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ABSTRACT

Newly discovered, noncoding RNA regulate cellular processes and gene expression.

Simple model systems, such as quorum sensing systems, are studied to understand the

mechanisms by which these RNA act on their targets. Quorum sensing is a process by which

bacteria coordinate expression of their genes based on the local cell-population density. Up

to five noncoding RNA, called small RNA (sRNA), in the quorum sensing systems of Vibrio

harveyi and Vibrio cholerae regulate expression of the master transcriptional regulator,

LuxR (V. harveyi) and HapR (V. cholerae). LuxR/HapR regulate genes associated with

virulence and bioluminescence that are downstream of the quorum sensing system.

The V. harveyi and V. cholerae quorum sensing systems are topologically identical and

their components are homologous, yet each responds differently under identical experimental

conditions. Experiments show that all sRNA are necessary in V. harveyi and any single

sRNA is sufficient in V. cholerae to repress bioluminescence. Hence, Qrr are additive in

V. harveyi and redundant in V. cholerae. Subsequent experiments have shown that feedback

in the sRNA circuit increases the expression of Qrr when one or more Qrr are removed.

Differences in the tuning of this feedback are thought to cause the additive and redundant

Qrr phenotypes; however, this long-standing hypothesis remains untested.

In this work, a novel model of the V. harveyi and V. cholerae sRNA circuit is formulated

and parameterized to identify parametric differences underlying the phenotypic differences.

This yields a single model with two different parameterizations whose behavior agrees

quantitatively with a variety of empirical data from V. harveyi and V. cholerae. The model,

therefore, can be used for the in silico design, testing, and analysis of experiments and, as

such, is a utility to generate experimentally verifiable hypotheses. Analysis of the model

shows that the feedback in the sRNA circuit is neither necessary nor sufficient to explain

the phenotypic differences, which is in contrast to the long-standing hypothesis. Rather,

the additive and redundant Qrr phenotypes are emergent phenomena and, in the case of

V. harveyi and V. cholerae, reflect differences in the saturation of the protein chaperon Hfq

with sRNA. Overall, this suggests that Hfq is an important modulator of sRNA-facilitated

repression of target mRNA.
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CHAPTER 1

INTRODUCTION

First discovered in the luminous bacterium Vibrio harveyi and Vibrio fischeri, quorum

sensing is the process by which bacteria synchronize their gene expression based on lo-

cal cell-population density [115]. Quorum sensing systems are found in several different

bacterial species and are, therefore, thought to be common to all bacteria. Quorum

sensing systems regulate genes associated with biofilm production, toxins, cell motility,

type III secretion factors, bioluminescence, and those essential for symbiosis. Bacteria are

thought to benefit from coordinating expression of their genes in a population-dependent

manner. Such benefits can include evading the hosts’ immune response, assisting in the

disseminating of the species, surviving in adverse environments, and reducing metabolic

stress [51, 115, 35, 77, 119, 112, 41].

Typically, genes regulated by quorum sensing systems show a distinct on/off expression

phenotype, as exemplified in Figure 1.1. The data show bioluminescence in a wild-type

V. fischeri strain as a function of optical density, which is a measure of the cell-population

density. Bioluminescence is low at low cell-population density (LCD) then is upregulated

at high cell-population density (HCD). Environmental factors, such as the preferred carbon

source, also regulate the onset of the response [84]. Continued research into quorum sensing

systems contributes to the development of ecological controls in agriculture [88] and novel

antivirulence treatments in medicine [88, 25, 21, 19, 9] in addition to the discovery of novel

gene regulatory mechanisms [57, 10], understanding bacterial-host interactions [80, 20, 110,

79], and evolutionary questions that are difficult to answer with higher organisms [88].

This work focuses on the quorum sensing systems of V. harveyi and Vibrio cholerae.

V. harveyi are distributed throughout coastal and ocean waters and are commonly found

around estuary sediment waters. These bioluminescent Vibrios are pathogenic to marine

life, including pearl oysters, finfish, and especially crustaceans like the black tiger shrimp

(Penaeus monodon). V. harveyi along with Vibrio alginolyticus, Vibrio parahaemolyticus,

Vibrio anguillarum, Vibio vulnificus, and Vibrio splendidus are the etiological agents of
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Figure 1.1. Development of bioluminescence in V. fischeri grown in glycerol (open circles)
or glucose (X) as the energy source [84].

the epizootic disease called luminous vibriosis [101, 48, 37]. Seasonal outbreaks of lumi-

nous vibriosis can occur after heavy rainfall because the resulting nutrient runoff fuels

V. harveyi growth. More commonly, however, V. harveyi is an opportunistic pathogen

that targets hosts with weakened immune systems and/or those living in physiologically

stressful environments (i.e., poor nutrition, cold water temperatures, confinement in a

hatchery, environmental pollution) [21, 101, 72]. In 1990, an outbreak of luminous vibriosis

in southeast Asia cost fisheries an estimated $1.4B (USD) alone [101]. V. harveyi strains

are classified by different phenotypic and genetic traits, as detailed in [71, 48, 37, 109].

Although over 200 V. harveyi strains have been identified, only V. harveyi 642 and

V. harveyi 47666-1 are known to cause luminous vibriosis. These strains acquire their

virulence from a myovirus-like bacteriophage [109, 101] and inocula as low as 100 cells/ml

can cause acute, devastating disease with mortality rates between 50%-100% [101, 109, 37].
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Virulent V. harveyi strains produce hemolysin, to lyse red blood cells, metalloprotease, to

degrade proteins, and lipase, to degrade lipids. Symptoms typical of luminous vibriosis in

crustaceans include bioluminescence, anorexia, brittle and loose shells, brown/black spots

on the shell, darkened/red body surface, tail necrosis, sparse food in the midgut, white

gut disease, and, in the case of infected larvae, sluggish swimming and poor development

[101, 48]. The V. harveyi quorum sensing system is essential for the expression and

regulation of its virulence factors [22, 64, 63]. The V. harveyi quorum sensing system

represses its virulence factors at LCD to evade the immune response of the host. Later,

at HCD, the quorum sensing system coordinates expression of virulence factors so that

V. harveyi overwhelms the hosts’ immune response [35, 115, 24]. Researchers are keen to

understand how pathogenicity is regulated in V. harveyi to curb the economic impact of

luminous vibriosis.

By contrast, V. cholerae is found in semitropical and tropical estuarine and brackish

waters and reside on phytoplankton, zooplankton, aquatic plants, crustaceans, insects, and

sediments. V. cholerae strains are the etiological agents of the seven cholera pandemics

on record since 1817. Cholera typically spreads in explosive epidemics affecting large

populations and can traverse countries and continents. Early cholera pandemics have spread

throughout the world and have spread to India, Bangladesh, Indonesia, Australia, Nepal,

Thailand, China, USA, Brazil, and the UK. Improvements to sanitation and water treatment

have substantially reduced the risk and spread of cholera. Much like V. harveyi , there are

over 200 known V. cholerae strains, but only a few cause cholera pandemics. The fifth and

sixth pandemics are attributed to the O1 biotype classical strain [86]. The classical strain

has largely been replaced by the O1 biotype El Tor strain responsible for the current cholera

pandemic that began in 1961. A new V. cholerae pandemic strain, V. cholerae O139, was

identified in 1992 in India and Bangladesh and has since spread throughout southeast Asia

and continues to coexist with the O1 biotype El Tor strain [32, 86]. As with V. harveyi ,

V. cholerae strains are also differentiated by additional phenotypic and genetic traits, as

detailed in [86].

The disease progression of cholera is as follows: a host ingests undercooked seafood

and/or contaminated water (i.e., by washing food with contaminated water) to become

infected. Large doses of V. cholerae (i.e., 106 − 1011 CFU) are sufficient to infect healthy

adults, while smaller dosages are sufficient to infect children and immunocompromised

adults. After V. cholerae passes through the acid barrier of the stomach, they colonize the

small intestine by burrowing through the mucus layer and attaching to the epithelium. At
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LCD, V. cholerae express long filamentous fimbriae called toxin coregulated pilus (TCP)

that produces a protective biofilm around the V. cholerae population. The TCP is also

involved in the expression of other colonization factors and virulence factors [32].

TCP shares the same regulatory pathway as cholera toxin (CT), which V. cholerae

acquires from the lysogenic filamentous bacteriophage CTXφ. This toxin causes an efflux of

chloride ions and water from the intestinal epithelial cells and leads to the severe “rice-water”

diarrhea characteristic of cholera. At HCD, the V. cholerae quorum sensing system represses

expression of TCP and CT, leading to its detachment from the intestinal epithelium and

exit from the host. If left untreated, 50% of cholera cases are fatal from complications

associated with acute dehydration. In the most severe cases, a host can loose up to 90 liters

of fluid over a period of three days. Treatment of cholera involves electrolyte and hydration

replacement therapy using oral and/or intravenous fluids. With proper treatment, the

fatality rate is reduced to 1-3% of which children and infants still make up the majority of

fatalities. Although other V. cholerae strains have been identified, only those carrying TCP

and CT are associated with cholera pandemics [32, 86]. The V. cholerae quorum sensing

system regulates expression of its virulence factors and is essential for the pathogenicity

of the species. Continued research in this area may help develop novel quorum sensing

inhibition therapies and V. cholerae vaccinations in the interest of human health [32].

