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ABSTRACT

The paleoseismology record of southeastern Alaska documents several 

megathrust earthquakes during the late Holocene, including the Mw 9.2 earthquake of 

1964, when the Katalla River Valley was uplifted as much as 2 m (Plafker, 1965; 

Richards, 2000). The Katalla River Valley is exceptional because uplifted terraces and 

beach berms suggest net tectonic uplift relative to sea level during the late Holocene, 

when the greater coastal region experiences net subsidence. This study addresses the 

question: is the valley truly undergoing net tectonic uplift, and if so, what is the cause?

Research methods included geomorphic analysis using LIDAR and other digital 

elevation data, sampling of Quaternary deposits by coring and hand trenching, 

radiocarbon dating of deposits, construction of paleogeography, and analysis of structural 

geology.

There are four major results of this study. 1) Katalla behaves similarly to 

southeastern coastal Alaska during megathrust cycles: coseismic uplift is followed by 

interseismic subsidence. 2) In the last 7000 years, Katalla experienced net uplift with 

respect to sea level, and radiocarbon dates and stratigraphic profiles indicate tectonic 

uplift. 3) An uplift event documented in the stratigraphy of Katalla dated at 500 BP does 

not correlate with any known uplift events in southeastern Alaska. 4) The Ragged



Mountain fault, which has been interpreted as both a thrust and normal fault, underwent 

extension in at least the last 10,000 years.

There are three possible hypotheses for uplift in Katalla, each of which partially 

explains long-term extension along the Ragged Mountain fault: 1) uplift driven by buried 

imbricate thrusting, 2) uplift driven by slow aseismic anticlinal folding that is 

accommodating shortening, and 3) uplift driven by exhumation as the upper plate of the 

Ragged Mountain fault moves west.
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CHAPTER 1

INTRODUCTION

The Aleutian megathrust, located in the Gulf of Alaska, is the active thrust 

boundary between the Pacific plate and the North American plate (Figure 1) (Kanamori, 

1977; Bruns, 1983; Plafker et al., 1994). Subduction zones, like the Aleutian megathrust, 

are responsible for the largest earthquakes recorded on Earth (Kanamori, 1977). Between 

ruptures, the underlying plate and overriding plate become locked (Figure 2). This causes 

the areas closest to the plate boundary, or trench, to subside as the underlying plate 

continues to subduct. The areas further inland of the thrust boundary “bulge up” with 

respect to sea level interseismically. When the fault ruptures, the areas closest to the 

trench coseismically uplift and the inland areas correspondingly subside due to the 

elasticity of the crust (Plafker, 1972). Abrupt uplift along the trench and coast often 

results in an abrupt environmental change, for example, a change from a marine 

environment to a freshwater environment. Coseismic subsidence results in the reverse 

change: freshwater environments flooded by seawater. This abrupt environmental change 

is evident in the coastal stratigraphy. In the case of coseismic uplift, marine sand might 

be sharply overlain by freshwater peat. A gradual change back to marine sand indicates 

interseismic subsidence (Atwater, 1987).
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The Pacific plate is subducting beneath the North American plate at a rate of ~50 

mm/yr (Elliot et al., 2010). In 1964, the Aleutian megathrust ruptured along its eastern 

margin, causing the second largest recorded earthquake in history. The Mw 9.2 event 

took 128 lives, most of which were taken by a tsunami generated by the underwater 

coseismic uplift. Also known as the Good Friday Earthquake, this megathrust event 

caused uplift of the coastal regions with respect to mean sea level and subsidence of the 

interior relative to the same datum. Uplift was as great as 10 m (Plafker, 1965). The 

potential for another large earthquake along this plate boundary is a serious threat. The 

damage caused by the 2011 Tohoku, Japan earthquake was largely tsunami related. 

Rupture along the Aleutian megathrust could have similarly devastating effects.

Along the coast of Alaska, there is increasing evidence of active, smaller faults 

causing local uplift (Chapman, 2011). Though small in area, these uplift events are likely 

to generate large tsunamis because the amount of uplift is greater than that caused by 

megathrust events. For example, a fault under Montague Island in the Prince William 

Sound (Figure 1) coseismically ruptured with the Aleutian megathrust in 1964, and was 

responsible for the 10 m of uplift recorded after that earthquake (Plafker, 1965). The 

Kayak Island zone, located in the Gulf of Alaska, and its onshore equivalent, the 

Suckling Hills fault may also act similarly in megathrust events (Chapman, 2011).

The Quaternary coastal stratigraphy along plate margins can indicate the type, 

magnitude, and recurrence interval of megathrust earthquakes. Atwater (1987) first 

showed how a change in coastal vegetation following a large earthquake is preserved in 

the stratigraphic record. Studying the coast of Washington, he found evidence of 

submerged peat deposits as well as tsunami sands. In this case, the freshwater sediment



underlying marine sediment indicates coseismic subsidence. Conversely, marine 

sediments sharply underlying freshwater sediment indicate coseismic uplift.

This study investigates the Quaternary geomorphology and active tectonics of the 

Katalla River Valley to determine the history of earthquakes and the geomorphic 

response to them. Previous work in the Katalla River Valley shows that coseismic uplift 

during large-scale Aleutian megathrust earthquakes is sometimes greater than 

interseismic subsidence. This differs from most of the coast of northeast Gulf of Alaska. 

For example, the Copper River Delta to the west and the Puffy Slough to the east both 

undergo net tectonic subsidence.

Katalla is located along the coast of the Gulf of Alaska (Figure 1), between the 

Copper River Delta and the Bering Glacier. Mountains that contain faulted and folded 

rocks of the Yakutat terrane bound the Katalla River Valley (Taliaferro, 1932; Bruhn et 

al., 2004). The Don Miller Hills rise above the eastern side of the valley. The western 

side of the Katalla River Valley is bordered by an unnamed mountain that contains a 

large syncline and by Ragged Mountain, which is underlain by rocks of the Yakutat 

terrane and the Orca Group. The Orca Group belongs to the edge of the North American 

Plate and is thrust over the Yakutat terrane along the Ragged Mountain fault (Taliaferro, 

1932; Winkler and Plafker, 1983). Therefore, the Ragged Mountain fault accommodated 

convergence between the Yakutat terrane and North America.

The Yakutat terrane is presently accreting to and subducting beneath North 

America at roughly the rate of the Pacific plate (Elliot et a l, 2010). Large-scale 

earthquakes such as the Good Friday Earthquake are recorded in the stratigraphy along 

the coast of southeastern Alaska and are attributed to the Aleutian Subduction Zone and
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the Yakutat- North American convergence (Hamilton et a l, 2005; Hamilton and 

Shennan, 2005; Carver and Plafker, 2008; Shennan et al., 2009).

Holocene uplift events documented in the Katalla River Valley correlate well with 

megathrust events found elsewhere in the Gulf of Alaska (Shennan et al., 2013 [in 

press]), but there does not appear to be net subsidence in the valley, which is unusual for 

this part of coastal Alaska. The geomorphology and elevation of Katalla suggest net uplift 

over time as well as shoreline progradation with each subsequent uplift event (Richards, 

2000). Net uplift may be related to a structure that acts independently of the Aleutian 

megathrust. There is one documented uplift event at 500 BP, which does not correlate 

with a known megathrust event (Bruhn and Shennan, pers. comm. 2010).
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Figure adapted from Bruhn et al. (2004).

U i



sw Aleutian Trench NE

Figure 2. Schematic diagram illustrating how the Pacific plate and North American plate behave interseismically and coseismically. 
Between earthquakes, strain accumulates on the locked fault. The area closest to the trench subsides, and the area away from the 
trench bulges. During rupture, the strain is relased and the area closest to the trench abruptly uplifts, while the area away from the 
trench subsides. Tsunamis may be generated due to the abrupt uplift.



CHAPTER 2

GEOLOGIC SETTING

2.1 Regional Tectonics 

The Katalla River Valley lies adjacent to the boundary of the Yakutat terrane with 

the North American plate (Figure 1). The Yakutat terrane is accreting to and subducting 

beneath the North American plate at a velocity of 50.3 +/- 0.8 mm/yr relative to stable 

North America (Elliot et a l, 2010). The Yakutat terrane is bound to the east by the 

Fairweather transform fault, to the north by the Chugach-St. Elias thrust fault, and to the 

west and south by the Transition fault (Plafker, 1994). The Yakutat terrane has been 

moving northward along the Fairweather transform fault since the middle Eocene from 

what is now present-day British Columbia (Bruns, 1983). The terrane has been accreting 

to North America since the late Miocene (Plafker, 1987).

The Fairweather transform fault is a right-lateral strike-slip fault that connects to 

the Queen Charlotte fault system (Plafker, 1994). The most recent large earthquake on 

the fault occurred in 1958, and resulted in a dextral slip of up to 3.5 m (Gawthrop et a l, 

1973). The Chugach-St. Elias thrust fault is the exposed suture between Yakutat terrane 

sediments and North America. Oceanic crust from the Yakutat terrane shallowly subduct 

beneath the fault, while the overlying sediments are accreted (Bruhn et a l, 2004). The



Transition fault separates the Yakutat terrane from the Pacific plate. The fault may 

accommodate left-lateral strike-slip motion (Christeson et al., 2010) and/or convergent 

motion (Elliot et al., 2010) between the Pacific plate and Yakutat terrane.

The Pacific plate is subducting beneath the North American plate via the Aleutian 

megathrust at a rate of 50.9 mm/year, which is slightly faster than the Yakutat terrane, 

likely due to difference in convergence style (Elliot et al., 2010). The last seismic event 

along the Aleutian Megathrust occurred in 1964; it was an Mw 9.2 event that initiated 

under the Prince William Sound. The event caused deformation along much of the 

Alaskan coast—as far east as the Bering Glacier (Plafker, 1965). At least four other 

megathrust earthquakes have occurred in southeastern Alaska at 900 BP, 1500 BP, 2100 

BP, and 2600 BP (Table 1) (Hamilton et a l, 2005; Hamilton and Shennan, 2005; Carver 

and Plafker, 2008; Shennan et al., 2009).

Within the Yakutat terrane are other, small tectonic zones in addition to the three 

bounding faults: the Pamplona Structural zone and the Kayak Island zone, and foreland 

folds and thrust faults related to the Chugach-St. Elias fault (Bruhn et al., 2004). The 

Pamplona zone fold and thrust belt is the active deformation front of the Yakutat-North 

American collision (Worthington et al., 2010). The Kayak Island Zone, situated north 

west of the Pamplona zone, may be the modern eastern extension of the Aleutian 

megathrust (Chapman et al., 2011). The Pamplona zone also is the boundary between the 

active fold and thrust belt and the ‘western syntaxis’. The western syntaxis is the 

manifestation of the corner geometry of the obliquely converging Yakutat terrane (Bruhn 

et a l, 2004; Chapman et a l, 2011). The complexly folded rocks in and around Katalla 

are part of the western syntaxis.
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2.2 Local Tectonics

The most prominent structural feature in the Katalla River Valley is the Ragged 

Mountain fault (Figure 3). The Ragged Mountain fault strikes north and extends for 

nearly 30 km. The fault is described as both a thrust fault and a normal fault (Tysdal, 

1976; Winkler and Plafker, 1993; Richards, 2000) because the fault places older strata on 

younger but the surface expression of the fault suggests normal displacement. The 

Ragged Mountain fault is the contact between the Paleogene Orca Group and the Eocene 

Stillwater Formation (Figure 4). Although the Orca Group originates from the Prince 

William terrane—which accreted to North America prior to the arrival of the Yakutat 

terrane—the Stillwater Formation was transported atop the Yakutat terrane (Winkler and 

Plafker, 1993; Plafker et al., 1994). The Ragged Mountain fault represents a suture 

between the North American plate and the Yakutat terrane, and thus was interpreted to be 

a thrust fault that originated as part of the Chugach St. Elias fault (Bruhn et al., 2004). 

However, the Ragged Mountain fault is marked by a Quaternary scarp that is uphill 

facing, indicating extension. Therefore, Tysdal (1976) interpreted it to be a re-activated 

thrust fault that is backsliding, and referred to it as a low-angle normal fault. Bruhn (pers. 

comm., 2012) posited that it is instead the surface expression of fault propagation 

folding: the upward facing scarp represents the dip slip of bedding in the limb of the fold.

Other tectonic structures mapped in the Katalla River Valley are poorly 

understood. The Clear Creek fault is concealed but is mapped because of the 

juxtaposition of two different rock units: the sedimentary Poul Creek Formation from the 

late Tertiary and the Stillwater Formation from the early Tertiary (Winkler and Plafker, 

1993). The Redwood fault, in the Don Miller Hills on the eastern side of the valley, is
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inferred to account for juxtaposition of three different rock units along its length: the 

Tokun Formation, the Stillwater Formation, and the Poul Creek Formation (Martin, 1908; 

Winkler and Plafker, 1993). Many smaller faults and complex structures in the Don 

Miller Hills are attributed to second-phase folding during oblique convergence 

(Taliaferro, 1932; Bruhn et a l, 2004).

2.3 Bedrock/Stratigraphy 

The bedrock geology of the Katalla River Valley is relatively simple (Figure 4). 

