
FORMAL VERIFICATION OF DEVICE DRIVERS

IN EMBEDDED SYSTEMS

by

Jianjun Duan

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

December 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276266519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© Jianjun Duan 2013

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Jianjun Duan

has been approved by the following supervisory committee members:

John Regehr , Chair Jul 8th, 2013

Date Approved

Matthew Flatt , Member July 8th, 2013

Date Approved

Ganesh Gopalakrishnan , Member July 8th, 2013

Date Approved

Michael Norrish , Member July 15th, 2013

Date Approved

Konrad Slind , Member July 18th, 2013

Date Approved

and by Alan Davis , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

Embedded systems are often deployed in a variety of mission-critical fields, such

as car control systems, the artificial pace maker, and the Mars rover. There is usually

significant monetary value or human safety associated with such systems. It is thus

desirable to prove that they work as intended or at least do not behave in a harmful

way.

There has been considerable effort to prove the correctness of embedded systems.

However, most of this effort is based on the assumption that embedded systems do

not have any peripheral devices and interrupt handling. This is too idealistic because

embedded systems typically depend on some peripheral devices to provide their

functionality, and in most cases these peripheral devices interact with the processor

core through interrupts so that the system can support multiple devices in a real time

fashion.

My research, which focuses on constrained embedded systems, provides a frame-

work for verifying realistic device driver software at the machine code level. The

research has two parts.

In the first part of my research, I created an abstract device model that can be

plugged into an existing formal semantics for an instruction set architecture. Then I

instantiated the abstract model with a model for the serial port for a real embedded

processor, and plugged it into the ARM6 instruction set architecture (ISA) model

from the University of Cambridge, and verified full correctness of a polling-based

open source driver for the serial port.

In the second part, I expanded the abstract device model and the serial port

model to support interrupts, modified the latest ARMv7 model from the University

of Cambridge to be compatible with the abstract device model, and extended the

Hoare logic from the University of Cambridge to support hardware interrupt handling.

Using this extended tool chain, I verified full correctness of an interrupt-driven open

source driver for the serial port.

To the best of my knowledge, this is the first full correctness verification of an

interrupt-driven device driver. It is also the first time a device driver with inherent

timing constraints has been fully verified. Besides the proof of full correctness for

realistic serial port drivers, this research produced an abstract device model, a formal

specification of the circular buffer at assembly level, a formal specification for the

serial port, a formal ARM system-on-chip (SoC) model which can be extended by

plugging in device models, and the inference rules to reason about interrupt-driven

programs.

iv

For family and friends

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . ix

LIST OF TABLES . xi

ACKNOWLEDGMENTS . xii

CHAPTERS

1. INTRODUCTION . 1

1.1 Thesis Statement . 1
1.2 Challenges . 2

1.2.1 Low-Level Nature . 2
1.2.2 Parallelism and Concurrency . 2
1.2.3 Timing Properties . 3
1.2.4 Mechanical Proof . 3

1.3 Background . 4
1.3.1 Devices . 4
1.3.2 Operational Semantics . 4
1.3.3 Hoare Logic . 5
1.3.4 HOL . 6

1.4 Outline . 7
1.5 Notation . 7

2. DEVICE MODEL . 11

2.1 Overview . 11
2.1.1 System Model . 11
2.1.2 Assertion Formula . 12

2.2 Memory-Mapped I/O . 13
2.2.1 Abstract Device Model . 13
2.2.2 Device Pool . 14

2.3 Extended System Model . 14
2.3.1 Reason about Multiple Devices . 15

3. CORRECTNESS PROOF FOR POLLING-BASED SERIAL PORT
DRIVER . 22

3.1 Serial Port . 22
3.2 Serial Port Model . 23
3.3 High-Level View of the Serial Port Behavior . 25
3.4 Correctness of a Serial Port Driver . 25

3.4.1 Serial Port Model Soundness . 26

3.4.2 Memory Safety and Control Flow Integrity 26
3.4.3 Correctness of the Serial Port Driver . 27
3.4.4 Proof Method . 29

3.5 Summary . 30

4. ARM SOC MODEL . 39

4.1 Overview . 40
4.2 ARM Interrupt Handling . 41
4.3 Cambridge ARM Model . 42

4.3.1 ARM Core Model . 42
4.3.2 ARM Instruction Semantics . 43
4.3.3 Hoare Logic . 43

4.3.3.1 Stack Model . 44
4.3.3.2 Hiding as Weakening . 45

4.3.4 Automation . 45
4.4 Extended ARM SoC Model . 46

4.4.1 Device Model with Interrupts . 46
4.4.2 ARM SoC Model . 46
4.4.3 Atomic ARM Instruction Semantics . 47

4.4.3.1 Atomic ARM Machine . 47
4.4.3.2 Atomic Instruction Semantics for SoC 48

4.4.4 Single-Step Hoare Logic for ARM SoC . 49
4.4.4.1 Single-Step Hoare Logic . 49
4.4.4.2 Single-Step Hoare Logic for ARM SoC 50

4.5 Hoare Logic for ARM SoC Model . 50
4.5.1 Reintroduce Interrupts . 50
4.5.2 Inference Rules . 52

4.5.2.1 Integrate the Effect of the ISR . 52
4.5.2.2 Introduce High-Level Assertions . 52

4.5.3 Stack Model . 53
4.5.3.1 Automation of Stack Assertion . 54

5. CORRECTNESS PROOF FOR THE SERIAL PORT ISR 69

5.1 Serial Port Model with Interrupts . 69
5.1.1 Serial Port Interrupts Handling . 70

5.2 Serial Port ISR . 70
5.3 Circular Buffer Model . 72

5.3.1 Circular Buffer . 72
5.3.2 Formalization of Circular Buffer . 73

5.4 Correctness of the Serial Port ISR . 74
5.4.1 High-Level View of the ISR Behavior . 74
5.4.2 Timing Property . 74
5.4.3 tx Property . 76
5.4.4 rx Property . 76

5.4.4.1 String Abstraction . 76
5.4.4.2 rx Safety . 76

5.4.5 Hoare Triple for the Serial Port ISR . 77
5.5 Proof . 81

vii

5.5.1 Proof Approach . 82
5.5.1.1 High-Level Assertion Formula . 82
5.5.1.2 Intermediate Assertion . 83

5.5.2 Proof of the IRQ Loop . 84
5.5.2.1 Switch Table . 84
5.5.2.2 IRQ Loop . 84

6. CORRECTNESS PROOF FOR INTERRUPT-DRIVEN SERIAL
PORT DRIVER . 100

6.1 Serial Port Driver . 101
6.2 Assertion Formula for the ISR . 103

6.2.1 Interrupt Mode . 103
6.2.2 THRE-Atomic Mode . 104

6.3 Assertion Formula for uart0Putch . 104
6.3.1 Interrupt and Atomic Modes . 104
6.3.2 THRE-Atomic Mode . 104

6.4 Resource Conflicts and Assertion Weakening . 105
6.5 Effect of the ISR . 107

6.5.1 Interrupt Mode . 107
6.5.2 THRE-Atomic Mode . 107

6.6 Correctness of uart0Putch . 107
6.7 Proof Methods . 108

6.7.1 Assertion Propagation . 108
6.7.2 Inlining . 109
6.7.3 Conditional Execution . 109
6.7.4 Weakening and Live Variables . 109
6.7.5 Automation . 110

6.8 Benign Racing and Nonmonotonic Branch . 111

7. CONCLUSION . 127

8. FUTURE WORK . 128

8.1 Multiple Devices . 128
8.2 Initialization Code . 130

9. RELATED WORK . 131

9.1 Formal Semantics of ISAs . 131
9.2 Program Logic for Machine Languages . 132
9.3 Taming Concurrency in Interrupt-Driven Systems 134
9.4 Formal Methods on Interrupt-Driven Embedded Systems 135
9.5 Verification of Device Drivers . 135

9.5.1 Correctness of Device Drivers . 135
9.5.2 Property Checking for Device Drivers . 136
9.5.3 Device Driver Synthesis . 137

REFERENCES . 138

viii

LIST OF FIGURES

1.1 System with devices . 9

1.2 The flow of technical work . 10

2.1 Combination of devices . 17

2.2 Model for system with devices . 18

2.3 Parallel nature of next . 19

2.4 sys_pred definition used to reason about embedded systems with multi-
ple devices . 20

2.5 Plugging in a new device does not break the existing system 21

3.1 Formula used to assert the serial port state . 32

3.2 ARM assembly code for putch, getch and getchw 33

3.3 Safety property for the transmitting function in the serial port model . 34

3.4 Safety property for the receiving function in the serial port model 35

3.5 Correctness theorem for putch . 36

3.6 Correctness theorem for getch . 37

3.7 Correctness theorem for getchW . 38

4.1 Semantics of instruction STRB r2, [r3] in the Cambridge ARM model . . 55

4.2 Hoare triple for instruction STRB r2, [r3] in the Cambridge ARM model 56

4.3 Abstract model for devices with interrupts . 57

4.4 Memory read primitive for the ARM SoC model 58

4.5 Semantics for ARM_ENTER_IRQ . 59

4.6 Memory access scenario for instruction STRB r2, [r3] in the ARM SoC
model . 60

4.7 Device access scenario for instruction STRB r2, [r3] in the ARM SoC
model . 61

4.8 Semantics of instruction STRB r2, [r3] in the case of memory access in
the single-step Hoare logic . 62

4.9 Semantics of instruction STRB r2, [r3] in the case of device access in the
single-step Hoare logic . 63

4.10 One can derive the single-step semantics without interrupts pending
from the single-step atomic semantics for an ARM instruction 64

4.11 One can derive the single-step semantics with interrupts pending from
the single-step atomic semantics for an ARM instruction 65

4.12 Inference rule for integrating the invariant effect of an ISR 66

4.13 Inference rule for integrating the effect of an ISR 67

4.14 Inference rule for introduing high-level assertion formula 68

5.1 Handling of different interrupt sources in the serial port model 88

5.2 ARM assembly code for the serial port ISR . 89

5.3 CFG of the ISR. Oval shape indicates the entry or exit block. Round
rectangle shape indicates branches. 90

5.4 Circular buffer. The figure shows a circular buffer with size 16 at
different stages of operation. In A, a list of [a;b;c;d;e;f;g] is stored in
the buffer. In B, the buffer is empty. In C, the buffer is full, yet 1 slot
is not used. The arced arrow indicates the growth of array index. 91

5.5 circBuf definition . 92

5.6 Circular buffer properties . 93

5.7 aU definition . 94

5.8 Theorems showing accumulation of the minimum cushion time 95

5.9 Monotonicity of the cushion time . 96

5.10 Definitions of sample and ishifted . 97

5.11 Definition of lantency . 99

6.1 ARM assembly code for uart0Putch . 113

6.2 ARM assembly code for disableIRQ and restoreIRQ 114

6.3 Formula used to assert the ISR in interrupt mode 115

6.4 Formula used to assert the ISR in THRE-atomic mode 116

6.5 Formula used to assert uart0Putch in interrupt mode and atomic mode . 117

6.6 Formula used to assert uart0Putch in THRE-atomic mode 118

6.7 Abstraction of the assertion formula for the serial port ISR in different
modes . 121

6.8 Abstraction of the assertion formula for u0Putch in different modes . . . 122

6.9 Hoare triple for the ISR in interrupt mode . 123

6.10 Hoare triple for the ISR in THRE-atomic mode 124

6.11 Hoare triple for the working branch of uart0Putch 125

x

LIST OF TABLES

3.1 Serial port model coverage. R indicates read-only registers; W indicates
write-only. RW indicates no restriction on access. The first four columns
are from data in the LPC2129 manual. 31

5.1 Serial port model with interrupts. R indicates read-only registers; W
indicates write-only. RW indicates no restriction on access. The first
four columns are from data in the LPC2129 manual. 86

5.2 Serial port model interrupts coverage. The first two columns are adapted
from the LPC2129 manual. 87

5.3 Placeholders used in the Hoare triple for the ISR 98

6.1 High-level view of low-level system resources . 119

6.2 Resource conflicts between uart0Putch and the ISR 120

6.3 Placeholders used in the Hoare triple for uart0Putch 126

ACKNOWLEDGMENTS

First of all, I want to thank my advisor, Professor John Regehr. He guided me

into the area of applying formal methods on embedded systems, and helped me to

develop the dissertation topic. Without his guidance and support, this dissertation

would not be possible.

I am also very grateful to my former advisor, Dr. Konrad Slind. He taught me a

lot about the formal methods, especially the theorem prover HOL, which is the major

tool I used in my dissertation work.

I also thank my committee members: Professor Ganesh Gopalakrishnan, Professor

Matthew Flatt, and Dr. Michael Norrish. I learned a lot about formal methods,

functional programming and HOL from them. Discussion with them helps me expand

the horizon of my research.

I also had inspiring discussions about the ARM model inside HOL and research

ideas with Dr. Anthony Fox and Dr. Magnus Myreen from the University of Cam-

bridge. I thank them for their contribution to my research.

Fellow students and friends, Xiaofang Chen, Yang Chen, Guodong Li, Peng Li,

Xuejun Yang, Yu Yang and Lu Zhao, also helped me a lot in these years both in

academics and daily life. I thank them for their help.

I also thank Karen Feinauer and Ann Carlstrom. They handled all my paperwork

and helped me a lot on technical problems outside my research. It was great to have

them in the front office in these years.

CHAPTER 1

INTRODUCTION

Embedded systems are often deployed in fields where there is significant risk of

human safety or property. Thus it is desirable to guarantee that they work as intended

or at least do not behave harmfully. Some examples are car control systems, artificial

pace makers, and the Mars rover.

Generally speaking, formal verification can be used to provide rigorous guarantees.

However, the vast majority of verification work on embedded systems ignores devices

and device drivers. This is problematic because an embedded system is tailored

around a set of devices to perform a dedicated task.

The tailoring is done at both hardware and software levels. At the hardware level,

only necessary peripheral devices are built into the system without much flexibility

to expand. Some common peripheral devices include the serial port, analog-digital

converter (ADC), and timer. At the software level, the system can be viewed as little

more than necessary device drivers and a simple control loop. Device drivers are often

specialized.

In this dissertation I will address this deficiency in current research of formal

verification of embedded systems using a theorem prover. My goal is to prove the

correctness of realistic drivers on embedded systems with peripheral devices working

in interrupt mode. I will develop a framework. The effectiveness of the framework

will be demonstrated by some realistic examples.

1.1 Thesis Statement

Formal proof about functional correctness of realistic device drivers on embedded

systems with memory mapped devices working in interrupt mode can be done using

theorem proving tools.

2

Previous work in low-level machine models and machine-level program logic using

theorem proving tools provides a good foundation. My idea is to expand existing

machine models and program logic to support hardware devices and interrupts.

First, I introduce a device model which can be combined with an instruction set

architecture (ISA) model to verify device drivers. Then it is extended to support in-

terrupts. Finally, I add program logic support for reasoning software taking advantage

of interrupts.

It will be implemented in HOL [39] on top of the ARM ISA model [33, 60]. The

method is applied to verify functional correctness of an open source driver for the

serial port, which is used to receive and transmit data.

1.2 Challenges

There are substantial challenges for this dissertation work. To verify an interrupt-

driven system, it is better to work at the assembly1 level. This, however, exposes all

the low-level details. Parallelism associated with interrupts is complicated because of

side effects in device register access. Realistic drivers and ISRs often have inherent

timing constraints. Rigorous proof often comes at the cost of laborious effort.

1.2.1 Low-Level Nature

The programmability of a system at register level allows a wide range of flexibility

in software, which hinders the portability of some generic methodologies. One exam-

ple is the variety of interrupt handling schemes that can be implemented on the same

hardware platform. Another one is the optimizations of a program at assembly level.

Access of device registers has side effects. One has to have an accurate understand-

ing of them at the register level to reason about device drivers. Such side effects make

the concurrency between interrupt handlers and the main program more complicated

than the one between threads.

1.2.2 Parallelism and Concurrency

As shown in Figure 1.1, a device runs in parallel with the processor core. Its state

changes by itself (with possible input from the environment) or as the side effect of

1I use assembly and machine language interchangeably in verification context.

3

commands from the processor core. The interaction between them can be two-way.

The processor core sends a command to a device by reading from or writing to

some particular memory address which is mapped to a register on the device. The

devices can force the processor core to execute some code, called interrupt handlers, by

interrupting its normal execution of the main program through interrupts, which are

triggered by some hardware events. The device driver will package such interactions,

and provide a high-level application program interface (API).

Now, even for a system with a single thread, a device driver (execution of the

processor core) is a parallel entity to the devices that it manages, and the interrupt

handlers run concurrently with the main program. This makes testing not a convinc-

ing approach to provide trustworthy guarantees about the functionality and safety of

the system, because complete coverage is not possible.

1.2.3 Timing Properties

Often interesting properties of an embedded system are associated with time. For

example, it is often assumed that interrupts are handled in a timely manner. Only

then can the function of an interrupt service routine (ISR)2 be guaranteed. Another

example is that there are always restrictions on the speed of devices, such as data

throughput and the maximum frequency of interrupt requests.

In temporal logic [19, 24, 49, 73], time is modeled as one time line or a tree

structure with multiple possible future branches. Here, the notion of time describes

the rate at which an event can occur. Formalization of embedded systems needs to

account for it.

1.2.4 Mechanical Proof

The ideal guarantee I am after is a mathematical proof. However, given the

challenges, it is not plausible by a paper-and-pencil proof as done in an algorithm

class. A mechanical proof is necessary.

To verify nontrivial properties of a piece of realistic software on a realistic embed-

ded system, one needs to formalize the system with plenty of low-level details, reason

about concurrency abstractly at a high level, and automate as much as possible.

2I use ISR and interrupt handlers interchangeably in this dissertation.

4

A theorem prover is necessary for achieving these tasks, especially to ensure the

soundness of proofs.

1.3 Background

This dissertation work involves formalizing an abstract device model which can

used in verification of different devices and their drivers, the operational semantics of

ARM assembly language on a machine with devices, program logic support for high-

level proof, and formalization using HOL theorem prover. Here is a brief overview of

these subjects.

1.3.1 Devices

Formal semantics of a language are usually defined on an abstract machine. In

most cases, the state of the machine consists of memory and registers. However, in

practice, often extensions are made to languages so that the semantics are defined on

machines whose states include more than memory and registers.

One such extension is memory-mapped I/O. It introduces side effects to memory

access when the address is mapped to a device register. This means that to prove

properties about a program which accesses memory-mapped I/O, formal semantics

need be developed for the language on an abstract machine with devices. Side effects

need be addressed.

Such formal semantics should be built for assembly languages. Doing so means

compilers are not in the Trusted Computing Base (TCB) any more. There is plenty

of evidence suggesting that compilers cannot be trusted [101]. Assembly language

is still used in mission critical embedded systems for reasons such as performance

and resource constraints. Also, for device operations as well as interrupt handling,

high-level languages do not provide fine enough granularity in terms of temporal

resolution.

1.3.2 Operational Semantics

On the other hand, we can just use an operational semantics of a language to prove

the properties of a program, as pointed out by Moore [57]. In operational semantics,

the meaning of a program is seen as a sequence of transition on the state which the

5

program lives on. Such transition is described by a step function: st = step (st−1).

When the operational semantics of a programming language are formalized in an

interactive theorem prover, one can try to prove almost any goal conceivable about a

program. In most cases however, it is not efficient, since lots of work will be repeated

in a proof.

To improve the performance, a Hoare logic [31, 42] can be built on top of the

formal operational semantics. Program logic provides high-level inference rules. In

tricky situations when high-level inference rules fail, one can always attempt the proof

at the level of operation semantics.

1.3.3 Hoare Logic

When proving some property about a program, the program must be treated as

a mathematical object. Hoare logic provides a way to do so. A program is built from

statements following grammar rules. In Hoare logic, an axiom is used to describe the

precondition and postcondition of a statement in the form of {P} C {Q}. This is a

Hoare triple. Here, C is the statement, P is the precondition assertion, and Q is the

postcondition assertion. For each grammar rule, corresponding inference rules are

given.

The property of a program is also specified in terms of a Hoare triple. There are

two ways to prove the Hoare triple for a program. One is the top-down approach,

in which the Hoare triple for a program is broken down into subgoals about the

statements of the program using inference rules. This process is called verification

condition generation. Another is the bottom-up approach, in which inference rules

are used to compose the axioms of individual statements together to form the final

theorem about the program.

Using Hoare logic to prove properties about a realistic program in a realistic pro-

gramming language is not easy. One problem is efficiency. Burstall [15] realized that

for some data structures like list, the naive way of specifying memory properties would

not scale. Separation logic [80] is developed to address such issues. In separation logic

reasoning is done locally using the frame rule: {P} C {Q} ⇒ {P ∗ P
′} C {Q ∗ Q

′}.

Here, * is separation conjunction, x ∗ y means x and y hold on two separated sets

of resources. Further down the line concurrent separation logic [13] is developed to

6

reason about concurrency.

Another problem is how to support language features in terms of inference rules.

Most commonly used languages present their own unique challenges. For example,

a Hoare logic for C needs to address the flexible memory model, like in L4 verifi-

cation project [95]. For assembly languages, rather complex control flow has to be

supported [93].

1.3.4 HOL

HOL is an interactive theorem prover for higher order logic. It is built using

the LCF approach [40], which gives it soundness guarantee on the theorems proved

using it. A lot of work has been done to formalize the ARM ISA in HOL by Fox et

al. [33, 37] at the University of Cambridge. It is low level and faithful to the ARM

standard as demonstrated by the verification of the ARM6 microarchitecture.

The Hoare logic [60] built on top of it supports separation logic style reasoning. For

example, ARM instruction STRB r2, [r3] stores the least significant byte in register

r2 at the memory location pointed to by the pointer in register r3. The Hoare triple

for it is:

(aPC p ∗ aR 3 a ∗ aR 2 b ∗ aBYTE MEMORY df f ∗ cond(a ∈ df))

{ (p, 0xE5C32000) }

(aPC (p + 4) ∗ aR 3 a ∗ aR 2 b ∗ aBYTE MEMORY df ((a 7→ b↑832) f)).

It states this at the machine level: If the program counter holds value p (aPC p),

register 2 holds value b (aR 2 b), register 3 holds value a (aR 3 a), and instruction

0xE5C32000 (the binary encoding of STRB r2, [r3]) resides at the address p of the

memory (p, 0xE5C32000), and that a is a valid memory address (cond (a ∈ df)), then

after the execution of the processor the program counter will increase by 4, and the

memory (aBYTE MEMORY df f) will be updated such that the cell at address a now

holds value b. b ↑832 is the least significant byte of b. for an ARM assembly program,

if theorems like this for all its instructions are available, they can be composed to

form the specification of the program. My work is built upon this ARM ISA model.

I extended the ARM ISA model to support device access, and extended the Hoare

7

logic to support interrupt handling.

1.4 Outline

I present a progressive work in two parts in this dissertation. The flow of the

technical work including ideas and theorems is shown in Figure 1.2. An arrow from A

to B indicates the idea or theorems in A is expanded or applied in B. Chapters 2 and 3

form the first part, which is about verifying a polling based device driver. An abstract

device model for using with an ISA model is presented in Chapter 2, which forms

the foundation of my work. In Chapter 3, I present the serial port model without

supporting interrupts, and prove the functional correctness of a polling-based serial

port driver.

Chapters 4, 5 and 6 form the second part. In this part I present my approach to

verify interrupt-driven device drivers and demonstrate it by verifying an interrupt-

driven serial port driver. In Chapter 4, I overview ARM related research work done

at the University of Cambridge, and develop the semantics for the ARM SoC model,

as well as the support in program logic. The correctness proof for the ISR of the serial

port as a standalone program is presented in Chapter 5. In Chapter 6, I present the

correctness proof of an interrupt-driven serial port driver.

I summarize the work in Chapter 7. Future work is proposed in Chapter 8, and

related work is discussed in Chapter 9.

1.5 Notation

Here, I introduce some of the notations used in this dissertation.

1. Almost all the constant numbers are actually words of fixed width, except the

parameters I use to count time elapse.

2. I used different fonts to differentiate a variable and a function or keyword.

defined is a keyword. function is a function name. var is a variable.

3. Every variable is a free variable at the top level3 unless it is explicitly qualified.

4. Every theorem starts with̀. Small theorems are presented in equations, while

large ones are in figures.

3It is equivalent to a universally qualified variable in HOL as far as the meaning of theorems is
concerned.

8

5. Underlined terms such as placeholder are not ordinary variables. They are

placeholders for constant and complex formulas, and used to make formula and

theorems more readable.

6. For some processor registers and device registers, it is common to refer to the

individual bits of them. I use the capitalized bit name as subscript to denote a

bit in a register. For example, PSRI means the interrupt mask bit in a processor

status register (PSR), IERRLS denotes the receiving line status (RLS) bit in the

Interrupt Enable Register (IER) of the serial port.

7. Definition is indicated by ,.

Memory is modeled as a map from 32-bit word to byte (8-bit word). Little-

endianness is followed. Following symbols are used to denote some operations on

memory and words:

1. f ↗n
m addr means reading m bytes from addresses starting from addr first,

then concatenating them into a m × 8-bit word, and finally converting it to a

n-bit word by zero-extending it or discarding the extra more significant bits.

2.
←−−
addrn returns the set {addr, addr+1, · · · , addr+n−1}. It is used to return the

set of addresses starting from the given address in a multibyte memory access.

3. x↑nm converts a m-bit word x to a n-bit word by zero-extending it or discarding

the extra more significant bits.

4. +x denotes modular word addition with regard to x.

5. Subscript + in comparison operators such as ≤+ means unsigned operation.

9

processor
memory

arbitrator

device device device

memory

address/data

processor clock

device clock

interrupt
controller

Figure 1.1: System with devices

10

Chapter 2:
Memory-mapped device model,

composition of devices

Chapter 3:
Serial port model,

correctness proof for polling-based
serial port drivers

Chapter 4:
Extension to Cambridge ARM model:

device model with interrupts,
single step semantics,

stack model,
inference rules for interrupt handling

Chapter 5:
Correctness proof for the ISR of the serial port:

circular buffer model,
serial port model with interrupts,

termination, context switch,
interrupt handling,
timing constraints

Chapter 6:
Correctness proof for serial port driver putch:

function call convention,
execution modes,

enabling/disabling interrupt,
timing constraints,

high-level semantics,
nonmonontonic branches

Figure 1.2: The flow of technical work

CHAPTER 2

DEVICE MODEL

In this chapter I present an abstract device model which is to be used with an

ISA model. The target ISA model is the ARMv4 model [33] by Fox.

2.1 Overview

Fox’s ARM model includes banked registers including special purpose registers,

exceptions, coprocessors, and a data bus. A system model with no coprocessors and

no interrupt handling is built by extending the core model with memory through the

data bus. Its next-state operation is at the instruction level; it takes a system state

as the input and returns the next state as the result of current instruction execution.

There are tools to automatically prove theorems about the semantics of individual

concrete ARMv4 instructions.

2.1.1 System Model

An embedded system is modeled using this record:

<|next : state→ state; is_undefined : state→ bool|>. (2.1)

→ is used to represent function types. state is the type of the state of the system. next

is used to encode the transition of the system, which includes fetching and parsing an

instruction, fetching data, computing, updating registers, memory, and the state of

devices. The is_undefined predicate tests if a state is erroneous. The system enters an

erroneous state when the processor core encounters an exceptional condition1, when

the processor core accesses the memory addresses which are mapped to some device

that is not present in the system, or when a device-specific error is encountered, i.e.,

1I do not consider the handling of interrupts or processor exceptions here.

12

reading a device register that is in an indeterminate state or writing to a read-only

device register.

It is required that:

is_undefined s⇒ is_undefined (next s).

That is, an erroneous state is sticky and we are not concerned with the system’s

subsequent behavior. One of my goals will be to prove that device drivers cannot put

the system into an erroneous state.

A function step describes the effect of consecutive application of next:

step n s , if n = 0 then s else next (step (n− 1) s).

For step to describe a running system, memory values including both instructions and

data must be part of the system state. But that is not enough. For example, the

processor can use values obtained by a sensor device from the environment to change

the memory content. For cases like this, it is required that the state of the related

device contain input streams, which need to contain the information from the future.

2.1.2 Assertion Formula

I use the following construct to assert the properties of a state for the system:

sys_pred P I Q ,

∀ s. P s ∧ ¬is_undefined s⇒

∃ t. Q (step t s) ∧

∀ n. n ≤ t⇒ I (s, step n s) ∧ ¬sys_undefined (step n s). (2.2)

This is a shallow embedding of Hoare logic with P, I, and Q as the predicates of

precondition, global invariant, and postcondition with type state → bool. Note that

this is about complete correctness.

To use this construct to describe the properties of a program, the program must

be specified in terms of the current program counter and instruction memory. The

value of the program counter and the instruction memory should be specified as part

of P. I represent the program as a set of pairs of an instruction and its address. I use

13

code p s to indicate a program p is part of the memory in a system state s.

In most cases, the part of memory which holds the program should be left un-

changed at every moment. That should be part of I.

To prove a claim in the form of Equation 2.2, an instance of t needs to be found

first. Then induction on n is used. I use this method to prove the full correctness of

a serial port driver working in the polling mode.

2.2 Memory-Mapped I/O

Embedded systems mostly have peripheral devices built in. The mechanism is

memory-mapped I/O. Here, I introduce an abstract device model for memory-mapped

I/O. It is intended to work with an ISA model.