1.1 Overview of the V. harveyi and V. cholerae
Quorum Sensing System

V. harveyi and V. cholerae have similar quorum sensing systems that regulate their

respective virulence factors (see Figure 1.2). Each quorum sensing system is comprised

of two distinct pathways: a phosphorelay cascade that integrates cell-population density

information and a sRNA circuit that regulates expression of a transcriptional regulatory

protein called LuxR in V. harveyi and HapR in V. cholerae [112]. LuxR/HapR, in turn,

regulate expression of all genes downstream of the quorum sensing system, including those

associated with virilescence. In V. harveyi , three distinct autoinducers (HAI-1, AI-2, and

CAI-1) are synthesized at some basal level by enzymes called autoinducer synthases (LuxM,

LuxS, CqsA). For each autoinducer, there is a corresponding membrane bound receptor to

which it binds: LuxN (binds HAI-1), LuxPQ (binds AI-2), and CqsS (binds CAI-1) [41, 77,

78, 114]. The autoinducers freely diffuse through the cell membrane [42] and disperse into

the local environment, leaving the receptors unbound at LCD. When unbound, the receptors

function as kinases and dephosphorylate high energy phosphate molecules. The phosphate

is transferred to LuxU, a phosohorelay protein, that, again, transfers the phosphate to LuxO
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Figure 1.2. An overview of the topology and function of V. harveyi (top) and V. cholerae
(bottom) quorum sensing systems at LCD. In V. harveyi , three phosphorelay cascades work
in parallel to control the ratio of LuxO to LuxO-P based on local cell-population density.
Five sRNA, qrr1-5, then regulate expression of the quorum sensing target genes, including
the master transcriptional regulator LuxR, which upregulates downstream virulence factors.
The V. cholerae quorum sensing circuit is nearly identical to V. harveyi except that
V. cholerae has only two phosphorelay cascades, four sRNA, and its master transcriptional
regulator is called HapR. The components in the V. cholerae quorum sensing system are
homologous to those in V. harveyi . IM: Inner membrane, OM: Outer membrane, P+:
Phosphate.

[77]. LuxO-P activates transcription of five distinct sRNA called quorum regulated RNA

(qrr1-5 ). Qrr regulate the expression of luxR posttranscriptionally by binding the luxR

mRNA to prevent its translation [57, 102, 10, 103]. Therefore, LuxR/HapR is repressed

because qrr are abundant at LCD.

Conversely, at HCD intercellular autoinducer concentration rises, leading the autoin-

ducers to bind their respective receptors [93, 115, 75]. When bound, the receptors undergo
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a conformational change that changes their function to a phosphatase [76, 113]. In this

state, the flow of the phosphates is reversed as the receptors dephosphorylate LuxU, which

decreases LuxO-P and qrr. Therefore, at HCD, LuxR/HapR is derepressed because the qrr

concentration is low [77, 73, 52, 91].

The quorum sensing system of V. cholerae is nearly identical to that of V. harveyi with a

few minor topological differences whose effects are assumed negligible. V. cholerae has four

Qrr (qrr1-4 ) and two autoinducer receptors (LuxPQ and CqsS) rather than, respectively, the

five and three found in V. harveyi . Experiments show that qrr5 in V. harveyi is not quorum

regulated [104, 102], so qrr5 is ignored in this work. The additional autoinducer receptor

in V. harveyi means that V. harveyi responds to three, rather than two, autoinducers.

However, information from the receptors is integrated into one signal – the ratio of LuxO-P

to LuxO [62, 45], so the number of different phosphorelay cascades cannot be distinguished

for a given ratio of LuxO to LuxO-P alone. Furthermore, the components of the V. cholerae

quorum sensing system are homologous to those of V. harveyi and AI-2 and CAI-1 have

the same chemical structure in both species. This means that V. cholerae responds to

AI-2 and CAI-1 taken from V. harveyi and vice versa. Consequently, the nomenclature of

the components in each circuit is the same between V. harveyi and V. cholerae with the

exception of LuxR and HapR [42, 77].

1.1.1 The V. harveyi and V. cholerae sRNA Circuit

The sRNA circuit is central to the V. harveyi and V. cholerae quorum sensing system

(see Figure 1.3). Small RNA are short fragments of noncoding RNA that regulate gene ex-

pression posttranscriptionally [10]. Qrr repress mRNA expression by binding the ribosomal

binding site of target mRNA that, thereby, prevents its translation [57, 103]. The V. harveyi

and V. cholerae Qrr are highly conserved within and between each species, including an

identical 32bp sequence responsible for its association with mRNA [57]. At the start of the

sRNA circuit, qrr expression is regulated by the ratio of LuxO-P to LuxO [62]. LuxO-P

binds the qrr promoter to activate its expression. Each Qrr is rapidly degraded unless they

bind Hfq [8], a protein chaperon, which also aids qrr to bind target mRNA. The pairing of

qrr with mRNA results in their mutual degradation and leaves Hfq unchanged [57].

There are four regulatory pathways in the sRNA circuit to maintain precise control of

luxR/hapR expression [77]. The first two pathways are autoregulatory loops. LuxR/HapR

regulates its own expression by forming as a dimer and binding its own promoter to limit

its transcription [15, 61]. Similarly, LuxO and qrr1 are divergently transcribed, so LuxO-P

limits luxO transcription when it binds the qrr1 promoter. Although only LuxO-P activates
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Figure 1.3. Overview of the V. harveyi sRNA circuit. LuxO-P activates qrr expression,
which bind to target mRNA via Hfq to prevent translation of the mRNA into an active
protein. Four different regulatory mechanisms aid to control precisely the expression of
target mRNA. LuxR (as a dimer) and LuxO are autoregulatory as each binds their own
promoter to limit transcription. LuxR (as a dimer) enhances qrr expression by binding the
qrr promoter via the LuxR-Qrr feedback. Lastly, qrr target and prevent translation of luxO
mRNA via the LuxO-Qrr feedback. The V. cholerae sRNA circuit is topologically identical
and homologous to V. harveyi except that V. cholerae has four, rather than five, sRNA
and HapR is the LuxR homologue.

qrr1 transcription, experiments show that both LuxO-P and LuxO equally inhibit luxO

expression [103].

The remaining two pathways involve feedback between Qrr and the target mRNA and,

as such, are called the LuxR/HapR-Qrr and LuxO-Qrr feedback. LuxR/HapR enhances the

expression of qrr when LuxO-P is present. This is done by LuxR binding directly to the qrr

promoter, while HapR does so indirectly via a currently unknown intermediary [95, 104].

Lastly, Qrr regulate LuxO expression in the same manner as Qrr regulate LuxR/HapR

expression and is called the LuxO-Qrr feedback [94, 103]. These autoregulatory and feedback

regulatory pathways control the onset and transition to/from LCD and HCD [94, 103].
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1.2 Motivation

Although the V. harveyi and V. cholerae quorum sensing systems have homologous

components and are topology identical, they respond differently to changes in Qrr. The

data in Figure 1.4 show bioluminescence in a wild-type strain, isogenic strains with one Qrr

only, and an isogenic strain with no Qrr for V. harveyi (top) and V. cholerae (bottom).

The strains are grown over night then diluted in the morning. The dilution corresponds to

a transition to a LCD environment and the initial decrease in bioluminescence in strains

with at least one Qrr. At some critical cell-population density thereafter (∼ 10−1 OD

in V. harveyi and ∼ 100 OD in V. cholerae), bioluminescence beings to increase as the

bacteria enter HCD mode once again. Assuming that bioluminescence is proportional to

the concentration of LuxR/HapR, the data show that all Qrr are needed to repress LuxR

in V. harveyi , whereas any Qrr is sufficient to repress bioluminescence in V. cholerae.

Therefore, V. harveyi Qrr are additive and V. cholerae Qrr are redundant.

Svenninsen et al. showed that Qrr feedback is responsible for increasing the expression

of Qrr when one or more Qrr are removed and called this phenomenon dosage compensation.

They then proposed that the additive and redundant Qrr phenotypes arise from differences

in the tuning of dosage compensation between V. harveyi and V. cholerae [94]. To see

why, consider the four simplified representations of the sRNA circuit illustrated in Figure

1.5. When qrr1 is removed in a strain without Qrr feedback, LuxR/HapR increases and

qrr2 remains the same. This means that all Qrr are needed to repress LuxR/HapR to

wild-type-like levels and, hence, the Qrr are additive. However, when qrr1 is removed

in a strain with the LuxR/HapR-Qrr feedback, qrr2 increases via the LuxR/HapR-Qrr

feedback in response to the increase in LuxR/HapR. If the LuxR/HapR-Qrr feedback is

strong enough, then the increase in qrr2 can offset the increase in LuxR/HapR. Hence, Qrr

redundancy can follow from the LuxR/HapR-Qrr feedback.

Similarly, if a strain has the LuxO-Qrr feedback, then removing qrr1 derepresses LuxR/HapR

as before. However, in this case, LuxO-P increases via the LuxO-Qrr feedback to then

upregulate qrr2. This offsets the increase in LuxR/HapR, so LuxR/HapR remains rela-

tively unchanged provided the increase in qrr2 is sufficient. Hence, Qrr can be redundant

if the LuxO-Qrr feedback is tuned appropriately to increase qrr2 and offset increase in

LuxR/HapR. Lastly, both types of Qrr feedback work together in a wild-type strain to

upregulate qrr2 when qrr1 is removed. If tuned appropriately, the increase in qrr2 can

offset the increase in LuxR/HapR and lead to the redundant phenotype.