The footwall of the Ragged Mountain fault comprises Stillwater Formation, a dark 

siltstone from the Eocene. The Stillwater Formation is tilted to a near vertical dip and 

strikes roughly NNE with few exceptions. The Eocene to Miocene Orca Group is an 

accretionary complex consisting of conglomerates, sandstones, and volcanic rocks from 

the Prince William terrane. Ragged Mountain, on the western side of the valley, is 

composed of these three components of the Orca Group. The Poul Creek Formation 

occurs in the hills in the central part of the valley as well as the Don Miller Hills on the 

eastern edge of the valley, and it may underlie part of the valley. The Poul Creek 

Formation is also Eocene to Miocene in age, and the outcrops are deepwater shales and 

sandstones. The Tokun Formation crops out at the northernmost and southernmost ends 

of the valley. It is Eocene in age and comprises siltstones interbedded with sandstones. 

The outcrops of the Tokun Formation are severely folded and faulted (Winkler and 

Plafker, 1993). The rest of the valley is filled with Quaternary sediments that will be 

discussed in further detail in the Results section of this thesis.

10



2.4 Geomorpholgy/Quaternary Geology o f Katalla River Valley

Previous geomorphology studies of the Katalla River Valley investigated the 

glacial history (Fleisher et al., 1999), mapped the Quaternary deposits (Kachadoorian, 

1960; Winkler and Plafker, 1993) and analyzed the Holocene deposits (Sirkin and Tuthill, 

1971; Richards, 2000).

Fleisher and others (1999) found well-rounded exotic boulders in Katalla Bay, 

and glacial till in the valley and on the flanks of Ragged Mountain and glacial silt in the 

valley. They concluded that glaciers advanced to the coast as recently as ~10,000 years 

ago (Fleisher, 1999; Richards, 2000).

The most conspicuous feature of the valley is the series of dark cuspate, ridges 

separated by marshes (Figure 3). The ridges are made of well-sorted sand (Sirkin and 

Tuthill, 1971; Richards, 2000) and gradually increase in elevation up the valley 

(Richards, 2000). The fill between each ridge is a freshwater peat marsh.

Sirkin and Tuthill (1971) interpreted the ridges to be storm berms—ridges that 

build up in high water events at the most landward side of the beach. In order for the 

berms to be rebuilt further down the valley as the elevation data suggest, Richards (2000) 

hypothesized that the valley is uplifted during great megathrust earthquakes. The 

shoreline then moves seaward and a new berm begins to form. The freshwater marshes 

atop the marine sediment are also interpreted to form after the beach is raised above sea 

level.

Plafker (1965) documented coseismic uplift of the Katalla River Valley following 

the 1964 Good Friday Earthquake. He found that the coastline near the Katalla River 

Valley was uplifted nearly 2 m and comparison of historical photos to the present show

11



the shoreline moved at least a kilometer seaward. An uplift event documented in a lower 

marsh was dated at 500 BP (R. Bruhn and I. Shennan, 2011 pers. comm.). This date does 

not correlate with any known megathrust event (Table 1). Thus, it is possible that there is 

some other control on the tectonic geomorphology of the valley besides the Aleutian 

Megathrust.

Richards’ study (2000) showed that the valley not only undergoes coseismic uplift 

but interseismic subsidence as well. This was based on drowned trees found in the 

marshes between the spruce deposits. Richards concluded from the elevations of the 

berms, however, that the valley experiences net tectonic uplift. Although the valley 

probably experienced isostatic rebound after disappearance of the glaciers, a simple one­

dimensional isostatic rebound model demonstrates that the berms presumably formed 

after isostatic rebound following retreat of the glaciers from the valley (Richards, 2000).

Sinuous terrace-like features are located west of the Katalla River on the Ragged 

Mountain piedmont (Figure 3). The eastern edge of each terrace is lined with spruce and 

hemlock-covered ridges. Previous mapping of this side of the valley describes the 

deposits as marine or glacial terraces, unconsolidated sedimentary material, or swamp 

deposits (Kachadoorian, 1960; Winkler and Plafker, 1993). The terraces gain elevation 

from the Katalla River toward Ragged Mountain, and each terrace is 2-5 m higher than 

the one below it. This step-like pattern indicates that the terraces may be tectonically 

derived (Figure 5).

12



Table 1. Ages of megathrust events recorded in cores throughout the southern Alaska Coast (Hamilton et al., 2005; Hamilton 
and Shennan, 2005; Carver and Plafker, 2008; Shennan et al., 2009) and Katalla. Locations shown in Figure 1.

Megathrust Event Anchorage Girdwood Alaganik Slough Puffy Slough Cape Suckling Yakataga Katalla

1964 X X X X X X X
500 BP X
900 BP X X X X X X X
1500 BP X X X X
2100 BP X X X X
2600 BP X X X X
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Ragged Mountain Thrust Fault Ragged Katalla
(with normal-sense reactivation) Mountain River

Dashed where inferred Piedm°nt \  ^  Valley

w I w

Figure 3. Katalla area highlighting the Ragged Mountain piedmont (green) and the 
Katalla River Valley (blue). Cross sections are shown in Figures 22a and 22b.

Photo credit: US Forest Service (early 2000s)
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Figure 4. Geologic map of the Katalla River Valley, Ragged Mountain, and Don Miller 
Hills (adapted from Winkler and Plafker, 1993).
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Figure 5. Hillshade images and profiles of the Ragged Mountain piedmont 
demonstrating important topographic features. a) Hillshade image of the terraces on 
Ragged Mountain piedmont. Box in top image is the more detailed section shown in 
bottom figure. Terraces are labeled in yellow, ridges in white. Cross sections A-A’, 
B-B’, C-C’, D-D’ and E-E’ shown in Figures b, c, and d. b) Topographic profile of 
Ragged Mountain and the piedmont. Important geographic features are noted. c) 
Topographic profiles of the Ragged Mountain Piedmont from south (B-B’) to north 
(D-D’). Important topographic features are noted. All three profiles are the same scale 
with ~9x vertical exaggeration. d) Topographic profile of Ridge 2 on the Ragged 
Mountain Piedmont (35x vertical exaggeration). Note the seaward side of the berm is 
steeper than the landward side. There is ~2 m difference in height of the seaward side 
to the landward side. This ridge profile is typical of those elsewhere on the piedmont.
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CHAPTER 3

METHODS

A preliminary geomorphic mapping exercise using air photos as well as digital 

elevation data was completed prior to the field season in order to better understand the 

local geomorphology and to accurately choose locations to study while out in the field 

(Figure 6).

3.1 Fieldwork

In August of 2011, the author along with colleagues from the University of Utah, 

Durham University, University of Texas at El Paso, and the Alaska Division of 

Geological and Geophysical Surveys flew into the abandoned town site of Katalla, 

Alaska, where we spent eight days in the field. Access to geologic features within and 

adjacent to the town site was by foot, while a boat with an outboard jet unit was used to 

gain access into the valley by traveling on the Katalla River. Field localities were located 

using a handheld GPS unit with horizontal resolution of roughly +/- 15 m, and by 

reference to aerial photographs.

One objective of the field study was to confirm interpretations of geomorphic 

features observed on aerial photography and revealed by a high-resolution Digital



Elevation Model (DEM) acquired by Light Designation and Ranging (LIDAR). The 

LIDAR survey was flown in August of 2005 by the National Center for Airborne Laser 

Mapping as part of the St. Elias Erosion and Tectonics Project (STEEP). The data were 

postprocessed to refine geographic positioning and to filter out the effects of vegetation. 

The resulting bare earth DEM (Figure 6) has a posting of 1 m, and a vertical accuracy of 

~20 cm. Additional information concerning the surveying equipment and acquisition 

parameters is in the Appendix.

The second objective was to document the Quaternary stratigraphy at several sites 

in the Katalla Valley and on the piedmont of Ragged Mountain to search for evidence of 

depositional environments, evidence for abrupt transitions from marine to nonmarine 

deposition that reflect vertical changes in elevation caused by earthquakes, and to obtain 

samples of the strata for analysis of depositional environment and radiocarbon dating. 

Field sites are shown in Figure 7. A hand auger and core barrels of 25 mm and 50 mm 

diameter were used to collect samples over a depth range of several meters in marshes. 

Fifteen core samples were obtained, with 13 of the 15 sampling sites located in the 

Katalla Valley and the remainder from the piedmont of Ragged Mountain at the Katalla 

town site. Several additional duplicate core samples were also obtained. Three additional 

stratigraphic samples were obtained by driving split-halves of PVC pipe and a rectangular 

box sampler into the wall of cut banks along the Katalla River. The stratigraphy of each 

core and river cut bank was described in the field, with emphasis on identifying sharp 

contacts between possible marine deposits and overlying peat. Samples that included the 

interval spanning ~10 cm on either side of the contact were collected for analysis of 

diatom assemblages, and radiocarbon dating of peat.
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Soil pits were dug by hand in five ridges located in the Katalla Valley and on the 

piedmont of Ragged Mountain. The composition and grain size of the deposits were 

noted to aid in identifying the origin of the ridges, and also to compare with similar 

samples described by Richards (2000) and Sirkin and Tuthill (1971). A comparison of 

our field sites and those of Richards and Sirkin and Tuthill is in the Appendix.

General geologic and geomorphic features were also noted while in the field. The 

locations of glacial erratics were recorded, as well as the compositions of clasts that may 

be the remnant of a former moraine located on the beach south of the Katalla town site. 

Additionally, cores were taken of trees in order to determine a minimum age of former 

marine beach ridges. The diameters of most trees were larger than the corer (>30 cm), so 

determining a maximum age of the trees proved to be difficult. Felled trees were also 

encountered in the field, both near the Katalla town site and as far north as Ridge E, 

indicating that the current trees on some ridges are second growth.

3.2 Lab Work

Radiocarbon dating of peat fragments was done using Accelerator Mass 

Spectrometry by Beta Analytic, Inc. Organic material for dating was separated by hand 

from bulk peat, and included blade-like leaves and Sphagnum moss. Samples were 

collected from the base of the peat, and 2 cm above the base. These included samples 

from Core 3, Core 7, Core 10, Core 11, Core 14, and Core 15 (see Figures 7b and 7c).

The dates of the original set of samples were partly “reversed”, that is, in all but two of 

the cores, the samples above the base of the peat appeared to be older than the samples 

taken at the base. Further examination by Dr. Shennan of Durham University identified
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intense rootlet penetration of the in situ material as well as reworked organics, which is 

most likely what gave the false dates. A second round of samples were chosen following 

careful examination under a microscope to ensure a lack of rootlets penetrating the 

sample. These samples were submitted and the resulting ages were arranged in the proper 

stratigraphic order (Table 2). An organic sample from a core collected in Katalla Slough 

in 2007 by Dr. Bruhn and Dr. Shennan was also dated to confirm a previously obtained 

age for the base of a peat at that locality.

Dr. Shennan examined the diatoms in the sand and silt horizons to establish if 

they are marine or freshwater species. He also determined where along the beach profile 

the diatoms lived based on unique characteristics in their morphology using the 

techniques outlined by Palmer and Abbot (1986). These include counting frequency of 

each diatom taxon and placing it in a halobian category, and plotting the frequency/core­

depth relationship for each category. A halobian classification divides the diatoms into 

categories of salt tolerance, which ideally gives a depositional environment. The 

Hemphill-Haley (1993) classification scheme designates five halobian classifications. For 

example, taxa falling into the polyhalobous classification occur in >30%o salinity and are 

marine in origin. The Hemphill-Haley classification scheme distinguishes diatoms that 

are marine, brackish, low-salinity stimulated, low-salinity tolerant, and saltwater- 

intolerant (Hemphill-Haley, 1993).

3.3 Mapping

ITT Visual Information Solutions © ENvironment for Visualizing Images (ENVI) 

software was used to create shaded relief images and contour maps using the 1 m posted
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LIDAR DEM, a 30 m posted Advanced Spaceborne Thermal Emission and Reflection 

radiometer (ASTER) Global Digital Elevation Model (GDEM) and a 30 m posted Shuttle 

Radar Topography Mission (SRTM). The latest version of the ASTER GDEM was 

released in 2009 and is a product of the Ministry of Economy, Trade, and Industry of 

Japan (METI) and the National Aeronautics and Space Administration (NASA) (ASTER 

GDEM data courtesy of NASA). The SRTM data were released in 2003 and are also a 

product of NASA (data courtesy of the USGS). The LIDAR data were used to make a 

geomorphic map of the Ragged Mountain piedmont. The LIDAR DEM revealed details 

of the geomorphology that were not present on earlier images and air photos because of 

thick vegetation. LIDAR sensors record multiple returns of a single laser pulse, and 

typically the last return represents the terrain, or bare-earth. This greatly differs from the 

SRTM and GDEM because the vegetation can be filtered out after acquisition. Katalla is 

densely vegetated, so the LIDAR DEM greatly aided the geomorphic mapping. 

Depositional features that were never before mapped such as tree-lined ridges and 

uplifted coast were plotted, in addition to known features such as rivers, alluvial fans and 

marshes (Figure 6).

Elevation data from the LIDAR DEM were compared to Richards’ (2000) GPS 

elevations (appendix). Richards’ GPS measurements are spot elevations and are not 

representative of the entire marsh or ridge surveyed. They do, however, have very high 

precision and accuracy. The vertical precision of the GPS elevations is <10 cm, which 

falls within the LIDAR margin of accuracy, about 20 cm. The vertical precision of the 

GDEM and SRTM is much coarser—on the order of meters—therefore, these data were 

not extensively used to compare elevations throughout the valley.
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Various geomorphic features such as marshes, terraces, ridges, cliff features, and 

possible paleo-shorelines were correlated across the Katalla River using contour maps of 

the valley and terraces as well as high-resolution orthophotos. Elevation data, 

radiocarbon dates, and previous maps were also used to correlate features. The 

stratigraphy of the ridges east of the river was compared to the stratigraphy recorded by 

Sirkin and Tuthill (1971), despite their lack of exact location: unfortunately, Sirkin and 

Tuthill (1971) failed to indicate where along the marsh or ridge their samples were taken. 