2.2.1 Abstract Device Model

A peripheral device runs in parallel with the processor core. Its state can change

with or without interacting with the core or with the external world. The core

interacts with devices using memory-mapped I/O: a collection of dedicated registers

that are mapped into the processor’s address space. From the perspective of the core,

these registers are accessed like memory locations, though of course device registers

do not in general contain the last value written to them, and both reads and writes

may have side effects.

Based on this observation, I design an abstract type to represent a generic memory-

mapped peripheral device:

<|mapped : addr→ bool;

mapped read : addr→ τ → word ∗ bool ∗ τ ;

mapped write : addr→ data→ τ → bool ∗ τ ;

transit : τ → τ ; wellform : τ → bool|>. (2.3)

Here, addr and word are types for memory addresses and data. τ is the type

for the state of the device, which varies depending on the individual device. ∗ is

used to construct a tuple. mapped describes if an address is mapped to this device.

mapped read and mapped write describe the effect of read and write commands from

the processor core. Possible side effect on the device states is captured by τ in

14

input and return types. The flag with bool type indicates if an error occurs during

the memory-mapped access of the device registers. transit describes the autonomous

transition of the device itself without the command from the processor core. wellform

tells if a state of the device is wellformed. I use τ dev to refer to the type of the device

as in Equation 2.3.

A concrete device such as a serial port is modeled as an instance of this abstract

model. τ is instantiated with a concrete type, and all the members are assigned

functions which model the concrete device.

2.2.2 Device Pool

Device models can be repeatedly combined as long as they fail to share mapped

registers (real devices have this property, generally). The operation is defined in

Figure 2.1. Here, FST and SND return the first and second member of a pair type,

respectively. With comb_dev I can construct and reason about an embedded system

with multiple devices modularly.

2.3 Extended System Model

An embedded SoC is a processor core plus a collection of peripherals. I start with

a processor core that is extended with a null device whose mapped function returns

false for all addresses. I can then build a realistic SoC as shown in Figure 2.2 by

adding more devices on top of this bare one, using the operations in Figure 2.1.

The state of a system with devices is modeled using this record:

<|regs : reg→ word; memory : addr→ word; dev_state : τ ; undefined : bool|>.

ext_state extends the system state s with a device state ps:

ext_state ps s , <|regs := s.regs; memory := s.memory;

dev_state := (ps, s.dev_state); undefined := s.undefined|>,

while base_state undoes it:

base_state s , <|regs := s.regs; psrs := s.psrs; memory := s.memory;

dev_state := SND s.dev_state; undefined := s.undefined|>.

15

Here, reg is the type of a register, regs represents the register store, which includes the

data registers and special purpose registers such the program counter and processor

status registers. I use r0 to indicate register 0, r14 to indicate register 14, etc. pc is

used to indicate the program counter. They are all of reg type. memory represents the

memory. dev_state represents the state of the devices. The system is in an erroneous

state when undefined is set.

Given a state s, is_undefined s , s.undefined. next in Equation 2.1 should im-

plement the execution of the processor core and transit for the device in parallel, as

shown in Figure 2.3. They are independent of each other except when the instruction

is a command to the device. In this scenario, the processor core commands the device

to run mapped read or mapped write and reads data from or writes data to the specific

device register. It may set undefined based on the results of these operations. At the

same time, when running mapped read or mapped write the device updates its state.

The device finally updates its state again with transit.

2.3.1 Reason about Multiple Devices

To support the modularity when reasoning about systems with multiple devices,

I refine the definition in Equation 2.1 and use

<|next : τ dev→ state→ state; is_undefined : state→ bool|>

to model an embedded system. Similarly, the new step is

step p n s , if n = 0 then s else next p (step p (n− 1) s).

The new sys_pred is defined in Figure 2.4.

The theorem in Figure 2.5 establishes that adding a new device does not break

a system that was previously working. If a system does not run into an erroneous

state in t steps running a program, it will not run into an erroneous state in t steps

running the same program with device p2 plugged in.

It is obvious that the program does not access the addresses mapped to p2 in these

t steps. Otherwise it would have run into an erroneous state. So there is no chance

for p2 to introduce errors to the program in these t steps. In other words, s and ps

16

are independent of each other in these t steps.

Also, if we can verify a property of a program in a system with only some set of

peripherals, the property still holds when more devices are added:

` (∀ a. ¬(p1.mapped a ∧ p2.mapped a))⇒

sys_pred p1 P I Q⇒

sys_pred (comb_dev p2 p1) (P o base_state)

(I o (λ (x, y).(base_state x, base_state y))) (Q o base_state). (2.4)

For any system with device p1, if sys predp 1P I Q holds on it, then it holds for

the system with one more device p2 added, considering only the state components

before the plugging in of device p2.

sys_pred p1 P I Q actually specifies a sequence of transitions of the system. Similar

to the theorem in Equation 2.4, in the new system, those components of the system

state before the plugging in of device p2 and state of device p2 are independent of

each other in the sequence. So the sequence specified by sys_pred p1 P I Q is still the

same.

17

comb_dev p1 p2 ,

<|mapped := λ a. p1.mapped a ∨ p2.mapped a;

mapped_read :=

λ a s. if p1.mapped a

then let read1 = p1.mapped_read a (FST s) in

(FST read1, (FST o SND) read1, (SND o SND) read1, SND s)

else if p2.mapped a

then let read2 = p2.mapped_read a (SND s) in

(FST read2, (FST o SND) read2,FST s, (SND o SND) read2)

else (ARB,T, s);

mapped_write :=

λ a d s. if p1.mapped a

then let write1 = p1.mapped_write a d (FST s) in

(FST write1, SND write1, SND s)

else if p2.mapped a

then let write2 = p2.mapped_write a d (SND s) in

(FST write2,FST s, SND write2)

else (T, s);

transit := λ s. let np1 = p1.transit (FST s) and np2 = p2.transit (SND s) in

(np1, np2);

wellform := λ s. p1.wellform (FST s) ∧ p2.wellform (SND s)|>

Figure 2.1: Combination of devices

18

processor
memory

map

device 1 device 2 device 3

memory

 address/data

data data

address/data

data address/data

address/data data

processor clock

device clock

Figure 2.2: Model for system with devices

19

processor state devices state

transit

read + transit

write + transit

instruction cycle

Figure 2.3: Parallel nature of next

20

sys_pred p P I Q ,

∀ s. P s ∧ ¬is_undefined s⇒
∃ t. Q (step p t s) ∧
∀ n. n ≤ t⇒ I (s, step p n s) ∧ ¬is_undefined (step p n s)

Figure 2.4: sys_pred definition used to reason about embedded systems with multiple
devices

21

` (∀ a. ¬(p1.mapped a ∧ p2.mapped a))⇒
∀ t. ¬is_undefined (step p1 t s)⇒
¬is_undefined (step (comb_dev p2 p1) t (ext_state ps s))

Figure 2.5: Plugging in a new device does not break the existing system

CHAPTER 3

CORRECTNESS PROOF FOR

POLLING-BASED

SERIAL PORT

DRIVER

In this chapter I demonstrate the approach introduced in Chapter 2 by presenting

the correctness proof for a polling-based serial port driver. First, I briefly introduce

the communication functions of the serial port. Next, I develop the formal model for

the serial port. Next, the assertion formula used to describe the high-level behavior of

the serial port is introduced. Then I present the correctness theorems for the polling-

based serial port driver, as well as the proof techniques. At the end I summarize the

first part of my work, which will be used in the second part.

3.1 Serial Port

A serial port, also known as universal asynchronous receiver/transmitter (UART),

is a serial communication device. It is very common in computer systems, especially

embedded systems.

The device has two basic communication functions: receiving and transmitting. It

uses a clock divider to control the rate of receiving and transmitting, which is called

baud rate. For the receiving function, when incoming data is received, it is assembled

and placed in a hardware receive buffer register (RBR) if there is room available.

Plus, the receive data available (RDA) bit in the line status register (LSR) is set to

signal that new data is received. This status bit is reset when data is read from RBR.

If the receive buffer is full at the moment of receiving, the buffer overrun error (OE)

bit is set in LSR.

For the transmitting function, there is also a hardware transmit holding register

(THR), which is used to hold data before it is transmitted out. When this buffer

23

has room available, the transmit holding register empty (THRE) bit in LSR is set to

signal the status. This status bit is reset when data is written into THR.

For RDA,OE or THRE, there is a corresponding interrupt, which will become

pending when the status bit is set and if it is enabled. This is interrupt-driven

operation. If interrupts are disabled, software must query LSR to check the status of

the serial port. This is polling-based operation.

3.2 Serial Port Model

I instantiate the abstract device as shown in Section 2.2.1 with a model for the

serial port UART0 from an NXP LPC2129 chip [72]. This is a popular embedded

processor based on the ARM7TDMI architecture. It targets industrial control appli-

cations. I call the model uart0.

My serial port model is conservative: while it does not model all behaviors of the

real device, it should be the case that any code that is verified against the model will

also work when running on the hardware. Table 3.1 summarizes the model’s coverage

of the serial port’s register set, where LCRDLAB stands for divisor latch access bit

which controls if registers DLL (divisor latch least significant byte) and DLM (divisor

latch most significant byte) are accessible. It is the 7th bit in the LCR (line control

register). My model omits modem functionality. Interrupts are not supported in

this part of work, and will be supported later. In my model, the internal hardware

receiving and transmitting buffers both have fixed size of 1. In LPC2129 the buffer

sizes are configurable. It does not model line errors or wire encoding since it is a

program model, and it is assumed that whole characters are transmitted. It does not

model the break function.

In my model, a register access can lead the system into undefined states in the

following scenarios:

1. When the register is not modeled. For example, access of the addresses reserved

for the modem function is undefined.

2. When a write-only register is read, or when a read-only register is written.

3. When a reserved bit is written.

4. When data corruption may occur. For example the receiving buffer register is

read when its value is indeterminate.

24

The state of such a serial port model is represented with a record:

<|RBR : bool[8]; THR : bool[8]; SCR : bool[8]; DLL : bool[8]; DLM : bool[8];

LCRDLAB : bool; LSRRDR : bool; LSROE : bool; LSRTHRE : bool; LSRTEMT : bool;

clock : num; in : num → bool[8] option; out : num → bool[8] option|>.

Here, byte is the type for 8-bit byte. num is the type for the natural number. Note

that registers LCR and LSR (line status register) are broken down into Boolean flags.

Access of FCR (FIFO control register) is modeled as side effect only. THR and out

form the output queue, and RBR and in form the input queue.

One important feature is that the speed of the serial port is parameterized relative

to the core speed. I am not modeling the exact baud rate, but in a similar fashion I

use the 16-bit word value from DLM and DLL as a clock divisor b unless its value is

zero, in which case b is set to be 1. For a serial port state ps, get divisor ps returns

b. The serial port only performs meaningful state transition every b cycles. To do so,

clock is incremented for each instruction cycle. It will be reset to zero when it reaches

b, at the moment the device transmits and receives data, updates its registers, and

shifts its input and output streams. At other moments when 0 < clock < b − 1, the

serial port only updates clock for book-keeping purposes. However, memory-mapped

accesses from the processor core can occur at any clock value. The effect of these

accesses are visible when a new cycle begins.

The incoming and outgoing data streams are modeled as functions in and out

from natural numbers to byte option. An option type has two constructors, THE and

NONE. THE x wraps x into the particular option type, while NONE indicates nothing

is wrapped, which is suitable to describe that at some moments the input or output

stream are idle with no characters transmitted. With every b cycles of instruction

execution, the two streams will shift. The new value for in is

λ t. in (t + 1),

and the new value for out is

λ t. if t = 0 then d else out (t− 1)

25

where d is the character just sent out.

3.3 High-Level View of the Serial Port Behavior

I describe the high-level behavior of the serial port device in terms of strings

extracted from the output queue and input queue. Only nonempty strings are

considered. The predicates are defined in Figure 3.1. Suppose hd, tl return the

first character and the tail of a string, respectively, and T stands for Boolean value

true. Serial port states which are not well-defined are excluded by the uart_wellform

function. An input stream can be shifted by cutStream. For the transmit function,

outString s os describes that s is the most recent string in the output stream os.

sentString s ps describes that s is the most recent string sent out by the processor in

the serial port state ps. For the receive function, inString s is describes that s is the

string in the input stream is. inputString s ps describes that s is the next string to be

received by the processor in the serial port state ps if no buffer overrun ever occurs.

shifted ps2 ps1 is a weak safety invariant for the receive function. It states that the

RBR and income stream in state ps2 resulted from ps1 after some cycles of operation.

inputStream str ps describes that str is the extended income stream of ps in which

RBR is appended at the head of the income stream if there is data in RBR.

For a serial port state ps, sentString srx ps associates its receive state with string

srx, and sentString stx ps associate its transmit state with string srx. Using strings, it

is intuitive to assert the behavior of the serial port driver. For example, srx does not

change if there is no buffer overrun over an autonomous transition of the serial port.

3.4 Correctness of a Serial Port Driver

I started with a freely available driver for the LPC2129’s UART0 that is imple-

mented in C, and compiled it to ARM assembly using GCC 4.1.1. I made one change

to the compiler’s output, which was to change the “bx” instruction that implements a

return-from-function to a “mov” instruction. I did this because “bx” is not modeled

in the ARM tool that does not support the THUMB mode. I proved full correctness

for three functions which interact with device registers: the putch function which

transmits a character by writing it to THR, the getch function which attempts to

read a character from RBR, and the getchwW function which performs a blocking

26

read from RBR. The code is shown in Figure 3.2.

3.4.1 Serial Port Model Soundness

The correctness claim is based on the correctness claims of other components. I

assume that the ARM model in HOL4 is correct (this ARM model has been used in

several projects, and an earlier version was verified against a specific instance of the

ARM hardware). Then I depend on the fact that the abstract device model attached

to the ARM model is sound as shown in Section 2.3. The soundness of the serial port

model is proved in the process. For example, I have proved the following properties

regarding the transmitting and receiving functions, among others:

1. No character will be appended to the output under any of the following condi-

tions:

(a) no memory-mapped read or write occurs,

(b) a read occurs,

(c) a write occurs but the THR register is not accessible or not written, and

the FCR register is not written (to reset the transmission queue).

In fact, the only way to append a character to the output is to write to the THR

register when thre set. The theorem is shown in Figure 3.3.

2. The input string is not changed under any following conditions:

(a) between two ticks of the serial port clock,

(b) the serial port clock ticks, but there is no incoming character on the wire

or the RBR is empty,

(c) a memory-mapped write occurs, and the FCR register is not written (to

reset the transmission queue),

(d) a memory-mapped read occurs, and RBR is not read.

The only way to read the head of the string is to read the RBR when it is not

empty. The theorem is shown in Figure 3.4.

3.4.2 Memory Safety and Control Flow Integrity

To prove the full correctness we need to prove memory safety and control flow

integrity of the driver code. These properties are a useful part of the safety specifi-

cation, and also are important for proof management. Memory safety requires that

27

only a given range of registers in the ARM core and memory is accessed. This implies

compliance to the calling convention. So it is useful when proving the callers of

the driver functions. It also implies the separation of instruction memory, which is

essential to prove control flow integrity.

Ideally, the addresses or registers accessed in an ARM instruction could be known

when it is decoded. Here, I use a different approach by examining the change of

content in the memory and registers:

sep_mem addrMap s1 s2 ,

∀ x. addrMap x⇒ (s2.memory (addr30 x) = s1.memory (addr30 x)),

sep_reg regMap s1 s2 , ∀ x. regMap x⇒ (s2.regs x = s1.regs x).

sep_mem accSet s1 s2 checks two system states s1 and s2 to see if any address not

in the set addrSet have the same content. sep_reg regSet s1 s2 does the same thing

for the registers across two states. Since the access which could cause side effects

is limited to access of memory-mapped device registers, which is already taken care

of, this approach serves our purpose well. However, these two predicates are rather

naive, an embedding of separation logic here would have be cleaner.

Control flow integrity specifies that only certain sequences of PC values can occur

in the execution. For example, when putch is busy waiting, it strictly follows the loop.

Control flow integrity is necessary to prove the loop invariant, or generally any data

flow, and thus helps us to sequentially compose the theorems about segments of the

execution together to prove the final theorem. In the final theorem I did not include

the stepwise specification of the control flow.

3.4.3 Correctness of the Serial Port Driver

I proved the full correctness theorems for three functions: putch, getch, and getchw.

putch first waits for thre being set. It will then copy the byte from register r0 to THR.

getch copies the byte from RBR to register r0 if LSRRDR is set. Otherwise it returns

0xff. getchw first waits for LSRRDR being set. It will then copy the byte from RBR to

register r0. Note that if getchw is used to receive a string, characters may be dropped

if the serial port is too fast.

28

The correctness property includes both liveness and safety properties. For all

three functions, the basic liveness property states that the function will return to its

caller. In addition, the basic safety property states that memory safety is observed,

the operating configuration of the serial port device is not changed in terms of its

speed (described by the slow-down factor) and the controlling bit LCRDLAB, and the

system do not run into any erroneous state. Functional correctness is proved for

putch, getch and getchw:

1. putch successfully appends the character from r0 to the string already sent

out in the output queue. The basic safety and liveness properties hold in the

process. The theorem is shown in Figure 3.5.

2. getch successfully reads a character from the input queue or return 0xff. The

basic safety and liveness properties hold in the process. The theorem is shown

in Figure 3.6.

3. If there is a string in the input queue, and the serial port is slow enough, the

function getchw will successfully read the next character from the input stream.

In the process, no overrun error occurs to the serial port, and the basic safety

and liveness properties hold. The theorem is shown in Figure 3.7.

The correctness of getchw depends on the speed of the serial port device relative

to the ARM core, and the latency caused by the driver code. The driver code must

be efficient enough and the serial port must be slow enough so that no buffer overrun

error can occur. My approach allows this constraint to be expressed, while the

previous work does not [2]. The authors discussed receiver buffer overrun issue from

a programmer’s point of view and suggested three approaches. One of them is to

do a worst case execution time (WCET) analysis of interrupt handler and the device

driver and derive the latency in the processing of received data. The latency can be

used to derive the maximum baud rate of the serial port.

However, the authors modeled the device like a thread concurrent to the processor,

and did not introduce a clock to their serial port model. As a result, timing related

properties such as buffer overrun cannot even be expressed in their model.

The tight timing properties in the theorem in Figure 3.7 will be helpful when

proving the string-level receiving function, which calls getchw repetitively. The string

29

can be retrieved completely without overrun, as long as the interval between the

consecutive return and entry of getchw is bounded by delay, which is bounded by the

difference between the clock divisor of the serial port and the latency introduced in

getchw, which is 9 instruction cycles. This guarantees that oe is not set when getchw

is entered the next time, thus the precondition of getchw is met.

3.4.4 Proof Method

All the theorems about the execution I proved are in the form of

sys_pred uart0P I Q. I use LSB to extract the least significant byte from a regis-

ter, which is 32 bits wide in the ARM model that I use. c::str appends a char-

acter c to the head of a string str. The modifiable register sets are defined in

putchReg = getchwReg = {r0, r1, r3, pc} for putch and getchw, and

getchReg = {r0, pc} for putch, respectively. Set lpcMapped indicates all the memory

addresses which are mapped to devices in a LPC2129 system-on-chip (SoC).

putch and getchw work in the polling mode by testing for certain conditions with

a busy-waiting loop. Termination of the loop depends on the state of the device,

and needs to be proved. One difficulty in proving loop termination is that the device

speed is parameterized.

The termination theorem is a sys pred predicate, which is defined in Equation (2.2).

In the proof, I provide the witness for the existentially qualified t, then use induction

on time n.

Use putch as an example: I break the execution sequence into three parts. With

each part I prove a correctness lemma in the form of sys_pred uart0P I Q. The control

flow and data flow assertions are encoded in I. The first part is the busy waiting until

thre is set in the serial port. The length of this waiting depends on the speed of the

serial port and the serial port state at the point of entry of putch. When thre is set,

the program counter could be at any instruction of the loop. The second part is the

break of the loop from the point where thre is set to the exit of the loop. The third

part is the sequential execution to copy the character to the register THR and return.

In classic cases when no devices are concerned, the first two parts are treated as one,

since it is at a static instruction point that the condition triggering the break of the

loop is met.

30

putch, getch and getchw are used to implement string-level transmitting and

receiving functions. Proving the correctness of these functions does not need to

work at the level of device details. Sophisticated program logic [29, 60, 61, 93] may

be needed to deal with scaling and more complicated control flow. The state of the

device can be trivially plugged into the proof based on the theorem in Equation 2.4.

The theorems I proved already imply the calling convention. It should not be difficult

to translate them into appropriate format and integrate them into high-level proof.

3.5 Summary

This concludes the first part of my work: the correctness proof of polling-based

serial port drivers, putch, getch and getchW. Even though the drivers proved here are

small in terms of code size, the proofs show the strength of my approach.

The abstract device model provides an interface to introduce realistic device

models to an ISA model. With it I obtained some general theorems about multiple

devices. These theorems are rather intuitive, and can be thought of as a sanity check

to the abstract device model.

The abstract device model facilitates automation. The automation scripts devel-

oped using it can be applied to any concrete device models as long as they instantiate

this abstract model. The reason is that the abstract device model is a type inside

HOL, and a concrete device model is an instance of this type. What is more,

combining multiple concrete device models results in a single device, which is still

only one instance of the abstract device model.

The clock divider allows timing properties to be expressed and reasoned about.

The insight is that devices are always slower than the processor. So the speed of

a device is modeled relative to the speed of the processor, and time is measured in

terms of processor instruction cycles. In this approach devices run in parallel to the

processor core. There is no interleaving between them.

31

Table 3.1: Serial port model coverage. R indicates read-only registers; W indicates
write-only. RW indicates no restriction on access. The first four columns are from
data in the LPC2129 manual.

Register Address
offset

Function Access When is
read un-
defined?

When is
write un-
defined?

Side-
effect of
read

Side-
effect of
write

RBR 0 Receiver
buffer
when
¬LCRDLAB

R No data
received

Never Reset
LSRRDR

None

THR 0 Transmit
holding
when
¬LCRDLAB

W Never No room
for trans-
mission

None Reset
LSRTHRE

DLL 0 Divisor
latch
LSB
when
LCRDLAB

RW Never Never None None

DLM 4 Divisor
latch
MSB
when
LCRDLAB

RW Never Never None None

FCR 8 FIFO
control

W Always Overwrite
reserved
bits or
disable
FIFOs

None Reset
transmis-
sion or
receiving
queue
and flags

LCR 12 Line con-
trol

RW Never Never None Assign
LCRDLAB

flag
LSR 20 Line sta-

tus
R Never Always Reset

LSROE

None

SCR 28 scratch
pad

RW Never Never None None

32

uart_wellform ps , (¬ps.LSRTEMT ∨ ps.LSRTHRE) ∧
(¬(ps.clock = 0) ∨ ps.LSRTHRE) ∧
ps.clock < get divisor ps

cutStream n s , λ x. s (n + x)

outString s os , ∃ n. (os n = SOME (hd s)) ∧ (∀ l. l < n⇒ (os l = NONE)) ∧
outString (tl s) (cutStream (n + 1) os)

sentString s ps , if ¬ps.thre

then (ps.THR = h) ∧ outString (tl s) ps.out

else outString s ps.out

inString s is , ∃ n. (is n = SOME h) ∧ (∀ l. l < n⇒ (is l = NONE)) ∧
inString (tl s) (cutStream (n + 1) is)

inputString s ps , if ps.rdr

then (ps.RBR = hd s) ∧ inString (tl s) ps.in

else inString s ps.in

shifted ps1 ps2 , ∃ n. (ps2.in = cutStream n ps1.in) ∧
(if ps2.rdr

then ps1.LSRRDR ∧ (ps2.RBR = ps1.RBR) ∨
∃ k. k < n ∧ (ps1.in k = SOME ps2.RBR)

else T)

inputStream str ps ,

if ps.rdr

then str = λ x.(if x = 0 then SOME ps.RBR else ps.in (x− 1))

else str = λ x.(if x = 0 then NONE else ps.in(x− 1))

Figure 3.1: Formula used to assert the serial port state

33

<Putch>: <Getch>: <GetchW>:
ldr r2, #0xe000c000 ldr r2, #0xe000c000 ldr r2, #0xe000c000
ldrb r3, [r2, #20] ldrb r3, [r2, #20] ldrb r3, [r2, #20]
tst r3, #32 tst r3, #1 tst r3, #1
beq <Putch> ldrneb r3, [r2] beq <GetchW>
and r0, r0, #255 mvn r0, #0 ldrb r0, [r2]
strb r0, [r2] andne r0, r3, #255 mov pc, lr
mov pc, lr mov pc, lr

Figure 3.2: ARM assembly code for putch, getch and getchw

34

` (∀ s ps. sentString s ps⇒ sentString s (uart0.transit ps)) ∧
(∀ s ps addr. sentString s ps⇒

sentString s (SND (SND (uart0.mapped_read addr ps)))) ∧
(∀ s d addr ps. (ps.LCRDLAB ∨ ¬(addr = 0xE000C000)) ∧

¬(addr = 0xE000C008) ∧ sentString s ps⇒
sentString s (SND (uart0.mapped_write addr d ps))) ∧

(∀ s c ps. ¬ps.LCRDLAB ∧ ps.thre ∧ (addr = 0xE000C000) ∧ sentString s ps⇒
sentString (c :: s) (SND (uart0.mapped_write addr (Byte c) ps)))

Figure 3.3: Safety property for the transmitting function in the serial port
model

35

` (∀ s ps. (ps.clock + 1 < get divisor s ∨ (ps.in 0 = NONE) ∨ ¬ps.LSRRDR) ∧
inputString s ps⇒
inputString s (uart0.transit ps)) ∧

(∀ ps addr. inputString s ps ∧ (¬(addr = 0xE000C000) ∨ ¬ps.LSRRDR ⇒
inputString s (SND (SND (uart0.mapped_read addr ps)))) ∧

(∀ s d addr ps. ¬(addr = 0xE000C008) ∧ inputString s ps⇒
inputString s (SND (uart0.mapped_write addr d ps))) ∧

(∀ ps h t. ¬ps.LCRDLAB ∧ inputString (h :: t) ps ∧ ps.LSRRDR ⇒
inputString t (SND (SND (uart0.mapped_read 0xE000C000 ps))) ∧
¬(SND (SND (uart0.mapped_read 0xE000C000 ps))).LSRRDR)

Figure 3.4: Safety property for the receiving function in the serial port model

36

` sys_pred uart0 (P_putch reAddr c str) I_putch (Q_putch reAddr c str)

where the precondition, invariant and postcondition are

P_putch reAddr c str s ,

code putch s ∧ (s.regs r14 = reAddr) ∧ (s.regs pc = 0x28c) ∧
uart0.wellform (s.dev_state) ∧ sentString str (s.dev_state) ∧
(LSB (s.regs r0) = c) ∧ ¬s.dev_state.LCRDLAB,

I_putch (s, ns) ,

sep_mem safePutchAddr s ns ∧ sep_reg safePutchReg s ns ∧
(get divisor ns.dev_state = get divisor s.dev_state) ∧
uart0.wellform ns.dev_state ∧ ¬ns.dev_state.LCRDLAB,

Q_putch reAddr c str ms ,

sentString (c :: str)ms.dev_state ∧ (ms.regs pc = reAddr)

Figure 3.5: Correctness theorem for putch

37

` sys_pred uart0 (P_getch reAddr strm) I_getch (Q_getch reAddr)

where the precondition, invariant and postcondition are

P_getch reAddr strm s ,

code putch s ∧ (s.regs pc = 0x314) ∧ (s.regs r14 = reAddr) ∧
uart0.wellform (s.dev_state) ∧ inputStream strm s.dev_state ∧
¬(s.dev_state).LCRDLAB,

I_getch (s, ns) ,

sep_mem safeGetchAddr s ns ∧ sep_reg safeGetchReg s ns ∧
(get divisor (ns.dev_state) = get divisor (s.dev_state)) ∧
uart0.wellform (ns.dev_state) ∧ ¬(ns.dev_state).LCRDLAB ∧
shifted ns.dev_states.dev_state,

Q_getch reAddr strm ms ,

((ms.regs r0 = 0xff) ∨ ∃ k. strm k = SOME (LSB (ms.regs r0))) ∧
(ms.regs pc = reAddr)

Figure 3.6: Correctness theorem for getch

38

` ¬(str = []) ∧ 9 + delay < div ⇒
sys_pred uart0 (P_getchw str div reAddr) (I_getchw div)

(Q_getchw delay str div reAddr)

where the precondition, invariant and postcondition are

P_getchw str div reAddr s ,

code getchw s ∧ (s.regs r14 = reAddr) ∧ (s.regs pc = 0x334) ∧
uart0.wellform (s.dev_state) ∧ (div = get divisor (s.dev_state)) ∧
inputString str (s.dev_state) ∧ ¬(s.dev_state).rdr ∧
¬(s.dev_state).oe ∧ ¬(s.dev_state).LCRDLAB,

I_getchw div (s, ns) ,

sep_mem safeGetchWAddr s ns ∧ sep_reg safeGetchWReg s ns ∧
(get divisor (ns.dev_state) = get divisor (s.dev_state)) ∧
uart0.wellform (ns.dev_state) ∧ ¬(ns.dev_state).oe ∧ ¬(ns.dev_state).LCRDLAB,

Q_getchw delay str div reAddr ms ,

(LSB (ms.regs r0) = HD str) ∧ inputString (TL str)(ms.dev_state) ∧
¬(ms.dev_state).LSRRDR ∧ (ms.dev_state).clock + delay + 1 < div ∧
(ms.regs pc = reAddr)

Figure 3.7: Correctness theorem for getchW

CHAPTER 4

ARM SOC MODEL

In this chapter I first explain the rationale behind my approach, then give a brief

overview of interrupt handling in ARM. Next, a monadic ARM ISA model and the

accompanying Hoare logic are introduced. Both of these pieces of research were done

at the University of Cambridge and implemented in HOL. Together I will call them

the Cambridge ARM model. At the end of this chapter I explain my extension to the

ARM model and the Hoare logic. The extension is necessary for proving correctness

of interrupt-driven device drivers.