This research sets out to identify the parametric differences that underly the phenotypic
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Figure 1.4. Comparison of the bioluminescence in isogenic V. harveyi (top) and V. cholerae
(bottom) strains with all (wild-type), only one, or no Qrr. WT: wild-type strain, qrr1+

isogenic strain with qrr1 only, qrr2+ isogenic strain with qrr2 only, qrr3+ isogenic strain
with qrr3 only, qrr4+ isogenic strain with qrr4 only, ∆qrr isogenic strain with no Qrr.

differences and the specific differences that are responsible for the additive and redundant

Qrr phenotypes in V. harveyi and V. cholerae. Chapter 2 begins with a review of the

quorum sensing literature and highlights the contribution that mathematical models have

made in the field. The chapter closes with a formulation of a novel model of the sRNA circuit

in V. harveyi and V. cholerae. Chapter 3 features the parameterization of this model and

shows that its behavior quantitatively agrees with a variety of data from V. harveyi and
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Figure 1.5. A simplified model of the V. harveyi and V. cholerae sRNA circuit to show
how the Qrr feedback leads to dosage compensation and how Qrr redundancy can arise if
the Qrr feedback is tuned appropriately.

V. cholerae. This also demonstrates that the model and its parameter estimates can be used

for the in silico design, testing, and analysis of experiments in V. harveyi and V. cholerae.

In Chapter 4, a general analysis of the model shows that there are up to 30 different

combinations of parametric constraints that each can lead to Qrr redundancy. Using the

parameter estimates of V. harveyi and V. cholerae from Chapter 3, a set of three constraints

is identified as those underlying the Qrr phenotypes in V. harveyi and V. cholerae. Contrary

to the dosage compensation hypothesis, Qrr feedback and, hence, dosage compensation is

neither necessary nor sufficient to explain the additive and redundant Qrr phenotypes and

dosage compensation diminishes the more redundant the Qrr. This means that the additive

and redundant Qrr phenotypes is an emergent phenomenon in general and, in the case

of V. harveyi and V. cholerae, reflects differences in the total concentration of Hfq-Qrr.

Lastly, an experiment is performed in silico to test both hypotheses and serves as a method

to validate the results.



CHAPTER 2

BACKGROUND

This chapter reviews the ecology and biology of quorum sensing systems and the con-

tribution that mathematical models have made in the field. The chapter closes with the

formulation of a novel model of the V. harveyi and V. cholerae sRNA circuit that is used

for the remainder of this work.

2.1 Fundamental Assumptions of Quorum
Sensing Systems

Most of the quorum sensing research over the last 30 years has focussed on understanding

the genetics of quorum sensing systems and little attention has been given to understanding

the evolutionary stability and/or ecological benefits of these systems. Consequently, there

are three fundamental assumptions related to the benefits of quorum sensing. First, quorum

sensing is assumed to be a social trait that is performed by individual cells for the good

of the group. Second, quorum sensing is assumed to be beneficial at high cell-population

densities. Lastly, quorum sensing is assumed to represent signalling between individuals.

These assumptions have not been tested extensively either empirically or theoretically with

mathematical models. This section is a summary of the main ideas and evidence in support

of these assumptions featured in [88, 23].

If quorum sensing systems regulate social traits, then populations of cells that pro-

duce exofactors should be more abundant than those that do not (termed “cheats” in

the evolution literature). Experiments have shown that Pseudomonas aeruginosa cheats

are more abundant when mixed with producing P. aeruginosa cells and that producing

P. aeruginosa cells are more abundant when grown in the absence of cheats. Furthermore,

natural P. aeruginosa cheats are found in natural environments. Hence, some empirical

studies with P. aeruginosa show that its quorum sensing system regulates social traits.

One requirement related to the sociality problem is identifying the mechanisms that

contribute to its evolutionary stability. The costs of producing the exofactors must be
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outweighed by their purported benefits and there should be mechanisms in place that

limits the proliferation of cheats. With this in mind, some of the direct benefits associated

with quorum sensing in P. aeruginosa also function to limit cheating. For example, the

cooperative behaviors of P. aeruginosa are coregulated with individual fitness benefits,

which is called a pleiotropic constraint. Hence, adopting a cheating strategy by means of a

mutation may impede other activities that are beneficial to the fitness of the cell. On the

other hand, metabolic prudence is when expression of quorum sensing factors is initiated

only when the metabolic barrier associated with producing these factors is small. Another

means to decrease the metabolic costs of quorum sensing is to synthesize durable products.

One indirect benefit of quorum sensing systems in support of the evolutionary stability of

such systems is kin selection. This is where the quorum sensing systems acts to enhance the

proliferation of genetically similar bacteria. These studies have mainly focused on quorum

sensing in P. aeruginosa, so there might be additional/different benefits in other species.

Quorum sensing systems are assumed to be beneficial by altering expression of certain

genes at HCD, but few empirical studies test this. Of note, however, experiments with

P. aeruginosa strains showed that its quorum sensing products are used more efficiently at

HCD. Similarly, a synthetic quorum sensing system engineered in Escherichia coli showed

that the production of quorum sensing products was beneficial at HCD and that the optimal

benefit only occurs if quorum sensing is initiated at sufficiently high cell-population density.

Complicating this issue, however, is the fact that a quorum sensing system can be activated

in a single bacterium if it is restricted to live in a small, finite volume and/or if a bolus

of autoinducer is added to the local environment. Hence, quorum sensing systems can be

activated in a single bacterium and in dense colonies consisting of more than 106 bacteria.

2.2 Mechanisms That Regulate Gene
Expression

Quorum sensing is a process that regulates expression of genes based on the local cell-

population density. As such, quorum sensing systems often employ many different gene

regulatory mechanisms to perform this function. These mechanisms enable bacteria to

adapt to and make decisions about changes in their environment. For example, subunits

of RNA polymerase called sigma factors are responsible for promoter identification and

DNA binding. There are different sigma factors in bacteria and each responds to different

environmental cues (i.e., pH, carbon source, etc.). When activated, the sigma factors allow

RNA polymerase to bind different promoters and express different genes [59].

Bacteria also regulate their genes with transcriptional regulators. These are proteins that
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act at/near the promoter or at regions farther up/downstream of the promoter. For example,

transcriptional regulators may increase the affinity of RNA polymerase to the promoter

and/or unwind DNA thereby to expose the promoter. Similarly, transcriptional regulators

downregulate genes by blocking the promoter from RNA polymerase or by blocking the

promoter by twisting DNA up/downstream of the promoter [59, 82]. Transcriptional

regulators can simultaneously upregulate one gene as they downregulate a different gene

[87, 70] provided the genes are divergently transcribed and share the same promoter. In this

case, activation of one gene blocks the initiation site of the neighboring gene [103, 90, 26].

Newly discovered, small RNA (sRNA) also regulate genes. The sRNA are short (50-250

nucleotides long), noncoding fragments of RNA with a brief half-life. The sRNA regulate

genes posttransciptionally by binding target mRNA. This changes the affinity of the ribo-

some to its binding site on the mRNA and/or changes the degradation rate of mRNA. Many

different bacteria such as P. aeruginosa, V. harveyi , and V. cholerae use sRNA to regulate

genes in their quorum sensing systems [10, 12, 111]. In V. harveyi and V. cholerae, sRNA

repress LuxR/HapR and LuxO by preventing translation of its mRNA; however, sRNA are

known to upregulate genes as well [10, 34]. In view of their structure and inherent instability,

sRNA are thought to regulate genes in a fast [28, 67, 58], robust [5, 66, 60, 67, 58], and

metabolically cheap [66, 69] manner. Research into the mechanisms by which sRNA regulate

genes, the environmental factors that modulate this process, the ecological/evolutionary

benefits of sRNA vs proteins, and identification of the genetic targets of sRNA regulation

remains an active area of research.

2.3 Overview of Canonical Quorum Sensing
Circuits

Although quorum sensing differs between species, all known quorum sensing systems

are composed of functionally similar building blocks. First, quorum sensing systems use a

diffusible chemical signal called autoinducer as a measure of cell-population density. Second,

the autoinducer then binds receptors in the bacteria and the ratio of bound to unbound

receptors determines the expression of a master transcriptional regulator protein. Lastly,

the master transcriptional regulator is then responsible for regulating expression of the

downstream quorum sensing genes.

Every known quorum sensing system is comprised of a combination of three different

canonical quorum sensing circuits. The circuits are classified based on the chemical structure

of the autoinducer used and how expression of the master transcriptional regulatory protein

is regulated. The first quorum sensing circuit, called the LuxIR-type circuit, is found in
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gram-negative bacteria. These circuits function similar to the LuxIR quorum sensing system

in V. fischeri and is where its name is adopted from. The autoinducer in LuxIR-type circuits

are acyl-homoserine-lactone based (AHL) and the synthesis of autoinducer is governed by

a nonlinear positive feedback loop.