The geomorphic, depositional, and stratigraphic relationships were used to create a series 

of paleogeomorphic/paleogeographic maps. These maps represent the Katalla River 

Valley as it may have appeared just before and just after a known megathrust event. The 

maps will be discussed further in the following sections.

3.4 Historical Archive Search 

An historical archive search of Katalla circa 1900-1910 was undertaken for two 

reasons. The first was to determine how much, if any, the citizens of Katalla changed the 

landscape as they built multiple railroads, sea breaks, docks, and buildings. The second 

reason was to understand the short-term effects of the rapid uplift in 1964. What is known 

about Katalla prior to the Good Friday Earthquake is based upon photos and maps made 

while the town was thriving. A review of newspapers, photos, and survey maps provided 

information on the town site that is mostly not available in the scientific literature. It was 

apparent in the field how quickly the town of Katalla had deteriorated since it was 

abandoned in the early twentieth century. All that remains are a few foundations, jetty 

pilings, and railroad beds that are overgrown by trees and brush. This area of Alaska
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receives nearly 220 cm of precipitation per year (Boggs, 2000), resulting in rapid growth 

and decay of vegetation. For example, the 10+ m high trees that we cored were only a 

few decades old.
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Figure 6. Geomorphic map of the Ragged Mountain piedmont over LIDAR DEM 
hillshade image. Shaded relief LIDAR DEM created with artificial illumination from 
the southeast. The area in the black circle is the trapazoidal ridge constructed to hold 
the town of Katalla’s reservoir. The area in the black rectangle on Ragged Mountain is 
shown in greater detail in Figure 13b.
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Figure 7. Aerial photos of the Katalla Valley showing the names of ridges and marshes 
in the valley and on the Ragged Mountain piedmont. a) Overview photo. Ridges are 
in white and marshes are in yellow. The orange circle represents the location of the 
shell bed found by Richards (2000). Areas in black rectangles are shown in greater 
detail in b and c. b) Location of field sites in Katalla River Valley. Ridge names are in 
white, marshes are in yellow, core sites in red, and soil pits in blue. c) Location of field 
sites on the Ragged Mountain piedmont. Ridge names are in white, terrace names in 
yellow, core sites in red, soil pits in blue, and bedrock outcrop in green.

Photo credit: US Forest Service (early 2000s)
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Figure 7 continued
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Figure 7 continued
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Table 2. Radiocarbon dates from samples taken from cores in 
2007 and 2011.

Location
Core

sampled
Radiocarbon

age±1oBP

Calibrated age, 
95% probability 

range

Marsh BC
1Core 1a 

1Core 1b

510-310 BP 

550-500 BP

510-310 BP 

550-500 BP

Ridge C

2Core 2 1410-1360 BP 1340-1510

Marsh CD
3Core 3

540-520 BP 
730-680 BP 
730-690 BP

1160-1210 BP

630-510 BP 
740-660 BP 
760-680 BP

910-850 BP

2Core 6 1170-1220 BP 
1060-980 BP

790-690 BP 
1120-960 BP

Marsh DE
4Core7

430-0 BP 
310-0 BP

430-0 BP 
310 BP- 1950 AD

2Core 8 1260-1170 BP 

1700-1610 BP

1270-1080 BP 

1720-1560 BP

3Core 10
2000-1950 BP 
2060-1990 BP

2060-1900 BP 
2120-1950 BP

Marsh EF 2340-2210 BP 
260-20 BP

2350-2160 BP 
270-10 BP

3Core 11 760-700 BP 
920-800 BP

790-690 BP 
930-790 BP

Terrace 2 4Core 14
2950-2860 BP 
2950-2870 BP

2290-22120 BP

2960-2850 BP 
2970-2850 BP

2300-2060 BP
Terrace 1 3Core 15 780-730 BP 

1530-1420 BP
790-690 BP 

1540-1410 BP

xDated in 2007 and 2012 
2Dated in 2012 
3Dated in 2011 and 2012 
4Dated in 2011



CHAPTER 4

RESULTS

The Katalla River Valley is located on the coast of Alaska, roughly 35 km 

southeast of Prince William Sound (Figure 1). The Katalla River is a meandering river 

that runs from the northern end of the valley and drains into the Pacific Ocean. The 

northern portion of the river currently flows down the eastern side of the valley, although 

remnant meander scars and oxbow lakes indicate it previously flowed through other parts 

of the valley. Small tributaries that drain the Don Miller Hills, Ragged Mountain, and the 

hills to the north feed the Katalla River. ‘Sakung Mountain’ is the informal name of the 

unnamed mountain east of Ragged Mountain and west of the Katalla River. Clear Creek 

runs south between Ragged Mountain and ‘Sakung Mountain’ before turning sharply to 

the east around ‘Sakung Mountain’ into the Katalla River. The following sections first 

describe the Ragged Mountain piedmont followed by the Katalla River Valley (see 

Figure 3 for locations).

4.1 Ragged Mountain Piedmont 

The piedmont of Ragged Mountain is a terraced slope that rises above the western 

side of the Katalla River mouth and bay (Figure 3). Four terraces step sequentially



upwards and inland between the coast and an elevation of ~18 m (Figure 5). Each terrace 

is several kilometers long and up to several hundred meters wide, covered by marshes 

and small ponds and bordered by narrow cuspate ridges with thick growths of Sitka 

spruce and hemlock. The ridges sit atop small cliffs eroded into bedrock at several 

localities. Some, but perhaps not all, of the forest is secondary growth as a result of 

extensive logging and deforestation of the lower slopes of Ragged Mountain during 

building of the town and port of Katalla, including construction of two narrow gauge 

railroad lines (Janson, 1975).

The scarps shown in Figure 8 were observed in the LIDAR hillshade images as 

long, sinuous lineaments with high relief. These scarps separate some of the terraces on 

the piedmont. Their relative ages are based on elevation. A relatively smooth and gently 

sloping surface located higher up on the lower flank of Ragged Mountain may also be a 

remnant planation surface (Figure 6, Figure 8). Its origin remains speculative because it 

was not visited in the field.

The lowest terrace, Terrace 4, is a compound feature that is a wave cut platform 

cutting across steeply dipping sedimentary strata of the Stillwater Formation, and a 

former tidal slough that is now a freshwater marsh. This terrace formed when tidal lands 

were uplifted relative to sea level during the Good Friday Earthquake (Plafker, 1965). 

Historical maps of the Katalla town site and port together with vintage aerial photographs 

allow precise mapping of the uplifted terrain on the high resolution LIDAR DEM. Parts 

of the terrace are still flooded during high tides and winter storms. The western side of 

the terrace is bounded by a cuspate shoreline marked by forested ridges, Ridges 3a and 

3b, ~2-4 m higher than Terrace 4. Terrace 3 is partly bordered by Ridges 3a and 3b to the
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east, and is followed inland by Terrace 2 and Terrace 1, which are occupied by marshes 

and ponds located at elevations of ~12 m and ~17 m, respectively (Figure 5). The 

margins of each terrace are sinuous to cuspate shaped forested ridges. The linear segment 

of the trapezoidal ridge (Figure 6) separating Terrace 2 and Terrace 1 just east of the 

railroad track beds is not natural, and reflects construction of a small dam that impounded 

the town site’s reservoir.

The four terraces were previously interpreted as uplifted marine platforms, fluvial 

terraces, and/or glacial abrasion platforms (Kachadoorian 1960; Winkler and Plafker, 

1992; Richards, 2000). Although there is no question that Terrace 4 originated by 

coseismic uplift of the shore zone in 1964, the origins of the other three terraces are less 

certain. The stratigraphy of the terraces was investigated by hand driven coring in the 

marshes and excavation of small soil pits on the ridges. Sample sites are shown on Figure 

7c and the stratigraphy is summarized in Figure 9. Soil pits dug into ridges revealed 

gravel and sand with the exception of Pit 6, which is located on part of the embankment 

that impounded the town’s reservoir. The densely packed gravel and clay encountered in 

that pit may be impermeable fill in the reservoir dam. Gravel and sand in soil pits 5a and 

5b directly overlie bedrock of the Stillwater Formation and sit on top of a small cliff at 

the western edge of Terrace 2. This feature is presumably a relic sea cliff based on the 

sinuous shape of the terrace margin and the shape of the overlying ridge with gravel and 

sand that is typical of beach berms in this area.

Cores obtained from the marshes penetrated modern peat overlying gravel, sand 

or both, with the exception of localities 14 on Terrace 2 and 15 on Terrace 1 (Figure 9). 

Cores from the marsh on Terrace 3 consisted of mud with rootlets and mud over peat
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beneath the sand. Five cores from the marsh on Terrace 2 encountered bedrock directly 

beneath the peat. The similar depths of refusal in Terrace 2 suggest the presence of a 

continuous rocky platform at ~1.3 m depth, rather than several dispersed boulders 

separated by sand and gravel. Core site 15 was located just east of a pond on the surface 

of Terrace 1 and coring recovered ~1.75 m of organic peat, lake mud, and herbaceous 

material overlying sand. The thick organic section may reflect the growth and 

accumulation of vegetation over time as the pond expanded and contracted. Radiocarbon 

dating was performed on several samples of peat obtained during coring, and revealed 

age of formation of peat on Terrace 2 to be ~2900 BP and the lake mud on Terrace 1 to 

be about 2100 BP (Figure 9 and Table 2).

Boulders are located both in the terrace marshes and along the modern coast 

(Richards, 2000). Individual boulders with diameters in excess of several meters are in 

the marshes on all the terraces except Terrace 3. The largest boulder on Terrace 4 was 5.8 

m and located just inland from the coast above the high tide mark (Figure 10a). A slightly 

smaller boulder is located on Terrace 2 (Figure 10b). A block of limestone or marble 

(Richards, 2000) that is 4-5m in length and width is located on Terrace 1. These boulders 

are little rounded, and the limestone block was not derived from the Orca Group nor 

Tertiary rocks of the Yakutat Terrane. Smaller boulders in the marshes on Terrace 4 

ranged from 0.5 m 3.5 m in diameter (Appendix).

Fields of boulders are distributed over the active shore zone and adjacent edge of 

Terrace 4 (Figure 11). These boulder fields have little topographic relief and no 

discernible shape to aid in interpretation of their origin. The field of boulders exposed 

along the coast south and southeast of Lake Kahuntla (Figure 6) are exposed at moderate
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to low tide and are partly rounded by wave action. The rocks are blocks of sandstone, 

volcanic breccia, granite, granodiorite, schist, granitic gneiss, and quartzite. The granitic 

and gneissic rocks are exotic blocks that, like the limestone on Terrace 1, are derived 

from outcrops in the eastern Chugach Mountains and did not originate in the mountains 

surrounding the Katalla Valley (Appendix).

Historical photographs of the waterfront at the town site of Katalla also reveal 

many rounded boulders and cobbles exposed at low tide along the western edge of the 

Katalla River mouth and bay. These boulders are now partly to totally covered by soil 

and vegetation on Terrace 1 following uplift relative to sea level during the earthquake in 

1964.

The huge and isolated boulders located in the marshes must be glacial erratics 

deposited by glaciers circa 10 ka. The origin of the boulder fields is more difficult to 

ascertain given the lack of form and topographic relief. Some of the boulders along the 

coast southeast of Lake Kahuntla may be from a large jetty or ‘sea wall’ that was built 

out from the point into the mouth of Katalla Bay for protection from ships. The jetty was 

built using rocks from a nearby quarry but was destroyed by severe storms shortly after it 

was completed (Katalla Herald, 1907; Janson, 1975). However, the many exotic blocks 

of plutonic and metamorphic rock suggest that glaciers transported the rocks southwards 

out of the Chugach Mountains. If the concentrated boulder deposit formed as a moraine 

then it, like the man-made jetty, was totally destroyed by wave action. An alternative 

process is ice rafting of boulders along the coast to form a concentrated field of drop 

stones, which were then partly rounded by wave action when uplifted through wave base.
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Other remnant glacial features are located on Ragged Mountain. Possible glacial 

deltas and outwash channels are shown in Figure 6. The deltas are broad, relatively flat 

surfaces on the piedmont at the end of a glacial-cut, U-shaped valley. The channels are 

located on the western side of ‘Sakung Mountain’. They were interpreted as such because 

of the way they cut across the mountain, as opposed to flowing down perpendicular to the 

valley as on the eastern side of ‘Sakung Mountain’. These remnant channels and deltas 

were only observed on the LIDAR, and not visited in the field. Therefore, other origins 

are possible.

Streams, creeks, lakes, and ponds are on all four terraces as well as farther up on 

the Ragged Mountain (Figure 6). The lakes and ponds form in the lowest parts of the 

marsh, but appear to be ephemeral. Maps and vintage aerial photos show the locations 

and shapes changing through time. The pond on Palm Point as well as the largest pond on 

Terrace 2 are man-made features remnant of Katalla Town (Figure 6). The streams on the 

terraces serve to transport water throughout the marshes and to and from different terrace 

levels. Many streams on Ragged Mountain, however, are entrenched which indicates a 

relative drop in base level. When there is a drop in base level, a stream or river is no 

longer at equilibrium. To accommodate this change, the stream will incise its streambed 

(Keller and Pinter, 1996). This is most obvious on streams highlighted on Ragged 

Mountain, but also occurs on the Clear Creek Fan and in the Katalla River (Figure 6). 