The Cambridge ARM model and my extension can be viewed in three layers:

1. The bottom layer contains the logic model of the ARM core. Here, registers,

coprocessors and memory are defined as the elements in the system state.

Primitive operations such as memory access are defined on these elements.

2. The middle layer contains the ARM instruction semantics. At first the in-

struction execution is defined over the system state. Then the semantics are

presented as theorems. The theorems are automatically derived.

3. The top layer contains the Hoare logic. Here, the system state is represented

as a set. Some separation logic style operations such as separation conjunction

are defined using this set. The operational semantics theorems are lifted into

Hoare triples. The precondition and postcondition of these Hoare triples are in

the form of separation conjunctions. These Hoare triples are derived from the

theorems at the middle layer automatically.

The sections on the Cambridge ARM model and my extensions are structured

similarly so the difference can be easily seen. I use a running example in this

chapter to explain both the Cambridge ARM model and my extension: the semantics

of STRB r2, [r3] in svc mode. This instruction stores the byte in register r2 at

the memory location pointed to by the pointer in register r3. It is explained in

40

Section 1.3.4.

4.1 Overview

Interrupts cause concurrency issues. This concurrency is asymmetric in the sense

that the main program can be interrupted by interrupt service routines (ISRs), but

not vice versa. This means that we can verify ISRs without considering the effect

of the main program. To verify the main program, the effect of ISRs has to be

considered.

From the perspective of the main program, if an interrupt is not disabled, its ISR

can run at any program point. It may change some register values and contents at

some memory locations, and consumes time. The last one is especially important.

Interrupts are designed to give fast response, and low latency of interrupt handling

is often assumed by programs. For example, for the serial port in interrupt-driven

mode, if we do not want to lose some incoming data, the latency in handling the

serial port interrupts must be bounded.

Assume there is only one ISR used for handling interrupts requests. In a simple

scenario, the ISR does not access the resources such as registers or memory locations

of the main program. If we do not consider time here, the effect of the seemingly

random firing of interrupts to the execution of an instruction of the main program can

be described using invariants involving the registers and memory locations accessed

by the ISR. When no interrupt is pending, any invariant is certainly preserved per the

frame rule. When some interrupt becomes pending, the contract of the ISR constrains

what its invariant can be. So interrupt handling weakens the properties which can be

proved about the main program. Examining only the scenario when interrupts are

pending is all we need to specify the invariant.

Taking into account the effect of time complicates the analysis of the invariant. An

invariant involving time is not necessarily preserved even without interrupt handling.

We have to look at both cases, with or without interrupts pending to specify the

invariant.

If there are read/write or write/write conflicts among the resources accessed by

the ISR and the main program, the contracts of the ISR and the main program

instruction constrain what such an invariant can be.

41

I use a bottom-up approach in verifying an interrupt-driven device driver. The

building block is the Hoare triple describing the semantics for each instruction, with

the effects of ISR included. Then, I can use some known techniques [60] in the

program logic to prove properties about a program in terms of Hoare triples, even

though most of these techniques are designed to work with sequential programs.

4.2 ARM Interrupt Handling

When the interrupt mask is off in CPSR, as aS1 PSRI F in the assertion, the

processor can handle interrupt requests. The hardware will perform the following

standard tasks with an interrupt request:

1. The processor will complete the execution of the instruction which is in the

executing stage when the interrupt request occurs.

2. The processor switches to the IRQ (interrupt) mode. This is reflected in the

mode field of CPSR. It is aMD 18 in the assertion.

3. RegisterCPSR of the previous processor mode is saved to the SPSR in the IRQ

mode.

4. PC is saved to LR in the IRQ mode. Because of the pipeline, this address is the

address of the previously executing instruction plus 8.

5. Interrupts are disabled. This is reflected in the IRQ bit of the CPSR in the IRQ

mode. It is aS1 PSRI T in the assertion.

6. PC is set to a specific address to start the interrupt handling. This address

is the interrupt entry in the vector table. In my machine model, the vector

table is not used, and this address points to the first instruction of the interrupt

handler. Since only one device, serial port exists in the system, the interrupt

handler is the ISR.

Now ISR will handle the interrupt requests. In addition to doing work specific to

the interrupt requests, ISR needs to perform a context switch. There are common

idioms for doing this. The idioms are different depending on which interrupt handling

scheme is being used.

In this work I focused on the simple nonnested interrupt handling scheme, in

which interrupt is disabled until the ISR is finished. In this scheme, at its entry the

ISR needs to save context:

42

1. The nonbanked registers of the IRQ mode include R1 through R12. The subset

of them to be used need to be saved.

2. LR or LR− 4 needs to be saved. When the ISR is finished, PC needs to be set

to LR - 4 so that the previously interrupted task can continue.

After saving the context tasks specific to the interrupt request are performed.

Then the ISR returns, and restores the context including nonbanked registers and

CPSR. PC is set to the saved PC minus four.

4.3 Cambridge ARM Model

The Cambridge ARM model [1, 36, 37, 60] used in this part of research has much

more detail than the one [32, 33] used in the proof of the polling-based driver in

Chapter 3. For example, it is parameterized with different versions of the ARM ISA,

and models the exceptions of the ARM instruction cycle. It also comes with Hoare

logic to support reasoning about ARM assembly programs. The instruction semantics

theorems can be automatically derived at both the operational semantics level and

the Hoare logic level.

4.3.1 ARM Core Model

In the Cambridge ARM model, there is no device or memory-mapped device

access, as shown in the memory read/write definitions. The memory read primitive

is defined below:

read_mem ii (memaddrdesc, size) , if size /∈ { 1; 2; 4; 8 }

then errorT “read mem: size is not 1, 2, 4 or 8”

else (let address = memaddrdesc.paddress in

forT 0 (size− 1) (λ i. read_mem1 ii (address + n2w i))). (4.1)

Here, the memory read command checks the exception,1 and reads the bytes from

the memory. Note that read_mem,read_mem1, errorT, and forT are all monads.

1It is introduced by the way in which the model is constructed, not from the ARM ISA
specification. A valid ARM memory access instruction will not produce this exception

43

read_mem1 reads a single byte from the memory, errorT throws an exception, and

forT implements a loop iteration.

4.3.2 ARM Instruction Semantics

At the middle layer the next-state transition function ARM_NEXT is defined.

The semantics for an ARM instruction are presented as theorems, which describe the

semantics of valid execution of an instruction by stating what values are read from

which registers or memory locations, and which registers or memory locations are

updated with what values as well as the conditions which preclude exceptions. For a

conditional instruction, two theorems are provided to cover two branches.

ARM instruction STRB r2, [r3] stores the least significant byte from register 2

to the address stored in register 3. This instruction can execute in more than one

mode. The formal semantics of its execution in the svc mode in the Cambridge ARM

model are shown in Figure 4.1. Here, the conditions and the new system state are

expressed using the access functions. Functions with name of pattern ARM_READ_x s

read element x from the system state s. Similarly, functions with name of pattern

ARM_WRITE_x s update element x in the system state s and return the result. For

example, ARM_READ_REG 15 s returns the word from register 15 (PC). The version

of the ARM ISA is specified as v4t. ARM_NEXT is the next-state transition function

of the ARM core. NoInterrupt specifies that there is no interrupt. The address for the

instruction code is in PC. In this theorem and all the following ones, I omitted some

details, such as elements MEM_READ and MEM_WRITE that track what addresses

are accessed in the execution. This information is not used in my work. Some detailed

configuration information for the ARM core model is also omitted, including ARM

ISA version, default settings and reserved bits in the CPSR register.

4.3.3 Hoare Logic

At the top layer, the ARM instruction semantics theorems described in Sec-

tion 4.3.2 are lifted to Hoare triples in the program logic [60, 61]. To do so the

system state is translated into a set. This set is then presented as the separation

conjunction of the relevant elements from the system state. The separation between

these elements is guaranteed because each element corresponds to some distinct

44

hardware pieces on the processor, such as registers and memory. Now techniques

such as precondition strengthening, postcondition weakening, frame rule, sequential

composition, and branch combination can be used in proof. The readability of

program specifications is also improved.

In the Cambridge ARM model, the Hoare triple for STRB r2, [r3] is shown in

Figure 4.2. It is lifted from the theorem in Figure 4.1. Here, SPEC M P C Q

models the Hoare triple { P } C { Q } on machine M. The machine model M defines

the next-state transition function among other things. For machine ARM_MODEL,

ARM_NEXT NoInterrupt is the next-state transition function. The program is repre-

sented with the set of address-word pairs. ∗ is the separation conjunction operator

used to connect the separation predicate. cond lifts the Boolean predicate into a

separation logic assertion.

4.3.3.1 Stack Model

There is a stack model in the Cambridge ARM model. For every mode amd, the

stack is abstracted into a list xs. The stack is specified relative to the frame pointer

fp:

aSTACK amd fp xs ,

case amd of usr→ aR R11 fp ∗ aR SPusr (fp− (4 ∗ LENGTH xs))∗

SEP ARRAY aM (−4) fp xs ∗ cond (ALIGNED fp)

· · ·

where SEP ARRAY mm stride start array is an array abstraction from the Cambridge

ARM model. It specifies that list array resides in a memory block starting from start.

mm is the memory layout model. stride specifies the stride in addresses between

adjacent memory cells, and its sign indicates if the addresses increases or decreases

from the start position.

This stack model uses both the frame pointer register (R11) and the stack pointer

register (R13). This design choice brings up some issues. First, R13 is not always

reserved. For example, armcc only set it to the current stack frame pointer with

option –use frame pointer. Second, automation is made harder because the length of

45

the whole stack frame needs to be reasoned about.

4.3.3.2 Hiding as Weakening

For a given separation assertion, there are unlimited ways to weaken it. A special

weakening operation is defined in the Cambridge ARM model. It is called hiding:

¬p , λ s.∃ y.p y s.

In general, hiding weakens an assertion:

` (∀ x.p x) . ¬p.

Here, . is separation implication:2

p . q , ∀ s.p s⇒ q s.

For a Hoare triple, hiding the last parameter of the assertion in the postcondition

weakens it:

` SPEC x p c (q ∗ q′ y) ⇒ SPEC x p c (q ∗ ¬q′).

Hiding on the precondition only works when the parameter is universally qualified

to the assertion. In other words, the variable to be hidden must not appear in the

postcondition:

` (∀ y. SPEC x (p ∗ p′ y) c q) ⇐⇒ SPEC x (p ∗ ¬p′) c q.

I use hiding as the main technique in weakening a Hoare triple, because it is easy to

mechanize the process.

4.3.4 Automation

In the Cambridge ARM model there is an automation tool chain. It is used to

automatically derive theorems for most instructions at the middle layer, as well as

lift them into Hoare triples at the top layer. In the running example, theorems in

Figures 4.1 and 4.2 are automatically proved. I extended this tool chain to support

2It is not the same in separation logic.

46

device access, stack operation, and operations on the current program status register

(CPSR).

4.4 Extended ARM SoC Model

I extended the Cambridge ARM model to support the proof of programs with

interrupts. I also introduced the notion of time in the program properties. Time

is measured using the execution cycle of an ARM instruction. For simplicity, it

is assumed all instructions have the same execution time. In some devices, the

clock divider introduces a timer. Some interesting properties related to time can

be expressed using this timer.

4.4.1 Device Model with Interrupts

The abstract model for devices with interrupts is defined in Figure 4.3. It extends

the abstract device model in Section 2.2.1 with two elements. One is irqMap, which

is the set of interrupts belonging to the device. The other is irqReq, which returns

the active interrupt request from the device state.

4.4.2 ARM SoC Model

I extended the logic model of the ARM core into the logic model of an ARM SoC.

The system state is expanded to include the state of the device. The device model is

introduced into the system via three parameters:

1. Memory map, which tells if an address is mapped to devices or not.

2. The semantic model of the device, which describes the autonomous transition

cycle of the device and how the device execute the commands from the processor

core. The autonomous transition of the device and the possible side effects of

the device access is now part of the execution cycle of the system.

3. ISR map, which is used to locate the address of the ISR upon an interrupt

request.

I defined ARM_SOC_NEXT as the next-state transition function for the extended

ARM SoC machine. In one cycle the ARM processor core is updated just as in the

Cambridge ARM model, and the autonomous transition of the device is performed,

too. If at the beginning of the cycle an interrupt request occurs, it will be handled

47

after the execution of the current instruction. When the instruction is a load/store

instruction, it is directed to the main memory or the devices by checking the address

against the memory map. In the first case, the access is just like it is in the Cambridge

ARM model. In the second case, if the address and size are mapped to the device,

then the device is accessed, and the side effect of the device access on the device

state is written back to the device state. Otherwise an exception is thrown. The

memory read primitive for the ARM SoC model is defined in Figure 4.4. write_mem

is extended in a similar way.

4.4.3 Atomic ARM Instruction Semantics

For any instruction, the interrupt handling process is the same. Given that

deriving these theorems is time consuming, it would be better to isolate the interrupt

handling part from the execution cycle ARM_SOC_NEXT with interrupt requests,

derive its semantics once, and reuse it for all instructions.

4.4.3.1 Atomic ARM Machine

First, I defined the atomic next-state transition function ARM_ATOMIC_NEXT,

which does not handle interrupt requests. To derive the semantics theorem for an

instruction, we have to consider two cases, one without interrupt requests and the

other with interrupt requests. The execution cycle ARM_SOC_NEXT with interrupt

requests can be deconstructed into two parts:

` (uart0.irqReq (ARM_READ_PSTATE s) = SOME irpt) ∧ ¬ARM_READ_UNDEF s

∧ ¬ARM_READ_STATUS PSRI s ∧

(∃ s1.ARM_ATOMIC_NEXT lpcMemMap uart0 s = SOME s1)⇒

(ARM_SOC_NEXT lpcMemMap uart0 lpcIsrMap s =

ARM_ENTER_IRQ lpcIsrMap irpt

(THE (ARM_ATOMIC_NEXT lpcMemMap uart0 s))). (4.2)

The first part is the atomic execution ARM_ATOMIC_NEXT, similar to the case

without interrupt requests. The second part is the handling of the interrupt

ARM_ENTER_IRQ, which is the same for any instruction. It includes the context

48

switch and the entry to the ISR.

The semantics of entry to the ISR are described in the theorem in Figure 4.5.

When the interrupt irpt is taken, a context switch happens. CPSR is saved in SPSR

of the irq mode. Interrupt handling then is disabled by masking the irq bit in the

CPSR. isrMap irpt returns the entry address of the ISR for handling irpt. Note that

the entry point for the hardware interrupt handling is hard-coded as the start address

of the ISR since the interrupt vectoring is not considered here for simplicity.

4.4.3.2 Atomic Instruction Semantics for SoC

ARM processor has a feature called register banking. Basically, there are multiple

physical copies for some registers. For example, each mode has its own physical link

register. After a mode switch, link register is physically another one.

In the Cambridge ARM model, mode transition through modifying CPSR is not

supported except at the bottom layer. This design choice results in much cleaner

theorems. For example, the details of register banking in different modes are not

visible.

However, interrupt handling involves the processor mode switch. So I made

register banks across different modes explicit at the middle and top layers.

Since the device is introduced into the model, there are two theorems describing

the semantics for each load/store instruction. One is for the case when memory is

accessed. The other is for the case when the device is accessed.

In my extended model, there are two theorems, shown in Figure 4.6 and Figure 4.7,

for instruction STRB r2, [r3]. The theorem in Figure 4.6 describes the memory access.

Compared to the theorem in Equation 4.1 there are some changes. There are two new

parameters: addrMapped and dev. ¬addrMapped x means that x is not mapped to any

device. dev describes the behavior of the device. In the example, addresses in PC and

register 3 are assumed to be in the memory. dev.transit (ARM_READ_PSTATE s) is

the next device state as the result of the autonomous transition. After the execution

cycle, the device state is updated by ARM_WRITE_PSTATE. Register banking in dif-

ferent modes are exposed; Register access function has one extra parameter describing

the mode. In this example, ARM_READ_REG_MODE (15, 19) s reads register 15 in

mode 19 (supervisor, or svc mode).

49

The theorem in Figure 4.7 describes the device access. In contrast to the theorem

in Figure 4.6, it is assumed here that the address in register 3 is indeed mapped to the

device. Furthermore, it is assumed that the device access would not cause exceptions.

These two additional assumptions need to be proved in composition. In addition to

the autonomous transition, the side effect of the device access is also reflected in the

next device state.

4.4.4 Single-Step Hoare Logic for ARM SoC

Deconstructing the instruction cycle with interrupt requests into two parts calls

for a single-step Hoare logic for the ARM SoC model, because the execution of

the instruction must be finished before interrupt handling begins. In this section

I introduce a single-step Hoare logic for the ARM SoC model. It is used to bridge

the gap between the atomic ARM SoC model and interrupt-driven ARM SoC model.

4.4.4.1 Single-Step Hoare Logic

At the top layer, a single-step Hoare logic is needed to express the deconstruction

of the execution cycle with interrupt requests. STEP defines a single-step total-

correctness Hoare logic:

STEP (to_set, next, instr) p q ,

∀ s r.(p ∗ r) (to_set s)⇒ (∃ x.next s x) ∧ ∀ y.next s y⇒ (q ∗ r) (to_set y).

Here, (to_set, next, instr) defines a machine model. to_set translates the system state

of the machine to a set. next is the next-state transition function. instr is used to lift

instruction code from the memory.

After the instruction code is lifted, we have a Hoare triple definition INS_SPEC:

INS_SPEC (to_set, next, instr) p c q ,

STEP (to_set, next, instr) (CODE_POOL instr c ∗ p)

(CODE_POOL instr c ∗ q).

Here, CODE_POOL is syntactic sugar. The instruction code c is specified in the

same memory with data using separation conjunction. The single-step Hoare logic

50

INS_SPEC is a proper subset of the program logic SPEC:

` INS_SPEC m p c q⇒ SPEC m p c q. (4.3)

INS_SPEC supports most of the proof rules of SPEC except the sequential com-

position. Since INS_SPEC is used for deriving instruction semantics only, this is not

an issue for me.

4.4.4.2 Single-Step Hoare Logic for ARM SoC

Hoare triples for memory access and device access scenarios for instruction

STRB r2, [r3] are shown, respectively, in Figures 4.8 and 4.9. They are lifted from

the theorems in Figures 4.6 and 4.7.

Machine LPC_MODEL has ARM_ATOMIC_NEXT as the next-state transition func-

tion. So it ignores the interrupt requests. aBYTE_MEMORY df f specifies a byte-level

memory block. Its domain is df, and f maps an address to a byte. The assumption

that addresses in df are not mapped to devices is already built in the definition of

aBYTE_MEMORY df f.

4.5 Hoare Logic for ARM SoC Model

I have extended the Cambridge ARM model to an ARM SoC model. However, the

semantics do not support interrupt handling, and the Hoare logic does not support

sequential composition, which is the fundamental technique in Hoare logic. Actually,

the single-step atomic semantics of the ARM SoC model can be easily extended to

meet these two crucial requirements.

4.5.1 Reintroduce Interrupts

To introduce interrupts back to the semantics of the ARM instructions, I rely

on theorems in Figures 4.10 and 4.11. The theorems are in the form of htatomic ⇒

htirq. htatomic denotes the Hoare triple for the single-step atomic semantics of an

ARM instruction defined over machine LPC_MODEL with ARM_ATOMIC_NEXT as

the next-state transition function. This machine does not support interrupt handling.

htirq denotes the Hoare triple for the single-step semantics of an ARM instruction,

which is defined over machine LPC_IRQ_MODEL with ARM_SOC_NEXT as the next-

51

state transition function. This machine supports interrupt handling.

These two theorems are proved using the theorem in Equation 4.2. They are

used to rewrite the single-step semantics for an ARM instruction from the atomic

ARM SoC machine to the ARM SoC machine. The former is used when there are no

interrupt requests or the interrupt bit is masked, while the latter is used when there

are interrupt requests and the interrupt bit is not masked.

More specifically, the theorem in Figure 4.10 states that if the Hoare triple for the

single-step atomic semantics of an ARM instruction is known, the Hoare triple for the

single-step semantics without interrupts pending can be derived by strengthening the

precondition with the assertion that there are no interrupted pending. The theorem

in Figure 4.11 states that if the Hoare triple for the single-step atomic semantics of

an ARM instruction is known, the Hoare triple for the single-step semantics with

interrupts pending can be derived by adding the separation assertions reflecting the

context switch. aPSR ips x is used to describe the program status register (PSR) in

the interrupt mode. PSR is used to back up the CPSR in the previous mode m1 in

the context switch in interrupt handling.

The fields in CPSR such as the mode (aMD x), the status bits (aS1 PSRx), and

other fields (aCPSR) are explicitly specified in the precondition and postconditions

of the Hoare triples to accommodate MSR instruction, which is used to implement

a context switch by modifying CPSR. For other instructions, fields in CPSR should

be the same in the precondition and postcondition for a Hoare triple. In fact, these

fields of CPSR will not appear because of the frame rule.

The single-step atomic semantics of the ARM instructions are intended to be

expanded with the high-level, application specific properties, and to be combined with

the theorem describing the effect of the ISR later on in the context of the application. I

adapted the automation tool from the Cambridge ARM model to derive the theorems

of the single-step atomic semantics of the ARM instructions automatically.

Using the theorem in Equation 4.3 we can further extend the theorems into SPEC

assertions, which support sequential composition. With my approach, the extension

of the Cambridge model is efficient. Repetition in proof is reduced, and we can derive

the instruction semantics theorems with the effect of ISR included, from a relatively

52

small foundation.

4.5.2 Inference Rules

In this section I summarize some high-level inference rules to be used to facilitate

the proof. Application of these rules cannot always be automated.

4.5.2.1 Integrate the Effect of the ISR

When time is not considered, delay in the execution is not a concern. The effect of

the ISR can always be weakened to maintaining an invariant. The rule in Figure 4.12

describes how to integrate the effect of the ISR into an instruction semantics theorem.

Here, p1 and q1 are separation assertions over resource r1. p2, q2 and iv1 are separation

assertions over resource r2. iv2 is a separation assertion over resource r3. r1, r2, r3 are

separated.

iv2 is always maintained by the instruction. The extended semantics are obtained

by weakening q2 to iv1, adding invariant iv2 over r3 to the semantics of the instruction,

and the atomic machine LPC_MODEL is replaced with the interruptible machine

LPC_IRQ_MODEL.

With time considered, it gets more complicated, because it is not always possible

to weaken the Hoare triple of the ISR to maintaining an invariant. The rule in

Figure 4.13 describes how to integrate the effect of the ISR into an instruction

semantics theorem. Here, p1 and q1 are separation assertions over resource r1. p2, q2

and ip1 are separation assertions over resource r2. iv2 is a separation assertion over

resource r3. r1, r2, r3 are separated.

iv2 is always maintained by the instruction. The extended semantics are obtained

by weakening q2 and iq2 to iv1, adding invariant iv2 over r3 to the semantics of the

instruction, and the atomic machine LPC_MODEL is replaced with the interruptible

machine LPC_IRQ_MODEL.

Each rule is actually a combination of postcondition weakening, sequential com-

position, and branch combination.

4.5.2.2 Introduce High-Level Assertions

A high-level assertion is usually introduced by grouping the related separation

conjunctions first into a single assertion and then strengthening it with a predicate

53

via cond. The rule in Figure 4.14 does this. Suppose g is the predicate that needs to

be introduced via cond, and is defined over a group of elements in the system state.

These elements have value s1 in the precondition, and s2 in the postcondition. To

introduce cond (g x), the only proof obligation is to show g s1 ⇒ g s2.

4.5.3 Stack Model

With Hoare logic we can use high-level abstraction to specify properties. When

reasoning about an assembly program, stack abstraction is useful. For example,

stack manipulation is an important part of a context switch. Two specific ARM

instructions, push and pop, perform stack operations.

I designed a partial stack model using the stack pointer register (register 13 in

ARM mode). It specifies the used stack space and the reserved space for the stack

to grow. The composition function will automatically match this specification across

two instructions by adding more reserved space or revealing more stack if necessary.

The model is partial because the frame pointer specification is omitted for sim-

plicity. It can be added for a complete stack specification at the cost of increasing

complexity in automation. Soundness of the stack specification is not at risk since

frame rule can be used to augment the frame pointer specification.

The stack in the usr mode is defined below and is part of the aPSTACK definition:

aPSTACK amd sp stk resv ,

case amd of usr → aR SPusr sp ∗ SEP_ARRAY aM (−4)(sp− 4)resv ∗

SEP_ARRAY aM 4 sp stk ∗ cond (ALIGNED sp)

· · ·

When describing a safe stack operation, the length, rather than the content in the

reserved space is important. The following definition can be used:

aPPSTACK amd sp stk resvsize ,

(λ s.∃ y.(aPSTACK amd sp stk y ∗ cond (LENGTH y = resvsize))s)

where resvsize denotes the size of the reserved space. When it is used to assert

the precondition and postcondition of a clean context switch for a function call or

54

interrupt handling, it will take the shape of a nice invariant.

4.5.3.1 Automation of Stack Assertion

Stack assertion is automated in deriving the semantics for stack operation instruc-

tions and composing sequential instructions. In ARM architecture, the convention is

that the stack grows downwards. The stack pointer points to the top item on the

stack. This is used to identify the stack operations. Stack is introduced for individual

instructions abstractly. For push instructions, stack grows from empty to some length.

For pop instructions, the stack shrinks to empty. This makes the task easier.

The algorithm starts by looking for aR SPx sp assertions. Here, SPx indicates the

stack pointer for mode x. If no such assertions exist, the instruction is not a stack

operation. Otherwise, the stack pointer sp is extracted. The algorithm proceeds

by looking for assertions with pattern aM a y, which asserts that byte y is stored

at memory address a. If nothing is found, the instruction is not a stack operation.

Otherwise, the algorithm tries to find if the stack pointer is in the addresses in the

assertions found in the last step. If yes, this is a pop instruction; otherwise, it is a

push instruction.

Once the stack operation is identified, the lists for the stack or the reserved area

are built. The stack assertion is introduced using special forms of the definition when

either the stack or the reserved list is empty.

Stacks are matched in sequential composition. The first step is to match the stack

pointer. Then the length for the list for the stack or the reserved area is matched by

extending the short ones. In the last step, the variables are unified.

This automation is designed for push and pop only. For instruction with random

access on the stack based on the stack pointer, the stack assertion can not be

automatically introduced, but it can be done. For random stack access using the

stack frame pointer, the definition needs to be expanded with the frame pointer

register.