The second quorum sensing circuit is called a two-component-type circuit and is found

in gram-positive bacteria. These circuits use a modified oligopeptide for an autoinducer [41]

that can bind membrane bound receptors. The receptors function as kinases when unbound

from autoinducer, then undergo a change in conformation to function as phosphatases when

bound with autoinducer. The conformation of the receptors directs the flow of phosphates

in the circuit that then regulates expression of the master transcriptional regulator. The

last quorum sensing circuit, called a hybrid quorum sensing circuit, is one that uses a

phosphorelay cascade with AHL-based autoinducers. These circuits function similar to

two-component-type circuits rather than LuxIR-type circuits. Hybrid circuits are found in

many Vibrio species, including V. harveyi and V. cholerae [68, 41].

Every known quorum sensing system is formed from various combinations, multiples,

and arrangements of the three canonical quorum sensing circuits. For example, V. cholerae

and V. harveyi have, respectively, two and three hybrid circuits arranged in parallel [68, 62].

V. fischeri has one hybrid circuit with two phosphorelay cascades arranged in parallel that

regulate a downstream LuxIR-type circuit [68]. More complex quorum sensing systems

consisting of multiple LuxIR-type circuits are also found in P. aeruginosa, Burkholderia

pseudomallei, and Burkholeria mallei [117, 106, 105, 108, 27].

Canonical LuxIR-type circuits were the first quorum sensing circuits identified and, as

such, these quorum sensing systems have directed much of the research over the last 30

years. In what follows, the basic architecture, mathematical formulation of the LuxIR-type

circuit, and the contribution of these models is reviewed.

2.4 Quorum Sensing in Canonical
LuxIR-Type Circuits

A canonical LuxIR-type circuit is shown in Figure 2.1 and is named after the LuxI and

LuxR proteins in the V. fischeri quorum sensing system, which is the organism in which the

circuit was first identified [74]. LuxIR-type circuits are also found in other bacterial species

as detailed in Table 1 of [118]. In what follows, a mathematical model of the LuxIR-type

circuit is formulated based on the work of [47, 24] then the contribution that these models

have made to the field is summarized.

LuxR, R, is the master transcriptional regulator in LuxIR-type circuits. LuxR is
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Figure 2.1. The canonical quorum sensing LuxIR-type circuit. The luxR and luxI genes
are transcribed at some basal level. The LuxI protein synthesizes an AHL autoinducer (AI)
that freely diffuses through the cell membrane. At LCD, autoinducer diffuses away from
the colony. At high cell densities, intracellular autoinducer concentration increases, binds
LuxR, and upregulates luxI transcription.

assumed to be transcribed at some basal rate and degraded at a rate proportional to its

concentration, i.e.,

κR−−→ R
δR−→ . (2.1)

At HCD, the intracellular concentration of autoinducer increases and binds LuxR and forms

the subunits that lead to the formation of a multimeric protein of length n [118, 35, 115].

nR+ nA
βc
−−−→←−−−
β
−c

C (2.2)

The synthesis of autoinducer is proportional to the expression of luxI. For simplicity,

however, we ignore luxI and assume that the LuxR-AI multimer synthesizes autoinducer

directly, i.e.,

κA(C)
−−−−→ A

δA−→, (2.3)

where

κA(C) =
V0 + VcKcC

1 +KcC
.

The equations corresponding to reactions (2.1)–(2.3) describing the synthesis of autoinducer

in a single cell are:

dR

dt
= κR −

dC

dt
− δRR, (2.4)
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dC

dt
= βc(RA)n − β−cC, (2.5)

dA

dt
=

V0 + VcKcC

1 +KcC
−

dC

dt
− δAA− φ(A− E). (2.6)

To incorporate local cell-population density in the model, let E be the total concentration

of autoinducer in the extracellular space and assume that its decay is the same as that for

A, i.e.,

E
δA−→ . (2.7)

Assuming that autoinducer freely diffuses across the cell membrane, the per cell flux of

autoinducer into the extracellular space is proportional to the difference in autoinducer

concentration across the membrane, i.e., −φ(A− E) where φ is the conductance. The flux

term is scaled by the cell-population density, ρ, to compensate for the difference between

the total concentration of autoinducer in the extracellular space vs. the total concentration

of autoinducer in a cell [24]. Hence, the equation for E is

(1− ρ)

(
dE

dt
+ δAE

)
= ρφ(A− E), (2.8)

where 0 ≤ ρ ≤ 1 is the cell-population density.

2.4.1 Canonical LuxIR-type Circuits Are Bistable

The nonlinear, positive feedback loop the LuxIR-type circuit facilitates leads to a hys-

teresis loop at intermediate cell densities. To understand the stability of the model, its

nondimensionalization is as follows. The following are characteristic concentrations:

R0 =
κR
δR

, A0 =
V0

δA
, C0 =

βc
β−c

(R0A0)
n. (2.9)

Then define the following dimensionless variables:

R = R0R̂, A = A0Â, E = A0Ê, C = C0Ĉ, t = τ t̂, (2.10)

where τ is some characteristic time (i.e., cell growth rate). Next, define the following

dimensionless parameters:

τR = τδR, τA = τδA, τC = τβ−c, φ̂ =
φ

δA
,

K̂c = KcC0, CCR =
C0

R0
, CCA =

C0

A0
, V =

Vc

V0
.

(2.11)

Lastly, 2.8–2.6 can be reexpressed in terms of the dimensionless parameters and variables

to get (omitting the “ ̂ ” notation for simplicity):

dR

dt
= τR(1−R)− CCR

dC

dt
, (2.12)
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dC

dt
= τC ((RA)n − C) , (2.13)

dA

dt
= τA

(
1 + V KcC

1 +KcC
−A− φ(A− E)

)
− CCA

dC

dt
, (2.14)

dE

dt
= τA

(
−E + φ

ρ

1− ρ
(A− E)

)
. (2.15)

The steady state solutions for R,C and E are:

R = 1, C = An, E = (1 + φ− Φ(ρ))A, (2.16)

where

Φ(ρ) ≡ 1 + φ−
φ ρ
1−ρ

1 + φ ρ
1−ρ

. (2.17)

The equation describing the steady state solution for A is

0 =
1 + V KcA

n

1 +KcAn
− Φ(ρ)A. (2.18)

In general, there are either one or three positive real solutions to (2.18) depending on

the parameters. For example, if n = 1 or in the absence of positive feedback (i.e., Kc = 0),

there is only one real solution. Therefore, the nonlinear positive feedback loop is necessary

(but not sufficient) for bistability. Figure 2.2 shows a bifurcation diagram for the steady

state solution of A in terms of the bifurcation parameter ρ.

Based on the above analysis, quorum sensing in canonical LuxIR-type circuits occurs

as follows. At LCD, autoinducer is synthesized at some basal rate and diffuses out of

the cell, so the concentration of intercellular autoinducer remains low and, hence, LuxR

unbound. As cell-population density increases, so too does the intracellular concentration

of autoinducer. This corresponds to moving to the right along the lower stable branch of

the bifurcation diagram in Figure 2.2. When the cell-population density is sufficiently high

(i.e., at ρ ≈ 0.45 in Figure 2.2), the intracellular concentration of autoinducer binds LuxR

and activates the positive feedback loop. This corresponds to a saddle node bifurcation and

a sudden increase (in a steady state sense) in the concentration of autoinducer onto the

upper stable branch in Figure 2.2. The concentration of autoinducer continues to increase

incrementally (as a function of ρ) thereafter.

Conversely, once in the HCD state and the cell density decreases, the hysteresis loop

indicates that the nonlinear positive feedback loop maintains a high rate of synthesis of

autoinducer at lower cell-population densities than if the system were in its LCD state.

Eventually, however, the exodus of autoinducer from the cell is greater than the con-

centration of autoinducer necessary to maintain the positive feedback loop. When this
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Figure 2.2. Bifurcation diagram of the canonical LuxIR-type circuit. Black and red curves
respectively represent stable and unstable fixed points. Parameters are manually selected
to be n = 2,Kc = 0.127, φ = 2.2, and V = 15 (ρ is cell-population density, A is autoinducer
concentration).

occurs (i.e., ρ ≈ 0.18), autoinducer synthesis diminishes rapidly (in a steady state sense)

and the system returns to its LCD state. Importantly, although this analysis shows that

LuxIR-type circuits can be bistable, the existence of the hysteresis loop depends on the

model parameters. Experiments have confirmed, however, that the components of the

V. fischeri LuxIR-type quorum sensing circuit can exhibit hysteresis [116]. Several authors

have noted both the importance of having and the difficulties in obtaining reliable estimates

of the model parameters of LuxIR-type circuits. Furthermore, hysteresis has not been

observed even in well-studied species such as P. aeruginosa [3, 11, 16, 39, 40, 83].

2.4.2 The Contribution of LuxIR-type Mathematical
Models

Most mathematical models of quorum sensing systems in the literature represent the

LuxIR-type circuits in V. fischeri , P. aeruginosa, Agrobacterium tumefaciens, Staphylococ-

cus aureus, and Burkholderia spp. This might simply reflect the proportion of empirical

studies available to develop such models and/or reflect the potential contribution of these

models in human health. The simplest models of LuxIR-type circuits suggested that quorum

sensing is a bistable switch [47, 24, 11]. These models, in turn, have laid the foundation

for in silico design, validation, and analysis of biological networks and experiments. For
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example, LuxIR-type models have been extended to understand how environmental factors

such as pH, carbon source, and oxygen regulate the quorum sensing response [16, 17].