Although the Katalla River is a meandering river, it is also relatively incised in its 

channel. According to Richards’ (2000) GPS elevations, the Katalla River level is 

anywhere from 2-5 m below the marshes and ridges. The down cutting indicates that the
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area underlying these streams and creeks was uplifted relative to the river’s base level 

(Keller and Pinter, 1996).

An unnamed stream on the southern end of Ragged Mountain is not only 

entrenched, but has an asymmetric transverse channel profile (Figure 12). The riverbank 

is steeper to the south, and there is a small terrace on the northern bank. This 

geomorphology may indicate a tilting toward the south (Keller and Pinter, 1996). 

However, there is not enough evidence to show whether tilting affected only the Ragged 

Mountain block or the entire region underlying the Ragged Mountain piedmont and the 

Katalla River Valley.

The Ragged Mountain fault was not directly observed in the field, but LIDAR 

data were used to make hillshade images. These high-resolution images show the fault in 

very fine detail and display features related to the fault. The fault is ~30 km long, runs 

roughly parallel to the Katalla River Valley, and dips to the west (Figures 3 and 4). Three 

point solutions calculated from the LIDAR data and field observations by Tysdal et al. 

(1976) yield dips less than 10°. On the southern end, the fault scarp appears just north of 

Lake Kahuntla. The scarp height is as much as 40 m over a distance as little as 26 m. The 

height may be even greater, but talus and landslide debris fill the depression at the foot of 

the scarp and likely obscure its true height.

The fault scarp appears to end at Lake Kahuntla although there is evidence that it 

is buried in lake sediment and may extend off the coast. LIDAR data show a slight 

increase in elevation toward the east across Lake Kahuntla, which is consistent with the 

scarp morphology on Ragged Mountain. The increase is only on the order of centimeters,
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and occurs in and around vegetation that did not get filtered out of the LIDAR data. 

Therefore the increase may just be an artifact of the postprocessed data.

Although the scarp appears to indicate normal offset, the bedrock geology 

suggests otherwise. The Katalla Valley is in a convergent zone as opposed to an 

extensional setting. The juxtaposition of older rocks on top of younger rocks also implies 

a thrusting relationship (Winkler, 1993, Plafker, 1994). However, the scarp itself is 

clearly extensional (Figure 13a). The convex and uphill facing characteristics of the fault 

indicate that the Orca Group in the hanging wall moved westward relative to the 

Stillwater Formation in the footwall. Offset of landslide deposits emplaced after glacial 

retreat records normal-sense movement across the fault since about 10 ka (Figure 13b). 

Tysdal et al. (1976) measured trees and soil profiles on landslides transected by the fault 

and determined that the fault has not ruptured in the last 100-150 years. There is 

conflicting evidence concerning large-scale extension verses local extension in the upper 

plate of the thrust fault. Trenching done along the middle of the Ragged Mountain Fault 

in the early 2000s showed evidence for reverse fault splays (R. Bruhn, pers. comm., 

2013). One hypothesis speculates that as the footwall is thrust beneath the hanging wall, 

the hanging wall “folds over” the boundary, making the scarp appear to be extensional. 

However, one would expect some evidence of the thrust boundary below—or in this case 

east of—the extensional scarp. There is no evidence for a thrust fault east of the Ragged 

Mountain fault scarp. The offset landslide combined with the lack of thrusting evidence 

leads to the conclusion that the Ragged Mountain fault is extensional.

The vertical offset of the Ragged Mountain fault scarp is as much as 20 m. This 

gives a rudimentary rate of vertical movement along the fault of 20 m per 10,000 years or
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2 mm per year. Tysdal et al. (1976) estimated 180 m of horizontal displacement over the 

last 12,000 years or 15 mm per year, which is a reasonable heave estimate if the dip of 

the fault is truly less than 10°. The mechanism for extensional movement is poorly 

understood; however, it is possible the mountain block is sliding back in response to 

uplift in the valley.

No other faults mapped by Winkler and Plafker (1993) (Figure 4, this publication) 

were examined in the field or on the LIDAR. Paleogeographic analysis determined that 

there is no offset along the terraces on the Ragged Mountain piedmont, indicating that the 

Clear Creek fault has not ruptured in the last 7000 years.

4.2 Katalla River Valley 

The Katalla River Valley refers to the entire area between the Don Miller Hills 

and ‘Sackung’ Mountain as well as the region east of the Katalla River mouth and bay 

(Figure 3). The Katalla River Valley consists mainly of freshwater marshes separated by 

elevated ridges and ranges in elevation from sea level to ~20 m above sea level. The 

ridges range from >500 m wide to <10 m, and are covered in Sitka spruce and hemlocks. 

The freshwater marshes are several kilometers wide and are drained by the Katalla River. 

Many small lakes and ponds also cover the marshes. The ridges in the southern half of 

the valley are arcuate in shape and are roughly parallel to the present-day shoreline. The 

northern ridges are primarily on the western side of the valley and become less cuspate to 

the north. Large, abandoned meanders cutting through these ridges indicate that the 

Katalla River reworked them at some time.
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There are many abandoned channels and oxbow lakes on the marshes in the 

Katalla River Valley, as well as many small ponds connected by streams in the northern 

part of the valley. Landslides and alluvial fans rim the valley where the marshes meet the 

Don Miller Hills, ‘Sakung Mountain’ and the hills to the north. These sediment inputs 

may affect the elevations of the marshes and the rivers, as well as the stratigraphy. 

Alluvium sourced from these mountains is easily reworked by streams flowing through 

the marshes toward the Katalla River, and is considered when discussing the depositional 

setting below (see Figure 14 for locations). Richards (2000) interpreted the lower ridges 

in the Katalla River Valley as remnant beach berms based on their stratigraphy. However 

the profile of the ridges do not resemble modern-day beach berms. The ridges are much 

broader and more symmetrical. For example, Ridge B is greater than 500 m wide and is 

about 5 m high from base to crest. The commonly accepted definition of a berm, 

however, is a sand body that runs parallel to the shoreline and has a more steeply dipping 

seaward slope than landward slope. Berms are also generally no higher than one meter 

(Jensen 2009).

For the purposes of this section, the term berm will be used to describe an 

elevated ridge that was deposited as either a series of amalgamated beach berms, spits, or 

barrier bars. The specific origin of each ridge cannot be conclusively determined without 

an in-depth study of the sedimentary structures within the ridge.

4.2.1 Coast to Ridge C (Figure 15)

The lowest marshes, Marsh A and Marsh AB, are heavily influenced by the 

Pacific Ocean and are likely brackish marshes. No field investigations were done of these
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marshes, but historical maps and studies show that they were uplifted from below sea 

level during the 1964 earthquake. Ridge A was described by Richards (2000) as sand and 

gravel. Ridge B has a composition similar to A. Both Richards (2000) and Sirkin and 

Tuthill (1971) interpreted these ridges to be either a spit or berm that was later uplifted to 

become a ridge.

Marsh BC was cored in 2007 (Cores 1a and 1b). Each core contains sand sharply 

overlain by peat. The peat layer is overlain by silt and clay, which is sharply overlain by 

modern peat. The lowest contacts between the sand and peat were sampled for diatom 

and radiocarbon analysis (I. Shennan, pers. comm., 2012). Sirkin and Tuthill (1971) 

described a core from this marsh containing beach sand overlain by sedge peat. Diatoms 

in the lowest sands indicate that Marsh BC was a tidal inlet or brackish marsh prior to 

being uplifted above sea level around 500 BP. Gradual subsidence followed the uplift 

event, giving way to the tidal slough shown in photographs taken prior to 1964 (Alaska 

Historical Archive). The slough was elevated above sea level in 1964 and is currently a 

freshwater marsh.

According to Richards (2000), Ridge C is comprised of marine sand deposits. 

Sirkin and Tuthill (1971) described sand overlain by clay, peat and gravel, and another 

layer of peat. Ridge C was originally deposited as a sandy spit. After progressive uplift 

the spit became a storm ridge, protecting Marsh CD to the north. Storm gravels were 

deposited on top of the spit. Eventually, peat was able to form once Ridge C was no 

longer being directly hit with storms. Woody peat located in Ridge C was dated at 

1230±90 BP (Sirkin and Tuthill, 1971).
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4.2.2 Marsh CD to Ridge D (Figure 16)

Three cores—Core 2, Core 3, and Core 4—were removed from Marsh CD. Each 

core contained two sequences of muddy sand sharply overlain by peat. The lowest 

contact between sand and peat in Core 2 was extracted for analysis. Marsh CD was 

uplifted at least three times. The diatoms located in the transition between sand and mud 

in Core 2 indicates uplift from a beach environment to a tidal slough or brackish marsh 

around 1500 BP. The first mud-peat couplet represents an abrupt change in environment 

from marine to freshwater around 700 BP. The mud overlying the peat in each core 

represents a gradual sea level rise. This is likely due to local subsidence. The second 

sharp contact of peat indicates Marsh CD was once again uplifted above sea level, 

allowing a freshwater environment to form. The data taken by Sirkin and Tuthill (1971) 

also agree with this interpretation.

Core 5 was taken in Ridge D. The core consisted of sand overlain by clay topped 

by peaty topsoil. No samples were taken from this core. The description of Ridge D by 

Richards is similar to ours, but Sirkin and Tuthill (1971) described it slightly differently. 

Their data show peat intermixed with sand and gravel at the base, overlain by clay and 

gravel. The gravel is overlain by peat and muskeg. The differences in observations are 

likely due the location of the cores and pits. Our data come from the crest of the ridge, 

but different sediment would be observed if the pit were located on the seaward or 

landward side of the ridge. All of the observations support the interpretation that the ridge 

was formed by marine influences—similar to Ridges A, B, and C. It likely started out as 

a spit or sand bar, and after an uplift event became a storm berm. A later uplift event 

placed it above storm levels, and it was able to support freshwater flora.
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4.2.3 Marsh DE to Ridge E (Figure 17)

Four cores were taken from Marsh DE. In general, all of the cores contain sand 

overlain by mud and clay, sharply overlain by peat. All four cores were taken out of the 

field for further analysis. Diatom analysis of the sand-mud contact shows a transition 

from lagoon deposits to intertidal deposits. Sirkin and Tuthill (1971) observed similar 

stratification. They described silty clay overlain by peat. Similar to Marsh CD, Marsh DE 

was a prograding shoreline that underwent abrupt transitions, most likely due to uplift 

events. Subsidence around 1100 BP caused the transition from a lagoon to intertidal 

slough. The intertidal deposits were abruptly uplifted to a freshwater marsh ~900 BP. The 

interbedded peat and clay in Core 8 may represent a time of migration of the tidal inlet or 

freshwater ponds.

A soil pit was dug into Ridge E. The pit contains laminated sand overlain by 

pebbles and clay, which is in turn overlain by gravel, sand, and sandy soil topped with 

peat. Richards (2000) observed sand and gravel in Ridge E. Sirkin and Tuthill (1971) 

recorded gravel interspersed with thin clay and organics, overlain by peat. The 

differences in these data are also due to do the location of the pits. Ridge E is an uplifted 

beach berm.

4.2.4 Marsh EF to Ridge F (Figure 18)

Two cores were taken in Marsh EF. Each core contains some sand overlain by 

interbedded peat and mud. Marsh EF is a tidal slough that was uplifted enabling 

freshwater peat to form around 2600 BP. The area subsequently underwent gradual 

subsidence followed by another uplift event around 2100 BP. The alternating layers of
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peat and mud and muddy peat suggest that there were alternating periods of seawater and 

freshwater dominance. Overbank flooding of either the Katalla River or the Katalla Bay 

is also a possibility. The peat on top shows that the area remained above seawater 

influence since around 900 BP. Both cores were taken out of the field for further diatom 

and radiocarbon analysis.

Sirkin and Tuthill (1971) also observed sand, clay, and peat in Marsh EF. They 

observed a much thicker layer of modern peat, but their core likely came from the marsh 

itself whereas our cores came from the riverbank and the river. The age of formation of 

this peat is ~3510 BP, much older than any of the 2007 and 2010 samples. It is difficult to 

determine whether or not this is the true age of the peat, or if it is due to the relatively 

primitive dating methods at the time. In 1971, radiocarbon dates were determined using 

bulk samples. Older organic material may have washed into this peat layer at the time of 

deposition, causing it to appear much older than it actually is.

The ridges and marshes north of Marsh EF were not examined in the 2010 field 

season, and therefore, data from Richards (2000) and Sirkin and Tuthill (1971) are used 

exclusively to determine paleo-environments.

Ridge F is comprised of fluvial, marine, or glacial gravel (Sirkin and Tuthill, 

1971). Richards (2000) interpreted it to be deposited by melt water from the Stellar and 

Bering Glacier.

4.2.5 Marsh FG to Marsh IJ (Figure 19)

Marsh FG is composed of peat with grey clay and sand at the base, overlain by 

muskeg (Sirkin and Tuthill, 1971). The grey clay and sand most likely indicate a tidal
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slough environment, overlain by a freshwater environment. It is unclear whether or not 

the boundary is sharp, so it is not possible to infer an abrupt uplift event at this location. 

