
•, ι(Y )∗)→ C.

(4) The Iwahori-Matsumoto involution is necessary to show the pairing 〈., .〉X,Y,∧iV is

W -invariant and so nondegenerate in step 1.
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6.7 Examples

In this section, we give few examples to illustrate how Theorem 6.6.63 is compatible

with some known results.

Example 6.7.65. Let St be the Steinberg module of H, which is an one-dimensional module

Cx with the H-action defined as:

v.x = 〈v, ρ∨〉x for v ∈ V , w.x = sgn(w)x for w ∈W.

Here, ρ∨ is the half sum of all the positive coroots. Then ResWSt is a sign representation

and ResW ι(St) is a trivial representation. By Proposition 5.4.46,

ExtiR(H)(St,St) =
ker d∗ : HomW (sgn⊗ ∧i V, sgn)→ HomW (sgn⊗ ∧i+1 V, sgn)

im d∗ : HomW (sgn⊗ ∧i−1 V, sgn)→ HomW (sgn⊗ ∧i V, sgn)
.

It is well-known that
{
∧iV

}dimV

i=0
are irreducible and mutually nonisomorphicW -representations.

Hence,

HomW (sgn⊗ ∧i V, sgn) =

{
C if i = 0
0 otherwise.

Hence, we have ExtiH(St,St) = C for i = 0 and ExtiH(St, St) = 0 for i 6= 0. By a similar

consideration, we have ExtiH(St, ι(St)) = C for i = n and ExtiH(St,St) = 0 for i 6= n. This

agrees with the conclusion from Theorem 6.6.63.

Example 6.7.66. Let R be the root system of type A2. Let α1, α2 be a fixed choice of

simple roots of R. Assume R spans V . Let γ = α∨1 + α∨2 , which is the central character

of the Steinberg module. There are four irreducible modules of H(A2). We parametrize

the four irreducible modules by their weights and denote the corresponding modules as

X(γ), X(α∨1 ,−α∨1 ), X(α∨2 ,−α∨2 ), X(−γ). For example, the weights of X(α∨1 ,−α∨1 ) are α∨1

and −α∨1 . For γ′ = γ or −γ,

X(γ′)∗ = X(γ′), X(γ′)• = X(γ′), ι(X(γ′)) = X(−γ′),

For other irreducible modules,

X(α∨1 ,−α∨1 )∗ = X(α∨2 ,−α∨2 ), X(α∨k ,−α∨k )• = X(α∨k ,−α∨k ) for k = 1, 2

ι(X(α∨k ,−α∨k )) = X(α∨k ,−α∨k ) for k = 1, 2.

We have X∗ 6∼= ι(X•) for any irreducible module X. Results in [Or], which in particular

compute Ext-groups of all pairs of irreducible H-modules of center character Wγ, agree

with Theorem 6.6.63.
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Example 6.7.67. Let kα 6= 0 for all α ∈ ∆. Let X be the minimal parabolically

induced with the central character 0. Then X is irreducible. Then by [OS3, Theorem

5.2], ExtiR(H)(X,X) ∼= ∧iV . We also have X∗ ∼= X• ∼= ι(X) ∼= X. Then we have

dim ExtiR(H)(X,X) =

(
n
i

)
=

(
n

n− i

)
= dim Extn−iR(H)(X

∗, ι(X•)).

Example 6.7.68. Let kα 6= 0 for all α ∈ ∆. Let X be an irreducible principle series with a

regular central character Wγ (γ ∈ V ∨). Then X∗ has the central character Wθ(γ) = −Wγ

(since θ(γ) = −w0(γ)) and ι(X•) has the central character −Wγ. By the irreducibility, we

have X∗ ∼= ι(X•).

On another hand, by the Frobenius reciprocity and γ being regular,

ExtiR(H)(X,X) = ExtiR(S(V ))(Cvγ ,Cvγ) ∼= ∧iV,

where vγ is a vector with the S(V )-weight γ. We again have

dim ExtiR(H)(X,X) =

(
n
i

)
=

(
n

n− i

)
= dim Extn−iR(H)(X

∗, ι(X•)).

Similar consideration can extend to examples of (not necessarily irreducible) minimal

principle series with a regular central character.

Example 6.7.69. Let k ≡ 0. Let X and Y be irreducible H-modules with the central

character 0. Then ResWX and ResWY are also irreducible W -representations. By Propo-

sition 5.4.46, ExtiR(H)(X,Y ) = HomW (ResWX⊗∧iV,ResWY ). Since all W -representations

are self-dual, we have X∗ ∼= X and ι(Y •) ∼= sgn⊗Y , where the sgn means the action of tw

(w ∈W ) is twisted by sgn(w). Then we have

Extn−iR(H)(X
∗, ι(Y )•) ∼= HomW (ResWX ⊗ ∧n−iV, sgn⊗ResWY )

∼= HomW (ResWX ⊗ sgn⊗ ∧n−i V,ResWY )

∼= HomW (ResWX ⊗ ∧iV,ResWY )

∼= ExtiR(H)(X,Y ),

where the third isomorphism uses the fact that sgn⊗ ∧i V ∼= ∧n−iV as W -representations.

6.8 Hermitian duals

As promised in Section 6.2, we will discuss the situation of the Hermitian anti-involutions

usually encountered in the literature. Those anti-involutions are more natural because of

their close relation to the unitary representations of p-adic groups [BC2]. An important
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assumption we have to make in this section is kα ∈ R for all α ∈ ∆ . This is necessary for

those anti-involutions to be well-defined.

Since V = C ⊗R V0, there is a natural complex conjugation on H. Denote by h the

complex conjugation of h ∈ H. Define † : H → H to be an Hermitian anit-involution

determined by

v† = tw0θ(v)t−1
w0 for v ∈ V , t†w = t−1

w for w ∈W.

Define ◦ : H→ H to be another Hermitian anti-involution determined by

v◦ = v for v ∈ V , t◦w = t−1
w for w ∈W.

It follows from similar calculations in Section 6.2 that both † and ◦ are well-defined. The

analogue of Definition 6.2.50 is the following:

Definition 6.8.70. Let X be an H-module. A map f : X → C is said to be a Hermitian

functional if f(λx1 + x2) = λf(x1) + f(x2) for any x1, x2 ∈ X and λ ∈ C. The †-dual of X,

denoted by X†, is the space of Hermitian functionals of X with the action of H determined

(h.f)(x) = f(h†.x) for any x ∈ X. (8.9)

We similarly define ◦-dual of X, denoted by X◦, by replacing h† with h◦ in equation (8.9).

In fact, we can define a conjugation involution ε as follows:

ε(v) = v for v ∈ V , ε(tw) = tw for w ∈W.

Then h† = ε(h)∗ = ε(h∗) and h◦ = ε(h)• = ε(h•) for any h ∈ H. The map ε induced a

bijection, still denoted ε, from H-modules to H-modules.

Then using argument similar to Proposition 6.5.62, we have

ExtiR(H)(X,Y ) ∼= ExtiR(H)(ε(X), ε(Y ))

for any H-modules X and Y . Then combining with Theorem 6.6.63, we have:

Theorem 6.8.71. Let H be a graded affine Hecke algebra associated to a based root datum

Π = (X , R,Y, R∨,∆) and a real parameter function k : ∆ → R (Definition 3.3.25). Let

V = C ⊗Z X and let n = dimV . Then for any finite-dimensional H-modules X and Y ,

there exists a natural nondegenerate pairing

ExtiR(H)(X,Y )× Extn−iR(H)(X
†, ι(Y )◦)→ C.



CHAPTER 7

EXTENSIONS AND THE LANGLANDS

CLASSIFICATION

To study the extensions of graded affine Hecke algebra modules, one may want to look for

some natural construction of the extensions. A natural one is from the parabolic induction.

In this chapter, we study a few classes of parabolically induced modules with the goal

to understand some extensions. The most important class is the induced modules in the

Langlands classification, from which we compare central characters to obtain information

about Ext-groups. We also construct induced modules for discrete series and tempered

modules and use them to study extensions. One may also compare the methods in [Hu2,

Chapter 6] for the study of extensions in the BGG category O. As an application of the

study, we compute the Ext-groups among discrete series in the next chapter.

In this and next chapters, we make the following assumption: R spans V . In other

words, C⊗Z R = C⊗Z X . This assumption will make the discussion more convenient and

it is not hard to formulate corresponding results without the assumption.

7.1 Langlands classification

In this section, we review the Langlands classification for graded affine Hecke algebras in

[Ev] (also see [KR]). We shall not reproduce a proof here, but we point out that the proof

for the Langlands classification is algebraic (see [Ev], [KR]) and does not rely on results of

affine Hecke algebras or p-adic groups.

We first need a notation of parabolic subalgebra of H.

Notation 7.1.72. For any subset J of ∆, define VJ to be the complex subspace of V spanned

by vectors in J and define V ∨J to be the dual space of VJ lying in V ∨. Let RJ = VJ ∩R and

let R∨J = V ∨J ∩R∨. Let WJ be the subgroup of W generated by the elements sα for α ∈ J .