Environmental factors are important to understand the formation of biofilms, which act to

protect bacteria and enhance the efficacy of their virulence. To identify effective quorum

sensing inhibition therapies, LuxIR-type models have been used to examine the robustness

of the quorum sensing response as a function of the depth of the biofilm and in terms of

other parameters that describe the stability of the quorum sensing system [1, 2]. These and

other studies have contributed to the understanding and development of different quorum

sensing inhibition strategies to develop novel antivirulence therapies [1, 2, 3, 30, 31].

More recently, however, complex in silico simulations of LuxIR-type circuits are proving

useful to test the three fundamental assumptions of quorum sensing systems discussed in

Section 2.1. Specifically, researchers have shown that LuxIR-type circuits act to synchronize

heterogenous populations [43, 92, 98] and facilitate a robust on-off switch [39, 38, 43, 97].

Lastly, bioengineering and biomedical applications of this research are also being explored

such as engineering synthetic cells with different cell-population density sensors [40].

2.5 Quorum Sensing in Hybrid Circuits

Unlike LuxIR-type quorum sensing circuits, there is no detailed model of the hybrid

quorum sensing system in V. harveyi and V. cholerae. Therefore, in this section, a novel

mathematical model of the V. harveyi and V. cholerae quorum sensing system is formulated

based on the understanding of these systems given in Section 1.1. In what follows, a set

of differential equations that model the reaction kinetics of the sRNA circuit is derived.

Although the focus of this work is on the sRNA circuit in V. harveyi and V. cholerae,

a simple model of the V. harveyi phosphorelay cascade is needed to incorporate more

experimental data into the parameterization of the model of the V. harveyi sRNA circuit.

2.5.1 A Model of the Phosphorelay Cascade

Swem et al. parameterized a model of the V. harveyi autoinducer receptors and found

that the difference in free energy between the kinase and phosphatase states is

∆G

kBT
= −2.3 + ln

(
1 +AI

1 + 10−6AI

)
, (2.19)

where AI is the concentration (nM) of autoinducer [96]. Assuming there is only one

phosphorelay cascade, the input for the sRNA circuit is the ratio of LuxO-P, OP , to LuxO,

O [62]. At steady state, OP = ΓO, where the equilibrium constant, Γ, is of the form

Γ = exp
(
− ∆G

kBT

)
. Therefore, the simple model of the phosphorelay cascade is
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Γ = exp

(
2.3− ln

(
1 +AI

1 + 10−6AI

))
. (2.20)

If the autoinducer concentration is known, then (2.20) can be used to relate the concentra-

tion of autoinducer to Γ, otherwise Γ is a parameter representative of the cell-population

density. Note that LCD corresponds to large Γ, while HCD corresponds to small Γ.

2.5.2 A Novel Model of the Small RNA Circuit

In this section, a novel model of the sRNA circuit is derived following from the overview

provided in Section 1.1. Transcription of luxO is inhibited by LuxO, O, and LuxO-P,

OP and the rates at which luxO mRNA, o, is translated and decays proportional to its

concentration. LuxO decays at a rate proportional to its concentration as well.

κo(O,OP )
−−−−−−→ o

δo−→

κO−−→ O
δO−→

(2.21)

We assume that there is a basal rate of expression of luxO that is inhibited equally by both

LuxO and LuxO-P [103]. Therefore, the transcription rate of luxO is

κo(O,OP ) =
Vo

1 +KO(O +OP )
. (2.22)

The reactions governing the expression of luxR/hapR are identical in form to those for

luxO:

κr(R)
−−−→ r

δr−→,

κR−−→ R
δR−→ .

(2.23)

The main difference is that the luxR transcription rate is partially inhibited by a LuxR

dimer [61, 15]. This is also assumed to be the case for HapR given that they are from

the same family of transcriptional regulators [81]. The luxR/hapR transcription rate is,

therefore,

κr(R) = Vr0 +
Vr

1 + (KrR)2
. (2.24)

The reactions governing the expression of the n’th species of qrr are summarized in

Figure 2.3. LuxO-P activates qrr expression and a LuxR/HapR dimer enhances this

expression. To model this process, four different states for the qrr promoter are introduced

to represent the probability that the promoter is unbound, Pn, bound by a LuxR/HapR

dimer, PRn , bound by LuxO-P, POn , or bound by LuxO-P and a LuxR/HapR dimer, PROn

[77]. The rates of qrr transcription for the latter two states are also assumed to be different.
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Figure 2.3. Qrr promoter model. The four states represent the probability that the
promoter is bound by LuxR and/or LuxO-P.

The corresponding equations governing the states of the qrr promoter are:

1 = PRn + POn + PORn + Pn, (2.25)

dPRn

dt
= (kLnR)2Pn + k−PnPROn − (k2−Ln

+OP kPn)PRn , (2.26)

dPOn

dt
= kPnOPPn + (k−Ln)

2PROn − ((RkLn)
2 + k−Pn)POn , (2.27)

dPROn

dt
= kPnOPPRn + (RkLn)

2POn − ((k−Ln)
2 + k−Pn)POn , (2.28)

dqn
dt

= VPnPO + VLnPROn − δnqn. (2.29)

Solving for the steady state probabilities PROn and POn and rewriting (2.29) gives

dqn
dt

=
KPnOP

1 +KPnOP

VPn + VLn(KLnR)2

1 + (KLnR)2
− δnqn. (2.30)

The final reactions for the sRNA model relate to the formation of Hfq-Qrr, Hn, and the

repression of LuxO and LuxR/HapR from Hfq-Qrr, as summarized in (2.31) – (2.33). The

total concentration of Hfq available for quorum sensing is assumed constant, H0, because

Hfq is pleiotropic and abundant in cells [36, 12]. Hfq acts to stabilize and help Qrr bind

target mRNA. Hfq releases the sRNA-mRNA pair, which is then degraded while Hfq remains

intact [57]. The net result of the reaction is the loss of one sRNA for every mRNA.

H0 + qn
βn
−→ Hn (2.31)

Hn + o
νn−→ H0 (2.32)

Hn + r
µn
−→ H0 (2.33)
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In summary, the complete set of equations governing the sRNA circuit is,

Γ = exp

(
2.3− ln

(
1 +AI

1 + 10−6AI

))
, (2.34)

dR

dt
= κRr − δRR, (2.35)

dO

dt
= κOo− δOO, (2.36)

dr

dt
= Vr0 +

Vr

1 + (KRR)2
−

4∑

i=1

µiHir − δrr, (2.37)

do

dt
=

Vo

1 +KO(1 + Γ)O
−

4∑

i=1

νiHio− δoo, (2.38)

dqn
dt

=
KPnΓO

1 +KPnΓO

VPn + VLn(KLnR)2

1 + (KLnR)2
− βn

(
H0 −

4∑

i=1

Hi

)
qn − δnqn, (2.39)

dHn

dt
= βn

(
H0 −

4∑

i=1

Hi

)
qn − µnHnr − νnHno, (2.40)

where n = 1...4 corresponds to the index of nth species of sRNA. There are only four rather

than five Qrr since qrr5 is not quorum regulated in V. harveyi .

The nondimensionalization of the equations is used to simplify their parameterization.

First, the following are characteristic concentrations:

rM =
Vr0 + Vr

δr
, o0 =

Vo

δo
, O0 =

κO
δO

o0, R0 =
κR
δR

rM , Qn =
VPn

δn
. (2.41)

The variables in the model are rescaled using the characteristic concentrations

r = rM r̂, R = R0R̂, Hn = H0Ĥn, (2.42)

o = o0ô, O = O0Ô, qn = Qnq̂n. (2.43)

Next, define the dimensionless parameters

K̂Pn = KPnO0, K̂Ln = KLnR0, K̂O = KOO0, K̂R = KRR0, (2.44)

Eqn =
H0βn
δn

, Ern =
H0µn

δr
, Eon =

H0νn
δo

, (2.45)

Vqn =
VLn

VPn

, Vrn =
Vr0 + Vr

VPn

, Vor =
Vo

Vr0 + Vr
, r0 =

Vr0

Vr0 + Vr
. (2.46)

At steady state, the model simplifies to

Γ = exp

(
2.3 − ln

(
1 +AI

1 + 10−6AI

))
, (2.47)

0 = r0 +
1− r0

1 + (K̂Rr)2
−

(
4∑

n=1

ErnHn + 1

)
r, (2.48)
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0 =
1

1 + K̂O(1 + Γ)o
−

(
4∑

n=1

EonHn + 1

)
o, (2.49)

0 =
K̂PnΓo

1 + K̂PnΓo

1 + Vqn(K̂Lnr)
2

1 + (K̂Lnr)
2
−

(
Eqn

(
1−

4∑

m=1

Hm

)
+ 1

)
qn, (2.50)

0 = Eqn

(
1−

4∑

m=1

Hm

)
qn − Vrn (Ernr + VorEono)Hn. (2.51)

K̂R and K̂O represent the LuxR/HapR and LuxO autoregulation, respectively. Vqn and

K̂Ln represent the LuxR/HapR-Qrr feedback, and Eon and Vor represent the LuxO-Qrr

feedback. For simplicity, the “̂” notation on o, r, qn, and Hn is dropped. A summary of

the interpretation of the parameters is given in Table 2.1.