Another interpretation is that the sand may be from a freshwater lake or pond in the 

marsh, and Marsh FG was not below sea level at the time of deposition. A conclusive 

interpretation cannot be made without analysis of the diatoms in the sand. The 

depositional environment of Marsh FG determines that of Ridge F. That is, if Marsh FG 

was below sea level at some point, then Ridge F was likely deposited as a sand bar and/or 

storm berm. However, if Marsh FG was never below sea level, then Ridge F represents 

reworked river and glacial gravels.

Ridge G is also composed of possible fluvial, marine, or glacial gravel (Sirkin and 

Tuthill, 1971; Richards, 2000). Marsh GH was not studied.

Ridge H comprises thinly bedded gravel and fine-grained sand. Marsh HI is 

mostly peat with gravel at the base (Sirkin and Tuthill, 1971). The gravel at the base of 

the peat may be fluvial, marine, or glacial in origin (Richards, 2000), and radiocarbon 

dating shows the peat was formed ~4000 BP (Sirkin and Tuthill, 1971). As with the 

previous marshes, it is uncertain if this is the correct age or not. The geomorphology of 

the marshes and ridges in the northern part of the valley clearly changed with the 

migration of the Katalla River, so it is difficult to infer any specific depositional setting.

Ridge I is made primarily of muskeg (Sirkin and Tuthill, 1971). A mud layer with 

articulated shells is located east of Ridge I in the Katalla River (Richards, 2000). The 

shells are marine in origin, likely subtidal to intertidal (A. A. Ekdale, pers. comm. 2012), 

and deposited ~7000 BP (Richards, 2000). Marsh IJ is similar to Marsh HI—gravels at 

the base of peat (Sirkin and Tuthill, 1971). Origin of Ridge I cannot easily be determined
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based on stratigraphy, but is likely the same as Ridge H. The presence of marine shells 

suggests that Marsh HI and Marsh IJ were below sea level at some time, and the gravels 

may possibly be marine in origin. If sea level was as far north as Marsh IJ, then Marsh 

FG and Marsh GH were under water at that time as well.

4.2.6 Ridge J to Ridge L (Figure 20)

Ridge J contains alternating seams of gravel and sand followed by modern peat 

(Sirkin and Tuthill, 1971). Richards (2000) interprets Ridge J to be glacial outwash or 

reworked till. Sirkin and Tuthill (1971) observed interbedded marine clay and shells, 

overlain by sand, gravel, and peat. Radiocarbon dating of shells in Marsh JK indicates 

they were deposited around 7000 BP (Sirkin and Tuthill, 1971). However, Sirkin and 

Tuthill (1971) also claim that the peat began forming ~10,700 BP and the clay gave an 

age of ~14,000 BP. The age of the shells is likely the more accurate because it was 

determined using only shell material rather than bulk sediment. It is also similar in age to 

the shells found and dated by Richards (2000). The apparent ages of the peat and marsh 

are likely due to older material being washed in at the time of deposition.

Richards (2000) interpreted Ridge K to be possible glacial outwash or reworked 

till. Marsh KL is composed of interbedded sand and gravel overlain by clay. The clay is 

overlain by muskeg (Sirkin and Tuthill, 1971). Sirkin and Tuthill (1971) interpreted the 

first layer of gravel to be fluvial, and the second layer of sand to be marine. This marsh 

has a relatively high amount of gravel, and was likely heavily influenced by glacial 

outwash or alluvium from Clear Creek. Ridges north of Marsh KL are oriented roughly 

north to south at a high angle to ridges farther south. It is possible they were not
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deposited as separate ridges, but as a hooked spit. A hooked spit is one that forms parallel 

to the bay, as opposed to forming across the bay mouth. As sediment was being deposited 

into the Katalla Bay by Clear Creek, a delta formed. Wave action from the southeast 

eventually transported the sediment north in a spit parallel to the valley walls. Similar 

processes were observed in Washington, Germany, the Netherlands, and Massachusetts 

among others (Hine, 1979; van Heteren et al, 2006; Lindhorst et al, 2010; R. Bruhn, 

2012 pers. comm.). Later, the Katalla River slightly reworked the spit, evidenced by the 

meander scars in these marshes. According to Sirkin and Tuthill (1971), Ridge L is 

similar in composition to Ridge J.

4.2.7 Marsh LM to Marsh N (Figure 21)

The core from Marsh LM contains peat with gravel at the base overlain by sand, 

which is in turn overlain by muskeg. The peat apparently began forming around 2400 BP, 

according to radiocarbon dating by Sirkin and Tuthill (1971) but given the age of the 

shells in marshes further south, the peat is likely much older. The origin of this marsh is 

interpreted to be similar to Marsh KL.

Richards (2000) interpreted Ridge M as possible glacial outwash or reworked till. 

Marsh MN was not studied. Ridge N is the northernmost ridge and was interpreted to be 

a reworked gravel bar or glacial outwash (Sirkin and Tuthill, 1971; Richards, 2000). 

Marsh N contains sandy peat with sand at the base. The sandy peat is overlain by a 

variety of herbaceous peat. Radiocarbon dating of the peat shows it is 6500 years old.

This is a reasonable age of formation of this peat for this location, but based on the 

inaccuracies at other locations, this date may also be due to contamination (Sirkin and
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Tuthill, 1971). The sand at the base of this deposit suggests that there was possibly a 

marine influence as far north as Marsh N.

Richards (2000) interpreted the ridges north of HI to be of glacial or fluvial 

origin. However, the presence of possible marine clay indicates that sea level may have 

reached as far north as Marsh N. Therefore, we propose that these ridges are marine in 

origin, but there are two possible depositional interpretations. The first is that they were 

originally deposited with cuspate shapes similar to Ridges A through H. The Katalla 

River subsequently meandered through the northern half of the valley, reworking and 

redepositing the sediments in linear ridges. The second alternative is that these northern 

ridges were all deposited as part of a hooked spit system that originated from the Clear 

Creek delta.

Figures 22a and 22b are provided to summarize the stratigraphic descriptions 

discussed above and show how the stratigraphy of the marshes and ridges change or stay 

the same from the lowest elevations to the highest. In general, the marshes consist of sand 

or mud overlain by peat, and the ridges are gravel or sand and occasionally are overlain 

by peat. This pattern suggests the ridge-marsh sequences were each deposited in a similar 

way. The paleogeography discussed below explores the deposition of the ridges and 

marshes in more detail.

The geomorphic observations and geochronologic data are used to reconstruct the 

paleogeography and tectonic history of the Katalla area. These new data, when combined 

with data and results from earlier studies (Plafker, 1965; Karachadoorian, 1960; Sirkin 

and Tuthill, 1971; Richards, 2000), allow us to develop a series of paleogeographic maps 

showing the evolution of the Katalla Valley and coast during the last 7000 years.
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4.3 Relationship between Ragged Mountain Piedmont and 

Katalla River Valley 

The marshes and ridges of the Ragged Mountain piedmont and Katalla River 

Valley are similar both in shape and underlying stratigraphy. The ridges are former beach 

berms and coastal spits that were shaped by wave action and long-shore currents. 

Evidence for foreshore to beach deposition include the sinuous to cuspate forms of the 

ridges in map view, relatively narrow widths to lengths of the berms, modest topographic 

relief, and the underlying sorted deposits of sand, pebbles, and gravel.

The berms are correlated between the piedmont and valley using similarity in 

elevation and shape, new constraints on age from radiocarbon dating, and the spatial 

alignment of ridges where projected across the Katalla River. The high quality and sub­

meter vertical resolution of the LIDAR DEM when combined with Richards (2000) high- 

resolution GPS station elevation measurements from the valley floor greatly enhances our 

ability to correlate ridges from the piedmont to the valley east of the Katalla River.

The lowest two ridges are easily correlated across the valley on shape alone, but 

Ridge 1 was more difficult to match. Correlation of Ridge 2 with Ridge C requires Ridge 

1 to have formed prior to Ridge C. Lake sediments on Terrace 1 were apparently formed 

~2100 BP, similar to the age of the second peat horizon in Marsh EF. However, the sand 

in Terrace 1 was not necessarily deposited in a marine environment, so the terrace may 

have been above sea level prior to the mud formation. The elevation of Ridge 1 suggests 

that it corresponds to ridges in the northern part of the Katalla River Valley. The 

northernmost constraint is Ridge I, which contains shells dated at 7000 BP, nearly 5000
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years older than the lake mud. Ridge 1 is likely to correlate with Ridge F, G, H, or I, but a 

more precise correlation is not possible (Figure 23).

The interpretation is that each berm was deposited by wave action and then 

abandoned when the coast prograded seaward and relative sea level dropped. At some 

localities, two or more berms either merge together or bifurcate by several meters to tens 

of meters. These berm complexes are roughly the same age and may represent a series of 

both shallow foreshore and shoreline berms that were partly merged during storms. The 

berms on the piedmont were deposited along the edges of wave-cut and/or glacially 

abraded platforms that are partly bounded by sea cliffs up to several meters high. The 

platforms, some of which are cut into bedrock, probably became the sites of small 

sloughs prior to emergence above high-high tide following uplift.

The berms in the valley developed as the shoreline prograded southward during 

infilling of the estuary. The berms are separated by marshes underlain by marine and 

fluvial deposits, with intercalated peat layers. Old meander scars and oxbow lakes in the 

northern part of the valley mark localities where estuary fill was eroded and reworked by 

the river prior to establishment of its present course. Alluvial fans and landslides fringe 

the margins of the river valley; the largest fan is located at the mouth of Clear Creek 

(Figure 6). Clear Creek supplied sediment that partly filled the estuary as the coast 

migrated southward. Some of this sediment presumably formed a sharply hooked spit that 

extended along the western side of the estuary, and was subsequently reworked by waves 

and fluvial processes.
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4.4 Relationship to Known Megathrust Events 

The radiocarbon dates were most useful when relating the history and 

geomorphology of the Katalla area to known megathrust events. Previous studies show 

that there were at least five megathrust events along the eastern portion of the Aleutian 

Subduction zone— 1964, 900 BP, 1500 BP, 2100 BP, and 2600 BP (Hamilton et al,

2005; Hamilton and Shennan, 2005; Carver and Plafker, 2008; Shennan et al, 2009). The 

Katalla Valley was also uplifted during these megathrust events, as evidenced by the 

radiocarbon dates taken from the field in 2011 (Table 2).

The deformation caused by the Good Friday Earthquake was documented in field 

studies immediately following the earthquake. The Katalla area was uplifted as much as 2 

m during this event. (Plafker,1965).

Cores taken from Marshes CD, DE, and EF were uplifted ~930-790 BP. This 

corresponds with megathrust events documented by mapping and coring of marshes at 

Anchorage, Girdwood, Alaganik Slough, Turnagain Arm, Puffy Slough, Cape Suckling, 

and Yakataga (see Figure 1 for locations). Marsh CD was also uplifted ~1510-1340 BP, 

at the same time sites in Anchorage, Girdwood, Alaganik Slough, and Turnagain Arm 

were coseismically uplifted or subsided. Marsh EF was uplifted ~2120-1950 BP and 

~2650-2350 BP. This roughly corresponds to uplift events documented in Cook Inlet and 

Turnagain Arm (Hamilton et al, 2005; Hamilton and Shennan, 2005; Carver and Plafker, 

2008; Shennan, 2008; Shennan et al, 2009). The timing of uplift events at Katalla show 

that this area was uplifted by the same megathrust events recorded elsewhere in southern 

Alaska (Table 1).
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4.5 Evidence for a 500 BP event 

One documented uplift event in Katalla does not correlate with a known Holocene 

earthquake. Marsh BC was cored in 2007 and the contact was dated at ~550-500 BP. No 

other field sites along the southeastern coast of Alaska were uplifted at that time. The 

samples were dated again in 2011 to confirm the results. This anomalous date suggests 

that there is a local structure that moved at least somewhat independently of megathrust 

events underneath the Katalla Valley. The structure must be relatively small because it 

did not affect Puffy Slough, eight kilometers to the east, or Alaganik Slough, 60 km to 

the west (Figure 1). It is possible that this structure ruptured more than once prior to 500 

BP, but the evidence of uplift may be masked by younger and larger megathrust events.

4.6 Paleogeographic Reconstructions 

The geomorphology of the Katalla area, along with the stratigraphy of the cores 

and dates of uplift, were used to reconstruct the geography since ~7000 BP when the 

shoreline was located near the head of the valley based upon the presence of marine 

mollusk shells (Richards, 2000). A series of paleogeographic maps help to visualize the 

change, which leads to understanding the structural forces working on the valley.

4.6.1 1964-Present

The Good Friday Earthquake not only changed the elevation of the landscape but 

also altered the geomorphology and vegetation (Boggs, 2000). The extent of uplift in the 

region can be inferred from the distribution of “uplifted marshes” in Figure 24.
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The geomorphology surrounding Katalla includes landforms associated with 

alluvial fans, landslides, boulder fields, lakes, streams, and faults (Figure 25). Marsh 

deposits cover former alluvial floodplains and marine terraces that are separated by 

former beach ridges. The relative age of the terraces and ridges are shown by shades of 

brown and green, respectively, with the lightest color being the youngest, and the darkest 

being the oldest. The tidal range in the area can be as much as 6 m, and tidal influence 

extends far up the Katalla River (NOAA).

The geomorphology map is used as a base for the paleogeographic 

reconstructions. Much can be ascertained about the depositional environments in Katalla 

by highlighting depositional features and vegetation. Pre-1964 documents provide an 

historic reference that is useful when evaluating geomorphic changes due to uplift and 

human influence.