Define

V ∨,⊥J =
{
v ∈ V : 〈v, u∨〉 = 0 for all u ∈ V ∨J

}
,
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and

V ⊥J =
{
v∨ ∈ V ∨ : 〈u, v∨〉 = 0 for all u ∈ VJ

}
.

For J ⊂ ∆, let WJ be the subgroup of W generated by all sα with α ∈ J . Let w0,J be

the longest element in WJ . Let W J be the set of minimal representatives in the cosets in

W/WJ .

Let J ⊂ ∆. Define HJ to be the subalgebra of H generated by all v ∈ V and tw

(w ∈ WJ). We also define HJ to be the subalgebra of H generated by all v ∈ VJ and tw

(w ∈WJ). Note that HJ decomposes as

HJ = HJ ⊗ S(V ∨,⊥J ).

Note HJ is the graded affine Hecke algebra associated to the root datum (X , RJ ,Y, R∨J , J)

and HJ is the graded affine Hecke algebra associated to the root data (QJ , RJ ,P∨J , R∨J , J),

where QJ is the root lattice of RJ and P∨J is the corresponding coweight lattice.

We first describe the notion of parabolically induced modules. Denote by Ξ the set of

pairs of (J, U) with J ⊂ ∆ and irreducible HJ -modules U . For (J, U) ∈ Ξ, I(J, U) the

induced module IndH
HJU from the HJ -module U . Denote by ResHJ the right adjoint functor

of IndH
HJ . We also denote by ResHJ the restricton functor from H-modules to HJ -modules.

Let ν ∈ V ⊥J ⊂ V ∨J and let Cν be the corresponding one-dimensional S(V ∨,⊥J )-module.

For any α ∈ ∆, denote by ω∨α ∈ V ∨0 the fundamental coweight corresponding to α i.e., for

β ∈ ∆,

〈β, ω∨α〉 = ω∨α(β) =

{
1 if α = β
0 if α 6= β.

We define similarly for ωα ∈ V0 for α ∈ ∆.

Definition 7.1.73. An H-module X is said to be tempered if any weight γ of X is of the

form:

Reγ =
∑
α∈∆

aαα
∨, aα ≤ 0.

Equivalently, an H-module X is tempered if and only if 〈ωα, γ〉 ≤ 0 for all α ∈ ∆ and for

all weight γ of X. An H-module X is said to be a discrete series if any weight γ of X is of

the form:

Reγ =
∑
α∈∆

aαα
∨, aα < 0.

Equivalently, X is a discrete series if and only if 〈ωα,Reγ〉 < 0 for all α ∈ ∆ and for all

weight γ of X. In particular, an H-discrete series is tempered.
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For any γ ∈ V ∨, we can uniquely write Reγ as the form (see [Kn1, Ch VIII Lemma

8.56]):

Reγ =
∑
α∈J

aαα
∨ +

∑
β∈∆\J

bβω
∨
β with aα ≤ 0, bβ > 0 .

Denote

γ0 =
∑

β∈∆\J

bβω
∨
α ∈ V ∨0 .

Definition 7.1.74. We say a pair (J, U) ∈ Ξ is a Langlands classification parameter if

U = U ⊗Cν as HJ
∼= HJ ⊗ S(V ∨,⊥J )-modules for some HJ -tempered module U and ν ∈ V ⊥J

with 〈Reα, ν〉 > 0 for all α ∈ ∆ \ J . Recall that ωα is the fundamental weight associated to

α. Set λ(J, U) = ν. Denote by ΞL the set of all Langlands classification parameters. Hence,

if (J, U) ∈ ΞL, any weight γ of U has the form

Reγ =
∑
α∈J

aαα
∨ +

∑
β∈∆\J

bβω
∨
β ,

with aα ≤ 0 and bβ > 0. Note that λ(J, U) = γ0, where λ(J, U) is independent of the choice

of the weights γ of U .

We need a similar but stronger notation later. We say a pair (J, U) is a strong Langlands

classification parameter if U = U⊗Cν as HJ
∼= HJ⊗S(V ∨,⊥J )-modules for some HJ -discrete

series U and ν ∈ V ⊥J with 〈α,Reν〉 > 0 for all α ∈ ∆ \ J . Denote by ΞL,ds the set of all

strong Langlands classification parameters.

Theorem 7.1.75. (Langlands classification) [Ev]

(1) For any irreducible H-module X, there exists (J, U) ∈ ΞL such that X is isomorphic

to the unique irreducible quotient of I(J, U).

(2) Let (J, U), (J1, U1) ∈ ΞL. If the unique simple quotients of I(J, U) and I(J1, U1) are

isomorphic, then J = J1 and U ∼= U1 as HJ -modules.

From Theorem 7.1.75, each irreducible H-module can be associated to a pair in ΞL. We

have the following terminology:

Definition 7.1.76. Let X be an irreducible H-module. Let (J, U) ∈ ΞL be such that X is

the unique quotient of I(J, U). We call (J, U) is the Langlands classification parameter for

X.

There is an useful information about the weights in the Langlands classification. We

need the following notation for comparing weights:
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Definition 7.1.77. Let γ, γ′ ∈ V ∨0 . We write γ ≤ γ′ if 〈ωα, γ〉 ≤ 〈ωα, γ′〉 for all α ∈ ∆. We

write γ < γ′ if γ ≤ γ′ and 〈ωα, γ〉 < 〈ωα, γ′〉 for some α ∈ ∆.

The following lemma related the dual and the Langlands classification parameter will

be useful later.

Lemma 7.1.78. Let X be an irreducible H-module. Let (J, U) ∈ ΞL be the Langlands

parameter for X and let (J∗, U∗) ∈ ΞL be the Langlands classification parameter of X∗.

Then λ(J∗, U∗) = θ(λ(J, U)).

Proof. Following from the construction in the Langlands classification (see [KR, (2.12)],

also see Proposition 7.1.81 below), λ(J, U) (resp. λ(J∗, U∗)) is the maximal element in the

set

{γ0 : γ is a weight of X} (resp. {γ0 : γ is a weight of X∗}).

On the other hand, by Lemma 6.2.52, γ is a weight of X if and only if θ(γ) is a weight of

X∗. Hence, θ(λ(J∗, U∗)) = λ(J, U).

�

Proposition 7.1.81 below is in the proof of the Langlands classification [KR]. We

reproduce the proof since the statement is crucial for our argument later.

Lemma 7.1.79. (Lemma of Langlands) [Kn1, Ch VIII Lemma 8.59] Let γ, γ′ ∈ V ∨0 . If

γ ≤ γ′, then γ0 ≤ γ′0.

Lemma 7.1.80. Let J ⊂ ∆ and let w ∈ W J . Then w(ω∨α) ≤ ω∨α for all α ∈ ∆ and

w(ω∨α) < ω∨α for some α /∈ J .

Proof. Let w = sα1 . . . sαl be a reduced expression of w. Let β∨i = sα1 . . . sαi−1(α∨i ). Then

w(ω∨α) = ω∨α −
l∑

i=1

〈αi, ω∨α〉β∨i ≤ ω∨α .

The last equality follows from 〈αi, ω∨α〉 = 0, 1 and −β∨i < 0. Since w /∈ W J , αk /∈ J and so

〈αk, ω∨αk〉 = 1. Hence, w(ω∨αk) < ω∨αk as desired.

�

Proposition 7.1.81. Let (J, U) ∈ ΞL. Let M be a composition factor of I(J, U). Let

(J1, U1) ∈ ΞL be the Langlands classification parameter for M . Suppose M is not isomorphic

to the unique simple quotient of I(J, U) (i.e., (J, U) 6= (J1, U1)). Then λ(J1, U1) < λ(J, U).
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Proof. Any weight of M is of the form w(µ) for some w ∈ W J \ {1} and some weight µ of

U ([BM2, Theorem 6.4]). Write Reµ in the form

Reµ =
∑
α∈J

aαα
∨ + λ(J, U) with aα ≤ 0.

Then

Re(w(µ)) =
∑
α∈J

aαw(α∨) + w(λ(J, U)).

Since w(α∨) > 0 for all α∨, we have Re(w(µ)) ≤ w(λ(J, U)). For w 6= 1, by Lemma 7.1.80,

we also have w(ωα) ≤ ωα for all α /∈ J and w(ωα) < ωα for some α /∈ J . Hence, we also

have Re(w(µ)) ≤ w(λ(U)) < λ(J, U) and so Re(w(µ))0 < λ(J, U). Thus, for any weight γ

of M , γ0 < λ(J, U) by Lemma 7.1.79.

On another hand, there is a surjective map from I(J1, U1) to M by definition. Then

by the Frobenius reciprocity, HomR(HJ )(U1,ResHJM) 6= 0. Hence, λ(J1, U1) = γ0 for some

weight γ of M . With the discussion in the previous paragraph, we have λ(J1, U1) < λ(U).