55

` (ARM_MODE s = 19) ∧
aligned (ARM_READ_REG 15 s, 4) ∧
(ARM_READ_MEM (ARM_READ_REG 15 s + 3) s = 229) ∧
(ARM_READ_MEM (ARM_READ_REG 15 s + 2) s = 195) ∧
(ARM_READ_MEM (ARM_READ_REG 15 s + 1) s = 32) ∧
(ARM_READ_MEM (ARM_READ_REG 15 s) s = 0)⇒
(ARM_NEXT NoInterrupt s =

SOME (CLEAR_EXCLUSIVE_BY_ADDRESS (ARM_READ_REG 3 s, 1)

(ARM_WRITE_MEM (ARM_READ_REG 3 s)

((ARM_READ_REG 2 s) ↑832)

(ARM_WRITE_REG 15 (ARM_READ_REG 15 s + 4) s))))

Figure 4.1: Semantics of instruction STRB r2, [r3] in the Cambridge ARM model

56

` SPEC ARM_MODEL

(aPC p ∗ aR 3 r3 ∗ aR 2 r2 ∗ aBYTE_MEMORY df f ∗ cond(r3 ∈ df))

{ (p, 0xE5C32000) }
(aPC (p + 4) ∗ aR 3 r3 ∗ aR 2 r2 ∗ aBYTE_MEMORY df ((r3 7→ r2 ↑832) f))

Figure 4.2: Hoare triple for instruction STRB r2, [r3] in the Cambridge ARM model

57

<|mapped : addr→ bool;

mapped read : addr→ τ → word ∗ bool ∗ τ ;

mapped write : addr→ data→ τ → bool ∗ τ ;

transit : τ → τ ;

irqMap : irq → bool;

irqReq : τ → irqoption;

wellform : τ → bool.|>

Figure 4.3: Abstract model for devices with interrupts

58

read_mem addrMapped dev ii (memaddrdesc, size) , ifsize /∈ { 1; 2; 4; 8 }
then errorT ”read mem: size is not 1, 2, 4 or 8”

else (let address = memaddrdesc.paddress in

if isMemAccess addrMapped address size

then forT 0 (size− 1)(λ i. read_mem1 ii (address + n2 i))

else if isDevAccess addrMapped address size ∧
(dev.addr_map address = size)

then read_io dev ii address

else errorT ”dev read: not defined”)

Figure 4.4: Memory read primitive for the ARM SoC model

59

` GOOD MODE (ARM MODE s)⇒
(ARM_ENTER_IRQ isrMap irpt s =

SOME (ARM_WRITE_IT 0 (ARM_WRITE_STATUS PSRA T

(ARM_WRITE_STATUS PSRI T (ARM_WRITE_MODE 18

(ARM_WRITE_SPSR_MODE 18 (ARM_READ_CPSR s)

(ARM_WRITE_REG_MODE (15, 16) (isrMap irpt)

(ARM_WRITE_REG_MODE (14, 18) s))))))))

Figure 4.5: Semantics for ARM_ENTER_IRQ

60

` (ARM_MODE s = 19) ∧ aligned (ARM_READ_REG_MODE (15, 19) s, 4) ∧
(ARM_READ_MEM (ARM_READ_REG_MODE (15, 19) s + 3) s = 22) ∧
(ARM_READ_MEM (ARM_READ_REG_MODE (15, 19) s + 2) s = 195) ∧
(ARM_READ_MEM (ARM_READ_REG_MODE (15, 19) s + 1) s = 32) ∧
(ARM_READ_MEM (ARM_READ_REG_MODE (15, 19) s) s = 0) ∧
¬addrMapped (ARM_READ_REG_MODE (3, 19) s) ∧
¬addrMapped (ARM_READ_REG_MODE (3, 19) s) ∧
¬addrMapped (ARM_READ_REG_MODE (15, 19) s) ∧
¬addrMapped (ARM_READ_REG_MODE (15, 19) s) ∧
¬addrMapped (ARM_READ_REG_MODE (15, 19) s + 1) ∧
¬addrMapped (ARM_READ_REG_MODE (15, 19) s + 2) ∧
¬addrMapped (ARM_READ_REG_MODE (15, 19) s + 3)⇒
(ARM_ATOMIC_NEXT addrMapped dev s =

SOME (CLEAR_EXCLUSIVE_BY_ADDRESS

(ARM_READ_REG_MODE (3, 19) s, 1)

(ARM_WRITE_PSTATE (dev.transit (ARM_READ_PSTATE s))

(ARM_WRITE_MEM (ARM_READ_REG_MODE (3, 19) s)

((ARM_READ_REG_MODE (2, 19) s) ↑832)

(ARM_WRITE_REG_MODE (15, 19)

(ARM_READ_REG_MODE (15, 19) s + 4) s)))))

Figure 4.6: Memory access scenario for instruction STRB r2, [r3] in the ARM SoC
model

61

` (ARM_MODE s = 19) ∧ aligned (ARM_READ_REG_MODE (15, 19) s, 4) ∧
(ARM_READ_MEM (ARM_READ_REG_MODE (15, 19) s + 3) s = 22) ∧
(ARM_READ_MEM (ARM_READ_REG_MODE (15, 19) s + 2) s = 195) ∧
(ARM_READ_MEM (ARM_READ_REG_MODE (15, 19) s + 1) s = 32) ∧
(ARM_READ_MEM (ARM_READ_REG_MODE (15, 19) s) s = 0) ∧
¬FST(dev.mapped_write (ARM_READ_REG_MODE (3, 19) s)

[(ARM_READ_REG_MODE (2, 19) s) ↑832]

(ARM_READ_PSTATE s)) ∧
addrMapped (ARM_READ_REG_MODE (3, 19) s) ∧
addrMapped (ARM_READ_REG_MODE (3, 19) s) ∧
(dev.addr_map(ARM_READ_REG_MODE (3, 19) s) = 1) ∧
¬addrMapped (ARM_READ_REG_MODE (15, 19) s) ∧
¬addrMapped (ARM_READ_REG_MODE (15, 19) s) ∧
¬addrMapped (ARM_READ_REG_MODE (15, 19) s + 1) ∧
¬addrMapped (ARM_READ_REG_MODE (15, 19) s + 2) ∧
¬addrMapped (ARM_READ_REG_MODE (15, 19) s + 3)⇒
(ARM_ATOMIC_NEXTaddrMapped dev s =

SOME (CLEAR_EXCLUSIVE_BY_ADDRESS

(ARM_READ_REG_MODE (3, 19) s, 1)

(ARM_WRITE_PSTATE

(dev.transit (SND (dev.mapped_write

(ARM_READ_REG_MODE (3, 19) s)

[(ARM_READ_REG_MODE (2, 19) s) ↑832]

(ARM_READ_PSTATE s))))

(ARM_WRITE_REG_MODE (15, 19)

(ARM_READ_REG_MODE (15, 19) s + 4) s))))

Figure 4.7: Device access scenario for instruction STRB r2, [r3] in the ARM SoC
model

62

` INS_SPEC LPC_MODEL

(aP ps ∗ aMD 19 ∗ aPC p ∗ aR R3 r3 ∗ aR R2 r2 ∗ aBYTE_MEMORY df f ∗
cond(¬lpcMemMap p ∧ ¬lpcMemMap (p + 1) ∧
¬lpcMemMap (p + 2) ∧ ¬lpcMemMap (p + 3) ∧ r3 ∈ df))

{ (p, 0xE5C32000) }
(aP (uart0.transit ps) ∗ aMD 19 ∗ aPC (p + 4) ∗ aR R3 r3 ∗ aR R2 r2 ∗
aBYTE_MEMORY df ((r3 7→ r2 ↑832) f))

Figure 4.8: Semantics of instruction STRB r2, [r3] in the case of memory access in
the single-step Hoare logic

63

` INS_SPEC LPC_MODEL

(aP ps ∗ aMD 19 ∗ aPC p ∗ aR R3 r3 ∗ aR R2 r2 ∗
cond(¬FST (uart0.mapped_write r3 [r2 ↑832] ps) ∧ lpcMemMap r3 ∧
(uart0.addr_map r3 = 1) ∧ ¬lpcMemMap p ∧ ¬lpcMemMap (p + 1) ∧
¬lpcMemMap (p + 2) ∧ ¬lpcMemMap (p + 3)))

{ (p, 0xE5C32000) }
(aP (uart0.transit (SND (uart0.mapped_write r3 [r2 ↑832] ps))) ∗ aMD 19 ∗
aPC (p + 4) ∗ aR R3 r3 ∗ aR R2 r2)

Figure 4.9: Semantics of instruction STRB r2, [r3] in the case of device access in the
single-step Hoare logic

64

` INS_SPEC LPC_MODEL

(p ∗ aPC pc1 ∗ aCPSR cpsr1 ∗ aS1 PSRN psrn1 ∗ aS1 PSRZ psrz1 ∗
aS1 PSRCpsrc1 ∗ aS1 PSRV psrv1 ∗ aS1 PSRQ psrq1 ∗
aS1 PSRA psra1 ∗ aS1 PSRI psri1 ∗ aP ps1 ∗ aMD m1)

c

(q ∗ aPC pc2 ∗ aCPSR cpsr2 ∗ aS1 PSRN psrn2 ∗ aS1 PSRZ psrz2 ∗
aS1 PSRC psrc2 ∗ aS1 PSRVpsrv2 ∗ aS1 PSRQ psrq2 ∗
aS1 PSRA psra2 ∗ aS1 PSRI psri2 ∗ aP ps2 ∗ aMD m2)

⇒
INS_SPEC LPC_IRQ_MODEL

(p ∗ aPC pc1 ∗ aCPSR cpsr1 ∗ aS1 PSRN psrn1 ∗ aS1 PSRZ psrz1 ∗
aS1 PSRC psrc1 ∗ aS1 PSRV psrv1 ∗ aS1 PSRQ psrq1 ∗
aS1 PSRA psra1 ∗ aS1 PSRI psri1 ∗ aP ps1 ∗ aMD m1 ∗
precond(psri1 ∨ (uart0.irqReq ps1 = NONE)))

c

(q ∗ aPC pc2 ∗ aCPSR cpsr2 ∗ aS1 PSRN psrn2 ∗ aS1 PSRZ psrz2 ∗
aS1 PSRC psrc2 ∗ aS1 PSRV psrv2 ∗ aS1 PSRQ psrq2 ∗
aS1 PSRA psra2 ∗ aS1 PSRI psri2 ∗ aP ps2 ∗ aMD m2)

Figure 4.10: One can derive the single-step semantics without interrupts pending
from the single-step atomic semantics for an ARM instruction

65

` INS_SPEC LPC_MODEL

(p ∗ aPC pc1 ∗ aCPSR cpsr1 ∗ aS1 PSRN psrn1 ∗ aS1 PSRZ psrz1 ∗
aS1 PSRC psrc1 ∗ aS1 PSRV psrv1 ∗ aS1 PSRQ psrq1 ∗
aS1 PSRA psra1 ∗ aS1 PSRIpsri1 ∗ aP ps1 ∗ aMD m1)

c

(q ∗ aPC pc2 ∗ aCPSR cpsr2 ∗ aS1 PSRN psrn2 ∗ aS1 PSRZ psrz2 ∗
aS1 PSRC psrc2 ∗ aS1 PSRV psrv2 ∗ aS1 PSRQpsrq2 ∗
aS1 PSRA psra2 ∗ aS1 PSRI psri2 ∗ aP ps2 ∗ aMD m2)

⇒
INS_SPEC LPC_IRQ_MODEL

(aPC pc1 ∗ aCPSR cpsr1 ∗ aR LRirq lrirq ∗ aPSR ips ipsr ∗
aS1 PSRN psrn1 ∗ aS1 PSRZ psrz1 ∗ aS1 PSRC psrc1 ∗
aS1 PSRV psrv1 ∗ aS1 PSRQ psrq1 ∗ aS1 PSRA psra1 ∗
aS1 PSRIpsri1 ∗ aP ps1 ∗ aMD m1 ∗
cond(lpcIsrMap(THE(uart0.irqReq ps1))&&3 = 0) ∗
precond (¬psri1 ∧ IS_SOME (uart0.irqReq ps1)) ∗ p)

c

(aPC (lpcIsrMap (THE (uart0.irqReq ps1))) ∗ aCPSR cpsr2 ∗
aR LRirq (pc2 + 4) ∗
aPSR ips <|N := psrn2; Z := psrz2; C := psrc2; V := psrv2; Q := psrq2;

IT := 0; J := F; Reserved := cpsr2.res; GE := cpsr2.ge;

E := F; A := psra2; I := psri2; F := T; T := F; M := m2|> ∗
aS1 PSRN psrn2 ∗ aS1 PSRZ psrz2 ∗ aS1 PSRC psrc2 ∗ aS1 PSRVpsrv2 ∗
aS1 PSRQ psrq2 ∗ aS1 PSRA T ∗ aS1 PSRI T ∗ aP ps2 ∗ aMD 18 ∗ q)

Figure 4.11: One can derive the single-step semantics with interrupts pending from
the single-step atomic semantics for an ARM instruction

66

INS_SPEC LPC_MODEL p1 ∗ p2 {ins} q1 ∗ q2

SPEC LPC_IRQ_MODEL iv1 ∗ iv2 isr iv1 ∗ iv2

q2 . iv1

SPEC LPC_IRQ_MODEL p1 ∗ p2 ∗ iv2 ({ins} ∪ isr) q1 ∗ iv1 ∗ iv2

Figure 4.12: Inference rule for integrating the invariant effect of an ISR

67

INS_SPEC LPC_MODEL p1 ∗ p2 {ins} q1 ∗ q2

SPEC LPC_IRQ_MODEL ip1 ∗ iv2 isr iq1 ∗ iv2

q2 . ip1 ∧ iq1 . iv1 ∧ q2 . iv1

SPEC LPC_IRQ_MODEL p1 ∗ p2 ∗ iv2 ({ins} ∪ isr) q1 ∗ iv1 ∗ iv2

Figure 4.13: Inference rule for integrating the effect of an ISR

68

SPEC m p1 ∗ (f s1) c q1 ∗ (f s2)

p = λ x.f x ∗ cond (g x)

gs1 ⇒ gs2

SPEC m p1 ∗ (p s1) c q1 ∗ (p s2)

Figure 4.14: Inference rule for introduing high-level assertion formula

CHAPTER 5

CORRECTNESS PROOF FOR THE

SERIAL PORT ISR

An ISR for a hardware interrupt is a special kind of program in the context of

verification. On one hand, as a standalone program, an ISR has its own specification

to be verified. On the other hand, an ISR is more than a standalone program. Most

of the time it is part of a device driver. Its cooperation with the main programs in

the driver needs to be verified too.

An ISR usually involves device access. This increases the complexity, as the

device state needs to be reasoned about. Usually, there are timing constraints on the

behavior of an ISR. The most fundamental one is termination under some conditions.

It is expected that an ISR always returns.

In this chapter, I present the correctness proof for the serial port ISR as a

standalone program. The result will be used in the correctness proof of the serial

port driver in Chapter 6. First, I introduce the extension to the serial port model in

Section 3.2. This extension is to supports interrupts. Next, I explain the control flow

of the serial port ISR. Then I introduce the formalization of the circular buffer used

in the serial port driver. Finally I explain the correctness specification for the serial

ISR and how the proof was achieved.

5.1 Serial Port Model with Interrupts

The serial port model in Section 3.2 is extended to support interrupts. Two

registers: IER (interrupt enable register) and IIR (interrupt identifier register) are

added, as shown in Table 5.1.

The UART0 in LPC2129 supports four interrupts. My model supported three of

them. The one missing is due to that RBR only has a buffer size of 1 in my model.

The wellformness is also extended to reflect that when an interrupt is requested, the

70

corresponding status bit is also set:

uart_wellform s ,

(¬s.LSRTEMT ∨ s.LSRTHRE) ∧ (s.clock 6= 0 ∨ s.LSRTHRE) ∧

s.clock < get_divisor s ∧ (s.IIRRDA ⇒ s.LSRRDR) ∧

(s.IIRTHRE ⇒ s.LSRTHRE) ∧ (s.IIRRLS ⇒ s.LSRoe).

The interrupts in the serial port has different priorities. The details are shown

in Table 5.2. An interrupt source can be enabled by setting the corresponding bit

in IER. This command can occur at any moment of the serial port cycle. If it is

at the beginning of the serial port cycle, the effect is immediate. That means firing

the corresponding interrupt in this cycle if the corresponding bit in LSR is already

set. Otherwise, the effect is delayed until the beginning of the next serial port cycle.

When a bit in IER is cleared, the pending interrupt is not cleared.

5.1.1 Serial Port Interrupts Handling

The theorems in Figure 5.1 show that the model handles the interrupt source

correctly. uart has irq x ps means interrupt x is raised. There may be more than one

interrupt raised by the serial port at the same time. Only the one with the highest

priority is visible to the processor.

(i) states that reading from RBR clears interrupt IRQRDA. (ii) states that reading

from LSR clears interrupt IRQRLS. (iii) states that writing into from THR clears

interrupt IRQTHRE. (iv) states that, reading from IIR when interrupt IRQTHRE is the

interrupt source, i.e., there are no other interrupts raised by the serial port, clears

IRQTHRE.

5.2 Serial Port ISR

The fundamental technique used in the proof is sequential composition. The first

step is to find all the basic blocks. The first instruction of a basic block is its only entry

point. Branches may only appear after the last instruction. Conditional execution

does not count as branches.

The ISR is shown in Figure 5.2, and its control flow graph (CFG) is shown in

71

Figure 5.3. Arcs are marked with the conditions. Each basic block is named using

the address of its first instruction.

Block 13c is the entry block. Here, registers R1 through R12, SPSR, and LR-4 are

saved on the stack. Addresses of global variables are loaded into the registers. These

variables include the parameters of the buffers as well as the tx flag.

Block 244 is the exit block; it restores the context. As a result, the processor

mode is restored to what was at the point of this interrupt request except PC. PC is

old PC minus 4.

From block 13c the control flow jumps to block 238. A loop forms between blocks

238 and 234. I call it the IRQ loop. The loop condition is that there are interrupts

pending from the serial port. It is checked in block 238. If the condition is not

satisfied, the loop breaks, and the control flow falls into the exit block 244. Otherwise,

the control flow jumps to block 184 to do the work.

The IRQ loop body between blocks 184 and block 234 is a switch table with four

entries. One for each of the three interrupt sources: IIRRLS, IIRRDA, and IIRTHRE, and

one to deal with other situations. In block 184 the interrupt sources are read from

register IIR. Depending on the values, the control flow dynamically jumps to different

entries of the switch table.

IIRRLS has the highest priority. It is handled in block 1c4. The interrupt is cleared

by reading register LSR. The control flow then falls through block 230 and 234 to

exit the switch table.

IIRRDA has the second highest priority. It is handled in a loop between block 1d0

and 1cc. I call it the RDA loop. The loop condition is that the LSRRDR bit is set in

register LSR. This indicates whether there are any new characters at register RBR.

In block 1d0, a new character in register RBR is copied into the slot following the back

position of the rx buffer, and the back is increased by 1 if the buffer is not already

full. At the end of this block register LSR is read to check the loop condition. If it

is satisfied, the control flow jumps to block 1cc, where the back of the rx buffer is

increased by 1. It then jumps to block 1d0 and the RDA loop starts over. If not, the

loop breaks, and the control flow falls through and jumps to block 234 to exit the

switch table.

72

IIRTHRE has the lowest priority and is handled using a loop between block 218

and 208. I call it the THRE loop. The loop condition is that the LSRTHRE bit is set

in register LSR, which indicates that register THR is empty. It is checked in block

218. If the condition is satisfied, the control flow jumps to block 1f8 to do the work.

Otherwise, it falls through block 224, block 230 and 234 to break the THRE loop and

exit the switch table.

In block 1f8, whether the tx buffer is empty is checked . If the buffer is empty, the

control flow jumps to block 234 to break the THRE loop and exit the switch table.

Otherwise, the control flow falls through to block 208, where the first character in

the tx buffer is copied to register THR, and the front of the buffer is updated. At this

step the sending of this character is considered done. The control flow jumps back to

block 218 and the THRE loop starts over again.

Blocks 194, 1f4 and 224 each have only one jump instruction. Block 234 is shared

in all the cases. For the RDA loop, it updates the back of the rx buffer. For other

cases, it reverts the effect of block 230 or some other instruction in block 1f4. The

trick is that blocks 230 and 234 both have only one register move instruction and

each reverts the other’s effect.

5.3 Circular Buffer Model

A circular buffer is commonly used as a streaming buffer. It implements a queue

on top of an array. There is more than one implementation. In this section I present

a formalization of circular buffer used in the serial port driver at the assembly level.

5.3.1 Circular Buffer

The rx and tx buffers in the serial port driver are circular buffers. Figure 5.4 shows

what such a circular buffer looks like.

In this implementation, it has four parameters:

1. start, which is the start address of the array.

2. size, which is the size of the array.

3. front, which is the array index to the position to dequeue.

4. back, which is the array index to the position to enqueue.

Front and back are relative to start.

73

There are four operations for a circular buffer:

1. Dequeue, which is to read the element from the front of the buffer and increase

front by 1 modulo size.

2. Enqueue, which is to write an element to the back of the buffer and increase

back by 1 modulo size.

3. Check whether the buffer is empty. In this implementation, a circular buffer is

empty if and only if its front and back are equal.

4. Check whether the buffer is full. They are increased by 1 modulo size in enqueue

and dequeue. In this implementation, a circular buffer is full if back plus 1

modulo size equals to front. This implies that the capacity of the buffer is 1 less

than size, and size should be larger than 1 for the buffer to have any storage

room.

5.3.2 Formalization of Circular Buffer

I formalized the circular buffer in Section 5.3.1 as a predicate over a memory region

and some parameters in HOL. The memory address and array index are all in 32-bit

words. The slot size is 1 byte. It is required that the size of the array is larger than 1.

The definition is shown in Figure 5.5. Because parameters start, size, front, and back

can be in memory or in register, they are specified as values, not as address-value

pairs in the memory. The underlining array resides in domain df. f maps a byte value

to an address. circBuf abstracts the buffer as a list str. The abstraction is recursively

defined using dequeue.

The available space in the circular buffer is:

circ space size front back ,

if front ≤+ back then size− (back− front)− 1 else front− back− 1).

I proved the theorems in Figure 5.6 to describe the operations on the circular

buffer at the ARM assembly level. They will be useful in automation later on. (i)

maps the position in the list to the array index. (ii) states that the length of the list

can be calculated from size, front, and back parameters. (iii) states that the buffer is

empty when front = back. (iv) states that the length of the list is bounded by the

74

capacity of the buffer. (v) states that the buffer is full when (back+size 1) = front. (vi)

states that dequeue takes the head off the list. (vii) states that enqueue appends a

character at the tail of the list. Enqueue is not an atomic operation at machine level.

Theorems (viii) and (ix) describe the intermediate steps in enqueue. (viii) states that,

when a character is written at the back position of the queue, but back itself is not

updated, the list remains the same. (ix) states that, when back is increased by 1

modulo size, the byte at the original back position is appended to the list.

5.4 Correctness of the Serial Port ISR

I use a high-level formula to assert the behavior of the ISR. By high-level I

mean using the data structures usually seen in programs in high-level programming

languages. In Chapter 3 the polling-based driver was asserted in a similar way.

However, back then the high-level assertion formula was mainly used to describe

the serial port state. Here, I will reuse the formulas in Chapter 3, and augment them

with the circular buffer models to address the high-level data structure in the driver

itself.

5.4.1 High-Level View of the ISR Behavior

I use a high-level construct aU to specify the serial port ISR behavior. It groups

together the involved resources: the serial port state, the rx buffer, and the tx buffer,

as well as the constraint on these resources. Doing this helps automation, because

parsing of the theorems is easier now. It also helps readability.

aU is defined in Figure 5.7. Different parts are individually grouped and labeled

for convenience. Of those (i) defines the resources involved: memory regions for the

buffers and the serial port state. All other parts are constraints on the resources.

In (ii), some elements of the device state are lifted out to make weakening process

easier. The wellformness requirement for the device state is defined in (iii). Timing

property is defined in (iv). The properties of tx and rx are defined in (v) and (vi) .

5.4.2 Timing Property

Termination needs be proved for any ISR. In this case, I need to prove that the

IRQ loop terminates. In turn, the termination of the THRE loop and the RDA loop

75

needs be proved.

Intuitively, if the serial port receives data at too fast a rate, the RDA loop and

IRQ loop may not terminate (the termination of the THRE loop does not depend

on the device speed because the tx buffer will be emptied and IIRTHRE will not be

set again unless THR is filled again), because new interrupts will always appear in

IIR during the loop. The termination could be proved under the condition that the

device is so slow that the IRQ loop can be finished inside 1 clock cycle of the serial

port.

The brute force approach, like what I did before, can be used here. However, due

to the complex code structure, it will take too much effort. Every execution point

needs to be examined because the autonomous transition may occur at any moment.

The alternate approach is to introduce a strong assumption about the timing when

an interrupt becomes pending. It is assumed here that no autonomous transition

occurs inside the execution of the ISR. At first this assumption may appear as too

strong, but it is quite reasonable. Put another way, this assumption bounds the

latency in handling the interrupt requests. (iv) means there are at least cushionmin +

cushion CPU cycles before the next autonomous transition.

Even though cushion and cushionmin have the same mathematical meaning, in

practice, they serve different functions. cushionmin is used to indicate the minimum

cushion of time before the next autonomous transition, and appears as a constant.

cushion is a free variable which can be instantiated in sequential composition and

branch combination. Constant offset can be added to cushion in both precondition

and postcondition based on the following theorems in Figure 5.8.

I use aU to assert the precondition and postcondition of program segments of the

ISR. cushion in the precondition is always larger than the one in the postcondition.

The difference indicates the upper bound of the execution path of the program. For

the whole ISR, this difference is equal to the longest path1 of the ISR.

The timing constraint has monotonicity, as shown in Figure 5.9. The monotonicity

is helpful in sequential composition and branch combination. In sequential compo-

sition, it can be used to weaken the postcondition or strengthen the precondition of

1It is actually worst-case execution time(WCET).

76

the Hoare triples. If, for different branches, the path lengths are not equal, the larger

value is chosen for the assertion of the combined program.

In addition to making the proof manageable, a timing constraint is needed to

prove the ISR behavior in which no incoming data is dropped due to the latency in

the serial port interrupt handling, because no new data arrives in the execution of

the ISR.

5.4.3 tx Property

In (v) the tx state is specified using strtxout and strtxbuf . strtxout is the string

abstraction of register THR (when LSRTHRE is not set) and the outgoing stream in

the serial port device, as formalized using sentString, while strtxbuf is the string in

the tx buffer, as formalized using circBuf. Safety in tx means that the string sent out

must come from the tx buffer. It is guaranteed by strtx being an invariant. So no

additional assertion is necessary.

5.4.4 rx Property

rx property is described at (vi). It has two parts. One is the abstraction of strings

from the rx pipeline and buffer. The other is the safety property of the rx function.

5.4.4.1 String Abstraction

Two strings are abstracted from the rx part of the system state. One is strrxin,

which is the string from RBR (if LSRRDR is set) and the incoming stream. This is

formalized in the inputString predicate at (vi). The other is strrxbuf , which is the string

in the rx buffer. This is formalized in the circBuf predicate at (vi).

If no incoming characters are dropped, strrx should be an invariant. If LSRRDR is

set, strrxin includes the character in RBR, so it must not be NULL.

5.4.4.2 rx Safety

rx safety means that no characters are inserted to the rx buffer from outside the

income stream. To formulate this notion in a Hoare triple, I define a predicate which

asserts that the string in the rx buffer comes from the rx buffer and the device state

at some previous moment. The rx buffer safety is established for a program segment

77

when the rx buffers in the precondition and postcondition come from the rx buffer

and the device state at the same previous moment.

Assume there is a reference time point2 t0 when LSRRDR is not set. At any moment

after t0, strrxbuf can be split into two parts so that the first part equals to strrxbuf0,

the string in the buffer at t0. The second part and the character in RBR (if LSRRDR is

set) should be sampled from the income stream strmrx0 at t0. This sampling notion is

defined in sample in Figure 5.10. Here, strbuf is the second part of a string stored in

a buffer. Possible dropping of characters are accounted for by allowing n to be larger

than 0 in the recursion. The rx safety property is defined in ishifted in Figure 5.10.

5.4.5 Hoare Triple for the Serial Port ISR

The Hoare triple for the ISR is shown below:

` SPEC LPC_IRQ_MODEL

(aPC 316 ∗ aPSR ips ipsr ∗ aR LRirq lrirq ∗ (5.4i)

aMD 18 ∗ aCPSR cpsr ∗ aS1 PSRA psra ∗ aS1 PSRCpsrc ∗

aS1 PSRI T ∗ aS1 PSRN psrn ∗

aS1 PSRQ psrq ∗ aS1 PSRV psrv ∗ aS1 PSRZ psrz ∗

 (5.4ii)

aPSTACK irq spirq []

[w1; w3; w5; w7; w9; w11; w13; w15; w17; w19; w21; w23; w25; w27; stk] ∗

}
(5.4iii)

aR R0r0 ∗ aR R1 r1 ∗ aR R2 r2 ∗ aR 3 r3 ∗ aR R4 r4 ∗

aR R5 r5 ∗ aR R6 r6 ∗ aR R7 r7 ∗ aR R8 r8 ∗

aR R9 r9 ∗ aR R10 r10 ∗ aR R11 r11 ∗ aR R12 r12 ∗

 (5.4iv)

aBYTE_MEMORY df f ∗ (5.4v)

aU divisor 85 cushionmin strmrx0 strrxbuf0 strtx strtxout strtxbuf strrx

strrxin strrxbuf startrx sizerx starttx sizetx thre ierls ierda iethre irqs

dfrx frx dftx ftx frontrx backrx fronttx backtx ps ∗

 (5.4vi)

cond(ipsr.M ∈ {16, 17, 18, 19, 23, 27, 31} ∧ (5.4vii)

2It always exists.

78

ipsr.F ∧ (ipsr.IT = 0) ∧ ¬ipsr.E ∧ ¬ipsr.J ∧ ¬ipsr.T ∧ (5.4viii)

(
←−−−−−−−−
front addrrx

2 ∪
←−−−−−−−
back addrrx

2 ∪
←−−−−−−−−
front addrtx

2 ∪
←−−−−−−−
back addrtx

2 ∪
←−−−−−−−−−−−
tx running addr4) ⊆ df ∧

 (5.4ix)

(3 && lrirq− 4 = 0) ∧

(3 && spirq− 60 = 0) ∧

(3 && spirq− 56 = 0)))

 (5.4x)

isr_code (5.4xi)

(aPC (lrirq− 4) ∗ aPSR ips ipsr ∗ ∗

aR LRirq (lrirq− 4) ∗

}
(5.4xii)

aMD ipsr.M ∗ aCPSR (cpsr with ge := ipsr.GE) ∗ aS1 PSRA ipsr.A ∗

aS1 PSRC ipsr.C ∗ aS1 PSRI ipsr.I ∗ aS1 PSRN ipsr.N ∗

aS1 PSRQ ipsr.Q ∗ aS1 PSRV ipsr.V ∗ aS1 PSRZ ipsr.Z ∗

 (5.4xiii)

aPSTACK irq spirq []

[lrirq− 4; r12; r11; r10; r9; r8; r7; r6; r5; r4; r3;

r2; r1; r0; encode_psr ipsr]

 (5.4xiv)

aR R0 r0 ∗ aR R1 r1 ∗ aR R2 r2 ∗ aR 3 r3 ∗ aR R4 r4 ∗

aR R5 r5 ∗ aR R6 r6 ∗ aR R7 r7 ∗ aR R8 r8 ∗

aR R9 r9 ∗ aR R10 r10 ∗ aR R11 r11 ∗ aR R12 r12 ∗

 (5.4xv)

aBYTE_MEMORY df newf ∗ (5.4xvi)

¬aU divisor 0 cushionmin strmrx0 strrxbuf0 strtx (5.4xvii)

(if MEM IIRTHRE irqs

then if backtx = fronttx then strtxout else HD strtxbuf :: strtxout

else strtxout)

 (5.4xviii)

(if MEM IIRTHRE irqs

then if backtx = fronttx then strtxbuf else TL strtxbuf

else strtxbuf)

 (5.4xix)

79

(if MEM IIRRDA irqs

then if (63 && backrx + 1) 6= frontrx

then strrx

else strrxbuf++TL strrxin

else strrx)


(5.4xx)

(if MEM IIRRDA irqs then TL strrxin else strrxin) (5.4xxi)

(if MEM IIRRDA irqs

then if (63 && backrx + 1) 6= frontrx

then strrxbuf++[HD strrxin]

else strrxbuf

else strrxbuf)


(5.4xxii)

startrx sizerx starttx sizetx (5.4xxiii)

(if MEM IIRTHRE irqs then backtx = fronttx else thre) (5.4xxiv)

ierls ierda iethre [] dfrx (5.4xxv)

(if MEM IIRRDA irqs

then (backrx + startrx 7→ HD strrxin) frx

else frx)

 (5.4xxvi)

dftx ftx frontrx (5.4xxvii)

(if MEM IIRRDA irqs

then if (63 && backrx + 1) 6= frontrx

then 63 && backrx + 1

else backrx

else backrx)


(5.4xxviii)

(if MEM IIRTHRE irqs

then if backtx = fronttx then fronttx else 127 && fronttx + 1

else fronttx)

 (5.4xxix)

backtx). (5.4xxx)

80

The placeholders used in Equation 5.4 is listed in Table 5.3.