4.6.2 1900-1964: The Katalla Case Study

The town of Katalla was founded in the early twentieth century in response to a 

coal discovery north of the valley (Janson, 1975). Two competing railroad companies 

brought in many workers in the hopes of reaching the coal first. In its prime, 1907-1908, 

the town of Katalla had about 5,000 residents. During this time, the landscape was well 

documented by town site engineers, geologists, photographers, and journalists. These 

historical records illustrate precisely how the region looked prior to the 1964 earthquake. 

They also record human alteration of the landscape.

The most noticeable difference of the Katalla Valley from pre-1964 to now is the 

location of the coastline and the tidal influence (Figure 26). The coast on the western side
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of the Katalla Bay moved by as much as 400 m to the east, and the shore in front of 

Ridge B prograded nearly 900 m south since the Good Friday Earthquake. The mouth of 

the Katalla River used to be a large bay. Records show that the bay was deep enough to 

land ships until 1899, when an earthquake uplifted the landscape. The only major 

earthquake that occurred at this time was the 1899 Cape Yakataga Earthquake. Although 

most scientific records do not show the deformation front to reach as far north and west 

as Katalla, it is mentioned in an issue of the Katalla Herald (Janson, 1975). Historic maps 

and photographs also show that Marsh BC was a tidal slough, although presently it is a 

freshwater marsh (Figure 26). There was also a tidal inlet between Ridges 1 and 2 on the 

Ragged Mountain piedmont that is now a freshwater marsh. These changes show that 

coseismic uplift causes rapid progradation of the coast, and an accelerated change from 

brackish water to freshwater environments. There are currently no tidal sloughs or inlets 

in Katalla, despite their presence prior to 1964. This is likely because interseismic 

subsidence has not yet allowed low-lying areas of the Katalla Valley to be inundated with 

seawater. Although coseismic uplift exceeds interseismic subsidence in Katalla, 

subsidence is documented in cores up valley. Some interseismic subsidence is necessary 

for the formation of tidal sloughs and inlets. There is no evidence of movement across the 

Ragged Mountain fault during the 1964 earthquake.

Figure 27 is an idealized cross section of an uplifted berm/marsh sequence from 

Boggs (2000). The cross sections illustrate how much the vegetation is affected by a 

large-scale megathrust event over time. Uplift immediately creates new surface area for 

freshwater and saltwater-tolerant plants to inhabit. It also allows some types of soils and
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sediments to drain, enabling less water-dependent plants to take root. Interseismic 

subsidence has the opposite effect on the flora.

The following paleogeographic reconstructions are presented from oldest to 

youngest in order to visualize how the coastline prograded south through time.

4.6.3 10000 BP-2100 BP

Glaciers in the Katalla area retreated ~10,000 BP (Fleisher, 1999). During the 

advance and retreat of the glaciers, a broad, flat platform was cut into the Stillwater 

Formation and possibly the Poul Creek Formation on the eastern side of the valley. 

Outwash channels were carved into the western side of ‘Sakung Mountain’ and glacial 

deltas were deposited between Ragged Mountain and ‘Sakung Mountain’. The Pacific 

Ocean may have reached as far north as the head of the valley following glacial retreat. 

Once megathrust event cycles began, relative sea level dropped and continued to drop 

since. The presence of marine mollusks near Ridge I indicate that tidal influence reached 

at least as far north as that ridge. There are three possible interpretations of deposition in 

the northern Katalla Valley. The first, proposed by Richards (2000), is that ridges are 

remnant glacial till that was reworked by the Katalla River. The second is that ridges 

were marine in origin and were deposited parallel to the present-day shoreline, and were 

subsequently reworked by the Katalla River. The third is that they were all of the same 

ridge system that formed on a hooked spit (Figure 28a). There is no way to tell whether 

the last two hypotheses are correct without a thorough stratigraphic analysis. The first 

hypothesis is unlikely though, based on the marine shells far north in the valley.



Between 7000 BP and 2600 BP, the valley prograded south, although the exact 

mechanism for this progradation is unknown. Prior to 2600 BP, the Katalla River was 

likely an established meandering fluvial system and the ridges and marshes north of 

Ridge F were above sea level.

Around 2600 BP, a megathrust event elevated Marsh EF above sea level long 

enough for intertidal peat to form on top of it (Figure 28b). Gradually, sea level rose 

(Figure 28c), but the area was uplifted again ~2100 BP (Figure 28d). During the times 

that Marsh EF was above sea level, Ridge E was the active berm. When these areas were 

submerged, Ridge F was the active berm, and Marsh FG was the back beach. The amount 

of uplift is difficult to determine, but a minimum can be estimated using the diatoms in 

the sample. The 2600 BP event caused uplift from an intertidal slough to a freshwater 

peat marsh. The Good Friday Earthquake in 1964 also uplifted an intertidal feature—the 

Katalla Slough—to a freshwater peat marsh, and the amount of uplift was 2 m. Two m is 

a reasonable minimum estimate for amount of uplift during both the 2600 BP event and 

the 2100 BP event. The amount of subsidence that occurred interseismically was similar 

since the 2100 BP event lifted the same area as the 2600 BP event. Therefore, net uplift at 

this time was zero.

4.6.4 1500 BP-900 BP

The 1500 BP megathrust event raised the Katalla Valley above sea level as far 

south as Marsh CD (Figures 29a and 29b). Ridge C transitioned from a spit to storm 

ridge, and Marsh CD went from marine to a tidally influenced lagoon or back beach. The 

amount of uplift caused by this event is difficult to determine, as there is no evidence
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how far below sea level Marsh CD was prior to uplift. Between 1270-1080 BP, relative 

sea level gradually rose, submerging Ridge C and allowing Ridge D to form (Figure 29c). 

Sea level continued to rise until Ridge E became the active berm, and Marsh EF the 

lagoon. The gravel in Ridge D was likely sourced from Clear Creek and its fan, and was 

reworked into the spit. The amount of interseismic subsidence was greater than coseismic 

uplift during this time period, and therefore net uplift is less than zero.

4.6.5 900 BP- AD 1950 BP

The megathrust event at ~900 BP is the last recorded megathrust event prior to 

1964. This large uplift event raised Marshes CD, DE, and EF above sea level (Figure 

30a). Marsh CD became either a lagoon or a freshwater marsh at this time; the diatom 

evidence is not strong either way (Shennan, 2012, pers. comm.). Marshes DE and EF 

were dominated by freshwater. The amount of uplift was at least 2 m. Sediment from a 

large landslide or alluvial fan on the Don Miller hills continued to build Ridge C. This 

spit may have extended much farther to the west than its present-day position. It is clear 

that the Katalla River transects it now, but the presence of more than one large meander 

scar suggests that the river travelled around the ridge at some point. After the uplift at 

900 BP, Marsh BC was most likely a beach environment. It is also possible that Ridge B 

even started forming at this time, given the southern protrusion of the Don Miller Hills, 

but the sea floor may have been too deep for a spit to take hold.

Ridge 3b on the Ragged Mountain piedmont side of the study area was deposited 

at the same time as Ridge C, and is part of the same spit system. Although there are no 

stratigraphic data from this ridge, the elevation of the base of the ridge is the same as
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Ridge C, and the shape of the two ridges suggests that they were probably connected. 

Ridge 3b may have extended as far south as Ridge 3 a, but the sediment was reworked 

during the building of Ridge 3 a. The trees that “connect” the two ridges are all younger 

than Katalla Town and the area was below sea level prior to the 1964 earthquake, 

indicating that these two ridges are not actually connected. This is evidenced in maps and 

photos made prior to the Good Friday Earthquake. Net uplift during this time period was 

greater than zero.

The 500 BP event was the last earthquake to uplift Katalla prior to 1964 (Figures 

30b and 30c). Between the 900 BP event and the 500 BP event, Marsh BC transitioned 

from submarine to intertidal, which indicates an interseismic fall in sea level. There is no 

record in the stratigraphy of this fall, and it may have occurred coseismically during the 

900 BP event. Following uplift Ridge B was deposited. Long shore drift from the 

southeast transported sediment, most likely from the Bering River Delta, toward Katalla. 

The southernmost point of the Don Miller Hills created a natural barrier and allowed a 

spit to form off of the point. Storms also contributed to the sediment buildup. Ridge B 

appears to record two different depositional episodes, as evidenced by the slight drop in 

topography through the middle of the ridge. This may be due to a change in storm 

patterns, in sediment supply from the east, or even in sea level. It may also be attributed 

to the 1899 Cape Yakataga Earthquake. A slight uplift of the area could have lowered the 

relative sea level, causing a second spit to form just seaward of the first. The 500 BP 

event also uplifted the seafloor behind the spit to form an intertidal platform to a 

freshwater marsh. Gradually sea level rose, and the freshwater marsh became a brackish
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water-saturated area that was both tidally dominated as well as fluvially dominated by the 

Pacific Ocean and the Katalla River, respectively (Figure 25).

Prominent currents that travel from southern Alaska contact the western side of 

the Katalla Bay. This high-energy environment shaped the high-water berms into the 

scalloped ridges that exist today. The 500 BP event raised Ridge 2 above the high water 

mark. What was once a platform with a thin beach cover became a tidal inlet, and a new 

high-water berm formed in front of it. Ridge 3 a likely started forming further east than its 

present position, but intense wave energy coming from the east caused it to be pushed it 

back to coalesce with the older ridges. The Katalla River may have also played a role in 

shaping the coastline here. The coastline prior to the 1964 event was scalloped, and also 

concave toward the south. This suggests that the Katalla River was pushing sediment to 

the south while the Pacific Ocean was pushing sediment toward the east. It is less 

apparent further north because the spit protected the area from direct wave action. 

Between the 500 BP event and the 1964 event, net uplift was zero. However, net uplift 

between the 500 BP event and the present is at least 2 m.
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Figure 8. Escarpments interpreted as former sea cliffs cut by wave action following 
several episodes of uplift along the piedmont of Ragged Mountain. Each sea cliff is cut 
into a marine shore zone or gentle sloping platform following uplift relative to sea level.

Shaded relief LIDAR DEM created with artificial illumination from the southeast.
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Figure 9. Stratigraphy of marshes and ridges of the Ragged Mountain piedmont. 
Location is shown in Figure 14. Marshes are labeled in yellow, ridges in white, cores in 
red, and soil pits in blue. Radiocarbon dates of organic material found at important 
contacts is noted.

Photo credit: US Forest Service (early 2000s)
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Figure 10. Large boulders found in the field. A) Photo located at 60 11.254 N, 144 
31.917 W (Terrace 4). B) Photo located at 60 11.800 N, 144 31.393 W (Terrace 2). Note 
geologists for scale.
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Figure 11. Boulder fields on the Katalla coast. A) Aerial photo of the boulder fields 
shown on Figure 6. This is a color-infrared image which shows vegetation in red. Most 
of the boulders seen in this photograph are moss-covered and appear red, although there 
is some ground vegetation present as well. The blue on either side of the boulder field is 
the Pacific Ocean with waves breaking on the beach. (Photo credit: National Center for 
Airborne Laser Mapping (NCALM), 2007). B) The boulder field as seen from the 
ground, looking south. Note geologist for scale.
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Length (m) Length (m)
Figure 12. Topographic profiles across a stream on the southern end of Ragged 
Mountain, location shown in top image by black rectangle (note, 4x vertical 
exaggeration). The stream bank is slightly steeper to the south, but taller to the north.
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Figure 13. Topographic features of the Ragged Mountain fault, a) Typical cross section 
of the Ragged Mountain Fault. Older volcanic rocks of the Orca Group overlie younger 
sedimentary rocks of the Stillwater Formation, indicative of a thrust fault. However, the 
scarp faces west, or uphill, implying extensional offset. b) Landslide offset by the 
Ragged Mountain Fault (location shown on Figure 6). The black dashed line shows the 
position of the present-day landslide and the yellow line shows an older toe of the slide. 
The two topographic profiles show the convex nature of the landslide (note, B-B’ not 
to scale). This offset indicates the fault has been active since the landslide was first 
deposited, which was post glacial retreat (10,000 BP).
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Figure 14. Aerial photo of the Katalla River Valley and the Ragged Mountain Piedmont 
with rectangles outlining localities of maps and cross sections shown in Figures 9 and 15 
through 21.

Photo credit: US Forest Service (early 2000s)
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Figure 15. Stratigraphy of marshes and ridges from the Katalla Coast to Ridge C. 
Location is shown in Figure 14. Marshes are labeled in yellow, ridges in white, and cores 
in red.

described by Richards (2000)
2Described by Sirkin and Tuthill (1971)
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Figure 16. Stratigraphy of marshes and ridges from Marsh C to Ridge D. Location is 
shown in Figure 14. See Figure 15 for legend. Marshes are labeled in yellow, ridges in 
white, and cores in red.

CDescribed by Sirkin and Tuthill (1971)
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Figure 17. Stratigraphy of marshes and ridges from Marsh DE to Ridge E. Location is 
shown in Figure 14. See Figure 15 for legend. Marshes are labeled in yellow, ridges in 
white, soil pits in blue, and cores in red.

described by Richards (2000)
2Described by Sirkin and Tuthill (1971)
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Figure 18. Stratigraphy of marshes and ridges from Marsh EF to Ridge F. Location is 
shown in Figure 14. See Figure 15 for legend. Marshes are labeled in yellow, ridges in 
white, and cores in red.

described by Richards (2000)
2Described by Sirkin and Tuthill (1971)
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Figure 19. Stratigraphy of marshes and ridges from Marsh FG to Marsh IJ. Location is 
shown in Figure 14. See Figure 15 for legend. Marshes are labeled in yellow and ridges 
in white. All data from Richards (2000) and/or Sirkin and Tuthill (1971).

described by Richards (2000)
2Described by Sirkin and Tuthill (1971)
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Figure 20. Stratigraphy of marshes and ridges from Ridge J to Ridge L. Location is 
shown in Figure 14. See Figure 15 for legend. Marshes are labeled in yellow and ridges 
in white. All data from Richards (2000) and/or Sirkin and Tuthill (1971).