�

Example 7.1.82. Let R be of type G2 and let k ≡ 1. Let α, β be the simple roots of R

with 〈α, β∨〉 = −1 and 〈β, α∨〉 = −3. We consider modules of the central character α∨+β∨

and the possible weights are

±(α∨ + β∨),±(α∨ + 2β∨),±β∨.

Note that α∨ + β∨ = −1
2β
∨ + 1

2(2α∨ + 3β∨). Let J = {β} and let St be the Steinberg

module of HJ and let ν = 1
2(2α∨ + 3β∨). The HJ -module St⊗ Cν has the weight α∨ + β∨

and (J, St⊗Cν) is a Langlands classification parameter. Let I = IndH
HJ (St,Cν). It is known

that Y has three composition factors. Denote by Y for the simple quotient of I, denote by

DS for the composition factor of I being a discrete series and denote by Z for the remaining

composition factor of I. We have

(1) The weight of Y is γ1 := α∨ + β∨.

(2) The weights of DS are γ2 := −α∨ − 2β∨ with multiplicity 2 and γ3 = −α∨ − β∨.

(3) The weights of Z are γ4 := β∨ and γ5 := −β∨.

Then γ1
0 = 1

2(2α∨ + 3β∨), γ2
0 = 0, γ3

0 = 0, γ4
0 = 1

2(α∨ + 2β∨) and γ5
0 = 0.
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7.2 Inner product on V0

Since V0 is a real representation of W , there exists a W -isomorphism, denoted η from

V0 to V ∨0 . Define a W -invariant bilinear form on V0 by (v1, v2) = η(v2)(v1). Since V ∨0 is

irreducible, there exists a unique, up to a scalar, W -invariant bilinear form on V0. Hence,

(., .) is also symmetric. By the uniqueness, we also have the W -invariant bilinear form (., .)

to be positive-definite. For γ ∈ V0, denote by ||γ|| :=
√

(γ, γ) the length of γ.

Furthermore, for each α ∈ ∆, Rα and Rα∨ are the (−1)-eigenspaces of sα on V0 and

V ∨0 , respectively. Hence, η(α∨) ∈ Rα for each α ∈ ∆. For α, β ∈ ∆ with β 6= α, we also

have

(η(ω∨α), β) = (β, η(ω∨α)) = 〈β, ω∨α〉 = 0.

Hence, η(ω∨α) ∈ Rωα. Thus, the setting of Langlands classification in Section 7.1 can be

naturally reformulated by the notations for V0 (e.g., α, ωα) if we identify V0 with V ∨0 via

the isomorphism η.

We also extend (., .) linearly to a symmetric bilinear form on V . We remark that in the

Langlands classification, we mainly consider the real part of weights of a module. It will be

important for (., .) to be an inner product on V0 for comparing the length of weights later

(see Definition 7.3.83 below).

7.3 Induced module for discrete series

We continue to assume R spans V . Let n = dimV = |∆|. We keep using the notation

in Section 7.2 (e.g., the bilinear form (., .) on V ). Our goal is to construct a maximal

parabolically induced module containing certain discrete series. We introduce the following

notations to keep track useful information.

Definition 7.3.83. Let X be an irreducible H-discrete series. Let ∆n−1 be the set contain-

ing all the subset of ∆ of cardinality n− 1. Let W(X) be the set of weights of X. Define a

function Φ : ∆n−1 ×W(X)→ C by

Φ(J, γ) = −
(Reγ, ωβ)

||ωβ||
=
|(Reγ, ωβ)|
||ωβ||

,

where β is the unique element in ∆ \J . Denote by (JX , γX) ∈ ∆n−1×W(X) to be the pair

such that Ψ(JX , γX) attains the minimum value among all pairs in W(X). Denote by βX

the unique element in ∆ \ JX . Denote

Lds(X) = Φ(JX , γX),

λds(X) = Lds(X)
ωβX
||ωβX ||

,

where ds stands for discrete series.
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Example 7.3.84. We keep using the notation in Example 7.1.82. By fixing a choice of

(., .), we have the following equations:

(α, α) = 2, (α, β) = −3, (β, β) = 6.

We have ωα = 2α+ β and ωβ = 3α+ 2β. The ||ωα||2 = 2 and ||ωβ||2 = 6. We consider the

discrete series DS which has weights γ2, γ3.

Φ({α} , γ2) =
2√
6
, Φ({β} , γ2) =

1√
2
,

Φ({α} , γ3) =
1√
6
, Φ({β} , γ3) =

1√
2
.

Thus, JDS = {α}. Lds(DS) = 1√
6

and λds(DS) = 1
6ωβ. We also see η(λds(DS)) =

1
6(3α∨ + 6β∨).

Before constructing an induced module for a discrete series, we mention useful results

about duals (Proposition 7.3.85 and Lemma 7.3.87). Recall that ∗ and • are defined in

Section 6.2.

Proposition 7.3.85. [BM3, Corollary 1.4] For (J, U) ∈ Ξ, I(J, U)∗ is isomorphic to

I(J, U∗J ), where ∗J is the corresponding ∗-operation for HJ -modules.

Proof. The proof is essentially the same as the one in [BM3, Corollary 1.4]. For any h ∈ H,

h can be uniquely written as the form ∑
w∈WJ

twhw,

where hw ∈ HJ . Define the map σ : H → HJ by σ(h) = he (e is the identity element in

W J). Then we define a bilinear form 〈, 〉∗ : I(J, U)× I(J, U∗M )→ C as

〈h⊗ u, k ⊗ f〉∗ = f(σ(k∗h)u).

The hardest part is to check 〈., .〉 is well-defined. By a slight consideration, we see it suffices

to show σ(h)∗M = σ(h∗). We divide into two cases. For the first case, we consider twp for

w ∈WJ and p ∈ S(V ).
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σ((twp)
∗) = σ(p∗tw−1)

= σ

((
−p+

∑
α>0

kα
sα(p)− p

α
tsα

)
tw−1

)

=

−p+
∑

α∈WJ ,α>0

kα
sα(p)− p

α
tsα

 tw−1

= (twp)
∗J

= σ(twp)
∗J .

We now consider twp for w /∈WJ and p ∈ S(V ).

σ((twp)
∗) = σ(p∗t−1

w )

= σ(tw0θ(p)t
−1
w0
tw−1)

= σ

tw0tw0w−1

∑
α>0,w0w−1(α)<0

kαtsαpα

 where pα ∈ S(V )

= σ

 ∑
α>0,w0w−1(α)<0

kαtw−1sαpα

 .

We now claim that w−1sα /∈ WJ for any w0w
−1(α) < 0. In fact, since w0w

−1(α) < 0, we

have w−1(α) > 0. If sα ∈ WJ , w−1sα /∈ WJ by w /∈ WJ . If α /∈ WJ , then w−1sα(α) < 0

and so w−1sα /∈ WJ by the fact that any element in WJ sends positive roots not in WJ to

positive roots. This proves the claim. Now the claim implies σ((twp)
∗) = 0. On the other

hand, we also have σ(twp) = 0.

Then by linearity of σ, we proved σ(h∗) = ε(h)∗J , as desired.

�

Example 7.3.86. Let J ⊂ ∆ be a singleton. Let I = IndH
HJ (St ⊗ Cν) for the Steinberg

HJ -module St and ν ∈ V ⊥J . Then I∗ = IndH
HJ (St ⊗ C−ν). We now specify the example to

type A2 with the notation in Example 6.7.66. Take J = {α1} and ν = −1
2α
∨
1 − α∨2 . Then

the composition factors of I are X(−γ) and X(α∨1 ,−α∨1 ) while the composition factors of

I∗ are X(−γ) and X(α∨2 ,−α∨2 ).

Lemma 7.3.87. Let X be an irreducible H-discrete series. Then X∗, θ(X) and X• are

also discrete series.

Proof. By definitions, γ is a weight of X if and only if θ(γ) is a weight of θ(X). Since

θ(ωα) = ωθ(α), we have θ(X) is also a discrete series. For X•, X and X• have the same
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weights and so X• is also a discrete series. By Lemma 6.2.52, X∗ ∼= θ(X•) is also a discrete

series.

�

We now construct an induced module with respect to a discrete series. We also relate

those induced modules to the Langlands classification parameter and so the composition

factors of the induced module can also be better understood.

Proposition 7.3.88. Let X be an irreducible H-discrete series. Recall that JX is defined

in Definition 7.3.83. Then there exists a pair (JX , U
′) ∈ Ξ with the following properties:

(1) X is a (not necessarily unique) irreducible quotient of I(JX , U
′), and

(2) I(JX , U
′) = I(JX , U)∗ for some (JX , U) ∈ ΞL,ds with λ(JX , U) = λds(X).