When ARM processor takes an interrupt request, the hardware will perform some

preparation. The effects are shown in the precondition of the Hoare triple for the

ISR. At (5.4i) PC, and PSR and LR in IRQ mode are specified. Fields in CPSR are

specified at (5.4ii).

Once inside the ISR, registers to be used are saved onto the stack. Before the

push, the stack is specified at (5.4iii). It is assumed that enough space is on the stack

in IRQ mode. The nonbanked registers are specified at (5.4iv).

Memory region (df,f) is specified at (5.4v). It is for the storage of the parameters

of the rx and tx buffers and the tx_running flag.

The state of the serial port device and the rx and tx buffers are specified at (5.4vi).

cushion is specified as 85 here, because ISR finishes its execution in 85 cycles along

the longest path. This guarantees that no new interrupts will be raised during the

execution of the ISR.

There are constraints on the preconditions specified in the cond term. First,

the value in PSR of IRQ mode must be valid for CPSR. (5.4vii) constrains the

possible value for the mode field, and (5.4viii) constrains some other fields. Since

a copy of previous CPSR is stored in PSR of IRQ mode, this condition is satisfied.

Then memory domain df is constrained at (5.4ix). Finally, alignment constrains are

specified at (5.4x).

The postcondition describes what the system state is after the execution of the

ISR. There are several points:

1. The ISR terminates. As shown at (5.4xii), PC eventually points to the next

instruction at the time when the interrupt request was taken.

2. The context switch is working properly. CPSR is restored to its original state

as shown at (5.4xiii). This means the processor is in the original mode, and all

the mask and status bits are restored as well. The data pushed to the stack

are popped. The stack in IRQ mode is restored at (5.4xiv) and the unbanked

registers are restored at (5.4xv). The memory safety of stack is assumed in

precondition at (5.4iii).

3. The interrupts are properly handled.

81

(a) Interrupts are all cleared as shown at (5.4xxv).

(b) Front and back for rx and tx buffers and tx_running flag are updated. The

exact low-level detail in terms of memory update is too lengthy to be

shown here, due to a combination of different conditions: whether there

are interrupts pending, which interrupt source is pending, whether the rx

buffer is full, whether the tx buffer is empty, and whether tx_running flag

is set. Byte-level memory configuration does not help either. I use newf

as the placeholder for the exact term at (5.4xvi).

(c) For the rx function, updates on the strings strrx, strrxin, strrxbuf are shown

at (5.4xx), (5.4xxi) and (5.4xxii). The low-level detail in terms of the

buffer memory and its back value are shown at (5.4xxvi) and (5.4xxviii).

Nothing happens unless interrupt IIRRDA is pending. Otherwise, there are

two scenarios. No character is dropped when the character from RBR is

copied to the rx buffer. This happens under these three conditions: the

speed of the serial port is sufficiently slow, the interrupt handling is not

delayed too much, and the rx buffer has space available. The first two

conditions are assumed in the timing constraints in aU term at (5.4vi).

If the buffer is full, the character is copied to the back position of the array

in the buffer without updating the value of back, so it is discarded. The rx

buffer safety is guaranteed by the invariance shown in strmrx0 and strrxbuf0

at (5.4xvii).

(d) For the tx function, updates on the strings strtx, strtxout, strtxbuf are shown

at (5.4xvii), (5.4xviii) and (5.4xix). The low-level detail in terms of the

front value of tx buffer is shown at (5.4xxix). Nothing happens unless

interrupt IIRTHRE is pending. Otherwise, if tx buffer is not empty, the first

character from the tx buffer is sent out, and LSRTHRE is cleared at (5.4xxiv).

The character will never be lost, since strtx is an invariant.

5.5 Proof

A significant part of the correctness proof for the ISR is done interactively, except

for the basic semantics for basic blocks. In this section I discuss some technical issues

related to the proof process, from the strategy at high-level to a specific example of

82

a difficult program fragment, the IRQ loop.

5.5.1 Proof Approach

I proved the Hoare triple for the ISR (Equation 5.4) from bottom up following

the control flow graph as shown in Figure 5.3:

1. At the ground level, Hoare triples for each instruction are proved automatically

as described in last chapter.

2. Based on Hoare triples for each instruction, Hoare triples for the basic blocks

(shown in Figure 5.3) are proved using sequential composition mostly automat-

ically.

3. With Hoare triples for the basic blocks ready, Hoare triples for the THRE loop,

the RDA loop and the RLS case in the switch table are proved manually using

sequential composition and branch combination.

4. With theorems for these three cases, the Hoare triple for the IRQ loop is proved

using induction manually.

5. Finally, based on Hoare triples for the entry block, the IRQ loop, and the

exit block, the Hoare triple for the ISR is proved using sequential composition

automatically.

5.5.1.1 High-Level Assertion Formula

aU is designed to specify the Hoare triple of the ISR as a whole. It is not suitable

to be used to specify Hoare triples for individual instructions, because some invariants

included in aU assertion may not hold at every instruction of the ISR. So, aU assertion

can only be introduced for a code block where such invariants hold in the precondition

and postcondition.

A high-level assertion formula such as aU congregates a group of resource speci-

fications and constraints. It can be introduced to an existing Hoare triple following

these steps:

1. For every resource specification or constraint in the assertion formula but not

in the Hoare triple, it is introduced into both precondition and postcondition

symmetrically using the frame rule.

83

2. Similarly, every missing constraint can be introduced into the cond term in the

precondition of the Hoare triple using precondition strengthening.

3. A constraint can be introduced into the postcondition of the Hoare triple using

the following theorem:

` (g1 ⇒ g2)⇒

SPEC m (p ∗ cond g1) c q ⇒ SPEC m (p ∗ cond g1) c (q ∗ cond g2). (5.5)

Here, constraint g2 can be introduced to the postcondition of a Hoare triple if

it can be implied by the constraint g1 from the precondition.

4. The high-level assertion formula can now be introduced using its definition.

5.5.1.2 Intermediate Assertion

Introducing a high-level assertion formula often requires manual proof of a lemma

of the form g1 ⇒ g2, as in Equation 5.5. So it helps to have formula g1 and g2 be as

small as possible. I designed several stripped-down versions of aU for different code

blocks. They are intermediate assertions from which aU is to be introduced. One of

them is aUe:

aUe divisor cushion cushionmin strmrx0 strrxbuf0 thre ierls ierda iethre irqs strrxin

strrxbuf strtxout ps ,

aP ps ∗ cond ((get_divisor ps = divisor) ∧ (uart_pending_irqs ps = irqs) ∧

(ps.IERRLS = ierls) ∧ (ps.IERRDA = ierda) ∧

(ps.IERTHRE = iethre) ∧ (ps.LSRTHRE = thre) ∧

uart0.wellform ps ∧ ¬ps.LCRDLAB ∧

ps.clock + cushionmin + cushion < get_divisor ps ∧

sentString strtxout ps ∧

inputString strrxin ps ∧

(ps.LSRRDR ⇒ ¬NULL strrxin) ∧ ishifted strmrx0 strrxbuf0 ps strrxbuf)

aUe is intended to specify the entry block, the exit block, and the RLS case in the

switch table. In these code blocks no memory besides the stack is accessed. Compared

84

to aU, aUe leaves out memory specification and constraints on the rx and tx buffers.

It only keeps the constraints involving the serial port state ps. Those specifications

and constraints left out can be easily added back using the frame rule. So it does not

take any manual proof to introduce aU from aUe. This technique reduces the effort

in manual proof. Similar variants of aU are designed to be used in the proof of the

RDA loop and THRE loop.

5.5.2 Proof of the IRQ Loop

The IRQ loop is a complex yet interesting program fragment. The loop condition

depends on device register IIR; its termination depends on the speed of the serial port;

it has complex control flow, especially the body of the loop is a switch table. In this

section I discuss how I proved correctness for it.

5.5.2.1 Switch Table

The switch table has three cases: the RLS case, the RDA case and the THRE case.

Each case is only executed if the corresponding interrupt source is at the head of the

pending interrupt list. After the execution of one case, the corresponding interrupt

source is popped from the pending interrupt list.

The RDA case and the THRE case are implemented as loops. But both loops

only execute once, because in my serial port model the RBR buffer and THR buffer

has a size of 1, and the timing constraint implies that no new interrupts are raised

inside the ISR. So for all three cases, I used sequential composition to obtain the

low-level Hoare triples, then introduced aU by introducing the simpler variants of aU

first. There are two branches in the THRE case based on whether tx buffer is empty

or not. An additional pass of branch combination was applied on it.

5.5.2.2 IRQ Loop

I manually combined the three cases in the switch table to produce the Hoare

triple assertion for the IRQ loop. Specifically, in the assertion I associate cushion

in aU formula with the pending interrupts list irqs using latency, which is defined in

Figure 5.11. In the definition, 24, 19, and 12 are path lengths for the THRE case,

the RDA case and the RLS case respectively. latency keeps track of the longest path

85

of the ISR based on the pending interrupt sources.

The Hoare triple is proved by induction on the pending interrupt list. Because of

the timing constraint, no new interrupt requests occur inside the ISR. The head of the

pending interrupt list will be popped in each loop. That is how the loop terminates.

Since the loop body is a switch table, the inductive step has to deal with its

three cases. Each case has a different path length. In Hoare triples for these three

cases, cushion equals the respective path length in the precondition, and zero in the

postconditions. Using theorems in Figure 5.8, latency can be introduced to the Hoare

triples for these three cases. These Hoare triples can now be used as lemmas in the

inductive step.

latency is bounded:

` ∀ ps irqs.(uart_pending_irqs ps = irqs)⇒ latency irqs ≤ 55

It is proved based on the fact that all pending interrupts are distinct, thus the length

of pending irq list is finite. Using this theorem and the monotonicity theorem in

Figure 5.9, the latency term in the precondition of Hoare triple for the IRQ loop is

replaced with 55.

86

Table 5.1: Serial port model with interrupts. R indicates read-only registers; W
indicates write-only. RW indicates no restriction on access. The first four columns
are from data in the LPC2129 manual.

Register Address
offset

Function Access When is
read un-
defined?

When is
write un-
defined?

Side-
effect of
read

Side-
effect of
write

RBR 0 Receiver
buffer
when
¬LCRDLAB

R No data
received

Never Reset
LSRRDR

None

THR 0 Transmit
holding
when
¬LCRDLAB

W Never No room
for trans-
mission

None Reset
LSRTHRE

DLL 0 Divisor
latch
LSB
when
LCRDLAB

RW Never Never None None

IER 0 Interrupt
enable
when
¬LCRDLAB

RW Never Write
ones to
bits 7:3

None Disable
or enable
the inter-
rupts

DLM 4 Divisor
latch
MSB
when
LCRDLAB

RW never Never None None

IIR 8 Interrupt
ID

R Never Always Clear
IIRTHRE

None

FCR 8 FIFO
control

W Always Overwrite
reserved
bits or
disable
FIFOs

None Reset
transmis-
sion or
receiving
queue
and flags

LCR 12 Line con-
trol

RW Never Never None Assign
LCRDLAB

flag
LSR 20 Line sta-

tus
R Never Always Reset

LSROE

None

SCR 28 Scratch
pad

RW Never Never None None

87

Table 5.2: Serial port model interrupts coverage. The first two columns are adapted
from the LPC2129 manual.

Interrupt Register Priority Interrupt
Source

Interrupt Set Interrupt Reset

IRQRLS IIRRLS Highest LSRoe New data is received
when LSRRDR and
IERRLS

LSR is read

IRQRDA IIRRDA Second LSRRDR rx data in RBR when
IERRDA

Read RBR or reset the
rx

IRQTHRE IIRTHRE Third LSRTHRE tx data sent from THR
when ¬LSRTHRE and
IERTHRE

Read IIR when
IIRTHRE is the current
interrupt source, or
write THR, or reset tx

88

` ¬uart dlab ps ∧ (addr = 0xE000C000) ∧ uart has irq IRQRDA ps⇒
¬uart has irq IRQRDA (SND (SND (uart0.mapped read addr ps))) (i)

` (addr = 0xE000C014) ∧ uart has irq IRQRLS ps⇒
¬uart has irq IRQRLS (SND (SND (uart0.mapped read addr ps))) (ii)

` ¬uart dlab ps ∧ (addr = 0xE000C000) ∧ uart has irq IRQTHRE ps⇒
¬uart has irq IRQTHRE (SND (uart0.mapped write addr [d] ps)) (iii)

` ¬uart dlab ps ∧ (addr = 0xE000C008) ∧ uart0.wellform ps ∧
uart has irq IRQTHRE ps⇒
¬uart has irq IRQTHRE (SND (SND (uart0.mapped read addr ps))) (iv)

Figure 5.1: Handling of different interrupt sources in the serial port model

89

13c: sub lr, lr, #4 1e4: cmp r2, r6
140: push {r0, r1, r2, r3, 1e8: moveq r2, r3

r4, r5, r6, r7, r8, 1ec: tst r8, #1
r9, sl, fp, ip, lr} 1f0: bne 1cc <uart0ISR+0x90>

144: mrs r1, SPSR 1f4: b 234 <uart0ISR+0xf8>
148: push {r1} 1f8: cmp r7, r0
14c: ldr r2, [pc, #276] 1fc: moveq r2, r3
150: ldrh r0, [r2] 200: moveq ip, #0
154: ldr r2, [pc, #272] 204: beq 234 <uart0ISR+0xf8>
158: ldr ip, [r2] 208: ldrb r2, [r4, r0]
15c: ldr r2, [pc, #268] 20c: add r0, r0, #1
160: ldr r3, [pc, #268] 210: strb r2, [r1]
164: ldrh r7, [r2] 214: and r0, r0, #127
168: ldr r2, [pc, #264] 218: ldrb r2, [r1, #20]
16c: ldrh r3, [r3] 21c: tst r2, #32
170: ldrh r6, [r2] 220: bne 1f8 <uart0ISR+0xbc>
174: ldr r1, [pc, #256] 224: b 230 <uart0ISR+0xf4>
178: ldr r5, [pc, #256] 228: ldrb r2, [r1, #20]
17c: ldr r4, [pc, #256] 22c: ldrb r2, [r1]
180: b 238 <uart0ISR+0xfc> 230: mov r2, r3
184: and r2, r2, #14 234: mov r3, r2
188: sub r2, r2, #2 238: ldrb r2, [r1, #8]
18c: cmp r2, #10 23c: tst r2, #1
190: ldrls pc, [pc, r2, lsl #2] 240: beq 184 <uart0ISR+0x48>
194: b 228 <uart0ISR+0xec> 244: ldr r2, [pc, #40]
198: .word 0x00000218 248: strh r3, [r2]
19c: .word 0x00000228 24c: ldr r3, [pc, #20]
1a0: .word 0x000001d0 250: strh r0, [r3]
1a4: .word 0x00000228 254: ldr r3, [pc, #16]
1a8: .word 0x000001c4 258: str ip, [r3]
1ac: .word 0x00000228 25c: pop {r1}
1b0: .word 0x00000228 260: msr SPSR_c, r1
1b4: .word 0x00000228 264: ldm sp!, {r0, r1, r2,
1b8: .word 0x00000228 r3, r4, r5, r6, r7, r8,
1bc: .word 0x00000228 r9, sl, fp, ip, pc}^
1c0: .word 0x000001d0 268: .word 0x4000019c
1c4: ldrb r2, [r1, #20] 26c: .word 0x400001a4
1c8: b 230 <uart0ISR+0xf4> 270: .word 0x40000092
1cc: mov r3, r2 274: .word 0x40000194
1d0: ldrb r2, [r1] 278: .word 0x400001ea
1d4: strb r2, [r5, r3] 27c: .word 0xe000c000
1d8: add r2, r3, #1 280: .word 0x400001a8
1dc: and r2, r2, #63 284: .word 0x40000010
1e0: ldrb r8, [r1, #20]

Figure 5.2: ARM assembly code for the serial port ISR

90

228-22c

1c4-1c8

224

230 208-214

1cc

194

1f4

234

238-240

184-190

218-220

1f8-204

1d0-1f0

244-264

13c-180

interrupts pending
no interrupts pending

IRQRLS no interrupts pending

IRQRDA
IRQTHRE

¬LSRRDR
LSRRDR

tx buffer
not empty

tx buffer
empty

LSRTHRE
¬LSRTHRE

Figure 5.3: CFG of the ISR. Oval shape indicates the entry or exit block. Round
rectangle shape indicates branches.

91

a

b

c
d

g

f
e

a

b

c
d

m
n

o

i
j

k

l

h
g

f
e

front
back

start

start

back

front

start

front

back

A

B

C

Figure 5.4: Circular buffer. The figure shows a circular buffer with size 16 at
different stages of operation. In A, a list of [a;b;c;d;e;f;g] is stored in the buffer. In B,
the buffer is empty. In C, the buffer is full, yet 1 slot is not used. The arced arrow
indicates the growth of array index.

92

circBuf start size df f front back str ,

1 <+ size ∧ front <+ size ∧ back <+ size ∧ (∀ i. i <+ size⇒ start + i ∈ df) ∧
case str of

[]→ (front = back)

‖ h :: strtl→ back 6= front ∧ (f(start + front) = h) ∧
circBuf start size df f (front +size 1) back strtl.

Figure 5.5: circBuf definition

93

` circBuf start size df f front back str⇒
∀ i.i < LENGTH str⇒
(EL i str =

f (start + if n2w i <+ size− front then front + n2w i else (n2w i− (size− front))) (i)

` circBuf start size df f front back str⇒
(LENGTH str =

w2n (if front ≤+ back then back− front else size− (front− back))) (ii)

` circBuf start size df f front back str⇒ ((front = back) ⇐⇒ (str = [])) (iii)

` circBuf start size df f front back str⇒ LENGTH str < w2n size (iv)

` circBuf start size df f front back str⇒
(((back +size 1) size = front) ⇐⇒ (LENGTH str = w2n (size− 1))) (v)

` circBuf start size df f front back (h :: str)⇒
circBuf start size df f (front +size 1) back str (vi)

` (back +size 1) 6= front ∧ circBuf start size df f front back str ⇒
circBuf start size df (((start + back) 7→ ch) f) front (back +size 1) (str++[ch]) (vii)

` circBuf start size df f front back str⇒
circBuf start size df (((start + back) 7→ ch) f) front back str (viii)

` (back +size 1) 6= front ∧ circBuf start size df f front back str⇒
circBuf start size df f front (back +size 1) (str++[f (start + back)] (ix)

Figure 5.6: Circular buffer properties

94

aU divisor cushion cushionmin strmrx0 strrxbuf0 strtx strtxout strtxbuf strrx strrxin

strrxbuf startrx sizerx starttx sizetx thre ierls ierda iethre irqs dfrx frx dftx ftx

frontrx backrx fronttx backtx ps ,

aBYTE_MEMORY dfrx frx ∗ aBYTE_MEMORY dftx ftx ∗ aP ps ∗ (i)

cond((get_divisor ps = divisor) ∧ (uart_pending_irqs ps = irqs) ∧
(ps.IERRLS = ierls) ∧ (ps.IERRDA = ierda) ∧ (ps.IERTHRE = iethre) ∧
(ps.LSRTHRE = thre) ∧

 (ii)

uart0.wellform ps ∧ ¬ps.LCRDLAB ∧ (iii)

ps.clock + cushionmin + cushion < get_divisor ps ∧ (iv)

sentString strtxout ps ∧ (REVERSE strtxbuf++strtxout = strtx) ∧
circBuf starttx sizetx dftx ftx fronttx backtx strtxbuf ∧

}
(v)

inputString strrxin ps ∧ (strrxbuf++strrxin = strrx) ∧
circBuf startrx sizerx dfrx frx frontrx backrx strrxbuf ∧
(ps.LSRRDR ⇒ ¬NULLstrrxin) ∧ ishifted strmrx0 strrxbuf ps strrxbuf)

 (vi)

Figure 5.7: aU definition

95

` aU divisor cushionmin (cushion + offset) strmrx0 strrxbuf strtx strtxout strtxbuf

strrx strrxin strrxbuf2 startrx sizerx starttx sizetx thre ierls ierda iethre irqs dfrx frx
dftx ftx frontrx backrx fronttx backtx ps =

aU divisor (cushionmin + offset) cushion strmrx0 strrxbuf0 strtx strtxout strtxbuf

strrx strrxin strrxbuf startrx sizerx starttx sizetx thre ierls ierda iethre irqs dfrx frx
dftx ftx frontrx backrx fronttx backtx ps

` ¬aU divisor cushionmin (cushion + offset) strmrx0 strrxbuf0 strtx strtxout

strtxbuf strrx strrxin strrxbuf startrx sizerx starttx sizetx thre ierls ierda iethre irqs

dfrx frx dftx ftx frontrx backrx fronttx backtx =

¬aU divisor (cushionmin + offset) cushion strmrx0 strrxbuf0 strtx strtxout strtxbuf

strrx strrxin strrxbuf startrx sizerx starttx sizetx thre ierls ierda iethre irqs dfrx
frx dftx ftx frontrx backrx fronttx backtx

Figure 5.8: Theorems showing accumulation of the minimum cushion time

96

` cushionmin1 ≥ cushionmin2 ⇒
(aU divisor cushion cushionmin1 strmrx0 strrxbuf0 strtx strtxout strtxbuf strrx strrxin

strrxbuf startrx sizerx starttx sizetx thre ierls ierda iethre irqs dfrx frx dftx ftx frontrx
backrx fronttx backtx ps) .

(aU divisor cushion cushionmin2 strmrx0 strrxbuf0 strtx strtxout strtxbuf strrx strrxin

strrxbuf startrx sizerx starttx sizetx thre ierls ierda iethre irqs dfrx frx dftx ftx frontrx
backrx fronttx backtx ps)

Figure 5.9: Monotonicity of the cushion time

97

sample strbuf strm strm0 ,

case strbuf of

[]→ ∃m.strm = cutStream m strm0

‖ (h :: tl)→
∃ n. (strm0 n = SOME h) ∧ sample tl strm (cutStream (n + 1) strm0)

ishifted strmrx0 strrxbuf0 ps strrxbuf ,

∃ n.

n ≤ LENGTH strrxbuf ∧ (TAKE n strrxbuf = strrxbuf0) ∧
if ps.LSRRDR

then sample(DROP n strrxbuf ++[ps.RBR])ps.in strmrx0

else sample (DROP n strrxbuf) ps.in strmrx0

Figure 5.10: Definitions of sample and ishifted

98

Table 5.3: Placeholders used in the Hoare triple for the ISR
constant description
startrx 0x400001A8
sizerx 64
starttx 0x40000010
sizetx 128
front addrrx 0x400001EA
back addrrx 0x40000194
front addrtx 0x4000019C
back addrtx 0x40000092
frontrx f ↗16

2 0x400001EA
backrx f ↗16

2 0x40000194
fronttx f ↗16

2 0x4000019C
backtx f ↗16

2 0x40000092
newf f updated with all the variables in its domain

99

latency irqs ,

case irqs of

[]→ 0

‖ (IIRTHRE :: tl)→ 24 + latency tl

‖ (IIRRDA :: tl)→ 19 + latency tl

‖ (IIRRLS :: tl)→ 12 + latency tl

Figure 5.11: Definition of lantency

CHAPTER 6

CORRECTNESS PROOF FOR

INTERRUPT-DRIVEN

SERIAL PORT

DRIVER

Interrupts present concurrency challenges. At any time when an instruction in the

main program is executed, it is possible that an ISR may execute due to a hardware

interrupt request. Its effect includes modifying memory content, changing the device

state, and causing delay to the execution of the main program and handling of other

interrupts. In most cases, the values in processor registers are restored. To reason

about the main program, the effect of the ISRs installed in the system must be

accounted for.

My approach is to describe the semantics of this instruction with the possible

effect of the ISRs included. After obtaining such semantics for each instruction of the

main program, traditional techniques used to reason about sequential programs can

be used to reason about the main program.

In most cases, the effect of the ISRs is transparent. This is because the memory

of the main program is not accessed by the ISR.

For a main program that has resources shared with an ISR, there is an invariant

maintained between them in most situations. Most of the time, the main program can

execute without disabling the interrupts, while maintaining this invariant. However,

if the only thing which can be reasoned about in this scenario is just an invariant, it is

not very useful for verifying deep properties. Interesting changes happen at program

points when the old invariant is broken, and the new one is established. This usually

occurs inside an atomic section.

The main program runs in a spectrum of different modes. At one end is interrupt

mode when interrupt handling is enabled on the processor, and all the hardware

101

interrupts are enabled. In this case only an invariant can be reasoned about on the

shared resources.

At the other end is atomic mode when interrupt handling is disabled on the

processor. In this mode significant changes are made so that the old invariant

would not hold inside atomic section. But it is not hard to verify since there is

no concurrency.

In between are the selective atomic modes when some of the hardware interrupt

sources are disabled while interrupt handling is enabled on the processor. Disabling

one interrupt source will remove some resources from the shared resource set. For

these resources, the program works as in atomic mode. The invariant involving only

these resources can be broken in the main program, and a new one can be established.

For other resources, the program works just as in interrupt mode. Disabling all the

interrupts is equivalent to atomic mode.

6.1 Serial Port Driver

I verified function uart0Putch. Its code is listed in Figure 6.1. In the process, I

also verified two assembly routines disableIRQ and restoreIRQ. Their code is listed in

Figure 6.2. uart0Putch tries to write a byte to the tx pipeline if the tx buffer has room.

When the flag tx running is set, it writes to the tx buffer in memory. Otherwise, it

writes directly to THR on the serial port device.

tx running is necessary because IIRTHRE is only set after THR is emptied. If THR

remains empty, IIRTHRE is not set. This behavior is reasonable. Otherwise, interrupt

IRQTHRE will persistently fire even if there is no sending activity going on. So to

trigger interrupt IRQTHRE, THR must be written first. tx running is set when THR is

written to in uart0Putch. In the ISR, tx running is cleared when both the tx buffer

and THR are emptied.

The structure of the code is rather simple. In c80, it saves registers to the stack.

Between c84 and ca0, it reads fronttx and backtx, and decides if there is any room in

the tx buffer. In this process IRQTHRE is not disabled, the ISR can modify fronttx

concurrently. The room calculated here might be out of date. However, the code is

correct in the sense that

102

1. If it is deemed that there is room available, then surely there is room available

in the tx buffer, and it is safe to proceed to write to the tx pipeline.

2. If it is deemed that there is no room available, then there may or may not be

room available in the tx buffer. Whatever the case is, it is always safe to quit.

Between ca4 and ca8 is the exit branch under the condition that there is no room

in the tx buffer.

Between cac and cb0, uart0Putch calls procedure disableIRQ to disable interrupt

handling on the processor. From cb4 to cbc it disables hardware interrupt IRQTHRE

by clearing IERTHRE on the serial port. Then in cc0 it calls procedure restoreIRQ to

restore interrupt handling on the processor. Atomic mode starts inside disableIRQ

and ends inside restoreIRQ.

Then the execution enters selective atomic mode. I call it THRE-atomic mode.

From cc4 to ccc uart0Putch reads tx running to see if it is set. Then two branches are

implemented using the conditional execution between cd0 and cec. The instructions

ending with eq implement the branch with the condition that tx running is not set. In

this branch it sets tx running and writes the byte to THR directly. The instructions

ending with neq implement the branch with the condition that tx running is set. In

this branch uart0Putch appends the byte to the tx buffer and updates backtx.

In cf0 uart0Putch calls procedure disableIRQ again to disable interrupt handling

on the processor. THRE-atomic mode ends inside disableIRQ, and atomic mode

begins. Between cf4 and d00 hardware interrupt IRQTHRE on the serial port is

enabled by setting IERTHRE on the serial port. Then in d04 procedure restoreIRQ

is called to restore interrupt handling on the processor. Again, atomic mode ends

inside restoreIRQ, at the same time interrupt mode resumes.

The final two instructions d08 and d0c prepare the return value, restore the

registers and return.