Described by Richards (2000)
Described by Sirkin and Tuthill (1971)
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Figure 21. Stratigraphy of marshes and ridges from Marsh LM to Marsh N. Location is 
shown in Figure 14. See Figure 15 for legend. Marshes are labeled in yellow and ridges 
in white. All data from Richards (2000) and/or Sirkin and Tuthill (1971).

Described by Richards (2000)
Described by Sirkin and Tuthill (1971)
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Figure 22. Composite topographic profiles with stratigraphic sections of the Katalla 
River Valley and the Ragged Mountain piedmont. a) Cross sections A-A’ and B-B’ of 
Katalla Valley (note, ~100x vertical exaggeration). Cross section locations are shown in 
Figure 3. The stratigraphy of the marshes and ridges is shown as well as horizons 
corresponding to megathurst events. b) Cross section C-C’ of terraces on Ragged 
Mountain piedmont showing the stratigraphy of the marshes and ridges. Cross section 
location is shown in Figure 3 (note, ~65x vertical exaggeration).
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Figure 23. Aerial photo of the Katalla Valley showing spot elevations taken by Richards 
(2000) in white. Elevations from LIDAR DEM are colored and correlated across the 
valley. Where the elevations differ, geomorphic features were used to correlate ridges 
across the valley.

Photo credit: US Forest Service (early 2000s)
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Figure 25. Geomorphic map of the Ragged Mountain piedmont and the Katalla River 
Valley (adapted from Kachadoorian, I960).
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Figure 26. Katalla River Valley and Ragged Mountain before and after the 1964 Good 
Friday Earthquake, a) Katalla circa 1950 (photo credit: US Geological Survey). Berm B 
was the active berm in the valley as were Ridges 3a and 3b on the Ragged Mountain 
piedmont. Marsh BC was a tidal inlet, as was Terrace 3 to the west, b) After the Good 
Friday Earthquake, the coastline prograded by nearly a kilometer in some places.



96

A B

h

H f i r  3
Pond Root Mat Levee 

Channel

D
i  i  

#

Figure 27. Idealized cross section of vegetation succssion and landform development 
adapted from Boggs (2000). A) Post-1964 marsh vegetation: Tide tolerant species 
continue to dominate immediately after the 1964 uplift. Tides no longer flood the ponds 
or levees. B) Early seral (30 years after uplift): Freshwater-tolerant species (herbs, shrubs 
and trees) invade the peat and levees. C) Mid seral: Peat continues to fill the ponds, 
supporting mature peatland communities. Tree and shrub communities dominate the 
levees. D) Late seral: Peat continues to fill the ponds, and may invade the levees. The 
peat supports mature peatland communities.
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Figure 28. Paleogeographic maps dipicting Katalla from -7000 BP through time the 
2100 BP uplift event. A) Katalla circa 7000 BP. The valley was fully under marine 
influence, and a possible hooked spit was forming off of Clear Creek Fan. The black 
rectangle approximates the location of the following maps. B) Katalla after the 2500 
BP uplift event. Diatom and stratigraphic data show the development of a freshwater 
marsh following uplift. C) A relative sea level fall caused a transgression of the 
previously uplifted marshes prior to the 2100 BP event. D) The 2100 BP uplift had the 
same effect as the 2500 BP event.
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Figure 29. Paleogeographic maps depicting 
Katalla before the 1500 BP uplift event 
through -1100 BP. Locations are shown by 
the black rectangle on Figure 28a. A) No 
recorded intersiesmic subsidence between 
the 2100 BP event and the 1500 BP event. A 
possible spit may have formed off of the 
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Figure 30. Paleogeographic maps depicting Katalla after the 900 BP uplit event to AD 
1950. Locations are shown by the black rectangle on Figure 28a. A) The 900 BP uplift 
lifted all but one tidal slough to a freshwater marsh environment. B) Between 500 BP 
and 900 BP, a relative sea level caused an open marine environment to become a tidal 
slough, perhaps due to building of the spit at the southern end of the Don Miller Hills. 
C) The 500 BP uplift raised the tidal slough to a freshwater marsh. D) Intersiesmic 
subsidence drowned the marsh as seen in air photos.



CHAPTER 5

DISCUSSION

Today’s landscape reflects at least 7000 years of southward progradation of the 

shoreline as the Katalla River estuary filled with sediment and the sea level fell, stranding 

former marine deposits on the piedmont and in the valley. The well-sorted, porous, and 

better-drained gravel and sandy deposits beneath the berms support thick stands of 

hemlock and Sitka spruce. The intervening freshwater marshes are vegetated by shrubs 

and grasses that overlie a complicated stratigraphy that records a history of fluctuating 

uplift and subsidence between marine, brackish water, and nonmarine environments. This 

history of relative sea level change, infilling of the estuary, and southward migration of 

the coast is obtained by interpreting and dating the Quaternary deposits that fill the 

former sloughs and bury the eroded platforms. The history is complicated by 

superposition of deposits and processes associated with the last vestiges of glaciation, 

lateral migration of coastal and fluvial environments, and relative sea level change caused 

by a combination of global sea level change, local isostatic rebound, and earthquakes. 

Overall, there is compelling evidence for several meters of net uplift in the Katalla River 

Valley.



The history of uplift and subsidence that occurred coseismically and 

interseismically in Katalla is complex. The only direct measurement of coseismic uplift 

occurred after the 1964 earthquake (Plafker, 1965). When interpreting the 

paleogeography of Katalla over the last 2600 years, vertical displacements fluctuated 

between periods of net uplift and subsidence. That is, there are two time periods of net 

subsidence— 1500 BP to 900 BP and 500 BP to 1964 AD—one time period with net 

uplift roughly zero—2600 BP to 1500 BP—and two time periods with net uplift—900 

BP to 500 BP and 1964 to present. However, it is too soon to tell whether or not 

interseismic subsidence will not come to dominate over coseismic uplift in 1964. If the 

amount of coseismic uplift and interseismic subsidence were equal to each other, and 

were the same for each earthquake, then net uplift would be zero. The cross section 

(Figure 21a) indicates some interseismic subsidence particularly in Marsh EF. The 2600 

BP and 2100 BP contacts are at a lower elevation than the younger contacts. However, 

the 900 BP contact and 1500 BP contacts are both higher than the two youngest contacts 

which strongly suggests net uplift. The 7000-year-old shells near Ridge I also indicate net 

uplift since their deposition.

One possible cause of this relative sea level fall is a global sea level fall and 

subsequent progradation of the valley. We reject this hypothesis because there is no 

evidence of a eustatic sea level drop; in fact, global sea level has slowly risen over the 

last 6000 years (Church et al, 2001). Additionally, a gradual drop in sea level would be 

evident in the stratigraphic cores, which is not the case.

Another alternative cause of relative sea level fall is due to increased 

sedimentation from the Katalla River. If sedimentary deposition is greater and faster than
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removal by ocean currents, then the valley would prograde to the south. This too is 

unlikely as there are no sedimentalogical data showing a gradual progradation. In the 

lower half of the valley where the cores were taken, the stratigraphy indicates abrupt sea 

level falls, consistent with coseismic displacements. The only gradual sedimentary facies 

change appears to be interseismic when marine deposits buried former subaerial and 

shallow marine deposits.

Isostatic adjustment after glacial retreat could be another cause of a relative drop 

in sea level. While it is likely that the Katalla River Valley rebounded after the glacial 

retreat, the amount of uplift does not compare to the difference in height from the head of 

the valley to the mouth. Furthermore, the calculations show the isostatic adjustment 

period was relatively short and no longer influences the Katalla Valley (Richards, 2000).

There are two potential shortcomings to the isostatic analysis presented by 

Richards (2000) that need to be considered before one can eliminate isostatic rebound as 

a mechanism for net uplift in the Katalla Valley. First, the analysis was a one­

dimensional or ‘point load’ isostatic rebound model that neglects the effects of ice 

loading distributed over a lithosphere with a finite equivalent elastic thickness, and also 

assumed that ice loading was removed instantaneously. The results of this type of 

calculation tend towards a maximum credible rebound at a point. Although the history of 

ice withdrawal from the valley is poorly determined, it is plausible that some uplift by 

rebound was still underway within a few thousand years after the assumed 10 ka date of 

ice withdrawal. Secondly, the valley is located only several tens of kilometers from large 

piedmont glaciers. These include the Bering, Stellar, and Martin River Glaciers, each of 

which has waxed and waned in surface area during the late Holocene (Hamilton, 1994).
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Lateral growth and retreat of these glaciers may have caused vertical displacements 

within the valley that are not accounted for. Presumably, short-term shifts in the ice 

masses of the piedmont glaciers would be reflected in transitional rather than abrupt 

changes in the depositional environment of marine to nonmarine and the opposite, 

deposition. Observations of depositional changes in the cores from the Katalla Valley did 

not reveal gradational changes from marine to nonmarine deposition during uplift or 

relative sea-level fall, however. Rather, the evidence supports abrupt uplift, that, with one 

exception circa 500 BP, correlate in time with megathrust earthquakes during the last 

several thousand years.

Therefore, we conclude that the topography and shape of the valley are probably 

due to net tectonic uplift through time. Sedimentary cores that contain records of 

earthquakes are progressively older from south to north within the valley. If net uplift 

were equal to zero, then the megathrust events recorded in the cores at Katalla would be 

in all of the marshes. More likely, there would be few marshes to core, because the coast 

would be located farther inland near the head of the valley. While tectonic uplift is the 

driving factor in the long-term relative sea level fall, it is possible that increased 

sedimentation also has a role. There are smaller ridges between Ridges D and E in the 

Katalla River Valley, which may indicate progradation unrelated to tectonic uplift.

The general cycle of tectonic uplift followed by progradation in the Katalla River 

Valley is illustrated in Figures 31a and 31b. First a submerged portion south of the valley 

is uplifted and a berm or spit forms. This is followed by another uplift event and the 

former beach becomes either a freshwater or brackish marsh with a new berm in front of 

it. Beaches are able to form in the valley because they are partially protected from direct
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wave action by the Don Miller Hills, which project outwards to the coast along the 

eastern side of the valley.

The terraces located on the Ragged Mountain piedmont reflect uplift and an 

emerging shoreline through time. Due to the direct wave action it receives from the east, 

large beaches do not form along the piedmont. Instead, the formally glacial scoured 

bedrock is cut by the wave action into a marine platform and a berm is deposited on top. 

A narrow beach may form in front of the berm. After an uplift event, the platform is 

raised and may become a tidal inlet or a freshwater marsh. Another platform-ridge 

sequence takes shape to the east. Eventually, the southern ridges may amalgamate into 

one. This process is shown in Figures 31c and 31d.

Although net uplift is apparent in the Katalla area, the overall trend of vertical 

displacement along the coast is subsidence. In sediment cores, subsidence manifests as 

marine sediment gradually overlying freshwater sediment or peat. With the exception of 

the 1964 event, every sharp contact of peat over marine sediment recorded in Quaternary 

stratigraphy from the Alaganik Slough to the west and Cape Suckling to the east is 

overlain by marine sediment (Carver and Plafker, 2008, Shennan et al., 2009). Therefore, 

it is anomalous that Katalla—situated between those two endpoints—is experiencing net 

uplift.

We propose three hypotheses to explain net uplift in Katalla and partially explain 

extension along the Ragged Mountain fault and the anomalous 500 BP event. In all cases, 

the amount of net uplift is modest, and within the range of 2-5 m. Isostatic rebound 

caused by Late Holocene fluctuations in ice masses is not considered because 1) we 

found no evidence for gradational changes in stratigraphy related to rebound, and 2) the
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history of piedmont glacier fluctuations is too poorly known to create accurate and 

meaningful models of spatially distributed rebound in the Katalla Valley.