Proof. Let (JX , γX) be as in Definition 7.3.83. We shall construct an HJX -module with

some desired properties. We consider the HJX -modules ResHJXX, which can be written

as the direct sum of HJX -modules with distinct characters. Let Y be an indecomposable

HJX submodule of X with the central character WJγX . We want to show the composition

factors of the HJX -module ResHJX
Y are discrete series. Let γ′ be a weight of Y . Since Y

has the WJ -central character WJγX ,

Reγ′ =
∑
α∈JX

aαα− Lds(X)
ωβX
||ωβX ||

=
∑
α∈JX

aαα− λds(X), for some aα ∈ R. (3.1)

Proving (1) is equivalent to proving that all aα < 0. Let α′ ∈ JX . By using 〈γ′, ωα′〉 =

aα′ − Lds(X)
(ωβX ,ωα′ )

||ωβX ||
, we have

Φ(∆ \
{
α′
}
, γ′) = − aα′

||ωα′ ||
+ Lds(X)

(ωβX , ωα′)

||ωβX ||||ωα′ ||
(3.2)

< − aα′

||ωα′ ||
+ Lds(X). (3.3)

Here, the second line also uses the fact that (ωβ∗ , ωα′) ≥ 0 ([Kn1, Lemma 8.57]) and (., .)

is an inner product on V0. By our choice of (JX , γX), aα < 0 for all α ∈ JX . We now

let Y ′ be an irreducible HJX -submodule of Y and then we have Y ′ = UX ⊗ C−λ(X) as

HJX
∼= HJX ⊗ S(V ∨,⊥JX

)-module, where UX is an irreducible HJX -discrete series. Then by

construction and Frobenius reciprocity, one of the quotients of the parabolically induced

module I(JX , UX) is X. This shows (1).

For (2), by Proposition 7.3.85 and Lemma 7.3.87, I(JX , UX)∗ = I(JX , U
∗JX
X ). Note that

U
∗JX
X = U⊗Cλds(X) for some HJ -discrete series U (by Lemma 7.3.87). Hence, (JX , U

∗JX
X ) ∈

ΞL,ds with λ(JX , U
∗JX
X ) = λds(X) as desired.
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�

Example 7.3.89. We continue to use the notations in Example 7.1.82 and Example 7.3.84.

We consider the discrete series DS. From Example 7.3.84, we see that γ3 = −1
2α
∨ −

η(λds(DS)). Then there is a surjection from I({α} ,St ⊗ C−λds(DS)) to DS (by Frobenius

reciprocity), where St is the Steinberg module of Hα. This constructs the parabolically

induced module for DS as the one in Proposition 7.3.88.

Recall that the Iwahori-Matsumoto involution ι is defined in Section 6.5. We have the

following result describing the structure of parabolically induced modules which is proven

by considering central characters and using Corollary 4.2.34.

Proposition 7.3.90. Let X be an irreducible H-discrete series. Let (J, U) ∈ ΞL with

J 6= ∆. We have the following properties:

(1) ExtiR(H)(I(J, U)∗, ι(X)) = 0 for all i.

(2) Suppose 0 6= λ(J, U) < λds(X) or 0 6= θ(λ(J, U)) < λds(X) (see Definition 7.1.74 for

λ(J, U)). Then for all i

ExtiR(H)(I(J, U), ι(X)) = 0.

Proof. We consider (1). By Proposition 7.3.85, I(J, U)∗ = I(J, U∗J ) (where ∗J is the

corresponding ∗-operation for HJ) and the real part of the weights of U∗J are of the form∑
α∈J aαα − λ(J, U∗J ) for some aα ≤ 0. Suppose ExtiR(H)(I(J, U)∗, ι(X)) 6= 0 for some i.

Then by Frobenius reciprocity, we have

ExtiR(HJ )(U
∗J ,ResHJ ι(X)) = ExtiR(H)(I(J, U)∗, ι(X)) 6= 0

for some i. Then some composition factors of ι(X) and U∗J have the same HJ -central char-

acters by Corollary 4.2.35. That implies ι(X) has a weight γ such that Reγ =
∑

α∈J a
′
αα−

λ(J, U) for some aα′ ∈ R. Then for β /∈ J , (Reγ, ωβ) = −(λ(J, U), ωβ) < 0. However, this

contradicts to the definition of ι and X being a discrete series.

(2) is a special case of Lemma 7.3.91 below (whose proof does not depend on this

proposition). (In more detail, in the notation of Lemma 7.3.91, we choose X1 = X2 = X.)

�

We need an improved version of (2) of the above proposition for a better control in

comparing the Ext-groups of two discrete series.
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Lemma 7.3.91. Let X1 and X2 be irreducible H-discrete series. Assume Lds(X1) ≤

Lds(X2). Let (J, U) ∈ ΞL with J 6= ∆. Suppose λ(J, U) ≤ λds(X1). (resp. θ(λ(J, U)) ≤

λds(X1)) Then at least one of the following holds:

(1) For all i

ExtiR(H)(I(J, U), ι(X2)) = 0.

(2) λ(J, U) = λds(X1) and J = JX1 (resp. θ(λ(J, U)) = λds(X1) and θ(J) = JX1). For

any indecomposable HJ -submodule Z of ResHJ ι(X2), if ExtiR(HJ )(U,Z) 6= 0 for some

i, then all the composition factors of ι(ResHJ Z) are HJ -discrete series.

Proof. Suppose (1) is false to obtain (2). Then by the Frobenius reciprocity,

ExtiR(HJ )(U,ResHJ ι(X2)) 6= 0,

for some i. This implies ι(X2) contains a weight whose real part is of the form
∑

α∈J aαα+

λ(J, U) for some aα ∈ R. Then by the definition of ι, X2 contains a weight γ such that

Reγ = −
∑

α∈J aαα− λ(J, U). Then for any α /∈ J ,

(−Reγ, ωα) = (λ(J, U), ωα) (3.4)

≤ (λds(X1), ωα) (by λ(JX1 , U1) ≤ λds(X1)) (3.5)

≤ Lds(X1)
(ωβX1

, ωα)

||ωβX1
||

(by Definition 7.3.83) (3.6)

≤ Lds(X1)||ωα|| (3.7)

≤ Lds(X2)||ωα||. (3.8)

By the definition of the function Lds, all the inequalities become equalities. Then by the

fourth line of the above computation, ωα = ωβX and so ∆ \ J = {βX1}. Hence, J = JX1 .

By the second equality, we then have λ(J, U) = Lds(X1)
ωβX1
||ωβX1

|| = λds(X1). This proves the

first assertion of (2).

For the second assertion of (2), let Z be an indecomposable HJ -submodule of ResHJ ι(X2)

with ExtiR(HJ )(U,Z) 6= 0 for some i. Then U and Z have the same HJ -central character.

With the definition of ι, for any weight γ′ of ι(Z), γ satisfies

Reγ′ =
∑
α∈J

a′αα− λ(J, U) =
∑
α∈J

a′αα− λds(X1),
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for some a′α ∈ R. To show that any composition factors of ι(ResHJ Z) are discrete series, it

suffices to show a′α < 0. To this end, let α ∈ J and we consider,

(−Reγ′, ωα) = −a′α + (λds(X), ωα)

= −a′α + Lds(X1)
(ωβX1

, ωα)

||ωβX1
||

(by Definition 7.3.83)

< −a′α + Lds(X1)||ωα|| (because ωα 6= ωβX ).

On the other hand, note that γ′ is a weight of X2 (since ι commutes with ResHJ ). By the

definition of Lds in Definition 7.3.83,

Lds(X2)||ωα|| ≤ −(Reγ′, ωα).

Combining the equations and using Lds(X1) ≤ Lds(X2), we have a′α < 0 as desired. This

proves (2).

We now comment on the θ-case. Again suppose (2) is false. Th equation (3.5) above

will become (λ(J, U), ωα) ≤ (θ(λds(X1)), ωα). Hence, we will obtain J = θ(JX1). Then the

similar line of argument in the non-θ case gives the remaining assertion.

�

7.4 Tempered modules

It is known that tempered modules can be parabolically induced from a discrete series

twisted by an unitary character. We study those induced modules in this section.

Lemma 7.4.92. Let X be an H-tempered module, but not a discrete series. Then there

exists (J, U) ∈ Ξ with the following properties:

(1) [BC2, Lemma 5.1.1] X is an irreducible (not necessarily unique) subquotient of I(J, U)

and U = U ⊗ Cν for an HJ -discrete series U and ν ∈ V ⊥J with Reν = 0, and

(2) J 6= ∆, and

(3) any composition factor of I(J, U) is tempered, and

(4) for any discrete series X ′,

ExtiR(H)(I(J, U), ι(X ′)) = 0.
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Proof. For each weight γ of X, let J(γ) be a subset of ∆ such that

Reγ =
∑
α∈J

aαα, with aα < 0 .

Set γX to be the weight of X such that J(γX) has the minimal cardinality. Set J = J(γX).

Since X is not a discrete series, J 6= ∆. Let Y be an indecomposable HJ -module of ResHJX

with the HJ -central character WJγ
′. We claim that any composition factor of ResHJY is a

discrete series. Let γ′ be a weight of Y and write

Reγ′ =
∑
α∈J

a′αα for some a′α ∈ R.