In summary, uart0Putch goes through three different modes in execution:

1. Interrupt mode. In this mode interrupt handling is enabled and no hardware

interrupts are disabled. All instructions before cb0 or after d04 are in this mode.

2. Atomic mode. In this mode interrupts handling are disabled. Al instructions

between cb0 and cc0, or between cf0 and d04 are in this mode. IERTHRE is

103

cleared and set, respectively, in these two blocks.

3. THRE-atomic mode. In this mode interrupt handling is enabled on the pro-

cessor, but IERTHRE is cleared. Interrupt IRQTHRE request does not occur. All

instructions between cc4 and cec are in this mode.

Instructions in procedures disableIRQ and restoreIRQ (see Figure 6.2) can be par-

titioned in a similar way. However, the partition differs between two calling sites.

For example, at calling site cb0, disableIRQ enters in interrupt mode, and exits in

atomic mode. At calling site cf0, disableIRQ enters in THRE-atomic mode, and exits

in atomic mode.

6.2 Assertion Formula for the ISR

Previously, in Chapter 5, I proved the correctness of the serial port ISR as a

standalone function. The Hoare triple for the ISR is shown in Equation 5.4. It is a

strong result in the sense that it is not an invariant. To integrate its effect into the

semantics of the instructions of the main program uart0Putch, the assertion formula

defined in Figure 5.7 needs to be revised so that the revised Hoare triple of the ISR

should describe some invariants observed in the main program.

6.2.1 Interrupt Mode

The formula used to assert ISR in interrupt mode is shown in Figure 6.3. It

expands aU assertion in Figure 5.7 in two ways.

Inside the ISR, only the storage arrays of the rx and tx buffers are in memory,

while front and back are in registers. tx running flag is also in register. From the

perspective of the main program, all these are in memory. So a memory region

assertion (ii) is added. This memory region is for front and back of the rx and tx

buffers and tx running flag, as shown in (iii) and (iv) .

There are two additional predicates:

1. At (v) it is asserted that the room in the tx buffer is larger than an initial value

spacetx0. This is an invariant. It is useful to verify the block where benign race

around fronttx occurs.

2. At (vi) the consistency about the tx_running flag is also built in. It asserts that

when tx_running is not set, the tx pipeline including the tx buffer and THR is

104

empty. Once the serial port enters this state, interrupt IIRTHRE request does

not occur unless a byte is written into THR.

6.2.2 THRE-Atomic Mode

In THRE-atomic mode, IERthre is disabled, another formula in Figure 6.4 is used

to assert the ISR. It is based on Figure 6.3 with one new predicate (vii) to reflect

that IRQTHRE is excluded from pending interrupts.

6.3 Assertion Formula for uart0Putch

Generally, different formulas are used to assert uart0Putch in different modes. This

is because the resource conflict varies between different modes. However, interrupt

mode and atomic mode share the same formula. Theoretically, in atomic mode there

is no resource conflict. One does not need to hide any resources and can achieve

maximum accuracy in assertion. However, uart0Putch does nothing interesting in

atomic mode, i.e., there are no changes to the rx and tx pipelines and buffers. The

same assertion formula for interrupt mode works for atomic mode.

6.3.1 Interrupt and Atomic Modes

The formula used to assert uart0Putch in interrupt mode and atomic mode is shown

in Figure 6.5. It differs from the one in Figure 6.3 only in the timing constraints. In

the theorem in Equation 5.4, it is required that there must be enough cushion before

the internal clock of the serial port resets. This ensures that the ISR terminates and

that there is no delay in handling the interrupt request, i.e., no incoming data is

dropped.

To discharge this condition at the entry of the ISR, two conditions are needed

outside the ISR. They are built in the formula in Figure 6.5:

1. At (vi) it is asserted that the serial port must be slow enough.

2. At (vii) it is asserted that the interrupt latency for the serial port must be low

enough.

6.3.2 THRE-Atomic Mode

The formula used to assert uart0Putch in THRE-atomic mode is shown in Fig-

ure 6.6. Similar to the formula in Figure 6.4, one new predicate (x) is added to reflect

105

that IRQTHRE is excluded from pending interrupts.

6.4 Resource Conflicts and Assertion Weakening

All the assertion formula in Figures 6.3, 6.4, 6.5 and 6.6, share almost the same

parameters. The ones for uart0Putch in Figures 6.5 and 6.6 do have one more

parameter divisormin. These parameters come from the following four groups:

1. {ps, dfrx, frx, dftx, ftx, dfg, fg} are all actual low-level resources in the system. ps

is the state of the serial port. There are three memory regions: (frx, dfrx) for rx

buffer, (ftx, dftx) for tx buffer, and (fg, dfg) for front and back of the buffers and

tx running flag.

2. {divisor, strtx, strtxout, strtxbuf , strrx, strrxin, strrxbuf , tx_running, thre, ierls, ierda,

iethre, irqs, frontrx, backrx, fronttx, backtx} provide a high-level view of the low-

level resources. The correspondence between the high-level view and low-level

resources is listed in Table 6.1. strrx and strtx include information from both

the serial port state and memory.

3. {cushionmin, cushion, divisormin, strmrx0, strrxbuf0, spacetx0} are parameters spec-

ified by the user. divisormin is used to specify the lower bound of the clock divisor

of the serial port. The speed of the serial port gets lower with higher value of

divisormin. spacetx0 is used to specify the lower bound of the space available in

tx buffer. Others are discussed in Section 5.4.

4. {startrx, sizerx, starttx, sizetx, front addrrx, back addrrx, front addrtx, back addrtx,

tx running addr} are place holders for constants including start and size param-

eters as well as addresses of front and back of the rx and tx buffers and the address

of tx running.

The main program uart0Putch and the ISR share the following resources: the array

of tx buffer, fronttx, fronttx, tx running and THR. The details of the access conflicts

in the driver are listed in Table 6.2 in terms of the high-level parameters. Side effects

due to device access are also included in write accesses.

The formula in Figure 6.3, and Figures 6.4, 6.5 and 6.6 are abstracted into

functions over their parameters. The order of these parameters matters, because

it decides how the predicates can be weakened by hiding when application of these

106

functions are used as separation assertions to assert the program. Only the last

parameter is hidden in weakening.

In each mode, the parameters which are updated by the ISR should be hidden,

because whether the ISR will execute is nondeterministic, and the specific values

of the parameters cannot be decided. When a high-level parameter is hidden, the

corresponding low-level ones need to be hidden too. So, I put all the parameters

needing to be hidden into a tuple and put it as the last formal parameter of the

function. All the parameters related to the rx function are always in this tuple.

Figure 6.7 shows the abstraction of the assertion formula for the serial port ISR.

The formula in Figure 6.3 is abstracted into aU1 as in (i), and the one in Figure 6.4

is abstracted into aU2 or aU3 as in (ii) and (iii).

Figure 6.8 shows the abstraction of the assertion formula for uart0Putch. The

formula in Figure 6.5 is abstracted into aU4 and aU8 as in (i) and (v), and the one in

Figure 6.6 is abstracted into aU5, aU6 and aU7 as in (ii), (iii) and (iv).

These functions are used in the preconditions and postconditions of the Hoare

triples in the proof:

1. aU4 is used to assert the main code uart0Putch in interrupt mode. Correspond-

ingly aU1 is used in the ISR.

2. aU4 is also used to assert the main code uart0Putch in atomic mode, because

there is no concurrency, nothing needs to be hidden in this mode; any function

could be used here.

3. aU5 and aU6 are used to assert uart0Putch in THRE-atomic mode. In this mode

there are two branches. For tx running = 0 branch, thre value in the serial port

state is only updated by the main program, so aU6 is used. For tx running 6= 0

branch, thre value in the serial port state may be updated by the ISR, so aU5

is used. Correspondingly aU2 is used in the ISR.

4. After the branches are combined in uart0Putch in interrupt mode, aU8 is used.

Because the memory region for the tx buffer may or may not be modified, it

needs to be hidden, so does backtx. Correspondingly aU1 is used in the ISR.

As a result, in the postcondition of the Hoare triple for the whole uart0Pucth

function, aU8 is used.

107

5. aU7 is used to assert the code right after atomic section is ended in which

IERTHRE is disabled. However, there may be still outstanding interrupts which

require handling. These interrupts may occur during atomic section. Corre-

spondingly aU3 is used for the ISR.

6.5 Effect of the ISR

The Hoare triple about the ISR proved in Chapter 5 is a strong one in the sense

that it is not just an invariant. It describes the ideal behavior of the ISR. In this

section I present the Hoare triples of the ISR not as a standalone program, but to be

integrated into the Hoare triples of instructions in the main program.

6.5.1 Interrupt Mode

For interrupt mode, the Hoare triple in Equation 5.4 is adapted into the Hoare

triple in Figure 6.9. Compared to the theorem in Equation 5.4, the assertion on

the serial port related resource in Figure 6.9 is almost an invariant except the lower

bound of the cushion time, which changes from 85 to 0 from the precondition to the

postcondition. It is used to integrate the effect of ISR in interrupt mode where the

main code is asserted using aU4 or aU8.

6.5.2 THRE-Atomic Mode

In THRE-atomic mode, aU2 or aU3 is used to describe the effect of the ISR. The

theorem in Figure 6.10 shows the Hoare triple of the ISR is adapted using aU2. It is

used in conjunction with aU5 in the main code.

6.6 Correctness of uart0Putch

The Hoare triple for the working branch of uart0Putch is shown in Figure 6.11.

The details of the placeholders are shown in Table 6.3.

uart0Putch is a function. It follows the calling convention of the ARM architecture.

LRsvc is used to hold the return address, as shown in (ii) and (x). Registers 4 through

7 and the link register are saved to the stack in svc mode first and restored later, as

shown in (vi), (xiv), (v), and (x). The hidden registers are intraprocedure scratch

registers in ARM. R0 holds the return value. Interrupt handling is enabled at the

entry and at the exit, as shown in (iv) and (xii). Assertions to the registers in irq

108

mode are exposed here, especially the stack size in the irq mode. It is shown in (iii)

and (x).

The alignment requirement is shown in (viii) for both the svc mode and the irq

mode. The code is the union of the doe from uart0Putch and the ISR.

aU8 is used to assert the resource related to the serial port, including the tx and

rx buffers, tx running flag, and the state of the serial port device.

The precondition (vii) and the postcondition (vii) indeed show that the byte in

R0 at the entry, r0, is appended to the tx pipeline. More specifically, it is appended

to strtx, which abstracts the string in the tx pipeline.

The values for spacetx0 is 1 in the precondition, and 0 in the postcondition. This

means if there is room available at the entry, it may be used up by the appending.

The value for cushionmin and divisormin are both 97. cushionmin measures the

minimum requirement of cushion time. It is the sum of the longest path from all

atomic sections and the longest path in the ISR. This value ensures that serial port

interrupts are always taken in time. divisormin measures the minimum requirement

for the clock divisor in the serial port device. It must not be smaller than cushionmin.

This value ensures that the serial port is slow enough that ISR will terminate.

6.7 Proof Methods

In this section I discuss some techniques from my experience in the proof process.

Since no automatic tool is available, such techniques are valuable for other projects

of a similar nature.

6.7.1 Assertion Propagation

Constants are propagated in sequential composition. In my approach, an addi-

tional pass of constant propagation is necessary before composition is attempted.

Among the constants propagated are the addresses. With this it can be determined

if a ld/str instruction is accessing memory or a device. Thus, the impossible execution

paths due to the confusion on memory and device access are trimmed early as possible.

The assertion formulas are also propagated. In most cases, the switch of the

assertion function occurs at the edge of an atomic section or selective atomic section.

The propagation of the assertion function works in most of time.

109

Another piece of information needed to be propagated is the branch condition in

the conditional execution. The branch condition must be literally propagated so that

two branches are not mixed together.

6.7.2 Inlining

The two procedures which disable and enable the processor’s interrupt handling,

disableIRQ and restoreIRQ are inlined in the proof. It may sound like a repetition of

work, but it is necessary.

Firstly, each of these two procedures starts or ends atomic mode. Inlining helps to

piece atomic sections with the ones in uart0Putch to form complete atomic sections.

Secondly, the modes are different at different calling sites. For example, when

disableIRQ is first called, the program is in interrupt mode. When it is called the

second time, the program is in THRE-atomic mode. So different assertion formulas

have to be used. Inlining makes this straightforward. In short, the assertion is

context-sensitive.

6.7.3 Conditional Execution

With the assertion propagation, the paths along the same branch can be dis-

covered. Two branches are composed independently, then merged together. The

reason is that two branches may use different assertion formulas. Merging at every

instruction will either produce complicated if-then-else terms if precision is sought, or

will lose precision if the two branches are weakened to a common ground. In short,

the assertion is path sensitive.

6.7.4 Weakening and Live Variables

After integrating the effect of the ISR on the semantics of each instruction in the

main program, we have a sequence of Hoare triples. They need to be composed to

form the final Hoare triple about the main program. When composing two Hoare

triples sequentially, often the postcondition of the first one needs be weakened, or the

precondition of the second one needs be strengthened, or both.

Although a separation assertion can be weakened in many ways inside HOL, I

use hiding for ease of mechanical manipulation. For a separation assertion in the

precondition, its last variable can be hidden only if it does so to appear in the

110

postcondition and other terms in the precondition. Using a resource will always

produce the first hazard, while copying values around will create the second one. The

nice thing is that for a separation assertion in the postcondition, its last variable can

always be hidden.

A variable can be safely hidden form the postcondition if it is at the end of its life

cycle. It is natural to start the weakening from the last Hoare triple in the sequence,

because at the end of the function all variables are dead.

6.7.5 Automation

In the context of theorem proving, automation is opposite to interactive proof.

Even though it is unrealistic to achieve full automation in the proof, it is crucial to

have enough automation that the proof is manageable.

There are several characteristics in this work which make automation difficult, if

not impossible. Complex control flows in the program make automation hard. For

example, deriving the Hoare triple for a loop often needs inductive proof.

The introduction of device models makes automation hard. The complexity of

the device model is at the root. For the serial port model, recursive definitions,

if-then-else control, and MOD operation in the clock function all make automation

hard.

High-level assertions also make automation hard. In the assertion formula used

in this work, existential qualified variables and recursive definition make automation

hard.

Model accuracy also comes at the cost of automation. In this work, both the

ARM model from the University of Cambridge and the serial port model are con-

structed using fixed-width words as the underlying data types. Even though decision

procedures for words in HOL4 are much improved [10, 35], some proof still needs

interactive efforts.

Despite these issues, I still tried to achieve some automation which helps to make

the project manageable. I adapted the scripts from the Cambridge model to automate

the derivation of the semantics theorem for ARM instructions for the ARM SoC

model.

111

I placed more emphasis on automation of the high-level work flow, such as the

application of inference rules, shown in Figure 4.13. Integration of the ISR effect

into the semantics of the ARM instructions for the main program is automated with

the help of large amount of lemmas proved interactively. Sequential composition and

branch combination both are automated.

These lemmas are proved interactively. This can be viewed as an abstraction

process. For example, the serial port model is defined on a group of flags, registers

and input and output streams. The lemmas proved for the serial port model describe

the operation of the serial port model with each command from the processor or

its own transition in terms of flags, the input and output strings. The lemmas use

the same abstraction as the assertion formula, they can be used to automate the

integration process.

On the main program side, access to the shared resources, such as device registers,

buffers and flags are also lifted in terms of the high-level data structures such as

circular buffers and input and output strings. By recognizing the operations on the

high-level data structure by the machine code, I proved enough lemmas and use them

to automate the integration process.

Besides proof, some aspects of my work can be helped by some machinery. For

example, worst-case execution time analysis may be used to provide a start point

for cushionmin, which is the sum of the worst-case execution-time (WCET) for the

longest atomic section and for the ISR. Control flow graph and the execution modes

can be automatically generated using static analysis. There are lots of work on these

analysis. Wilhelm et al. did an excellent survey of WCET analysis [99]. Diablo [22]

can be used to extract control-flow graph of ARM assembly programs.

6.8 Benign Racing and Nonmonotonic Branch

The Hoare triple in Figure 6.11 is only for the working branch of uart0Putch, when

there is room in the tx buffer at the entry point of putch. This condition is reflected in

the cond term in Figure 6.11. However, I could not prove that uart0putch must take

the exit branch under a condition, because the exit branch cannot be composed to

the Hoare triple of the entry block. The branch condition for the exit branch, which

is part of the precondition, cannot be implied by the postcondition for the entry block

112

because it depends on backtx, which has been concurrently modified by the ISR and

hidden away in the postcondition of the Hoare triple for the entry block. There is

benign racing here.

The deep reason, however, is that the condition for the exit branch (no room

in tx buffer) is not an invariant maintained by the ISR, which may increase the

available room by removing data at the end of the tx queue. I call the exit branch a

nonmonotonic branch, and the working branch a monotonic branch.

At the entry point, the available room in the tx queue is r1. Shortly after the

entry, the available room is queried and value r2 is obtained. r2 is used later in the

branch condition. If r2 = 0, then putch exits. Otherwise, the work is done. When it

is the time to write to the buffer, the available room is r3.

Note that from the entry point to this point, the room does not decrease. It may

have been increased by the ISR. So, we have r1 ≤ r2 ≤ r3.

When Hoare triple are used to describe the behavior from the entry point to exit,

r1 is used in the precondition of the entry block, r2 is used in the branch condition,

r3 is used in specifying the wellformness of the tx buffer in the working branch.

The entry block and the working branch can be composed under the monotonic

condition r1 > 0. When r1 = 0, it is possible r2 = 0 or r2 > 0, either branch can be

taken. So, one cannot find a precondition at the entry point to make the exit branch

be taken.

The monotonic branch does the meaningful work and can be proved to be taken

under some conditions, while the nonmonotonic branch does nothing meaningful and

cannot be proven to be taken under any condition. This is an idiom that programmers

should follow for benign racing.

113

c80: push {r4, r5, r6, r7, lr} cd4: ldrne r2, [pc, #68]
c84: ldr r6, [pc, #132] cd8: andeq r2, r4, #255
c88: ldr r3, [pc, #132] cdc: moveq r1, #1
c8c: ldrh r7, [r6] ce0: strbne r4, [r2, r3]
c90: ldrh r3, [r3] ce4: streq r1, [r3]
c94: add r7, r7, #1 ce8: strbeq r2, [r5]
c98: and r7, r7, #127 cec: strhne r7, [r6]
c9c: cmp r3, r7 cf0: bl 3e8 <disableIRQ>
ca0: mov r4, r0 cf4: ldr r3, [pc, #28]
ca4: mvneq r0, #0 cf8: ldrb r2, [r3, #4]
ca8: popeq {r4, r5, r6, r7, pc} cfc: orr r2, r2, #2
cac: ldr r5, [pc, #100] d00: strb r2, [r3, #4]
cb0: bl 3e8 <disableIRQ> d04: bl 3f8 <restoreIRQ>
cb4: ldrb r3, [r5, #4] d08: and r0, r4, #255
cb8: and r3, r3, #253 d0c: pop {r4, r5, r6, r7, pc}
cbc: strb r3, [r5, #4] d10: .word 0x40000092
cc0: bl 3f8 <restoreIRQ> d14: .word 0x4000019c
cc4: ldr r3, [pc, #80] d18: .word 0xe000c000
cc8: ldr r2, [r3] d1c: .word 0x400001a4
ccc: cmp r2, #0 d20: .word 0x40000010
cd0: ldrhne r3, [r6]

Figure 6.1: ARM assembly code for uart0Putch

114

000003e8 <disableIRQ>: 000003f8 <restoreIRQ>:
3e8: mrs r0, CPSR 3f8: mrs r2, CPSR
3ec: orr r3, r0, #128 3fc: and r0, r0, #128
3f0: msr CPSR_fc, r3 400: bic r3, r2, #128
3f4: bx lr 404: orr r3, r3, r0

408: msr CPSR_fc, r3
40c: mov r0, r2
410: bx lr

Figure 6.2: ARM assembly code for disableIRQ and restoreIRQ

115

aU divisor cushionmin cushion strmrx0 strrxbuf0 strtx strtxout strtxbuf strrx

strrxin strrxbuf startrx sizerx starttx sizetx thre ierls ierda iethre irqs dfrx frx
dftx ftx frontrx backrx fronttx backtx ps ∗

 (i)

aBYTE_MEMORY dfg fg ∗ (ii)

cond

((fg ↗32
2 front addrtx = fronttx) ∧ ((fg ↗32

2 back addrtx = backtx) ∧
((fg ↗32

2 front addrrx = frontrx) ∧ ((fg ↗32
2 back addrrx = backrx) ∧

((fg ↗32
4 tx_running addr = tx_running) ∧

 (iii)

(
←−−−−−−−−
front addrrx

2 ∪
←−−−−−−−
back addrrx

2 ∪
←−−−−−−−−
front addrtx

2 ∪
←−−−−−−−
back addrtx

2∪
←−−−−−−−−−−−
tx_running addr4) ⊆ dfg ∧

}
(iv)

circ space sizetx fronttx backtx ≥+ spacetx0 ∧ (v)

((tx_running = 0)⇒ (fronttx = backtx) ∧ thre)) (vi)

Figure 6.3: Formula used to assert the ISR in interrupt mode

116

aU divisor cushionmin cushion strmrx0 strrxbuf0 strtx strtxout strtxbuf

strrx strrxin strrxbuf startrx sizerx starttx sizetx thre ierls ierda iethre irqs

dfrx frx dftx ftx frontrx backrx fronttx backtx ps ∗

 (i)

aBYTE_MEMORY dfg fg ∗ (ii)

cond

((fg ↗32
2 front addrtx = fronttx) ∧ ((fg ↗32

2 back addrtx = backtx) ∧
((fg ↗32

2 front addrrx = frontrx) ∧ ((fg ↗32
2 back addrrx = backrx) ∧

((fg ↗32
4 tx_running addr = tx_running) ∧

 (iii)

(
←−−−−−−−−
front addrrx

2 ∪
←−−−−−−−
back addrrx

2 ∪
←−−−−−−−−
front addrtx

2 ∪
←−−−−−−−
back addrtx

2∪
←−−−−−−−−−−−
tx_running addr4) ⊆ dfg ∧

}
(iv)

circ space sizetx fronttx backtx ≥+ spacetx0 ∧ (v)

((tx_running = 0)⇒ (fronttx = backtx) ∧ thre) ∧ (vi)

¬MEM IRQTHRE irqs) (vii)

Figure 6.4: Formula used to assert the ISR in THRE-atomic mode

117

aBYTE_MEMORY dfrx frx ∗ aBYTE_MEMORY dftx ftx ∗
aBYTE_MEMORY dfg fg ∗ aP ps ∗

}
(i)

cond

((get divisor ps = divisor) ∧ (uart pending irqs ps = irqs) ∧
(ps.IERRLS ⇐⇒ ierls) ∧ (ps.IERRDA ⇐⇒ ierda) ∧
(ps.IERTHRE ⇐⇒ iethre) ∧ (ps.LSRTHRE ⇐⇒ thre) ∧

 (ii)

(fg ↗32
2 front addrtx = fronttx) ∧ (fg ↗32

2 back addrtx = backtx) ∧
(fg ↗32

2 front addrrx = frontrx) ∧ (fg ↗32
2 back addrrx = backrx) ∧

(fg ↗32
4 tx_running addr = tx_running) ∧

 (iii)

(
←−−−−−−−−
front addrrx

2 ∪
←−−−−−−−
back addrrx

2 ∪
←−−−−−−−−
front addrtx

2 ∪
←−−−−−−−
back addrtx

2∪
←−−−−−−−−−−−
tx_running addr4) ⊆ dfg ∧

}
(iv)

uart0.wellform ps ∧ ¬ps.LCRDLAB ∧ (v)

cushion + divisormin < divisor ∧ (vi)

(¬NULL (uart pending irqs ps)⇒ ps.clock + cushion + cushionmin < divisor) ∧ (vii)

sentString strtxout ps ∧ (REVERSE strtxbuf++strtxout = strtx) ∧
circBuf starttx sizetx dftx ftx fronttx backtx strtxbuf ∧
circ space sizetx fronttx backtx ≥+ spacetx0 ∧
((tx_running = 0)⇒ (fronttx = backtx) ∧ thre)

 (viii)

inputString strrxin ps ∧ (strrxbuf++strrxin = strrx) ∧
circBuf startrx sizerx dfrx frx frontrx backrx strrxbuf ∧
(ps.LSRRDR ⇒ ¬NULL strrxin) ∧ ishifted strmrx0 strrxbuf0 ps strrxbuf)

 (ix)

Figure 6.5: Formula used to assert uart0Putch in interrupt mode and atomic mode

118

aBYTE_MEMORY dfrx frx ∗ aBYTE_MEMORY dftx ftx ∗
aBYTE_MEMORY dfg fg ∗ aP ps ∗

}
(i)

cond

((get divisor ps = divisor) ∧ (uart pending irqs ps = irqs) ∧
(ps.IERRLS ⇐⇒ ierls) ∧ (ps.IERRDA ⇐⇒ ierda) ∧
(ps.IERTHRE ⇐⇒ iethre) ∧ (ps.LSRTHRE ⇐⇒ thre) ∧

 (ii)

(fg ↗32
2 front addrtx = fronttx) ∧ (fg ↗32

2 back addrtx = backtx) ∧
(fg ↗32

2 front addrrx = frontrx) ∧ (fg ↗32
2 back addrrx = backrx) ∧

(fg ↗32
4 tx_running addr = tx_running) ∧

 (iii)

(
←−−−−−−−−
front addrrx

2 ∪
←−−−−−−−
back addrrx

2 ∪
←−−−−−−−−
front addrtx

2 ∪
←−−−−−−−
back addrtx

2∪
←−−−−−−−−−−−
tx_running addr4) ⊆ dfg ∧

}
(iv)

uart0.wellform ps ∧ ¬ps.LCRDLAB ∧ (v)

cushion + divisormin < divisor ∧ (vi)

(¬NULL (uart pending irqs ps)⇒ ps.clock + cushion + cushionmin < divisor) ∧ (vii)

sentString strtxout ps ∧ (REVERSE strtxbuf++strtxout = strtx) ∧
circBuf starttx sizetx dftx ftx fronttx backtx strtxbuf ∧
circ space sizetx fronttx backtx ≥+ spacetx0 ∧
((tx_running = 0)⇒ (fronttx = backtx) ∧ thre)

 (viii)

inputString strrxin ps ∧ (strrxbuf++strrxin = strrx) ∧
circBuf startrx sizerx dfrx frx frontrx backrx strrxbuf ∧
(ps.LSRRDR ⇒ ¬NULL strrxin) ∧ ishifted strmrx0 strrxbuf0 ps strrxbuf ∧

 (ix)

¬MEM IRQTHRE irqs) (x)

Figure 6.6: Formula used to assert uart0Putch in THRE-atomic mode

119

Table 6.1: High-level view of low-level system resources
Low-level High-level
ps divisor, irqs,thre, ierls, ierda, iethre,strrxin, strrx,strtxout, strtx
(frx,dfrx) strrx, strrxbuf

(ftx,dftx) strtx, strtxbuf

(fg,dfg) frontrx, backrx,fronttx, backtx, tx_running

120

Table 6.2: Resource conflicts between uart0Putch and the ISR
uart0Putch access ISR access Resource
w r strtxout, strtxbuf ,thre, iethre,backtx,tx running,irqs,
r w fronttx, strtxout, strtxbuf ,thre, tx running

121

aU1 divisor cushionmin cushion ierls ierda iethre irqs txrunningaddr dfg starttx

sizetx front addrtx back addrtx dftx ftx strtx spaceoe backtx startrx sizerx

front addrrx back addrrx dfrx strmrx0 strrxbuf0 frontrx
(strtxout, strtxbuf , strrx, strrxin, strrxbuf ,

frx, fg, fronttx, backrx, tx running, thre, ps) (i)

aU2 divisor cushionmin cushion thre ierls ierda iethre irqs txrunningaddr dfg

starttx sizetx front addrtx back addrtx dftx strtx spaceoe fronttx backtx strtxout

strtxbuf ftx txrunning startrx sizerx front addrrx back addrrx dfrx strmrx0 strrxbuf0

frontrx (strrx, strrxin, strrxbuf , frx, fg, backrx, ps) (ii)

aU3 divisor cushionmin cushion ierls ierda iethre irqs txrunningaddr dfg starttx

sizetx front addrtx back addrtx dftx ftx strtx spaceoe backtx startrxy sizerx

front addrrx back addrrx dfrx strmrx0 strrxbuf0 frontrx
(strtxout, strtxbuf , strrx, strrxin, strrxbuf ,

frx, fg, fronttx, backrx, txrunning, thre, ps) (iii)

Figure 6.7: Abstraction of the assertion formula for the serial port ISR in different
modes