2.5.3 The Contribution of Hybrid Quorum Sensing
Mathematical Models

Mathematical models of the hybrid V. harveyi and V. cholerae quorum sensing systems

have been formulated to answer questions associated with either the phosphorelay cascade

or the sRNA circuit. The first model of the phosphorelay cascade in V. harveyi showed that

Table 2.1. Interpretation of the nondimensional parameters.
Parameter Interpretation

Γ Steady state ratio of LuxO-P to LuxO (a measure of the local
cell-population density).

K̂R Affinity of LuxR/HapR to its promoter (LuxR/HapR autoregula-
tion).

K̂O Affinity of LuxO to its promoter (LuxO autoregulation).

K̂Ln Affinity of LuxR/HapR to the qrr promoter bound with LuxO-P
(part of the LuxR/HapR-Qrr feedback).

Vqn Rate of qrr expression from LuxR/HapR relative to the rate of
qrr expression from LuxO-P only (part of the LuxR/HapR-Qrr
feedback).

Eon Rate at which qrr binds luxO mRNA relative to the rate at which
luxO mRNA decays (the LuxO-Qrr feedback).

Vor Rate of luxO expression relative to the rate of luxR/hapR expres-
sion.

Vrn Rate of luxR/hapR expression relative to the rate of qrr expres-
sion from LuxO-P.

K̂Pn Affinity of LuxO-P to the qrr promoter.
Ern Rate at which qrr binds luxR/hapR mRNA relative to the rate

at which luxR/hapR mRNA decays.
Eqn Affinity of qrr sRNA to Hfq relative to its decay.
r0 Basal rate of luxR/hapR expression.
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the autoinducer receptors can be described by a two state model [96]. Subsequent studies

have shown that the autoinducer receptors phosphorylate LuxO in a graded, proportionate,

and additive manner [7, 65, 62]. Therefore, the V. harveyi and V. cholerae quorum

sensing system regulates genes downstream of the quorum sensing system based on the total

level of LuxO-P and that each autoinducer is responsible for approximately 1/3 of LuxO

phosphorylation. Furthermore, these empirical studies also show that the phosphorelay

cascade does not facilitate an ultrasensitive or bistable response during the LCD to HCD

transition, which is different than LuxIR-type circuits.

The discovery of the sRNA circuit led some to argue that the sRNA circuit can facilitate

a robust, ultrasensitive response that acts to synchronize a population, in support of the

fundamental assumptions of quorum sensing systems. Hence, many of the sRNA models

have been developed to test these assumptions, as summarized in Section 2.2. Only two

studies have addressed the sRNA circuit in V. harveyi and/or V. cholerae. Jian-Wei showed

that V. harveyi can exhibit periodic oscillations in bioluminescence when a time delay is

incorporated into the model [49]. Although interesting on its own, such behavior has not

been observed in empirical studies and a biological basis for such a delay mechanism is

lacking. The second sRNA model is summarized in Section 4.1, for it relates closely to the

work presented in Chapter 4. In the interest of simplicity, we note that the formulation of

all of these models has excluded the Qrr feedback and Hfq. Therefore, the model in Section

2.5.2 is the only such model that can test the dosage compensation hypothesis of [94] and,

as will be evident in Chapter 4, can directly show the importance of Hfq.



CHAPTER 3

A MATHEMATICAL MODEL AND

QUANTITATIVE COMPARISON

OF THE SMALL RNA CIRCUIT

IN THE VIBRIO HARVEYI

AND VIBRIO CHOLERAE

QUORUM SENSING

SYSTEMS

The similarities between the V. harveyi and V. cholerae quorum sensing systems make

it difficult to identify the mechanisms underlying kinetic differences between the species.

In this chapter, the parameters for model of the V. harveyi and V. cholerae sRNA circuit

introduced in Section 2.5 are estimated by fitting the model to a variety of empirical data

from both species. All of the parameters can be distinguished and the parameter estimation

is robust to errors in the data. This results in a model that can, therefore, be used for in

silico design, testing, and analysis of experiments. An example of such an experiment

suggests that V. cholerae Qrr are more abundant and more sensitive to changes in LuxO

than V. harveyi Qrr. This could explain why expression of HapR is more robust than LuxR

to changes in Qrr. Although a few weak search directions are identified in the parameter

estimation of V. harveyi and V. cholerae, one suggested utility of the model is that it can be

used to identify a series of experiments that contain new information about the parameters

and, hence, complete the model. The results in this chapter are used in Chapter 4 to identify

the mechanisms underlying the additive and redundant Qrr phenotypes in V. harveyi and

V. cholerae.

3.1 Introduction

In this work, the mathematical model of the V. harveyi and V. cholerae sRNA circuit

is used to identify and explain the mechanisms underlying some kinetic differences between
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V. harveyi and V. cholerae. Empirical data are used to solve a constrained, nonlinear least

squares problem to estimate the 35 and 33 parameters, respectively, in the V. harveyi and

V. cholerae sRNA model. The parameter estimation is implemented in Matlab using the

nonlinear least-squares solver lsqnonlin and exact Jacobian of the forward map, which is

a model of the measurements based on the sRNA model. The behavior of the model agrees

quantitatively with the all of the empirical data available and is, therefore, representative

of the V. harveyi and V. cholerae sRNA circuits.

A series of simple experiments are then proposed that highlight kinetic differences

between the species. It was shown that Qrr are more abundant in V. cholerae than in

V. harveyi and that V. harveyi and V. cholerae Qrr are sensitive to changes in LuxR and

LuxO, respectively. We argue and demonstrate that this explains why dosage compensation

is stronger in V. cholerae than in V. harveyi . These results refine the hypothesis of

Svenningsen et al. who suggested that the differences in LuxR/HapR repression is a

consequence of stronger dosage compensation in V. cholerae than in V. harveyi [94]. Lastly,

the model suggests that the saturation of Hfq, a protein chaperon that stabilizes Qrr, with

Qrr is essential for the robust repression of target mRNA.

3.2 Results and Discussion

In this section, the empirical data from V. harveyi and V. cholerae are used to param-

eterize the quorum sensing model introduced in Chapter 2. Furthermore, the model with

a parameterization for each species agrees well with the data, showing that the model is

representative of quorum sensing in V. harveyi and V. cholerae. Lastly, the model is used

to predict novel behavior in V. harveyi and V. cholerae. To parameterize the model, the

following constrained, nonlinear least squares problem is solved

min
p≥a

||F (p)− d||2. (3.1)

Here, d is a vector containing the measurements from the experiments and p is a vector

representing the wild-type parameterization. The constraint p ≥ a is necessary to ensure

that Vrn ≥ 1 for all n (i.e., so that LuxR/HapR only enhances Qrr expression) and that

all of the remaining parameters are non-negative. Fi(p) is a model of the experiment

corresponding to the i′th measurement. All of the models of the experiments are stored

together in the vector F (p). Therefore, Fi(p)−di is the error associated with modeling the

i′th experiment, while ||F (p)− d||2 represents the total error between the model and all of

the experiments for the given wild-type parameterization. A detailed discussion of the data

and how they were modeled is provided in the sections that follow. The problem was solved
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using Matlab’s lsqnonlin function. To improve the accuracy and rate of convergence, the

Jacobian of F (p) was calculated exactly by differentiating (2.48)–(2.51) and using these

derivatives to compute ∇Fi(p).

To find the global minimum, the problem was solved using several different initial guesses

that spanned a feasible set containing the solution. Each initial guess is a vector of uniformly

distributed random numbers generated over the feasible set of wild-type parameters. To

find a reasonable feasible set for all of the parameters, a large feasible set is initialized then

manually refined until it was as small as possible but large enough so that it contained the

solution to each randomly generated parameter vector. The nonlinear least-squares solver

was terminated either when the residual was below a certain threshold (i.e., ||F (p)−d||2 ≤

10−4) or after some finite number of iterations. The parameterization for each species and

corresponding final feasible set is summarized in Table 3.1.

The next two sections describe the experiments and how they were modeled. Although

the details of Fi(p) are different, they all have the following general structure. Each mutant

strain in the experiment was parameterized by modifying the wild-type parameterization

accordingly. For example, setting Eon = Vor = 0 in the wild-type parameterization

represents a strain without the LuxO-Qrr feedback. Next, the steady state solution of each

strain was computed by solving (2.48)–(2.51). The exact Jacobian of F (p) was also used to

decrease running time and improve the accuracy of the nonlinear solver. Lastly, steady state

quantities in the model that corresponded to the quantities measured in the experiments

were measured (such as the ratio of the steady state concentration of luxR/hapR in a

wild-type strain relative to a mutant strain).

3.2.1 V. harveyi Parameterization

In this section, the V. harveyi data that were used to parameterize the model is de-

scribed. The first two experiments below are used to parameterize r0,KR, and KLn (n =

1, 2, 3, 4) because those data are uniquely determined by those parameters. KR and KLn

are related to their dimensionless counterparts by the characteristic concentration of LuxR,

R0. The rest of the parameters were fit simultaneously to the remaining data using the

formulation described by 3.1 by treating R0 as a parameter rather than K̂Ln and K̂R. The

full V. harveyi parameterization is shown in Table 3.1.