Since Y has a central character WJγ
′, a′α = 0 for all α /∈ J . It remains to show that a′α < 0

for all α ∈ J . However, by the definition of a tempered module, a′α = 〈Reγ′, ωα〉 ≤ 0 for

all α ∈ J . If a′α = 0 for some α ∈ J , this will contradict our choice of γ′. This concludes

that a′α < 0 for all α ∈ J . Then we choose an irreducible HJ -submodule U of Y and

then U = U ⊗ Cν for an HJ -discrete series U and ν ∈ V ⊥J with Re(ν) = 0. By Frobenius

reciprocity, X is an irreducible quotient of I(J, U) as desired. This proves (1) and (2).

We now prove (3). Any weight of I(J, U) can be written of the form w(γU ) for w ∈W J

and a weight γU of U . Then

Re(w(γU )) =
∑
α∈J

aα,Uw(α) for aα,U ≤ 0 .

Since w(α) > 0 for any α ∈ J , (Re(w(γu)), ωα) ≤ 0 for all α ∈ ∆. This proves (3).

We now prove (4) and continue to use the notations for (1). Let X ′ be a discrete series.

Suppose the assertion is false to obtain a contradiction. Then by Frobenius reciprocity,

ExtiR(HJ )(U,ResHJ ι(X
′)) 6= 0.

Then by considering the HJ -central character of U and Corollary 4.2.35, ι(X ′) has a weight

γX′ such that

ReγX′ =
∑
α∈J

aα,X′α.

Since we assume X is not a discrete series, J 6= ∆. Then for α /∈ J , (ReγX′ , ωα) = 0, which

contradicts X ′ being a discrete series.

�



CHAPTER 8

EXTENSIONS OF DISCRETE SERIES

In this section, we compute the Ext-groups of discrete series. More precisely, we show

that all the higher Ext-groups among discrete series vanish. The result for affine Hecke

algebra is proven by Opdam-Solleveld in [OS1, Theorem 3.5] using the Schwartz algebra

completion of an affine Hecke algebra. With the belief of the result from affine Hecke

algebras, we take an algebraic approach for computing Ext-groups of discrete series for

graded affine Hecke algebras. The results also cover complex parameter cases and non-

crystallographic cases. We also hope some techniques can be extended for computing Ext-

groups of more modules in the future (see an example in Section 8.2).

We briefly outline the strategy of our proof (also see the paragraph before Lemma

8.1.96). Instead of computing Ext-groups of discrete series directly, we first compute

the Ext-groups for a tempered module and the Iwahori-Matsumoto dual of a discrete

series, which has the advantage that the Ext0
R(H)-group vanishes. The next step is to

construct parabolically induced modules for tempered modules (from Chapter 7). Then the

parabolic induction allows us to make use of the knowledge from lower ranks (via Frobenius

reciprocity and induction hypothesis), but in return, we have to deal with the Ext-groups

for the composition factors in the related parabolically induced modules. Fortunately, those

composition factors are well controlled by the Langlands classification and are manageable

from the study in Chapter 7. Then the standard modules associated to those composition

factors and the parabolic induction again gives some new information via the Frobenius

reciprocity. This eventually leads to the computation of the Ext-groups of a tempered

module and the Iwahori-Matsumoto dual of a discrete series. We finally apply the duality

result (Theorem 6.6.63) to recover the Ext-groups between a tempered module and a discrete

series.

We also want to point out that some argument can be simpler if we use some known

results such as discrete series being unitary or self ∗-dual. However, the known proofs for

those results rely on the setting in affine Hecke algebras or p-adic groups and we try to
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avoid using them.

8.1 Extensions of discrete series

In this section, we use the notation in Section 7.2 (i.e., identify V ∨ with V and use the

bilinear form (., .)). We also continue to assume R spans V .

Theorem 8.1.93. Let H be the graded affine Hecke algebra associated to a based root system

(X , R,Y, R∨,∆) and an arbitrary parameter function (Definition 3.3.25). Assume R spans

V . Let X1 be an irreducible tempered module and let X2 be an irreducible H-discrete series.

Then

ExtiR(H)(X1, X2) =

{
C if X1

∼= X2 and i = 0
0 otherwise.

Recall that each graded affine Hecke algebra is associated to a root system R. We shall

call the rank of H to be the rank of R (i.e., the cardinality of ∆). We shall use induction on

the rank of H to prove Theorem 8.1.93. The proof will be given at the end of this section.

We first give few important lemmas.

Lemma 8.1.94. Let (J, U) ∈ Ξ. Let U = U ⊗ Cν (as HJ = HJ ⊗ S(V ∨,⊥J )-modules) for

some HJ -module U and some ν ∈ V ⊥J . For an irreducible finite-dimensional HJ -module Y,

Y = Y ⊗ Cν ′ for some irreducible HJ -module Y and for some ν ′ ∈ V ⊥J . Then

ExtiR(HJ )(U, Y ) =
⊕
k+l=i

Extk
R(S(V ⊥J ))

(Cν ,Cν′)⊗ Extl
R(HJ )

(U, Y ).

Proof. Let Y be an irreducible finite dimensional H-module. Since S(V ∨,⊥J ) is in the center

of HJ and Y is finite-dimensional and irreducible, elements in S(V ∨,⊥J ) act by a scalar on Y

(by Schur’s Lemma). This implies that ResHJY is irreducible. Hence, Y ∼= ResHJY ⊗Cν for

some ν ∈ V ⊥J . This proves the first claim. The second assertion follows from the Künneth

formula for complexes (see for example [We, Theorem 3.6.3]).

�

Lemma 8.1.95. Let H be a graded affine Hecke algebra of rank n. Suppose Theorem

8.1.93 is true for all the graded affine Hecke algebra with rank n − 1. Let X1 and X2 be

irreducible H-discrete series. Assume Lds(X1) ≤ Lds(X2). Let (J, U) ∈ ΞL with J 6= ∆. If

λ(J, U) ≤ λds(X1) or θ(λ(J, U)) ≤ λds(X1), then

ExtiR(H)(I(J, U), ι(X2)) = 0

for all i ≤ n− 2.
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Proof. By Frobenius reciprocity, it reduces to show

ExtiR(HJ )(U,ResHJ ι(X)) = ExtiR(H)(I(J, U), ι(X)) = 0

for all i ≤ n − 2. By Lemma 4.2.33, it suffices to show that ExtiR(HJ )(U, Y ) = 0 for each

i ≤ n− 2 and each composition factor Y of ResHJ ι(X).

By Lemma 7.3.91, we only have to consider the composition factors Y of ResHJ ι(X) for

which the composition factors of ι(ResHJY ) are discrete series. Let Y be such a composition

factor of ResHJ ι(X). By the irreducibility, we can then write ι(Y ) = Y ⊗ Cν′ (as HJ
∼=

HJ ⊗ S(V ∨,⊥J )-modules) for an irreducible HJ -discrete series Y and some ν ′ ∈ V ⊥J .

Similarly, we also write U = U ⊗ Cν for an HJ -discrete series U and ν ∈ V ⊥J . Then by

Lemma 7.3.87, Theorem 6.6.63 and Theorem 8.1.93 for rank less than n, we have

Exti
R(HJ )

(U, Y ) = Extn−i
R(HJ )

(U
∗J , ι(Y

•J )) = 0

for i ≤ n− 2. (Here, ∗J and •J are the corresponding ∗ and • for HJ , respectively.) With

Lemma 8.1.94, this completes the proof.

�

The following lemma is the main technicality for Theorem 8.1.93. As mentioned in the

beginning of this chapter, we have to deal with the composition factor in some parabolically

induced modules. The assumptions in (2) of the following lemma pick out those composition

factors. The assumption Lds(X1) ≤ Lds(X2) in (2) gives a much better control of what kind

of composition factors are picked out.

The main idea of the proof of Lemma 8.1.96 is to use parabolically induced modules to

construct short exact sequences. From those short exact sequences, we obtain associated

long exact sequences by applying appropriate Hom-functors. Then Proposition 7.3.90 (1),

Lemma 7.4.92 (4) and Lemma 8.1.95 makes the technique of dimension shifting work.

Lemma 8.1.96. Let H be a graded affine Hecke algebra of rank n. Suppose Theorem 8.1.93

is true for all the graded affine Hecke algebra with rank less than or equal to n − 1. Then

we have the following:

(1) Let X1 be an H-tempered module and let X2 be an H-discrete series. Then for all

i ≤ n− 1

ExtiR(H)(X1, ι(X2)) = 0.
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(2) Let X1 and X2 be H-discrete series. Assume Lds(X1) ≤ Lds(X2). Let (J, U) ∈ ΞL

with λ(J, U) ≤ λds(X1) or θ(λ(J, U)) ≤ λds(X1). Let Y be the irreducible H-module

with the Langlands classification parameter I(J, U). Suppose Y is not tempered (i.e.,

J 6= ∆). Then for all i ≤ n− 2,

ExtiR(H)(Y, ι(X2)) = 0,

ExtiR(H)(Y
∗, ι(X2)) = 0.

((1) and (2) can be combined into one statement, but the separation into two statements

will reflect how we prove in separate cases.)