122

aU4 divisor divisormin cushionmin cushion ierls ierda iethre dfg dfrx dftx ftx

tx running addr front addrtx back addrtx front addrrx back addrrx starttx sizetx

startrx sizerx strtx spaceoe backtx strmrx0 strrxbuf0 frontrx
(strtxout, strtxbuf , strrx, strrxin, strrxbuf , irqs,

frx, fg, fronttx, backrx, tx running, thre, ps) (i)

aU5 divisor divisormin cushionmin cushion ierls ierda iethre dfg dfrx dftx ftx

tx running tx running addr front addrtx back addrtx front addrrx back addrrx

starttx sizetx startrx sizerx strtx strtxout strtxbuf fronttx backtx spaceoe strmrx0

strrxbuf0 frontrx (strrx, strrxin, strrxbuf , irqs, frx, fg, backi, thre, ps) (ii)

aU6 divisor divisormin cushionmin cushion ierls ierda iethre dfg dfrx dftx ftx thre

tx running tx running addr front addrtx back addrtx front addrrx back addrrx

starttx sizetxstartrx sizerx strtx strtxout strtxbuf fronttx backtx spaceoe strmrx0

strrxbuf0 frontrx (strrx, strrxin, strrxbuf , irqs, frx, fg, backrx, ps) (iii)

aU7 divisor divisormin cushionmin cushion ierls ierda iethre dfg dfrx dftx ftx

tx running addr front addrtx back addrtx front addrrx back addrrx starttx sizetx

startrx sizerx strtx spaceoe backtx strmrx0 strrxbuf0 frontrx
(strtxout, strtxbuf , strrx, strrxin, strrxbuf , irqs,

frx, fg, fronttx, backrx, tx running, thre, ps) (iv)

aU8 divisor divisormin cushionmin cushion ierls ierda iethre dfg dfrx dftx

tx running addr front addrtx back addrtx front addrrx back addrrx starttx sizetx

startrx sizerx strtx spaceoe strmrx0 strrxbuf0 frontrx
(strtxout, strtxbuf , strrx, strrxin, strrxbuf , irqs,

frx, ftx, fg, fronttx, backtx, backrx, tx running, thre, ps) (v)

Figure 6.8: Abstraction of the assertion formula for u0Putch in different modes

123

` SPEC LPC_IRQ_MODEL

(aCPSR cpsr ∗ aMD 18 ∗ aPC 316 ∗ aPSR ips ipsr ∗ aR LRirq lrirq ∗
aR R0 r0 ∗ aR R1 r1 ∗ aR R10 r10 ∗ aR R11 r11 ∗ aR R12 r12 ∗
aR R2 r2 ∗ aR R3 r3 ∗ aR R4 r4 ∗ aR R5 r5 ∗ aR R6 r6 ∗ aR R7 r7 ∗
aR R8 r8 ∗ aR R9 r9 ∗ aS1 psrA psra ∗ aS1 psrC psrc ∗ aS1 psrI T ∗
aS1 psrN psrn ∗ aS1 psrQ psrq ∗ aS1 psrV psrv ∗ aS1 psrZ psrz ∗
cond

(ipsr.M ∈ {16, 17, 18, 19, 23, 27, 31} ∧ (3 && lrirq− 4 = 0) ∧
(3 && spirq− 60 = 0) ∧
(3 && spirq− 56 = 0) ∧ ipsr.F ∧ (ipsr.IT = 0) ∧
¬ipsr.E ∧ ¬ipsr.J ∧ ¬ipsr.T) ∗ aPPSTACK irq spirq [] 15 ∗
aU1 divisor 85 cushion ierls ierda iethre irqs tx running addr df

starttx sizetx front addrtx back addrtx dftx ftx strtx spaceoe

backtxstartrx sizerx front addrrx back addrrx dfrx strmrx0 strrxbuf0

frontrx
(strtxout, strtxbuf , strrx, strrxin, strrxbuf , frx, f, fronttx, backrx, tx_running, thre,

ps))

isr_code ∪ driver_code

(aCPSR (cpsrwithge := ipsr.GE) ∗ aMDipsr.M ∗
aPC (lrirq− 4) ∗ aPSR ips ipsr ∗
aR LRirq (lrirq− 4) ∗ aR R0 r0 ∗ aR R1 r1 ∗
aR R10 r10 ∗ aR R11 r11 ∗ aR R12 r12 ∗ aR R2r2 ∗ aR R3r3 ∗
aR R4 r4 ∗ aR R5 r5 ∗ aR R6 r6 ∗ aRR7 r7 ∗ aR R8 r8 ∗ aR R9 r9 ∗

aS1 psrA ipsr.A ∗ aS1 psrC ipsr.C ∗ aS1 psrI ipsr.I ∗
aS1 psrN ipsr.N ∗ aS1 psrQ ipsr.Q ∗ aS1 psrV ipsr.V ∗
aS1 psrZ ipsr.Z ∗
¬aU1 divisor 0 cushion ierls ierda iethre [] tx running addr df starttx

sizetx front addrtx back addrtx dftx ftx strtx spaceoe backtx

startrx sizerx front addrrx back addrrx dfrx strmrx0 strrxbuf0

frontrx ∗ aPPSTACK irq spirq [] 15)

Figure 6.9: Hoare triple for the ISR in interrupt mode

124

` SPEC LPC_IRQ_MODEL

(aCPSR cpsr ∗ aMD 18 ∗ aPC 316 ∗ aPSR ips ipsr ∗ aR LRirq lrirq ∗
aR R0 r0 ∗ aR R1 r1 ∗ aR R10 r10 ∗ aR R11 r11 ∗ aR R12 r12 ∗
aR R2 r2 ∗ aR R3 r3 ∗ aR R4 r4 ∗ aR R5 r5 ∗ aR R6 r6 ∗ aR R7 r7 ∗
aR R8 r8 ∗ aR R9 r9 ∗ aS1 psrA psra ∗ aS1 psrC psrc ∗ aS1 psrI T ∗
aS1 psrN psrn ∗ aS1 psrQ psrq ∗ aS1 psrV psrv ∗ aS1 psrZ psrz ∗
cond

(ipsr.M ∈ {16, 17, 18, 19, 23, 27, 31} ∧ (3 && lrirq− 4 = 0) ∧
(3 && spirq− 60 = 0) ∧
(3 && spirq− 56 = 0) ∧ ipsr.F ∧ (ipsr.IT = 0) ∧
¬ipsr.E ∧ ¬ipsr.J ∧ ¬ipsr.T) ∗ aPPSTACK irq spirq [] 15 ∗
aU2 divisor 85 cushion ierls ierda F irqs tx running addr df

starttxsizetx front addrtx back addrtx dftx strtx spaceoe fronttx

backtx strtxout strtxbuf ftx tx_running startrx sizerx front addrrx back addrrx

dfrx strmrx0 strrxbuf0 frontrx
(strrx, strrxin, strrxbuf , frx, f, backrx, ps))

isr_code ∪ driver_code

(aCPSR (cpsrwithge := ipsr.GE) ∗ aMDipsr.M ∗
aPC (lrirq− 4) ∗ aPSR ips ipsr ∗
aR LRirq (lrirq− 4) ∗ aR R0 r0 ∗ aR R1 r1 ∗
aR R10 r10 ∗ aR R11 r11 ∗ aR R12 r12 ∗ aR R2r2 ∗ aR R3r3 ∗
aR R4 r4 ∗ aR R5 r5 ∗ aR R6 r6 ∗ aRR7 r7 ∗ aR R8 r8 ∗ aR R9 r9 ∗

aS1 psrA ipsr.A ∗ aS1 psrC ipsr.C ∗ aS1 psrI ipsr.I ∗
aS1 psrN ipsr.N ∗ aS1 psrQ ipsr.Q ∗ aS1 psrV ipsr.V ∗
¬aU2 divisor 0 cushion ierls ierda F [] tx running addr df starttx

sizetx front addrtx back addrtx dftx strtx spaceoe fronttx

backtx strtxout strtxbuf ftx tx_running startrx sizerx front addrrx back addrrx

dfrx strmrx0 strrxbuf0 frontrx
∗ aPPSTACK irq spirq [] 15)

Figure 6.10: Hoare triple for the ISR in THRE-atomic mode

125

` SPEC LPC_IRQ_MODEL (i)

(aPC 3200 ∗ aR LRsvc lrsvc ∗ (ii)

¬aPSR ips ∗ ¬aR LRirq ∗ aPPSTACK irq spirq [] 15 ∗ (iii)

aMD 19 ∗ aCPSR cpsr ∗ aS1 psrA psra ∗ aS1 psrC psrc ∗ aS1 psrI F ∗
aS1 psrN psrn ∗ aS1 psrQ psrq ∗ aS1 psrV psrv ∗ aS1 psrZ psrz ∗

}
(iv)

aPSTACK svc spsvc[][w1; w3; w5; w7; w9] ∗ (v)

aR R0 r0 ∗ aR R1 r1 ∗ aR R2 r2 ∗ aR R3 r3 ∗ aR R4 r4 ∗
aR R5 r5 ∗ aR R6 r6 ∗ aR R7 r7 ∗ aR R8 r8 ∗
aR R9 r9 ∗ aR R10 r10 ∗ aR R11 r11 ∗ aR R12 r12 ∗

 (vi)

¬aU8 divisor 97 97 cushion ierls ierda iethre df dfrx dftx running addrtx

front addrtx back addrtx front addrrx back addrrx starttx

sizetx startrx sizerx strtx 1 strmrx0 strrxbuf0 frontrx ∗

 (vii)

cond ((3 && lrsvc = 0) ∧ (3 && spirq− 56 = 0) ∧
(3 && spirq− 60 = 0) ∧ (3 && spsvc− 20 = 0)))

}
(viii)

isr_code ∪ driver_code (ix)

(aPC lrsvc ∗ aR LRsvc 3336 ∗ (x)

¬aPSR ips ∗ ¬aR LRirq ∗ aPPSTACK irq spirq [] 15 ∗ (xi)

aMD 19 ∗ aCPSR cpsr ∗ aS1 psrA psra ∗ ¬aS1 psrC ∗ aS1 psrI F ∗
¬aS1 psrN ∗ aS1 psrQ psrq ∗ aS1 psrV F ∗ ¬aS1 psrZ ∗

}
(xii)

aPSTACK svc spsvc [] [lrsvc; r7; r6; r5; r4]) (xiii)

aR R0 (255 && r0) ∗ ¬aR R1 ∗ ¬aR R2 ∗ ¬aR R3 ∗ aR R4 r4 ∗
aR R5 r5 ∗ aR R6 r6 ∗ aR R7 r7 ∗ aR R8 r8 ∗
aR R9 r9 ∗ aR R10 r10 ∗ aR R11 r11 ∗ aR R12 r12 ∗

 (xiv)

¬aU8 divisor 97 97 cushion ierls ierda T df dfrx dftx running addrtx

front addrtx back addrtx front addrrx back addrrx starttx

sizetx startrx sizerx (r0 ↑832:: strtx) 0 strmrx0 strrxbuf0 frontrx

 (xv)

Figure 6.11: Hoare triple for the working branch of uart0Putch

126

Table 6.3: Placeholders used in the Hoare triple for uart0Putch
constant description
startrx 0x400001A8
sizerx 64
starttx 0x40000010
sizetx 128
front addrrx 0x400001EA
back addrrx 0x40000194
front addrtx 0x4000019C
back addrtx 0x40000092
frontrx f ↗16

2 0x400001EA
backrx f ↗16

2 0x40000194
fronttx f ↗16

2 0x4000019C
backtx f ↗16

2 0x40000092
running addrtx f ↗16

4 0x400001A4

CHAPTER 7

CONCLUSION

In this research I have shown that full correctness of realistic interrupt-driven

drivers for realistic devices can be proven. I introduced my approach and demon-

strated it by proving the full correctness of a serial port driver. Below is the summary

of the approach.

Model the device by describing its own transition and the effects of memory-

mapped access by the processor core at each clock cycle. The clock cycle is internal

to the device and implements a clock divider. The device runs in lock-step with

the processor. Its speed is parameterized relative to the processor core. This allows

timing constraints to be expressed.

The asymmetry between the ISR and the main program is leveraged. The role of

the ISR is viewed as maintaining some invariants for the resources shared between

the main program and itself. Changes to these invariants only occur when related

interrupts are disabled. ISR is verified first, then its effect can be integrated on the

semantics of the instructions of the main program. The main program can be verified

using the approach for sequential programs.

Automation can be achieved in the work flow when high-level assertions are used

to describe the semantics of the device and instructions. Models and theorems about

common data structures should be treated as an infrastructure, just like the ARM

model. I spent significant time to formalize the circular buffer and prove lemmas

about it. If this work had been done, I could have saved quite some time.

CHAPTER 8

FUTURE WORK

I have demonstrated that full correctness of realistic drivers for a realistic device

can be proven. In this chapter I explain some possible ways to further this research.

8.1 Multiple Devices

In the system I verified, there is only one device. In real embedded systems,

more than one device is expected. It would be interesting to extend the approach to

drivers of multiple devices. Multiple devices are already supported to some extent

in the abstract device model. The model supports combination of multiple devices.

However, this is limited to polling-based drivers.

If all the device drivers are polling-based, the verification is a trivial repetition of

the approach in this dissertation on each device and its drivers. However, it is far

more likely that device drivers in a system with multiple devices are interrupt-driven.

Such drivers utilize the processor and devices more efficiently and responsively.

To continue this work on ARM, the first step is to formalize a vector interrupt

controller (VIC). A VIC itself is a device. One has to be careful when combining a VIC

model with other device models, as the VIC needs to be configured to support multiple

interrupts from these devices. One way is to revise the device combination design to

accommodate the special VIC device. The better way is to design a wellformness

constraint to assert that the VIC is properly configured for other devices.

In the verification of the serial port driver, the interrupt handler is verified before

the main program. Since there is only one device and there is no VIC, the handler is

equivalent to the ISR. What is really verified is the interrupt handling process starting

from when an interrupt is taken until the interrupted main program is resumed. With

multiple devices, interrupt handling is more likely not done by one single ISR. These

ISRs are organized by an interrupt handling scheme.

129

There are more than one choice for interrupt handling schemes. The most basic

one is the nonnested scheme. In this scheme interrupts are handled in first come, first

serve fashion. All the ISRs are not interrupted and they can be verified independently.

The approach used in this dissertation needs to be repeated to every interrupt. This

scheme is easy to verify. But it is possible that lower-priority interrupt can prevent

higher-priority interrupts from being served.

The next one up is the nested scheme. When an interrupt is taken and has

been processed for a while, interrupt handling is enabled. Generally, lower latency is

achieved. But interrupts with higher priority may not have lower latency compared to

interrupts with lower priority. This scheme involves sophisticated context switching.

If interrupts come at too fast rate, stack overflow may occur. To prove termination

and stack safety in interrupt handling in this scheme, timing constraint is necessary.

Further up priority filtering can be added to the nested scheme. It yields lower

latency for higher-priority interrupts, but also adds more challenges for verification.

One can start from the ISR with the highest priority and work down the priority

hierarchy to prove the Hoare triples for the interrupt handling process.

If all devices are working together in an application, then fairness is a property

needing to be verified. It is fair when lower-priority interrupts are served promptly.

Again, timing constraints will be useful in verifying properties like this.

Theoretically, timing analysis for complicated interrupt handling schemes is es-

sentially applying queuing and scheduling on the interrupts. It is hard, especially if it

is done using a theorem prover. Conclusions from independent timing analysis may

have to be introduced into the theorem prover as oracles. This may compromise the

soundness, but makes the verification scale.

Regehr [77] surveyed the problems that developers face when creating correct

interrupt-driven embedded software, and proposed some guidelines. Some of these

guidelines are related to the timing constraints. For example, the maximum arrival

rate, the deadline, and WCET for each interrupt should be determined. Following

these guidelines make the verification easier, especially the timing analysis.

A system with a serial port, an analog-to-digital converter (ADC) and a timer is a

good example. It can be used to collect and transmit data. This system has inherent

130

timing constraints, yet is simple enough for verification purpose. The ADC and timer

need to be formalized. Similar to the serial port model, these models should have

internal clocks to define their relative speeds to the processor.

8.2 Initialization Code

The work on serial port drivers shows that my approach can be used to verify

programs which allow disabling and enabling hardware interrupts. Following the

verification of drivers of multiple devices, a good choice for the next step in future

work is verifying the initialization code of a simple embedded system.

The research presented in this dissertation assumes the processor and devices are

in wellformed states. These wellformness are expressed in terms of global invariants.

The initialization process will establish invariants. When an embedded system is

powered on, it first reads and executes the code from a known address in the read-only

memory (ROM). This code then jumps to the code in program memory, which then

initializes processor registers, stacks, memory and cache. It then disables interrupts.

Since RAM is faster than program memory, the code will copy the data sections

from program memory to the RAM. After this, devices are initialized.

ROM, program memory and RAM can all be modeled as devices, so this boot-

strapping process can be verified. Cache interferes with timing analysis. Independent

results about it can be used.

The serial port model presented in this dissertation has a rather strong wellness

constraint, which describes the working state of the device. To verify the device

initialization process is to prove that such wellformness constraints can be established

by the initialization code. This will test some parts of the device models which are

usually not touched in verifications.

CHAPTER 9

RELATED WORK

In this chapter I discuss some of the recent related work, ranging from formal

semantics for ISA, program logic for machine languages, some examples of verifica-

tion on machine language level, handling interrupts-caused concurrency, as well as

verification of device drivers.

9.1 Formal Semantics of ISAs

The device model presented in this work is intended to be integrated with an

instruction set architecture (ISA) model. There has been some work on formal models

of an industrial ISA. Boyer and Yu [12] formalized a substantial subset of Motorola

MC68020, and verified compiler generated machine code programs using it. In the

process they proved a large number of lemmas to achieve automation. The work is

done in Nqthm, also known as Boyer-Moore theorem prover [11].

For ARM architecture, Fox from the University of Cambridge has formalized a

series of ARM ISAs. ARM6 [32, 33] was first formalized and verified using an algebraic

approach [34], where the state function was modeled as an iterated map. My work

on the correctness of polling-based serial port driver in Chapter 3 uses this ARM6

model. Later, Fox and Myreen formalized ARMv7 [37] using a monadic approach.

This model covers all the currently supported ARM versions. An overview of the

ARM specification and verification using HOL is done by Fox et al. [36].

For x86 architecture, Hunt formalized Centaur Technology x86 ISA [98] using

E-language which is deeply embedded in ACL2 [46]. However, this work is not publicly

available. Currently, there is ongoing effort [97] to formalize x86 in ACL2.

Sarkar et al. formalized the operational semantics of x86 multiprocessor machine

code with so called causal consistency (CC) memory model [85] in HOL4 [90]. The

CC model is unsound with regard to the hardware and too weak for programming.

132

Later, the total store ordering (TSO) model for x86 machine code semantics was

developed [69] to fix the issues.

Degenbaev [23] also formalized the x86 ISA, including the memory model and the

operational semantics. He extended the TSO memory model with caches, translation-

lookaside buffers, memory fences, locks, and other features of the x86 processor.

He also designed a new domain-specific monadic language to specify the instruction

semantics. However, the semantics specification is not inside a theorem prover.

For IBM Power architecture, Alglave et al. formalized Power multiprocessor

semantics model [1] in HOL4. However, some subtle issues of the memory behavior

were not accounted for. This was later addressed in an operational memory model [84]

and an axiomatic memory model [51]. For the latter, a SAT solver is used to evaluate

the specification with great performance.

9.2 Program Logic for Machine Languages

Hoare logic [31, 42] pioneered the way to mathematically reason about the meaning

of a program. There has been research on how to use it on assembly programs.

One direction is to support the low-level control flow structure. Tan and Appel

[93] designed a program logic that is able to verify programs with the control flow

constructs typical to machine languages, such as the multientry and multiexit con-

structs. They used it to verify a type system with the SPARC machine language.

This type system is used to prove memory safety of the machine code program.

Using ACL2, Hardin et al. [41] used a cutpoint composition [52] to prove secure

machine code application. Especially, cutpoint is used to prove partial correctness

of loop. They formalized Rockwell Collins’s AAMP7G architecture in the process.

Saabas and Uustalu [83] designed a simple low-level language with jumps and derived

a compositional semantics and Hoare logic for it.

The Flint group at Yale University has done a broad range of work along the

certified assembly program (CAP) project to tackle issues in verifying assembly pro-

grams using Coq [43], such as dynamic storage allocation [102],concurrency with non-

preemptive threads [28, 103], embedded code pointers [66], machine context manage-

ment [67] stack-based controls [30],garbage collection [50, 53], self-modifying code [16],

interrupts and preemptive threads [29]. Most of these works are in the context of

133

proof-carrying code [65]. Assume-guarantee [55] or rely-guarantee [45] is used in

concurrency and interrupt related work.

Out of these works, the one on interrupts and preemptive threads[29] is mostly

related to my work. The authors developed a program logic for machine languages

with support for interrupts and threads. It has the assume-guarantee style. The

memory shared between a thread and the ISRs is reasoned about using the so-called

ownership-transfer semantics, which is inspired by the concurrent separation logic [13].

Even though this work supports interrupts, it does not support devices.

Myreen and Gordon [61] developed a separation logic style Hoare logic for realistic

machine programs in HOL4. Local reasoning was supported using the frame rule. It

supports the low-level features such as the same memory space for data and the

program, but peripheral devices and interrupts are not supported. Later this work

was extended to work with multiple architectures in decompiling [62, 63]. With this

foundation, Myreen and others were able to do some significant verification, such as

proof-producing compilation [64], just-in-time compiler for x86 [58], a verified runtime

for a verified theorem prover [59], verified LISP implementations on ARM, x86 and

PowerPC [89], translation validation of the seL4 from C to ARM level [89]. My work

is based on this work without using the decompilation.

Chlipala [17] implemented a computational separation logic to achieve much au-

tomation in verifying low-level programs. It is called computational because the

function specifications are mostly written in terms of reference implementations in

the pure functional language inside Coq.

When dealing with concurrency related to threads or interrupts, researchers often

borrow ideas from assume-guarantee [55], or rely-guarantee [45] and concurrent sepa-

ration logic [80]. This is evident in the work from the Flint Group at Yale University,

mentioned above. They actually investigated the relationship between concurrent

separation logic and assume-guarantee method based on assembly language [27].

They proposed a assume-guarantee based logic for an assembly language with built-in

lock primitives, and showed that concurrent separation logic is a specialization of

this logic. Recently, Ridge [81] used a rely-guarantee style approach to prove x86

assembly program running under the TSO memory model [69]. It is formalized in

134

HOL4. Fu et al. [38] adapted concurrent separation logic to verify concurrent assembly

programs. They extended the lock in concurrent separation logic so that it can track

the reentrancy level. It is formalized in Coq.

My treatment of the concurrency caused by interrupt also borrowed ideas from

assume-guarantee and concurrent separation logic. On one hand, since the Hoare

logic I used provides complete correctness, the interrupt handling has clear entry and

exit interface with the main program. It is similar to the lock in concurrent separation

logic. On the other hand, the assertion formula for the main program and the ISR

are constructed in the spirit of assume-guarantee method.

9.3 Taming Concurrency in Interrupt-Driven
Systems

Parallelism introduced by interrupt handling to interrupt-driven embedded sys-

tems presents a big challenge for verifying them. Timing-related assumptions or

design choice often are made to make verification feasible. Kotker et al. [48] did

timing analysis of interrupt-driven embedded systems using context bounds tech-

nique [75, 76]. The idea is to bound the number of context switches, and use a

sequential program to simulate all interleaving of threads inside the bound. Brylow

et al. [14] assumed worst-case execution time for program fragments when statically

checking the deadline properties of interrupt-driven embedded systems. The assump-

tions serve as oracles for static analysis and need testing to verifying them. In the

verification of seL4 kernel [47], interrupt handling is restricted to certain convenient

windows in the design of the kernel.

Model checking needs to address similar issues. Schlich et al [88] used an abstrac-

tion technique based on partial order reduction to reduce the state space explosion

when using model checking to verify interrupt-driven embedded systems. The insight

is that if the ISR does not have an effect on the behavior of the main program, then

its execution can be blocked. This can be statically done.

In contrast, I use timing constraints to help prove the termination of the ISR

and to achieve more precision of the specification of the ISR. Interleaving between

the main program and the ISR is removed at the instruction level when the effect

135

of the ISR is integrated. My approach allows the techniques for verifying sequential

program to be used.

9.4 Formal Methods on Interrupt-driven

Embedded Systems

Formal methods have been applied on interrupts-driven systems. Most of the

time the approach is only intended to tackle a small subset of problems. Regehr

and Cooperider [78] discussed the approach of verifying interrupts through verifying

threads that have the same semantics as the interrupt handlers. This approach

can take advantage of the existing techniques of threads verification. However, it

is difficult to introduce notion of time with this approach.

Palsberg et al. [70] proposed a typed interrupt calculus for programming interrupt-

driven systems. The success of type check would guarantee stack boundness. Regehr

et al. [79] uses context-sensitive dataflow analysis of object code to statically guarantee

stack safety in interrupt-driven embedded software. In my work, stack safety is

assumed in the precondition. The size of the stack is automatically calculated.

Suenaga and Kobayashi [91] developed a concurrent calculus with primitives for

threads and interrupts. It uses type system to guarantee deadlock freedom.

Zhao et al. [104] constructed a formal probabilistic language to describe the oper-

ational semantics for an interrupt-driven program. The delay on the main program

due to interrupts handling can be specified. The timing constraints in my work are

more concerned with the delay on the ISR from the main program.

9.5 Verification of Device Drivers

Device drivers are typically written in unsafe programming languages and live in

the kernel’s address space. Driver bugs can corrupt or drop data, cause peripherals

to malfunction or become wedged, and crash the operating system [18].

9.5.1 Correctness of Device Drivers

Monniaux [56] verified a driver together with a model for a USB (universal serial

bus) OHCI (open host controller interface) controller. This work noticed that a driver

should be verified together with the model for the device. The controller was modeled

136

as a C program, which runs in parallel with the driver. A static analyzer was used

to do the verification. The parallelism between the driver and the device model is

reduced using partial order reduction. The execution of the device model is only

considered at the point where the driver accesses the shared memory. This is possible

because timing constraints are not considered in the device model.

Alkassar and his colleagues have investigated the correctness of a device driver

using Isabelle/HOL [68] in the context of the Verisoft project [94]. They constructed

a formal model for a serial port device and verified a serial port driver [2]. The driver

is written in DLX instructions of the VAMP (verified architecture microprocessor

processor) [9]. The models of the processor and the device were combined in a lockstep

fashion. The serial port model is similar to mine, but without the notion of timing.

As a result, the problem of overrunning the receiver queue cannot be expressed.

Later, they verified a hard disk driver [3]. The interleaving between the device model

and the driver is reduced by reordering. This idea is also used by Monniaux [56].

They reported a formal pervasive verification of an operating system kernel including

inline assembly, C program and concurrent programs [4]. Again, the interleaving

steps between the processor and devices are reordered to have a sequential semantics.

In contrast, we modeled the relative speed of the serial port device so that some

timing properties can be reasoned about; the accuracy depends on the details of the

instruction set architecture model that is used.

9.5.2 Property Checking for Device Drivers

For desktop operating systems such as Windows and Linux, full correctness proof

of device drivers are not realistic. Instead, research has focused on property checking

and bug finding for device drivers for these operating systems. The main goal of most

of these works are to keep drivers from crashing or hanging the operating system.

There has been great success at using CEGAR (counterexample guided abstrac-

tion refinement) [20] based model checking to verify device drivers for commodity

operating systems [5, 6, 7, 74, 100]. Most of this work is at the source code level and

focuses on the interface between the drivers and the kernel, i.e., API rule, as opposed

to focusing on correct interaction with the device.

Recent tools can check memory safety. SLAYer [8] automatically tries to prove

137

memory safety in industrial system code. It is based on separation logic and Z3. The

main limitation is that it uses an ideal memory model in the sense that memory is

a collection of disjointed objects, so it is not byte-level accurate. Penninckx et al.

reported a verification of a realistic Linux USB keyboard driver using the VeriFast

tool [71]. VeriFast [44] can check memory safety and API rules violations. It works on

annotated C programs. The annotation is based on separation logic involving ghost

variables and ghost lemmas.

Source level model checking can be difficult to use in the context of embedded

systems [87]. Model checking of embedded C code [26] and assembly code [25, 86] has

been done. In these works, specific hardware details are considered. However, the

works are largely limited to bug hunting instead of providing correctness guarantees.

9.5.3 Device Driver Synthesis

One approach to improve the reliability of device drivers is to mechanically gen-

erate “correct by construction” drivers from a high level formal specification of a

device and its environment [21, 54, 82, 92, 96]. By avoiding languages like C and by

checking some properties, bugs can be avoided. This approach has advantages, such

as making it easier to generate drivers for multiple platforms. However, the resulting

driver is not verified (the code generator and compiler are trusted) and synthesis of

high-performance drivers remains challenging.

REFERENCES

[1] Alglave, J., Fox, A. C. J., Ishtiaq, S., Myreen, M. O., Sarkar, S.,
Sewell, P., and Nardelli, F. Z. 2009. The semantics of Power and ARM
multiprocessor machine code. In Proceedings of the POPL 2009 Workshop on
Declarative Aspects of Multicore Programming, Savannah, GA, Jan. 2009, L. Pe-
tersen and M. M. T. Chakravarty, Eds. ACM, New York, NY, 13–24.

[2] Alkassar, E., Hillebrand, M., Knapp, S., Rusev, R., and Tverdyshev,
S. 2007. Formal device and programming model for a serial interface. In Proceed-
ings of the 4th International Verification Workshop (VERIFY), Bremen, Germany,
July 2007, B. Beckert, Ed. CEUR-WS.org, 4–20.

[3] Alkassar, E. and Hillebrand, M. A. 2008. Formal functional verification
of device drivers. In Proceedings of the 2nd International Conference on Verified
Software: Theories, Tools, Experiments (VSTTE), Toronto, Canada, Oct. 2008,
N. Shankar and J. Woodcock, Eds. Springer, Berlin, Germany, 225–239.

[4] Alkassar, E., Paul, W. J., Starostin, A., and Tsyban, A. 2010. Per-
vasive verification of an OS microkernel - Inline assembly, memory consumption,
concurrent devices. In Proceedings of the 3rd International Conference on Verified
Software: Theories, Tools, Experiments (VSTTE), Edinburgh, UK, Aug. 2010,
G. T. Leavens, P. W. O’Hearn, and S. K. Rajamani, Eds. Springer, Berlin,
Germany, 71–85.