3.2.1.1 LuxR Autoregulation

Chatterjee et al. identified the regions of the luxR promoter involved in the autoregula-

tion of LuxR and used mobility-shift assays to measure the proportion of luxR promoters
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Table 3.1. Parameters and their corresponding feasible set for V. harveyi and V. cholerae.
All parameters are dimensionless except for R0 as indicated.

Parameter
V. harveyi V. cholerae
Value Feasible Set Value Feasible Set

r0 3.67·10−1 – 2.96·10−1 [0, 0.6]

K̂R 1.38·101 – 9.03·10−1 [0, 1]

K̂O 1.80 [1, 7] 1.55·101 [5, 35]
ΓLCD 1.82·10−2 [0, 1] 2.15·10−1 [0.15, 0.35]
ΓHCD 1.94·10−1 [0, 0.07] – –

K̂P1
3.62·10−1 [0, 3] 2.65 [2, 3]

K̂P2
3.60 [1, 11] 3.94·101 [26, 42]

K̂P3
7.30 [2, 20] 9.36·10−1 [0.7, 1]

K̂P4
1.13 [0, 7] 8.89 [7, 10]

K̂L1
0 – 1.84·102 [120, 260]

K̂L2
2.21·101 – 3.04·101 [25, 55]

K̂L3
1.38·101 – 1.08·101 [8.5, 12]

K̂L4
2.95·101 – 4.77·101 [33, 50]

Er1 5.05·105 [1·105, 9·105] 8.36·101 [35, 95]
Er2 1.83·103 [250, 2000] 2.87·102 [55, 320]
Er3 2.31·101 [3 70] 2.98·102 [150, 500]
Er4 1.08·103 [250, 2.2·103] 4.76·101 [40, 700]
Eo1 1.35·10−2 [0, 5] 1.07·101 [2.5, 12]
Eo2 1.20·101 [0, 25] 6.99·101 [14, 80]
Eo3 2.33·102 [75, 300] 1.21·102 [100, 400]
Eo4 8.18·10−1 [0, 4] 2.95·10−1 [0, 0.3]
Eq1 4.65·10−3 [0, 0.2] 2.98·10−1 [0, 3]
Eq2 3.31 [0, 35] 2.31·10−3 [0, 0.8]
Eq3 9.57 [5, 40] 1.58·102 [0, 180]
Eq4 1.74·10−1 [0, 1.25] 4.33·101 [0, 75]
Vq1 0 – 4.99 [4, 6]
Vq2 1.90 [1.5, 2.2] 1.91 [1.25, 2.5]
Vq3 2.28 [2.1, 2.5] 1.41·101 [12, 16]
Vq4 2.56 [2.4, 2.8] 3.65 [3, 4.5]
Vr1 1.44 [1, 5] 7.81·10−2 [0, 0.45]
Vr2 5.80 [0, 7] 8.49·10−4 [0.15, 0.45]
Vr3 5.83·10−1 [0 2] 2.51·10−2 [0, 0.05]
Vr4 4.63 [2, 5] 5.57·10−1 [0.2, 0.8]
Vor 1.28·101 [2, 22] 2.42 [1, 5]
R0 (nM) 5.16·102 [200, 600] – –
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bound at a given concentration of LuxR [15]. These data were used to parameterize

the luxR promoter model, r0 + (1 − r0)/(1 + (KRR)2). The data (dots) and the results

from the parameterization (solid curve) are shown in Figure 3.1. The results suggest that

KR ≈ 0.0250(µg)−1 and that r0 ≈ 0.38.

3.2.1.2 LuxR Affinity to the qrr Promoters

Tu et al. used mobility-shift assays to show that LuxR enhances qrr expression by

binding directly to each qrr promoter [104]. We set KL1
= 0nM−1 , KL2

= (25 nM)−1,

KL3
= (40nM)−1, and KL4

= (19nM)−1 based on visual inspection of the data in Figure 2

of their work [104].

3.2.1.3 LuxR-Qrr Feedback at LCD and HCD

Tu et al. showed that LuxR enhances Qrr expression in V. harveyi when it binds the qrr

promoter [104]. They created a ∆luxR and a qrr2, 3, 4luxR−bs strain, which has a scrambled

LuxR binding site in each qrr promoter to limit/prevent LuxR binding. Using quantitative

real-time PCR analysis, they measured the level of qrr at low and at high cell density in

a wild-type strain and each mutant strain. They present their results by normalizing the

concentration of qrr by their corresponding wild-type concentration at LCD. The data,

shown in Figure 3.2 (left), show that LuxR enhances qrr2-4 expression and that there is
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Figure 3.1. A comparison between the data (dotted points) and the behavior of the luxR
promoter model (solid curve) of the proportion of LuxR promoters bound by LuxR as the
concentration of LuxR varies. The data were generated using mobility-shift assays and
taken from Figure 6A of [15] and shows that LuxR binds its own promoter. These data
were used to parameterize the luxR promoter model, r0+(1− r0)/(1+(KRR)2), and found
that KR = 0.0250(µg)−1 and r0 = 0.38.
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Figure 3.2. Comparison between the data (left) and the results (center) of the fold change
in the concentration of each Qrr in the absence of the LuxR-Qrr feedback at LCD and
HCD. Three strains were used in the experiments: wild-type, ∆luxR, and qrr2, 3, 4luxR−bs

(one with a scrambled LuxR binding site in each Qrr promoter). The concentration of Qrr
was measured in each strain at LCD and HCD and normalized by the concentration in the
wild-type strain at LCD. The relative error of the results is shown on the right.

little difference in qrr concentration between the mutant strains.

To model this experiment, the wild-type parameterization is modified to model the two

mutant strains: ∆luxR (Ern = K̂Ln = Vqn = 0), and qrr2, 3, 4luxR−bs (K̂Ln = Vqn =

0). Two different values of Γ are also estimated that correspond to the different ratios of

LuxO:LuxO-P at low and at high cell density (i.e., ΓLCD > ΓHCD). For each strain, the

steady state concentration of each qrr at ΓLCD and at ΓHCD is computed. Lastly, each qrr

concentration is normalized by its corresponding concentration in the wild-type strain at

LCD. The final results (middle) and corresponding error (right) are shown in Figure 3.2.

The model agrees well with the data at both low and high cell density, although there is

less agreement at HCD.

3.2.1.4 Role of LuxO Regulation in V. harveyi

Tu et al. showed that LuxO regulation affects the onset of the LCD to HCD transition

and the dynamic range of expression of quorum sensing target gene expression [103]. They

introduced a LuxR-mCherry protein fusion into the V. harveyi chromosome at the native

luxR locus in four different strains: wild-type, −LuxO Auto, −LuxO-Qrr feedback, −LuxO
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regulation. The latter three strains lack LuxO autoregulation, LuxO-Qrr feedback, or both,

respectively. They used single cell fluorescence microscopy to measure LuxR-mCherry in

individual cells over a range of autoinducer concentrations for each strain as a means to

infer luxR expression. Their results, in Figure 3.3 (left), show that the onset of the LCD

to HCD transition is shifted to larger autoinducer concentrations as LuxO regulation is

removed. The data also show that there is little difference in LuxR expression between the

−LuxO Auto and −LuxO-Qrr feedback strains.

To model this experiment, parameterizations of each strain were created. Starting with

the wild-type parameterization, we set K̂O = 0 for the −LuxO Auto strain, Eon = Vor = 0

for the −LuxO-Qrr feedback strain, and K̂O = Eon = Vor = 0 for the −LuxO regulation

strain. Since fluorescence is expressed as a function of autoinducer concentration, (2.20)

is used to relate Γ to the concentration of autoinducer in the data. Then, the steady

state concentration of LuxR in each strain at every autoinducer concentration is computed.

The results (middle) and corresponding error (right) are shown in Figure 3.3. The results

reproduce the shift in the LuxR dose response curve for the various mutant strains. Note
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Figure 3.3. A comparison between the data [103] (left) and the results (middle) showing
the florescence of the LuxR-mCherry construct over increasing autoinducer concentrations
in wild-type, −LuxO-Auto, −LuxO-Qrr feedback, and −LuxO regulation strains. The data
and the results are normalized to the LuxR-mCherry florescence in the wild-type strain at
an autoinducer concentration of 104 nM. The error associated with the results (right) is
largest when autoinducer concentrations are small, which also corresponds to when there is
more uncertainty in the data.
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that the error is largest at LCD for which there is more uncertainty in the data as well.

Tu et al. repeated the experiment using strains with qrr4 only. Their results in Figure

3.4 (left) show a shift in the onset of the LCD to HCD transition similar to their previous

results. Additionally, there is a 3 rather than a 5-fold change in fluorescence from LCD to

HCD. To model this experiment, the previous experiment was repeated but with K̂P1
=

K̂P2
= K̂P3

= 0 in all of the strains. The results, Figure 3.4 (middle), reflect a similar shift

in the onset as the data; however, the results also show more repression of LuxR at LCD

than what is reflected in the data.