Proof. (We shall use induction on i, which indexes ExtiH, but we do not fix any of X1 or X2.)

When i = 0, any weight γ of ι(X2) satisfy (Reγ, ωα) > 0 for all fundamental weights ωα.

Then by the definition of tempered modules, Ext0
R(H)(X1, ι(X2)) = HomR(H)(X1, ι(X2)) =

0. This proves (1) for i = 0.

For (2), we may assume n ≥ 2 (otherwise there is nothing to prove). We consider the

following exact sequence:

0→ N → I(J, U)→ Y → 0,

where N is a proper (possibly zero) submodule of I(J, U). Then we have the associated

long exact sequence

0→ Ext0
R(H)(Y, ι(X2))→ Ext0

R(H)(I(J, U), ι(X2))→ . . .

Then by Lemma 8.1.95, we have Ext0
R(H)(Y, ι(X2)) = 0.

We now assume 1 ≤ i ≤ n− 1. Suppose X2 is a discrete series. We first consider X1 is

a discrete series. By using ExtiR(H)(X1, X2) = ExtiR(H)(X2
∗, X∗1 ) (Proposition 6.4.58) and

X1
∗, X∗2 being discrete series (Lemma 7.3.87), we can just consider Lds(X1) ≤ Lds(X2).

Then by Proposition 7.3.88, we have the following short exact sequence:

0→ N → I(JX1 , U1)∗ → X1 → 0,

for (JX1 , U1) ∈ ΞL with λ(JX1 , U1) = λds(X1) (and JX1 6= ∆). Then by applying the

HomR(H)(., ι(X2)) functor to obtain a long exact sequence and using Proposition 7.3.90(1),

ExtiR(H)(X1, ι(X2)) ∼= Exti−1
R(H)(N, ι(X2)).

Then it remains to show Exti−1
R(H)(N,X2) 6= 0. By Lemma 4.2.33, it suffices to show that

Exti−1
R(H)(Y,X2) = 0 for any composition factor Y of N . Let (J, U) ∈ ΞL be the Langlands
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parameter of Y . We first consider J 6= ∆. Note that Y ∗ is a composition factor of I(JX1 , U1)

and so with Lemma 7.1.78 and Proposition 7.1.81, θ(λ(J, U)) ≤ λ(JX1 , U1) = λds(X1)

satisfies the assumption in (2). By the induction hypothesis, Exti−1
R(H)(Y, ι(X2)) = 0. It

remains to consider J = ∆. Then we have Y is tempered and so by the induction hypothesis

for (1), we also have ExtiR(H)(Y, ι(X2)) = 0. This proves ExtiR(H)(X1, ι(X2)) = 0 for the

case that X1 is a discrete series.

We now consider X1 is tempered but not a discrete series. By Lemma 7.4.92, there exists

(J̃ , Ũ) ∈ Ξ such that X1 is an irreducible quotient of I(J̃ , Ũ) with the properties in Lemma

7.4.92. By Lemma 7.4.92(4), using the long exact sequence associated to HomR(H)(., ι(X2)),

we again obtain ExtiR(H)(X1, ι(X2)) ∼= Exti−1
R(H)(Ñ , ι(X2)) for some irreducible submodule

Ñ of I(J̃ , Ũ). Since any composition factor of I(J̃ , Ũ) is tempered (Proposition 7.4.92(3)),

the induction hypothesis with Lemma 4.2.33 again yields Exti−1
R(H)(Ñ , ι(X2) = 0. Then

ExtiR(H)(X1, ι(X2)) = 0 as desired.

We now prove (2) and assume 1 ≤ i ≤ n − 2. Let X1 and X2 be irreducible discrete

series with Lds(X1) ≤ Lds(X2). Let (J ′, U ′) ∈ ΞL with λ(J ′, U ′) ≤ λds(X1) and J ′ 6= ∆.

Let Y ′ be the irreducible H-module with the Langlands classification parameter (J ′, U ′).

We consider the short exact sequence

0→ N ′ → I(J ′, U ′)→ Y ′ → 0,

where N ′ is some submodule of I(J ′, U ′). Then apply the functor HomR(H)(·, ι(X2)) to

obtain a long exact sequence

. . .→Exti−1
R(H)(I(J ′, U ′), ι(X2))→ Exti−1

R(H)(N
′, ι(X2))

→ ExtiR(H)(Y, ι(X2))→ ExtiR(H)(I(J ′, U ′), ι(X2))→ . . .

By Lemma 8.1.95,

Exti−1
R(H)(N

′, ι(X2)) ∼= ExtiR(H)(Y, ι(X2)). (1.1)

Then again consider the composition factors of N ′ and using a similar argument as the

proof for (1) in the previous paragraph. Let M be a composition factor of N ′ and let

(JM , UM ) be the Langlands classification parameter of M . Then λ(JM , UM ) ≤ λ(J ′, U ′) ≤

λds(X1) by Proposition 7.1.81. Then by the induction hypothesis of (1) and (2), we obtain

Exti−1
R(H)(M, ι(X2)) = 0. Then by Lemma 4.2.33, we have Exti−1

R(H)(N
′, ι(X2)) = 0. Then

ExtiR(H)(Y, ι(X2)) = 0 by (1.1).

We continue to prove the remaining assertion in (2). We now consider the dual Y ′∗ of Y ′.

Let (J∗, U∗) ∈ ΞL be the Langlands classification parameter of Y ′∗. Then by Lemma 7.1.78,
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λ(J∗, U∗) = θ(λ(J ′, U ′)) and so θ(λ(J∗, U∗)) ≤ λds(X1). For any composition factor M∗ with

the Langlands classification parameter (JM∗ , UM∗) ∈ ΞL, we also have a similar inequality

θ(λ(JM∗ , UM∗)) ≤ θ(λ(J∗, U∗)) ≤ λds(X1) by Proposition 7.1.81. Thus, the induction step

applies with a similar argument.

�

Proof of Theorem 8.1.93. For the case of |∆| = 1, it is easy to verify. In fact, in that case,

when the parameter function k 6= 0, there is only one discrete series. When the parameter

function k = 0, there is no discrete series. Assume |∆| ≥ 2. Let X1 be an irreducible

tempered module and X2 be an irreducible discrete series. By the induction hypothesis,

Lemma 8.1.96, Lemma 7.3.87 and Theorem 6.6.63,

dim ExtiR(H)(X1, X2) = dim Extn−iR(H)(X
∗
1 , ι(X2)•) = 0

for all i ≥ 1. The case for i = 0 follows from HomH = Ext0
H and the Schur’s lemma. This

completes the proof.

8.2 Beyond discrete series: an example

In this section, we continue Example 7.1.82 and use the notation in the example. We

go back to use V ∨ for weights (to be consistent with the notation in Example 7.1.82). In

particular, we use the notation Y, Z,DS to denote the irreducible modules as in Example

7.1.82. There are two more irreducible modules with the central character W (α∨+β∨) not

in the list. One is a discrete series, denoted by DS′. Another one is the spherical module,

denoted S.

Let I ′ = IndH
H{α}(Stα ⊗ C 1

2
(α∨+β∨)), where St{α} is the Steinberg module of H{α} (c.f.

Proposition 7.3.88 and Example 7.3.89). Then by considering the weights, we have the

following short exact sequence:

0→ DS ⊕DS′ → I ′ → Z → 0. (2.2)

(We use Theorem 8.1.93 for the maximal submodule of I ′ to be a direct sum of DS and

DS′.) Then taking the HomR(H)(·, X) (X = DS,DS′) and computing ExtiR(H)(I,DS), we

have for X = DS,DS′,

ExtiR(H)(Z,X) =

{
C if i = 1
0 otherwise.

By taking •-operation, we have

ExtiR(H)(X,Z) =

{
C if i = 1
0 otherwise.
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By Theorem 6.6.63 and taking HomR(H)(·, Z) functor on (2.2), we have

ExtiR(H)(Z,Z) =

{
C if i = 0, 2
0 otherwise.

For X ′ = Y, S, Theorem 6.6.63 implies

ExtiR(H)(X
′, Z) = ExtiR(H)(Z,X

′) =

{
C if i = 1
0 otherwise.

For X = DS,DS′ and X ′ = S, Y , we also have

ExtiR(H)(X
′, X) = ExtiR(H)(X,X

′) =


C if i = 2 and

either (X = DS and X ′ = S)
or (X = DS′ and X = Y )

0 otherwise.

The Ext-groups among Y and S are similar to the Ext-groups of DS and DS′. We skip the

detail.



CHAPTER 9

EULER-POINCARÉ PAIRING

Euler-Poincaré pairing is defined as the alternating sum of the dimension of the ExtiR(H)-

groups and is usually easier to be understood than the ExtiR(H)-groups. For instance, the

pairing only depends on the composition factors of modules. An important aspect is that the

pairing defines an inner product on an appropriate subspace of the virtual representations

of a graded affine Hecke algebra, and is an analogue of the elliptic pairing for the p-adic

groups [SS]. The representation theory related to the Euler-Poincaré pairing has been

studied in the literature (e.g., [Ch2, CH, Re, OS1, OS3, SS]) and is closely related to the

spin representations of Weyl groups and Dirac cohomology (e.g., [Ch1, Ci2, CT, COT]).