[5] Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGar-
vey, C., Ondrusek, B., Rajamani, S. K., and Ustuner, A. 2006. Thorough
static analysis of device drivers. In Proceedings of the 2006 EuroSys Conference,
Leuven, Belgium, Apr. 2006, Y. Berbers and W. Zwaenepoel, Eds. ACM, New
York, NY, 73–85.

[6] Ball, T., Bounimova, E., Kumar, R., and Levin, V. 2010. SLAM2: Static
driver verification with under 4% false alarms. In Proceedings of the 2010 Formal
Methods in Computer-Aided Design (FMCAD), Lugano, Switzerland, Oct. 2010,
R. Bloem and N. Sharygina, Eds. FMCAD Inc, Austin, TX, 35–42.

[7] Ball, T. and Rajamani, S. K. 2001. Automatically validating temporal safety
properties of interfaces. In Proceedings of the 8th International SPIN Workshop on
Model Checking Software (SPIN), Toronto, Canada, May 2001, M. B. Dwyer, Ed.
Springer, Berlin, Germany, 103–122.

[8] Berdine, J., Cook, B., and Ishtiaq, S. 2011. Slayer: Memory safety
for systems-level code. In Proceedings of the 23rd International Conference on
Computer Aided Verification (CAV), Snowbird, UT, July 2011, G. Gopalakrishnan
and S. Qadeer, Eds. Springer, Berlin, Germany, 178–183.

139

[9] Beyer, S., Jacobi, C., Kröning, D., Leinenbach, D., and Paul, W. J.
2006. Putting it all together - Formal verification of the VAMP. International
Journal on Software Tools for Technology Transfer 8, 411–430.

[10] Böhme, S., Fox, A. C. J., Sewell, T., and Weber, T. 2011. Recon-
struction of Z3’s bit-vector proofs in HOL4 and Isabelle/HOL. In Proceedings of
the 1st Certified Programs and Proofs (CPP), Kenting, Taiwan, Dec. 2011, J.-P.
Jouannaud and Z. Shao, Eds. Springer, Berlin, Germany, 183–198.

[11] Boyer, R. S., Kaufmann, M., and Moore, J. S. 1995. The Boyer-Moore
theorem prover and its interactive enhancement. Computers & Mathematics with
Applications 29, 27–62.

[12] Boyer, R. S. and Yu, Y. 1992. Automated correctness proofs of machine code
programs for a commercial microprocessor. In Proceedings of the 11th International
Conference on Automated Deduction, Saratoga Springs, NY, June 1992, D. Kapur,
Ed. Springer, Berlin, Germany, 416–430.

[13] Brookes, S. 2007. A semantics for concurrent separation logic. Theoretical
Computer Science 375, 227–270.

[14] Brylow, D. and Palsberg, J. 2003. Deadline analysis of interrupt driven
software. In Proceedings of the 11th International Symposium on the Foundations
of Software Engineering (FSE), Helsinki, Finland, Sept. 2003, J. Paakki and
P. Inverardi, Eds. ACM, New York, NY, 198–207.

[15] Burstall, R. M. 1972. Some techniques for proving correctness of programs
which alter data structures. Machine Intelligence 7, 23–50.

[16] Cai, H., Shao, Z., and Vaynberg, A. 2007. Certified self-modifying code.
In Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language
Design and Implementation (PLDI), San Diego, CA, June 2007, J. Ferrante and
K. S. McKinley, Eds. ACM, New York, NY, 66–77.

[17] Chlipala, A. 2011. Mostly-automated verification of low-level programs in
computational separation logic. In Proceedings of the ACM SIGPLAN 2011
Conference on Programming Language Design and Implementation (PLDI), San
Jose, CA, June 2011, M. W. Hall and D. A. Padua, Eds. ACM, New York, NY,
234–245.

[18] Chou, A., Yang, J., Chelf, B., Hallem, S., and Engler, D. R. 2001.
An empirical study of operating system errors. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP), Banff, Canada, Oct. 2001,
K. Marzullo and M. Satyanarayanan, Eds. ACM, New York, NY, 73–88.

[19] Clarke, E. M., Emerson, E. A., and Sistla, A. P. 1986. Automatic
verification of finite-state concurrent systems using temporal logic specifications.
ACM Transactions on Programming Languages and Systems 8, 244–263.

[20] Clarke, E. M., Grumberg, O., Jha, S., Lu, Y., and Veith, H. 2003.
Counterexample-guided abstraction refinement for symbolic model checking. Jour-
nal of the ACM 50, 752–794.

140

[21] Conway, C. L. and Edwards, S. A. 2004. NDL: A domain-specific language
for device drivers. In Proceedings of the 2004 Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES), Washington, DC, June 2004, D. B.
Whalley and R. Cytron, Eds. ACM, New York, NY, 30–36.

[22] De Sutter, B., Van Put, L., Chanet, D., De Bus, B., and De Boss-
chere, K. 2007. Link-time compaction and optimization of ARM executables.
ACM Transactions on Embedded Computing Systems (TECS) 6, 5.

[23] Degenbaev, U. 2011. Formal Specification of the x86 Instruction Set Archi-
tecture. Ph.D. Dissertation, Saarland University, Saarbrcken.

[24] Emerson, E. A. and Halpern, J. Y. 1985. Decision procedures and expres-
siveness in the temporal logic of branching time. Journal of Computer and System
Sciences 30, 1–24.

[25] Fehnker, A., Huuck, R., Rauch, F., and Seefried, S. 2008. Some
assembly required - Program analysis of embedded system code. In Proceedings
of the 8th International Working Conference on Source Code Analysis and Manip-
ulation (SCAM), Beijing, China, Sept. 2008, J. R. Cordy and L. Zhang, Eds. IEEE
Computer Society, Washington, DC, 15–24.

[26] Fehnker, A., Huuck, R., Schlich, B., and Tapp, M. 2009. Automatic bug
detection in microcontroller software by static program analysis. In Proceedings of
the 35th Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM), Spindleruv Mlýn, Czech Republic, Jan. 2009, M. Nielsen, A. Kucera,
P. B. Miltersen, C. Palamidessi, P. Tuma, and F. D. Valencia, Eds. Springer, Berlin,
Germany, 267–278.

[27] Feng, X., Ferreira, R., and Shao, Z. 2007. On the relationship between
concurrent separation logic and assume-guarantee reasoning. In Proceedings of the
16th European Symposium on Programming (ESOP), Braga, Portugal, Mar.–Apr.
2007, R. De Nicola, Ed. Springer, Berlin, Germany, 173–188.

[28] Feng, X. and Shao, Z. 2005. Modular verification of concurrent assembly
code with dynamic thread creation and termination. In Proceedings of the 10th
ACM SIGPLAN International Conference on Functional Programming (ICFP),
Tallinn, Estonia, Sept. 2005, O. Danvy and B. C. Pierce, Eds. ACM, New York,
NY, 254–267.

[29] Feng, X., Shao, Z., Guo, Y., and Dong, Y. 2009. Certifying low-level
programs with hardware interrupts and preemptive threads. Journal of Automatic
Reasoning 42, 301–347.

[30] Feng, X., Shao, Z., Vaynberg, A., Xiang, S., and Ni, Z. 2006. Modular
verification of assembly code with stack-based control abstractions. In Proceedings
of the ACM SIGPLAN 2006 Conference on Programming Language Design and
Implementation (PLDI), Ottawa, Canada, June 2006, M. I. Schwartzbach and
T. Ball, Eds. ACM, New York, NY, 401–414.

141

[31] Floyd, R. W. 1966. Assigning meanings to programs. In Proceedings of
Symposium in Applied Mathematics, New York, NY, Apr. 1966. Vol. 19. American
Mathematical Society, Providence, RI, 19–32.

[32] Fox, A. C. J. 2002. Formal verification of the ARM6 micro-architecture. Tech.
Rep. 548, University of Cambridge Computer Laboratory. Nov.

[33] Fox, A. C. J. 2003. Formal specification and verification of ARM6. In
Proceedings of the 16th International Conference on Theorem Proving in Higher
Order Logics (TPHOLs), Rome, Italy, Sept. 2003, D. A. Basin and B. Wolff, Eds.
Springer, Berlin, Germany, 25–40.

[34] Fox, A. C. J. 2005. An algebraic framework for verifying the correctness
of hardware with input and output: A formalization in HOL. In Proceedings of
the 1st International Conference on Algebra and Coalgebra in Computer Science
(CALCO), Swansea, UK, Sept. 2005, J. L. Fiadeiro, N. Harman, M. Roggenbach,
and J. J. M. M. Rutten, Eds. Springer, Berlin, Germany, 157–174.

[35] Fox, A. C. J. 2011. LCF-style bit-blasting in HOL4. In Proceedings of the 2nd
International Conference on Interactive Theorem Proving (ITP), Berg en Dal, The
Netherlands, Aug. 2011, M. C. J. D. van Eekelen, H. Geuvers, J. Schmaltz, and
F. Wiedijk, Eds. Springer, Berlin, Germany, 357–362.

[36] Fox, A. C. J., Gordon, M. J. C., and Myreen, M. O. 2010. Specification
and verification of ARM hardware and software. In Design and Verification
of Microprocessor Systems for High-Assurance Applications, D. S. Hardin, Ed.
Springer, Berlin, Germany, 221–248.

[37] Fox, A. C. J. and Myreen, M. O. 2010. A trustworthy monadic for-
malization of the ARMv7 instruction set architecture. In Proceedings of the 2st
International Conference on Interactive Theorem Proving (ITP), Edinburgh, UK,
July 2010, M. Kaufmann and L. C. Paulson, Eds. Springer, Berlin, Germany,
243–258.

[38] Fu, M., Zhang, Y., and Li, Y. 2009. Formal reasoning about concurrent
assembly code with reentrant locks. In Proceedings of the 3rd IEEE Symposium on
Theoretical Aspects of Software Engineering (TASE), Tianjin, China, July 2009,
W.-N. Chin and S. Qin, Eds. IEEE Computer Society, Washington, DC, 233–240.

[39] Gordon, M. J. C. and Melham, T. F., Eds. 1993. Introduction to HOL: A
theorem proving environment for higher order logic. Cambridge University Press,
Cambridge, UK.

[40] Gordon, M. J. C., Milner, R., and Wadsworth, C. P. 1979. Edinburgh
LCF: A Mechanized Logic of Computation. Lecture Notes in Computer Science,
vol. 78. Springer, Berlin, Germany.

[41] Hardin, D. S., Smith, E. W., and Young, W. D. 2006. A robust machine
code proof framework for highly secure applications. In Proceedings of the 6th
International Workshop on the ACL2, Seattle, WA, Aug. 2006, P. Manolios and
M. Wilding, Eds. ACM, New York, NY, 11–20.

142

[42] Hoare, C. A. R. 1969. An axiomatic basis for computer programming.
Communications of the ACM 12, 576–583.

[43] INRIA. A short introduction to Coq. Retrieved May 2013 from http://coq.
inria.fr/a-short-introduction-to-coq/.

[44] Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W.,
and Piessens, F. 2011. VeriFast: A powerful, sound, predictable, fast verifier
for C and Java. In Proceedings of the 3rd NASA Formal Methods International
Symposium (NFM), Pasadena, CA, Apr. 2011, M. Bobaru, K. Havelund, G. J.
Holzmann, and R. Joshi, Eds. Springer, Berlin, Germany, 41–55.

[45] Jones, C. B. 1983. Tentative steps toward a development method for interfering
programs. ACM Transactions on Programming Languages and Systems 5, 596–619.

[46] Kaufmann, M. and Moore, J. S. 1997. An industrial strength theorem
prover for a logic based on Common Lisp. IEEE Transactions on Software
Engineering 23, 203–213.

[47] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D.,
Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M.,
Sewell, T., Tuch, H., and Winwood, S. 2009. seL4: Formal verification of
an OS kernel. In Proceedings of the 22nd ACM Symposium on Operating Systems
Principles (SOSP), Big Sky, MT, Oct. 2009, J. N. Matthews and T. E. Anderson,
Eds. ACM, New York, NY, 207–220.

[48] Kotker, J., Sadigh, D., and Seshia, S. A. 2011. Timing analysis of
interrupt-driven programs under context bounds. In Proceedings of the 2011
Formal Methods in Computer-Aided Design (FMCAD), Austin, TX, Oct. 2011,
P. Bjesse and A. Slobodová, Eds. FMCAD Inc, Austin, TX, 81–90.

[49] Lamport, L. 1994. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems 16, 872–923.

[50] Lin, C., McCreight, A., Shao, Z., Chen, Y., and Guo, Y. 2007. Founda-
tional typed assembly language with certified garbage collection. In Proceedings of
the 1st IEEE Symposium on Theoretical Aspects of Software Engineering (TASE),
Shanghai, China, June 2007, J. He and J. Sanders, Eds. IEEE Computer Society,
Washington, DC, 326–338.

[51] Mador-Haim, S., Maranget, L., Sarkar, S., Memarian, K., Alglave,
J., Owens, S., Alur, R., Martin, M. M. K., Sewell, P., and Williams, D.
2012. An axiomatic memory model for POWER multiprocessors. In Proceedings
of the 24th International Conference on Computer Aided Verification (CAV),
Berkeley, CA, July 2012, P. Madhusudan and S. A. Seshia, Eds. Springer, Berlin,
Germany, 495–512.

[52] Matthews, J., Moore, J. S., Ray, S., and Vroon, D. 2006. Verification
condition generation via theorem proving. In Proceedings of the 13th Interna-
tional Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR), Phnom Penh, Cambodia, Nov. 2006, M. Hermann and A. Voronkov, Eds.
Springer, Berlin, Germany, 362–376.

143

[53] McCreight, A., Shao, Z., Lin, C., and Li, L. 2007. A general framework
for certifying garbage collectors and their mutators. In Proceedings of the ACM
SIGPLAN 2007 Conference on Programming Language Design and Implementation
(PLDI), San Diego, CA, June 2007, J. Ferrante and K. S. McKinley, Eds. ACM,
New York, NY, 468–479.

[54] Mérillon, F. and Muller, G. 2001. Dealing with hardware in embedded
software: A general framework based on the Devil language. In Proceedings of
the 2001 Workshop on Languages, Compilers, and Tools for Embedded Systems
(LCTES) / The Workshop on Optimization of Middleware and Distributed Systems
(LCTES/OM), Snowbird, UT, June 2001, S. Hong and S. Pande, Eds. ACM, New
York, NY, 121–127.

[55] Misra, J. and Chandy, K. M. 1981. Proofs of networks of processes. IEEE
Transactions on Software Engineering 7, 417–426.

[56] Monniaux, D. 2007. Verification of device drivers and intelligent controllers:
A case study. In Proceedings of the 7th International Conference on Embedded
Software (EMSOFT), Salzburg, Austria, Sept.–Oct. 2007, C. M. Kirsch and R. Wil-
helm, Eds. ACM, New York, NY, 30–36.

[57] Moore, J. S. 2006. Inductive assertions and operational semantics. Interna-
tional Journal on Software Tools for Technology Transfer 8, 359–371.

[58] Myreen, M. O. 2010. Verified just-in-time compiler on x86. In Proceedings of
the 37th Symposium on Principles of Programming Languages (POPL), Madrid,
Spain, Jan. 2010, M. V. Hermenegildo and J. Palsberg, Eds. ACM, New York, NY,
107–118.

[59] Myreen, M. O. and Davis, J. 2011. A verified runtime for a verified theorem
prover. In Proceedings of the 2nd International Conference on Interactive Theorem
Proving (ITP), Berg en Dal, The Netherlands, Aug. 2011, M. C. J. D. van Eekelen,
H. Geuvers, J. Schmaltz, and F. Wiedijk, Eds. Springer, Berlin, Germany, 265–280.

[60] Myreen, M. O., Fox, A. C. J., and Gordon, M. J. C. 2007. Hoare logic
for ARM machine code. In Proceedings of the 2007 Symposium on Fundamentals of
Software Engineering (FSEN), Tehran, Iran, Apr. 2007, F. Arbab and M. Sirjani,
Eds. Springer, Berlin, Germany, 272–286.

[61] Myreen, M. O. and Gordon, M. J. C. 2007. Hoare logic for realistically
modelled machine code. In Proceedings of the 13th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
Braga, Portugal, Mar.–Apr. 2007, O. Grumberg and M. Huth, Eds. Springer,
Berlin, Germany, 568–582.

[62] Myreen, M. O., Gordon, M. J. C., and Slind, K. 2008. Machine-code
verification for multiple architectures - An application of decompilation into logic.
In Proceedings of the 2008 Formal Methods in Computer-Aided Design (FMCAD),
Portland, Oregon, Nov. 2008, A. Cimatti and R. B. Jones, Eds. IEEE Computer
Society, Washington, DC, 1–8.

144

[63] Myreen, M. O., Gordon, M. J. C., and Slind, K. 2012. Decompilation
into logic - Improved. In Proceedings of the 2012 Formal Methods in Computer-
Aided Design (FMCAD), Cambridge, UK, Oct. 2012, G. Cabodi and S. Singh, Eds.
FMCAD Inc, Austin, TX, 78–81.

[64] Myreen, M. O., Slind, K., and Gordon, M. J. C. 2009. Extensible proof-
producing compilation. In Proceedings of the 18th International Conference on
Compiler Construction, York, UK, Mar. 2009, O. de Moor and M. I. Schwartzbach,
Eds. Springer, Berlin, Germany, 2–16.

[65] Necula, G. C. 1997. Proof-carrying code. In Proceedings of the 24th Sympo-
sium on Principles of Programming Languages (POPL), Paris, France, Jan. 1997,
N. D. Jones, Ed. ACM, New York, NY, 106–119.

[66] Ni, Z. and Shao, Z. 2006. Certified assembly programming with embedded
code pointers. In Proceedings of the 33rd Symposium on Principles of Programming
Languages (POPL), Charleston, SC, Jan. 2006, J. G. Morrisett and S. L. P. Jones,
Eds. ACM, New York, NY, 320–333.

[67] Ni, Z., Yu, D., and Shao, Z. 2007. Using XCAP to certify realistic systems
code: Machine context management. In Proceedings of the 20th International Con-
ference on Theorem Proving in Higher Order Logics (TPHOLs), Kaiserslautern,
Germany, Aug. 2007, K. Schneider and J. Brandt, Eds. Springer, Berlin, Germany,
189–206.

[68] Nipkow, T., Paulson, L. C., and Wenzel, M. 2002. Isabelle/HOL - A
Proof Assistant for Higher-Order Logic. Lecture Notes in Computer Science, vol.
2283. Springer, Berlin, Germany.

[69] Owens, S., Sarkar, S., and Sewell, P. 2009. A better x86 memory model:
x86-TSO. In Proceedings of the 22nd International Conference on Theorem Proving
in Higher Order Logics (TPHOLs), Munich, Germany, Aug. 2009, Z. Shao and B. C.
Pierce, Eds. ACM, New York, NY, 391–407.

[70] Palsberg, J. and Ma, D. 2002. A typed interrupt calculus. In Proceedings of
the 7th International Symposium on Formal Techniques in Real-Time and Fault-
Tolerant Systems (FTRTFT), Oldenburg, Germany, Sept. 2002, W. Damm and
E.-R. Olderog, Eds. Springer, Berlin, Germany, 291–310.

[71] Penninckx, W., Mühlberg, J. T., Smans, J., Jacobs, B., and Piessens,
F. 2012. Sound formal verification of Linux’s USB BP keyboard driver. In
Proceedings of the 4th NASA Formal Methods International Symposium (NFM),
Norfolk, VA, Apr. 2012, A. E. Goodloe and S. Person, Eds. Springer, Berlin,
Germany, 210–215.

[72] Philips Semiconductors. 2004. LPC2119/2129/2194/2292/2294 user man-
ual. Retrieved July 2009 from http://www.semiconductors.philips.com/acrobat/
usermanuals/UM LPC21XX LPC22XX 2.pdf.

[73] Pnueli, A. 1977. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Scienc, Providence, RI, Oct. 1977.
IEEE Computer Society, Washington, DC, 46–57.

145

[74] Post, H. and Küchlin, W. 2007. Integrated static analysis for Linux device
driver verification. In Proceedings of the 6th International Conference on Integrated
Formal Methods (IFM), Oxford, UK, July 2007, J. Davies and J. Gibbons, Eds.
Springer, Berlin, Germany, 518–537.

[75] Qadeer, S. and Rehof, J. 2005. Context-bounded model checking of concur-
rent software. In Proceedings of the 11th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), Edinburgh,
UK, Apr. 2005, N. Halbwachs and L. D. Zuck, Eds. Springer, Berlin, Germany,
93–107.

[76] Qadeer, S. and Wu, D. 2004. KISS: Keep it simple and sequential. In
Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language
Design and Implementation (PLDI), Washington, DC, June 2004, W. Pugh and
C. Chambers, Eds. ACM, New York, NY, 14–24.

[77] Regehr, J. 2007. Safe and structured use of interrupts in real-time and
embedded software. In Handbook of Real-Time and Embedded Systems, I. Lee,
J. Y.-T. Leung, and S. Son, Eds. Chapman & Hall/CRC, New York, NY.

[78] Regehr, J. and Cooprider, N. 2007. Interrupt verification via thread
verification. Electronic Notes in Theoretical Computer Science 174, 139–150.

[79] Regehr, J., Reid, A., and Webb, K. 2003. Eliminating stack overflow by
abstract interpretation. In Proceedings of the 3rd International Conference on
Embedded Software (EMSOFT), Philadelphia, PA, Oct. 2003, R. Alur and I. Lee,
Eds. Springer, Berlin, Germany, 306–322.

[80] Reynolds, J. C. 2002. Separation logic: A logic for shared mutable data
structures. In Proceedings of the17th IEEE Symposium on Logic in Computer Sci-
ence (LICS), Copenhagen, Denmark, July 2002, G. Plotkin, Ed. IEEE Computer
Society, Washington, DC, 55–74.

[81] Ridge, T. 2010. A rely-guarantee proof system for x86-TSO. In Proceedings
of the 3rd International Conference on Verified Software: Theories, Tools, Experi-
ments (VSTTE), Edinburgh, UK, Aug. 2010, G. T. Leavens, P. W. O’Hearn, and
S. K. Rajamani, Eds. Springer, Berlin, Germany, 55–70.

[82] Ryzhyk, L., Chubb, P., Kuz, I., Sueur, E. L., and Heiser, G. 2009.
Automatic device driver synthesis with Termite. In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles (SOSP), Big Sky, MT, Oct. 2009,
J. N. Matthews and T. E. Anderson, Eds. ACM, New York, NY, 73–86.

[83] Saabas, A. and Uustalu, T. 2006. A compositional natural semantics
and Hoare logic for low-level languages. Electronic Notes in Theoretic Computer
Sciences 156, 151–168.

[84] Sarkar, S., Sewell, P., Alglave, J., Maranget, L., and Williams,
D. 2011. Understanding POWER multiprocessors. In Proceedings of the ACM
SIGPLAN 2011 Conference on Programming Language Design and Implementation
(PLDI), San Jose, CA, June 2011, M. W. Hall and D. A. Padua, Eds. ACM, New
York, NY, 175–186.

146

[85] Sarkar, S., Sewell, P., Nardelli, F. Z., Owens, S., Ridge, T.,
Braibant, T., Myreen, M. O., and Alglave, J. 2009. The semantics of
x86-CC multiprocessor machine code. In Proceedings of the 36th Symposium on
Principles of Programming Languages (POPL), Savannah, GA, Jan. 2009, Z. Shao
and B. C. Pierce, Eds. ACM, New York, NY, 379–391.

[86] Schlich, B. 2010. Model checking of software for microcontrollers. ACM
Transactions on Embedded Computing Systems (TECS) 9, 36:1–36:27.

[87] Schlich, B. and Kowalewski, S. 2009. Model checking C source code
for embedded systems. International Journal on Software Tools for Technology
Transfer 11, 187–202.

[88] Schlich, B., Noll, T., Brauer, J., and Brutschy, L. 2009. Reduction of
interrupt handler executions for model checking embedded software. In Hardware
and Software: Verification and Testing - 5th International Haifa Verification
Conference (HVC), Haifa, Israel, Oct. 2009, K. S. Namjoshi, A. Zeller, and A. Ziv,
Eds. Springer, Berlin, Germany, 5–20.

[89] Sewell, T. A. L., Myreen, M. O., and Klein, G. 2013. Translation valida-
tion for a verified OS kernel. In Proceedings of the ACM SIGPLAN 2013 Conference
on Programming Language Design and Implementation (PLDI), Seattle, WA, June
2013, H.-J. Boehm and C. Flanagan, Eds. ACM, New York, NY, 471–482.

[90] Slind, K. and Norrish, M. 2008. A brief overview of HOL4. In Proceedings
of the 21st International Conference on Theorem Proving in Higher Order Logics
(TPHOLs), Montreal, Canada, Aug. 2008, O. A. Mohamed, C. A. Muñoz, and
S. Tahar, Eds. Springer, Berlin, Germany, 28–32.

[91] Suenaga, K. and Kobayashi, N. 2007. Type-based analysis of deadlock
for a concurrent calculus with interrupts. In Proceedings of the 16th European
Symposium on Programming (ESOP), Braga, Portugal, Mar.–Apr. 2007, R. De
Nicola, Ed. Springer, Berlin, Germany, 490–504.

[92] Sun, J., Yuan, W., Kallahalla, M., and Islam, N. 2005. HAIL: A
language for easy and correct device access. In Proceedings of the 2005 Interna-
tional Conference on Embedded Software (EMSOFT), Jersey City, NJ, Sept. 2005,
W. Wolf, Ed. ACM, New York, NY, 1–9.

[93] Tan, G. and Appel, A. W. 2006. A compositional logic for control flow. In
Proceedings of the 7th International Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI), Charleston, SC, Jan. 2006, E. A. Emerson
and K. S. Namjoshi, Eds. Springer, Berlin, Germany, 80–94.

[94] The Verisoft Consortium. 2003. The Verisoft project. Retrieved May 2013
from http://www.verisoft.de/.

[95] Tuch, H., Klein, G., and Norrish, M. 2007. Types, bytes, and separa-
tion logic. In Proceedings of the 34th Symposium on Principles of Programming
Languages (POPL), Nice, France, Jan. 2007, M. Hofmann and M. Felleisen, Eds.
ACM, New York, NY, 97–108.

147

[96] Wang, S. and Malik, S. 2003. Synthesizing operating system based de-
vice drivers in embedded systems. In Proceedings of the 1st IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthe-
sis (CODES+ISSS), Newport Beach, CA, Oct. 2003, R. Gupta, Y. Nakamura,
A. Orailoglu, and P. H. Chou, Eds. ACM, New York, NY, 37–44.

[97] Warren A. Hunt, J. and Kaufmann, M. 2012. Towards a formal model of
the x86 ISA. Tech. Rep. TR-12-07, University of Texas at Austin. Mar.

[98] Warren A. Hunt, J. and Swords, S. 2009. Centaur technology media
unit verification. In Proceedings of the 21st International Conference on Computer
Aided Verification (CAV), Grenoble, France, July 2009, A. Bouajjani and O. Maler,
Eds. Springer, Berlin, Germany, 353–367.

[99] Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S.,
Whalley, D. B., Bernat, G., Ferdinand, C., Heckmann, R., Mitra,
T., Mueller, F., Puaut, I., Puschner, P. P., Staschulat, J., and
Stenström, P. 2008. The worst-case execution-time problem - Overview of
methods and survey of tools. ACM Transactions on Embedded Computing Systems
(TECS) 7, 36:1–36:53.

[100] Witkowski, T., Blanc, N., Kroening, D., and Weissenbacher, G.
2007. Model checking concurrent Linux device drivers. In Proceedings of the 22nd
IEEE/ACM International Conference on Automated Software Engineering (ASE),
Atlanta, Georgia, Nov. 2007, R. E. K. Stirewalt, A. Egyed, and B. Fischer, Eds.
ACM, New York, NY, 501–504.

[101] Yang, X., Chen, Y., Eide, E., and Regehr, J. 2011. Finding and
understanding bugs in C compilers. In Proceedings of the ACM SIGPLAN 2011
Conference on Programming Language Design and Implementation (PLDI), San
Jose, CA, June 2011, M. W. Hall and D. A. Padua, Eds. ACM, New York, NY,
283–294.

[102] Yu, D., Hamid, N. A., and Shao, Z. 2003. Building certified libraries for
PCC: Dynamic storage allocation. In Proceedings of the 12th European Symposium
on Programming (ESOP), Warsaw, Poland, Apr. 2003, P. Degano, Ed. Springer,
Berlin, Germany, 363–379.

[103] Yu, D. and Shao, Z. 2004. Verification of safety properties for concurrent
assembly code. In Proceedings of the 9th Proceedings of the International Confer-
ence on Functional Programming (ICFP), Snow Bird, UT, Sept. 2004, C. Okasaki
and K. Fisher, Eds. ACM, New York, NY, 175–188.

[104] Zhao, Y., Huang, Y., He, J., and Liu, S. 2011. Formal model of interrupt
program from a probabilistic perspective. In Proceedings of the 16th IEEE In-
ternational Conference on Engineering of Complex Computer Systems (ICECCS),
Las Vegas, NV, Apr. 2011, I. Perseil, K. Breitman, and R. Sterritt, Eds. IEEE
Computer Society, Washington, DC, 87–94.