The first hypothesis proposes that imbricate thrusting drives net uplift. This 

hypothesis fits into the overall nature of convergence along the boundary of the Yakutat 

terrane and the North American plate. As the Yakutat terrane is subducted and accreted, 

steeply dipping reverse faults propagate toward the surface to accommodate shortening of 

the crust (Figure 32). Recent studies show the Kayak Island zone actively accommodates 

convergence of the Yakutat terrane at 3.5±1.0 mm/yr. The zone extends onshore to 

connect with the Bering Glacier Structure and the Suckling Hills fault, both of which are 

east of the Katalla River Valley (Bruhn et al., 2004; Chapman et al., 2011). The imbricate 

thrust beneath the Katalla River Valley may also be a result of this shortening. The 

Bering Deformation zone, as described by Elliot (2011), is a zone of increased 

counterclockwise motion relative to stable North America. The Bering Deformation zone 

is the area between the Bering Glacier and the Copper River Delta, which includes 

Katalla. The rotation exhibited by the new GPS data published by Elliot (2011) show that 

the Bering Deformation zone is actively accommodating shortening described by 

Chapman et al. (2011). As this block began rotation, the Kayak Island zone and its 

onshore equivalents formed a new structural boundary that may be the current eastern 

extension of the Aleutian megathrust (Chapman et al, 2011). A local imbricate fault may 

rupture during megathrust events, as happened at Kodiak Island during the Good Friday 

Earthquake (Plafker, 1965), or it may rupture independently, causing anomalous events 

like the 500 BP uplift event. This hypothesis, however, does not easily explain the 

interseismic subsidence following the 500 BP event, but westward slip along the Ragged
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The second hypothesis speculates that net uplift is driven by aseismic anticlinal 

flexure or folding. This hypothesis is similar to the first in that an antiformal stack under 

the Katalla Valley accommodates shortening along the convergent boundary in a similar 

fashion to an imbricate fault. Uplift occurs due to repeated stacking of crustal rocks under 

the Katalla Valley as opposed to one high angle fault (Figure 32). This hypothesis not 

only explains net uplift, and possibly the 500 BP event, but also fits well with the bedrock 

geology of Katalla. The Poul Creek Formation, located on either side of the valley, is 

adjacent to the younger Redwood Formation east of the Don Miller Hills. At the head of 

the valley, the Tokun Formation crops out with the Sillwater north of it. The Tokun 

formation is older than the Stillwater Formation. As a plunging antiform erodes, the core 

of the anticline is exposed and is surrounded by younger strata on either side. This is 

evident in Katalla (Figure 4). The Tokun Formation at the head of the valley suggests that 

the axial plane is plunging toward the southeast. An antiformal stack beneath Katalla 

does not easily explain backsliding along the Ragged Mountain fault, however. The 

Ragged Mountain could be part of a syncline that is adjacent to the antiform beneath 

Katalla. The uphill facing scarps would not be a result of normal faulting, but of intralimb 

slip within the syncline. The geometry of the Ragged Mountain fault is not consistent 

with this hypothesis, and a steep syncline does not easily form in this tectonic regime.

The third hypothesis is that uplift is driven by exhumation of the footwall of the 

Ragged Mountain fault (Figure 32). As the hanging wall of the fault moves westward, the 

footwall, which underlies the Katalla Valley slowly rebounds. This hypothesis explains

107

Mountain fault may be similar to that which occurred during the Tohoko-Oki earthquake

in Japan in 2011 (Ito et al., 2011).



apparent extension along the Ragged Mountain fault, as well as the few meters of net 

uplift over the last several thousand years. Unlike the first two hypotheses, however, this 

does not easily fit with the ongoing convergence of the Yakutat terrane and the North 

American plate. Additionally, trenching along the Ragged Mountain fault in the mid- 

2000s revealed reverse fault splays, which would not be present if the Ragged Mountain 

was backsliding (R. Bruhn, 2012 pers. comm.).

All three of these hypotheses reasonably explain net uplift in Katalla, but do not 

easily explain extension along the Ragged Mountain fault and/or fit into the larger 

tectonic regime. Of the three, an antiformal stack beneath Katalla is the preferred 

hypothesis. This is because it not only explains net uplift, but there is bedrock evidence 

of a remnant antiform. Antiforms and high-angle reverse faults are present throughout the 

region both onshore and off. In the Pamplona zone, east of the Kayak Island zone, 

seismic data show multiple anticlines growing offshore (Worthington et al, 2010). The 

Kayak Island zone is a series of northwest dipping reverse faults, which are parallel to the 

proposed antiform beneath the Katalla Valley. The Ragged Mountain fault remains an 

enigma, however. Perhaps it is just backsliding along its original boundary as a result of 

the upward flexure in Katalla. Perhaps the trenching data are accurate and the extensional 

scarp is due to folding over the hanging wall after thrusting. The offset of the Quaternary 

landslide at the southern end of the Ragged Mountain fault indicates normal-sense offset 

in the last 10,000 years, leading to the preferred interpretation that it is indeed 

backsliding. These questions cannot be resolved, however, without further research and 

analysis of the Ragged Mountain fault.
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Figure 31. Schematic diagram of response of a coast to coseismic uplift (after Boggs, 2000). A) Oblique view of an idealized beach 
ridge sequence prior to a megathrust event. B) After each uplift, relative sea-level drops and the shoreline progrades out. C) Oblique 
view of an idealized wave-cut platform sequence prior to a megathrust event. D) After uplift, relative sea level drops and a new cliff 
is formed.
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Figure 32. Schematic cross section of the plate boundary between Cook Inlet and Icy Bay adapted from Shennan etal. (2013 in 
press). See Figure 1 for location. Imbricate faults are either known from surface offsets or inferred. Three different mechanisms may 
be acting underneath Katalla to cause net uplift. The first is imbricate faulting, similar to faults beneath the Prince William Sound 
and the Suckling Hills. The second is an antiformal stack (shown). The third is that uplift is driven by exhumation in the footwall as 
the Ragged Mountain backslides along its original thrust boundary. 110



CHAPTER 6

CONCLUSIONS

This study of the seismic evolution of a tectonically active landscape utilized 

high-resolution LIDAR DEMs and air photographs to create new geomorphic maps of the 

Katalla River Valley and the Ragged Mountain piedmont. The geomorphic maps include 

features that were not previously mapped due to poor quality DEMs and the presence of 

thick vegetation. Radiocarbon dating was also utilized to determine the ages of peat 

deposits in six marshes on the piedmont of Ragged Mountain and in the Katalla River 

Valley.

The geomorphic maps and radiocarbon dates from this study and from others 

were used to correlate the ridges on the Ragged Mountain piedmont with those in the 

Katalla River Valley. These correlations led to the interpretation that the ridges were 

often deposited contemporaneously, even though the Katalla River now transects them.

Freshwater peat sharply overlying saltwater sediments is interpreted to record an 

abrupt drop in relative sea level. At Katalla, this pattern is interpreted as uplift of the land 

due to a large earthquake. The radiocarbon dates of the basal peat confirm that Katalla 

was uplifted during megathrust events documented elsewhere in coastal Alaska. These 

dates add to the already large database of Aleutian megathrust events.



One uplift event documented in a lower marsh in Katalla suggests that there is a 

local structure underneath the Katalla River Valley that uplifted it at least once. This 

structure is confined to the Katalla River Valley because there is no evidence of the 500 

BP event in the nearby Alaganik Slough and the Puffy Slough.

This study also concluded that the Ragged Mountain fault is a thrust fault that was 

recently reactivated with normal slip. Normal-sense offset is indicated by offset of a 

Quaternary landslide as well as by the geometry of the fault scarp. There is no evidence 

that the Ragged Mountain fault ruptures coseismically with the Aleutian megathrust.

We propose three hypotheses to explain the net uplift in Katalla as well as the 

anomalous 500 BP event and backsliding along the Ragged Mountain fault: 1) uplift 

driven by buried imbricate thrusting, 2) uplift driven by slow asiesmic anticlinal folding 

that is accommodating shortening, and 3) uplift driven by exhumation as the upper plate 

of the Ragged Mountain fault moves west.

The results of this study emphasize the importance of LIDAR when studying 

highly vegetated regions, as well as stratigraphy when studying seismically active 

landscapes. The multidisciplinary approach allowed for a comprehensive analysis of 

Katalla that led to the conclusions stated above. It further underscored the complexity of 

subduction and accretionary margins and provided more evidence toward the Aleutian 

megathrust earthquake databases.

In order to fully understand this relatively small, but complex area, additional 

studies need to be undertaken. These could include coring more marshes in the northern 

part of the Katalla River Valley for evidence of uplift, examining the stratigraphy of the 

ridges along the piedmont of Ragged Mountain and in the Katalla River Valley to better
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determine their depositional environments, and investigating the Ragged Mountain fault 

in the field for evidence of past rupture.
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Table 3. LIDAR acquisition details (from Pavlis and Bruhn, 2010)

LIDAR instrumentation Optech 1233 Airborne Laser Terrain Mapper
Aircraft: Piper Chieftain
Flight Altitude: 600 m
Aircraft Speed: 70 m/s
Scan Frequency and Angle: 28Hz±20°
Swath Width: 437 m
Overlap: 220 m
Beam Divergence: 0.3 millirads
Resolution: 1 m
Maximum Number Returns: 2
Relative Accuracy: Vertical 0.05-.2m; horizontal 0.11
Ground Return Densities (test plot):

Open Terrain 2.37 hits/m2
Forest and/or Shrub 1.04 hits/m2

Processing Software: Surfer 8 and Terra Scan
Identification of Ground Returns: See http://terrasolid.fi/en/products/terrascan
Digital Elevation Model (DEM) from Kriging algorithm, linear variogram
ground returns:
Data Availability: http://calm.geo.berkeley.edu/nclam/ddc.html

http://terrasolid.fi/en/products/terrascan
http://calm.geo.berkeley.edu/nclam/ddc.html
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Table 4. Comparison of site locations and names with previous studies by Richards
(2000) and Sirkin and Tuthill (1971). Locations shown on Figure 5.

Name in 
Location this 

Paper

2011
sites

2007
sites

Lat/Long

Sirkin 
Richards and 

(2000) Tuthill 
___________ (1972)

Marsh A 

Ridge A 

Marsh AB 

Ridge B

Marsh BC 

Ridge C

Ridge D

Marsh DE

Ridge E 

Marsh EF

A

B1 and B2

1Core 1a WP 464 60 10.638N 144 26.938W KBL1

KBR2

1Core 1b WP 467 60 11.523N 144 28.956W

C

2Core 2 KR1101 60 12.389N 144 29.328W
3Core 3 KR1110 60 12.387N 144 29.262W KBL2
Core 4 KR1111 none

Core5 KR1112 none for KR1112 D KBR3

2Core 6 KR1106 60 12.591N 144 29.043W
4Core7 
2Core 8

KR1107
KR1108

60
60

12.584N 144 29.022W 
12.469N 144 29.036W

KBL3

Core 9 KR1109 none for KR1109

Pit1 pit 4 none for pit4 E KBR4

3Core 10 KR1103 none for KR1103 KBL4Core 11 KR1105 none for KR1105

xDated in 2007 and 2012 
2Dated in 2012 
3Dated in 2011 and 2012 
4Dated in 2011
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Table 4 (continued). Comparison of site locations and names with previous studies by
Richards (2000) and Sirkin and Tuthill (1971). Locations shown on Figure 5.

Location
Name in

this 2011 sites 2007 sites 
paper

Lat/Long
Richards

(2000)

Sirkin
and

Tuthill
(1972)

Marsh FG KBL5

Ridge G G KBR6

Marsh GH KBL6

Ridge H H1 KBR7

Marsh HI KBL7

Ridge I H2 and I KBR8

Marsh IJ KBL8

Ridge J KBR9

Marsh JK KBL9

Ridge K J KBR10

Marsh KL KBL10

Ridge L K KBR11

Marsh LM KBL11

Ridge M L KBR12

Marsh MN KBL12

Ridge N M KBR13

Marsh N N KBL13
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Table 4 (continued). Comparison of site locations and names with previous studies by
Richards (2000) and Sirkin and Tuthill (1971). Locations shown on Figure 5.

Location Name in 
this Paper 2011 sites 2007 sites Lat/Long

, , Sirkin and 
“  Tuthill 

(2000) (1972)
Terrace 4
Ridge 3 Pit2 Pit 1 60 11.607N 144 31.160W

Terrace 3 Core 13a 
Core 13b

KR1113 60 11.554N 144 31.686W

Ridge 2 Pit 3 Pit 2 60 11.822N 144 31.430W

Pit 4 Pit 3 60 11.819N 144 31.450W
Pit 5a 
Pit 5b

Pit 4 60 11.596N 144 31.845W

Terrace 2 Core 14a 
Core 14b 
Core 14c 
Core 14d 60

none
none
none

11.661N 144 31.781W
2Core 14e KR1114 60 11.682N 144 31.877W

Ridge 1 Pit6 Site3 60 11.730N 144 31.914W

Terrace 1 3Core15 KR1115 60 12.075N 144 31.848W

2Dated in 2011 
3Dated in 2011 and 2012
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Table 5. Elevation data from digital models and from Richards' GPS measurements 
(2000). All elevations expressed in meters.

Location GDEM SRTM Richards Lidar

Katalla Valley 
Marsh A - -

Ridge A -1.02±1.65 -5.78±2.60 - -

Marsh AB - -

Ridge B 6.9 -

Marsh BC -.56± 1.53 -3.2±2.9 -

Ridge C 7.7 -

Marsh CD - -

Ridge D .026±1.08 -7.4±2.88 5.2 -

Marsh DE 5.4 -

Ridge E 5.9 -

Marsh EF 2.28±2.46 1.44±3.06 6.7 -

Ridge F - -

Marsh FG 3.02±2.50 2.55±2.39 6.7 -

Ragged Mountain Piedmont
Terrace 1 - - 1.8 2

Ridge 1 - - 7.9 5

Terrace 2 - - - 6

Ridge 2 - - - 9.5

Terrace 3 - - - 11

Ridge 3 - - - 14

Terrace 4 - - 17.3 19
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Porphyritic Andesite Quartzite

Figure 33. Photos of small boulders on the Katalla Coast with a 15cm pencil for scale. 
Note variety in petrology, all of which are exotic to Orca Group, Stillwater Formation 
and Poul Creek Formation.
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Figure 34. Photo of medium boulder on Terrace 4 at approximately 60 11.607 N, 144 
31.160 W. Shovel for scale is approximately 1 m long. Boulder is partially rounded, 
likely due to wave action.



Figure 35. Large boulder seen from the air located on Terrace 1 at about 60 11.377 N, 144 31.801 W. The boulder is about 4 m in 
diameter.
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