In this chapter, we will show that the Euler Poincaré pairing only depends on the Weyl

group structure of graded affine Hecke algebra modules by using the projective resolution

constructed in Chapter 5. The statement is first proven by Reeder [Re] (for equal param-

eters) and also independently proven by Opdam-Solleveld [OS1] (for arbitrary parameters)

with different proofs. We also prove a similar statement for a twisted Euler-Poincaré pairing

in connection with the twisted elliptic pairing of Weyl groups studied by Ciubotaru-He [CH].

Applications are given at the end of the chapter.

9.1 Euler-Poincaré pairing

We keep using the notation of a graded affine Hecke algebra in Definition 3.3.25. (In this

chapter, R does not necessarily span V .) Define the Euler-Poincaré pairing for H-modules

X and Y as:

EPH(X,Y ) =
∑
i

(−1)i dim ExtiR(H)(X,Y ).

This pairing can be realized as an inner product on a certain elliptic space for H-modules

analogous to the one in p-adic reductive groups in the sense of Schneider-Stuhler [SS].

The elliptic pairing 〈, 〉ellip,V
W for W -representations U and U ′ is defined as

〈U,U ′〉ellip,V
W =

1

|W |
∑
w∈W

trU (w)trU ′(w)detV (1− w).
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Proposition 9.1.97. For any finite-dimensional H-modules X and Y ,

EPH(X,Y ) = 〈ResW (X),ResW (Y )〉ellip,V
W .

In particular, the Euler-Poincare pairing depends only on the W -module structure of X and

Y .

Proof.

EPH(X,Y )

=
∑
i

(−1)i dim ExtiR(H)(X,Y )

=
∑
i

(−1)i(ker d∗i − im d∗i−1) (by Proposition 5.4.46)

=
∑
i

(−1)i dim HomC[W ](ResW (X)⊗ ∧iV,ResW (Y )) (by Euler-Poincaré principle)

=
∑
w∈W

trResW X(w)trResW Y (w)tr∧±V (w)

= 〈ResW (X),ResW (Y )〉ellip,V
W .

Here, ∧±V =
⊕

i∈Z(−1)i ∧i V as a virtual representation. The last equality follows from

tr∧iV (w) = det(1− w) and definitions.

�

9.2 Twisted Euler-Poincaré pairing

Recall that θ is defined in Section 6.1. For any Ho 〈θ〉-module X, denote ResW X to be

the restriction of X to a C[W ]-algebra module (Definition 3.3.25 (1)). The notion ResWo〈θ〉

is similarly defined.

Let X and Y be H o 〈θ〉-modules. Recall that the map d∗ from HomC[W ](ResW X ⊗

∧iV,ResW Y ) to HomC[W ](ResW X ⊗ ∧i+1V,ResW Y ) is defined in Section 5.4.

Define θ∗ to be the linear automorphism on HomC[W ](ResW X ⊗∧iV,ResW Y ) given by

θ∗(ψ)(x⊗ v1 ∧ . . . ∧ vi) = θ ◦ ψ(θ(x)⊗ θ(v1) ∧ . . . ∧ θ(vi)). (2.1)

Here, θ-actions on ResW X and ResW Y are the natural actions from the θ-actions on X

and Y (as H o 〈θ〉-modules), and furthermore the θ-action on vi comes from the action of

θ on V .

Lemma 9.2.98. θ∗ ◦ d∗ = d∗ ◦ θ∗
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Proof.

(θ∗ ◦ d∗)(ψ)(x⊗ v1 ∧ . . . ∧ vk)

= θ ◦ d∗(ψ)(θ(x)⊗ θ(v1) ∧ . . . ∧ θ(vk))

= θ ◦ ψ(d(θ(x)⊗ θ(v1) ∧ . . . ∧ θ(vk)))

=
∑
i

(−1)ivr.θ ◦ ψ(θ(x)⊗ θ(v1) ∧ . . . ∧ θ(v̂i) ∧ . . . ∧ θ(vk))

−
∑
i

(−1)iθ ◦ ψ(θ(vr).θ(x)⊗ θ(v1) ∧ . . . ∧ θ(v̂i) ∧ . . . ∧ θ(vk))

=
∑
i

(−1)ivr.θ
∗(ψ)(x⊗ v1 ∧ . . . ∧ v̂i ∧ . . . ∧ vk)

−
∑
i

(−1)iθ∗(ψ)(vr.x⊗ v1 ∧ . . . ∧ v̂i ∧ . . . ∧ vk)

= (d∗ ◦ θ∗)(ψ)(x⊗ v1 ∧ . . . ∧ vk).

�

By Lemma 9.2.98, θ∗ induces an action, still denoted θ∗ on ExtiR(H)(X,X). We can then

define the θ-twisted Euler-Poincaré pairing EPθH as follows:

Definition 9.2.99. For Ho 〈θ〉-modules X and Y , define

EPθH(X,Y ) =
∑
i

(−1)itrace(θ∗ : ExtiR(H)(X,Y )→ ExtiR(H)(X,Y )).

Here, we also regard X and Y to be H-modules equipped with the θ-action.

We remark that this definition also makes sense for θ to be any automorphism of H.

However, when we prove Theorem 9.3.104 later, we use θ to arise from w0 in (1.1).

9.3 Relation between two twisted
elliptic pairings

In this section, we relate the twisted Euler-Poincaré pairing to the twisted elliptic pairing

of Weyl groups defined in [CH]. We first recall the definition of the twisted elliptic pairing

of Weyl groups.

Definition 9.3.100. [CH] For any W o 〈θ〉-representation U and U ′, the θ-twisted elliptic

pairing on U and U ′ is defined as:

〈U,U ′〉θ−ellip,V
W =

1

|W |
∑
w∈W

trU (wθ)trU ′(wθ)detV (1− wθ).
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Since w0θ = −IdV on V , it is equivalent that

〈U,U ′〉θ−ellip,V
W =

1

|W |
∑
w∈W

trU+−U−(ww0)trU ′+−U ′−(ww0)detV (1 + ww0),

where U+ and U− (resp. U ′+ and U ′−) are the +1 and −1-eigenspaces of w0θ of U (resp.

U ′), and U+ − U− and U ′+ − U ′− are regarded as virtual representations of W .

For some basic properties of 〈., .〉θ−ellip
W , one may refer to [CH, Section 5] (also see [Ch2,

Section 4]).

Definition 9.3.101. Let X be an Ho 〈θ〉-module. Define X± to be the ±1 eigenspaces of

the action of θtw0 on X, respectively. It is easy to see X± are invariant under the action

of tw for w ∈ W (see Lemma 9.3.102 below). We shall regard X± as W -representations or

Wo〈θ〉-representations. Moreover, since θtw0 is diagonalizable, we also have X = X+⊕X−.

Lemma 9.3.102. Let X be an Ho 〈θ〉-module. Then

(1) X+ and X− are W o 〈θ〉-invariant.

(2) Let X be an Ho 〈θ〉-module. For any v ∈ V , ṽ.X± ⊂ X∓.

Proof. (1) follows from θtw0tw = twtw0θ. (2) follows from w0θ(v) = −v and Lemma 5.3.44.

�

Lemma 9.3.103. For Ho 〈θ〉-modules X and Y , define

Hom+
i = HomC[W ](X

+ ⊗ ∧iV, Y +)⊕HomC[W ](X
− ⊗ ∧iV, Y −)

and

Hom−i = HomC[W ](X
+ ⊗ ∧iV, Y −)⊕HomC[W ](X

− ⊗ ∧iV, Y +).

The map d∗i sends Hom±i → Hom∓i+1. Moreover, θ∗ acts identically as (−1)i on Hom+
i and

acts identically as −(−1)i on Hom−i .

Proof. The first assertion follows from Lemma 9.3.102 and Proposition 5.3.45. For the

second assertion, we pick ψ ∈ Hom+
i . Suppose x ∈ X+ and v1, . . . , vi ∈ V . Then

θ∗(ψ)(x⊗ v1 ∧ . . . ∧ vi)

=θ.ψ(θ(x)⊗ θ(v1) ∧ . . . ∧ θ(vi))

=tw0θ.ψ((tw0θ.x)⊗ w0θ(v1) ∧ . . . ∧ w0θ(vi))

=(−1)itw0θ.ψ(x⊗ v1 ∧ . . . ∧ vi)

=(−1)iψ(x⊗ v1 ∧ . . . ∧ vi).
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The forth equality follows from w0θ(v) = −v, tw0θ.x = x, and the last equality follows from

imψ ∈ Y +. Other cases are similar.

�

With Hom±i defined in Lemma 9.3.103, we also define that

Exti(X,Y )+ =
ker(d∗i : Hom+

i → Hom−i )

im(d∗i : Hom−i → Hom+
i )
,

and similarly,

Exti(X,Y )− =
ker(d∗i : Hom−i → Hom+

i )

im(d∗i : Hom+
i → Hom−i )

.

Note that by the projective resolution in (2.1),

ExtiH(X,Y ) = Exti(X,Y )+ ⊕ Exti(X,Y )−. (3.2)

Theorem 9.3.104. For any finite-dimensional H o 〈θ〉-modules X and Y with θ defined

as in (1.1),

EPθH(X,Y ) = 〈ResWo〈θ〉X,ResWo〈θ〉 Y 〉
θ−ellip,V
W .

In particular, the θ-twisted elliptic pairing EPθH depends on the W -module structures of X

and Y only.

Proof. Set d∗,+i = d∗i |Hom+
i

and d∗,−i = d∗i |Hom−i
.

EPθH(X,Y )

=
∑
i

(−1)itrace(θ∗ : ExtiR(H)(X,Y )→ ExtiR(H)(X,Y ))

=
∑
i

(−1)i[(−1)i dim Exti(X,Y )+ − (−1)i dim Exti(X,Y )−] (by Lemma 9.3.103)

=
∑
i

(dim Exti(X,Y )+ − dim Exti(X,Y )−)

=
∑
i

[(dim ker d∗,+i − dim im d∗,−i−1)− (dim ker d∗,−i − dim im d∗,+i−1)]

=
∑
i

(dim ker d∗,+i + dim im d∗,+i−1))− (dim ker d∗,−i + dim im d∗,−i−1)

=
∑
i

(dim Hom+
i −dim Hom−i ) (definition of Hom± in Lemma 9.3.103)

=
1

|W |
∑
w∈W

trX+−X−(w)trY +−Y −(w)detV (1 + w) (as virtual representations)

=
1

|W |
∑
w∈W

trX(ww0θ)trY (ww0θ)detV (1− ww0θ)

= 〈ResWo〈θ〉(X),ResWo〈θ〉(Y )〉θ−ellip,V
W .
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The third last equality follows from the fact that
∑

i tr∧iV (w) = detV (1 + w) and w0θ =

−IdV .

�

Remark 9.3.105. We give an example to show that Theorem 9.3.104 is not true in general

if θ is replaced by an outer automorphism on W . Let R be of type A1 × A1. Let θ′ be

the Dynkin diagram automorphism interchanging two factors of A1. Let H be the graded

Hecke algebra of type A1 × A1. Note that 〈, 〉θ
′−ellip,V
W ≡ 0 as tr(wθ′) = 0 for all w ∈ W .

Here, W = S2 × S2 and V = C ⊕ C. However, we may choose an H-module X (e.g., the

exterior tensor product of Steinberg modules) such that EPθ
′

H(X,X) 6= 0.

We give an interpretation of θ-twisted Euler-Poincaré pairing with the Euler-Poincaré

pairing of Ho 〈θ〉-modules. Define

EPHo〈θ〉(X,Y ) =
∑
i

(−1)i dim ExtiR(Ho〈θ〉)(X,Y ).

Corollary 9.3.106. For any finite-dimensional Ho 〈θ〉-modules X and Y ,

dim ExtiR(Ho〈θ〉)(X,Y )

=
1

2
dim ExtiR(H)(X,Y ) +

1

2
trace(θ∗ : ExtiR(H)(X,Y )→ ExtiR(H)(X,Y )),

and

EPHo〈θ〉(X,Y ) =
1

2
EPH(X,Y ) + r

1

2
EPθH(X,Y ).

Proof. Note that

HomC[W ]o〈θ〉(ResWo〈θ〉X ⊗ ∧iV,ResWo〈θ〉Y ) ∼=
{

Hom+
i if i is even

Hom−i if i is odd
.

Then by using a Koszul type resolution as in (2.1), one could see that

ExtiHo〈θ〉(X,Y ) =

{
Ext+

i if i is even
Ext−i if i is odd

.

By Lemma 9.3.103, the latter expression above is equal to

1

2
dim ExtiH(X,Y ) +

1

2
trace(θ∗ : ExtiH(X,Y )→ ExtiH(X,Y )).

It follows from the proof of Proposition 9.1.97 that

ExtHo〈θ〉(X,Y )

=
1

2|W |
∑
w∈W

trX(w)trY (w)detV (1− w) +
1

2|W |
∑
w∈W

trX(wθ)trY (wθ)detV (1− wθ)

=
1

2
〈ResW (X),ResW (Y )〉ellip,V

W +
1

2
〈ResWo〈θ〉(X),ResWo〈θ〉(Y )〉θ−ellip,V

W .

Now the statement follows from Theorem 9.3.104 and Proposition 9.1.97.
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�

9.4 Applications

We give two applications of the Euler-Poincaré pairing in this section.

An element w ∈ W is said to be elliptic if detV (1− w) 6= 0. A conjugacy class of W is

said to be elliptic if any element in the conjugacy class is elliptic. The first application is

to give an upper bound of the number irreducible discrete series. The statement for affine

Hecke algebra is proven by Opdam-Solleveld in [OS1, Proposition 3.9] and is applied to

classify discrete series of affine Hecke algebras for arbitrary parameters.

Corollary 9.4.107. Let H be the graded affine Hecke algebra associated to a root datum

and an arbitrary parameter function. The number of irreducible H-discrete series are less

than or equal to the number of elliptic conjugacy classes of W . In particular, there are only

a finite number of nonisomorphic irreducible H-discrete series.

Proof. Let R(W ) be the virtual representation ring of W . Let R(W ) = R(W )/rad〈, 〉ellip
W .

Then by the definition of rad〈, 〉ellip
W , the dimension of R(W ) is the number of elliptic

conjugacy classes (see [Re, Section 2] for the detail). Let R(H) be the Grothendieck group

of the category of finite-dimensional H-modules.

On the other hand, the restriction map ResW defines an isometry from R(H) to R(W )

with respect to the paring EPH and 〈., .〉ellip
W , respectively. By Theorem 8.1.93, discrete

series form an orthonormal set for the pairing EPH. Hence, the number of discrete series is

less or equal to the number of elliptic conjugacy classes.

�

Example 9.4.108. For R of type An, there is only one elliptic conjugacy classes for W =

Sn+1. Hence, the Steinberg module is the only irreducible discrete series for H of type An.

The second application concerns the duals of discrete series. For real parameter func-

tions, it is even known that those discrete series are even ∗-unitary (by some analytic results

in affine Hecke algebras, see [So, Theorem 7.2]).

Corollary 9.4.109. Let H be the graded affine Hecke algebra associated to a root datum

and an arbitrary parameter function. Let X be an H-discrete series. Then

(1) X, X•, X∗ and θ(X) are isomorphic,

(2) Let Wγ be the central character of X. Then Wθ(γ) = Wγ.
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Proof. Since X and X∗ have the same W -module structure, by Proposition 9.1.97 we have

EPH(X,X∗) = EPH(X,X) = C.

The second equality follows from Theorem 8.1.93. Since X∗ is also a discrete series (Lemma

6.4.58), Theorem 8.1.93 forces X∗ ∼= X. The assertion for X• and θ(X) in (1) can be proven

similarly. For (2), the central character of θ(X) is Wθ(γ). Then (2) follows from X ∼= θ(X)

in (1).

�
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Birkhäuser/Springer, New York, 191-224.

[Me] R. Meyer, Homological algebra for Schwartz algebras of reductive p-adic groups,
Noncommutative geometry and number theory, Aspects of Mathematics E37
(2006), Vieweg Verlag, Wiesbaden, 263-300.

[Mo] L. Morris, Tamely ramified intertwining algebras, Invent. Math. 114 (1993), 233-
274.

[Na] M. Nazarov, Young’s symmetrizers for projective representations of the symmetric
group, Adv. Math. 127 (1997), no. 2, 190-257.

[Op] E. M. Opdam, Harmonic analysis for certain representations of graded Hecke
algebras, Acta. Math. 175 (1995), no. 1, 75-121.

[OS1] E. M. Opdam and M. Solleveld, Homological algebra for affine Hecke algebras,
Adv. in Math. 220 (2009), 1549-1601.

[OS2] E. M. Opdam and M. Solleveld, Discrete series characters for affine Hecke algebras
and their formal degrees, Acta Mathematica. 205 (2010), 105-187.

[OS3] E. M. Opdam and M. Solleveld, Extensions of tempered representations, Geometric
And Functional Analysis 23 (2013), 664-714.

[OS4] E. M. Opdam and M. Solleveld, Resolutions of tempered representations of reduc-
tive p-adic groups, J. Funct. Anal. 265 (2013), 108-134

[Or] S. Orlik, On extensions of generalized Steinberg representations, J. Algebra 293
(2005), no. 2, 611-630.



89

[Pr] D. Prasad, Ext-analogues of branching laws, preprint arXiv1306.2729v1

[Ro] A. Roche, The Bernstein decomposition and the Bernstein centre: Ottawa Lecture
on admissible representations of reductive p-adic groups, Fields Institute Mono-
graphs (2009), 3-45.
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