3.2.2 V. cholerae Parameterization

The V. cholerae parameters for the model were estimated using all of the V. cholerae

data by solving the problem described by (3.1). The V. cholerae experiments were all

performed at the same optical density corresponding to LCD so there is only one value of Γ

in the V. cholerae parameterization. In what follows, the four V. cholerae experiments, how

each was modeled, and the results are discussed. Table 3.1 lists the V. cholerae parameters.
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Figure 3.4. A comparison between the data [103] (left) and the results (middle) showing
the florescence of the LuxR-mCherry construct over different autoinducer concentrations in
wild-type, −LuxO-Auto, −LuxO-Qrr feedback, and −LuxO regulation strains containing
qrr4 only. The data and the results are normalized to the LuxR-mCherry florescence in the
wild-type strain at an autoinducer concentration of 104 nM. The error (right) shows that
the repression of LuxR at low autoinducer concentrations in the model is much larger than
that observed in the data.
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3.2.2.1 HapR Repression

Svenningsen et al. showed that one qrr is sufficient to repress hapR to near wild-type

levels [94]. They created four mutant strains that had only one type of qrr and a mutant

strain without any qrr. Using real-time PCR analysis, they measured hapR concentration

in each strain and normalized the hapR concentration by its concentration in the wild-type

strain. Their results, Figure 3.5 (left), show that all Qrr significantly repress hapR similar

to wild-type levels especially qrr4.

To model this experiment, the wild-type parameterization was used with K̂Pn = 0 for

each of the n qrr knocked out in the mutant strains, i.e., for the +qrr2 strain, we let

K̂Pn = 0 for n = 1, 3, 4. To parameterize the ∆qrr strain, K̂Pn = 0 for all n. The steady

state concentration of hapR in each strain was found then normalized each by the hapR

concentration in the wild-type strain. A comparison between the data (left), model (center),

and the relative error (right) is shown in Figure 3.5. The results show that the model agrees

well with the data.

3.2.2.2 Dosage Compensation

Svenningsen et al. showed that qrr expression increases in the absence of one or more qrr

in V. cholerae and called this phenomenon dosage compensation [94]. Using real-time PCR
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Figure 3.5. Comparison between the data [94] (left) and the results (middle) showing the
fold change in LCD hapR mRNA concentration in a strain with at most one Qrr relative
to hapR mRNA concentration a wild-type strain. The error (right) shows that the model
is in good agreement with the data.
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analysis, Svenningsen et al. measured the concentrations of hapR and qrr in a wild-type,

∆qrr3, ∆qrr2, 3, and in a ∆qrr1, 2, 3 strain at LCD. These data were then normalized to

their corresponding wild-type levels. Their results show that, as each qrr is removed, the

expression of the remaining qrr increases, while hapR remains relatively constant [94].

This experiment is modeled as follows. For the mutant strains, the wild-type pa-

rameterization is modified by setting K̂Pn = 0 for the nth Qrr removed. The steady

state concentration of qrr and HapR is computed in each strain then normalized by their

corresponding wild-type values. The data (left), results from the model (middle), and

corresponding error (right) are shown in Figure 3.6. The results are in good qualitative and

quantitative agreement with the data.

3.2.2.3 Dosage Compensation and Qrr Feedback

To show that regulation in the sRNA circuit is responsible for dosage compensation,

Svenningsen et al. measured luminescence in a wild-type, ∆hapR, and in a luxOAUCC

strain (a strain lacking the LuxO-Qrr feedback) with and then without all Qrr. Assuming

the stability of each qrr-lux construct is the same and that fluorescence is proportional to

the concentration of qrr, their data are normalized by the fluorescence from the qrr1-lux

construct in the ∆hapR∆qrr1− 4 strain. The data, in Figure 3.7, show that removing one
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Figure 3.6. Comparison of the dosage compensation response for each Qrr between the
data [94] (left) and the results (middle). Expression of each qrr increases relative to their
wild-type concentrations at LCD when Qrr are sequentially removed. The error (right)
shows that the model agrees well with the data overall.
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Figure 3.7. Comparison between the data [94] (left) and the results (middle) showing
the fold change in qrr-lux luminescence in strains with and/or without Qrr and/or HapR.
Luminescence from each construct is presented relative to qrr1-lux luminescence in the
∆hapR strain. The error (right) shows that the results agree well with the data.

or more qrr increases expression of the remaining qrr.

To model this experiment, a parameterization of each strain was created from the wild-

type strain. For the ∆hapR strain, Ern = K̂Ln = 0 for all n and, for the luxOAUCC strain,

Eon = Vor = 0 for all n. Removing Qrr from these strains involved setting K̂Pn = 0 for all

n. The model of each qrr-lux construct is identical to the model of the Qrr promoter in

(2.50), i.e.,

Cn(r, o) =
K̂PnΓo

1 + K̂PnΓo

1 + Vqn(K̂Lnr)
2

1 + (K̂Lnr)
2

. (3.2)

The steady state concentration of r and o in each strain is computed with and then

without Qrr then used to evaluate (3.2). The luminescence from each promoter is normalized

by its corresponding luminescence from the wild-type promoter. The results, Figure 3.7

(middle), show that the model agrees well with the data both qualitatively and quantita-

tively.

As an extension to the above experiment, Svenningsen et al. created a strain without

the LuxO-Qrr feedback and examined the fold change in qrr-lux luminescence in a strain

with vs. without Qrr. Their results, in Figure 3.8 (left), show that qrr3 is most sensitive

to changes in qrr whereas there is a more modest change in the remaining qrr.

To model this experiment, the wild-type strain parameterization was modified so that

Eon = 0 for all n to remove the LuxO-Qrr feedback. The steady state concentrations of
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Figure 3.8. Comparison between the data [94] (left) and the results (middle) showing the
fold change in qrr-lux luminescence when Qrr are removed in a strain without the LuxO-Qrr
feedback. The error (right) shows that the model agrees well with the data.

HapR and LuxO in a strain with and then without qrr were then found. These steady-

states were used to evaluate (3.2) to, again, determine the luminescence from each qrr-lux

construct. Lastly, the luminescence of each qrr−lux in the ∆qrr1−4 strain were normalized

by the luminescence in the strain with all qrr. Figure 3.8 shows that the model (middle)

agrees well with the data (left).

3.2.3 Parameter Uncertainty, Identifiability, and
Robustness

To understand what parameters are reliably estimated from the experiments by the

model, the linearization of F (p) was studied at the parameterization determined in the

previous section. If ||δp|| is small, then F (p + δp) = F (p) + DF (p)δp + O(||δp||2).

Therefore, if each element in the column of DF (p) corresponding to parameter pj is small

(i.e.,
∣∣∣∂Fi(p)

∂pj

∣∣∣ ≪ 1 for all i), then the data are not very sensitive to pj and, hence, the

parameters are not estimated reliably.

We found that F (p) and DF (p) are accurate up to an order of 10−10. Evaluating F (p)

and DF (p) involves solving for the steady–states with a nonlinear solver that starts with

a random initial guess. Hence, even with the same parameterization p, the values of the

forward map and its Jacobian may be slightly different from one simulation to another.

We evaluated F (p) and DF (p) multiple times using the same parameterization and found

that they differ up to 10−10 element-wise. Therefore, the jth parameter is assumed to be
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a stationary solution of F (p) = d if
∣∣∣∂Fi(p)

∂pj

∣∣∣ ≤ 10−9 for all i. Figure 3.9 shows that the

column norms of the Jacobian have at least one element greater than 10−9. This suggests

that all of the parameters could be identified using the data.

This also shows that V. cholerae parameters are more easily distinguished than the

V. harveyi parameters and that V. harveyi Er1 is the hardest parameter to distinguish

in the data. This may explain why Er1 is around 102-fold larger than the other Ern in

V. harveyi . The result is somewhat expected given that the bulk of the V. harveyi data are

very similar (i.e., showing LuxR-mCherry fluorescence as a function of autoinducer) rather

than measurements from a variety of mutant strains.

To understand the parameter identification further, the singular value decomposition

of the Jacobian matrix was computed to see what linear combination of parameters was

associated with the smallest singular values and, hence, the weak search directions. Overall,

the parameters associated with the smallest column norms of the Jacobian are also the main

components of the right-singular vectors associated with the smallest singular values (see

Table 3.2). These results again show that Er1 , Er2 , Er4 , and Eo3 are difficult to identify in

the V. harveyi data whereas Eo1 , Eo3 , Eo4 , Eq3 , Eq4 , Er2 , Er3 , Γ , K̂p3 , and Vq2 are difficult

to identify for V. cholerae. These results show that both the V. harveyi and V. cholerae

parameterizations will benefit from new experiments that target these specific parameters.
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Figure 3.9. Comparison of the column norms of DF (p) for each parameter in V. harveyi
and V. cholerae. The parameter corresponding to the column of the Jacobian is shown on
the vertical axis, while the norm of the column is on the horizontal axis.
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Table 3.2. Coefficients of the right-singular vectors associated with the smallest singular
values of the Jacobian for V. harveyi and V. cholerae that are 10−7 smaller than the largest
singular value. Coefficients smaller than 0.1 in absolute value are ignored.

V. harveyi
σn−3 σn−2 σn−1 σn

Eo3 1.0 – – –
Er1 – – – −1.0
Er2 – −0.1 1.0 –
Er4 – −1.0 −0.1 –

V. cholerae
σn−7 σn−6 σn−5 σn−4 σn−3 σn−2 σn−1 σn

Eo1 – −0.2 −0.5 −0.9 – – – –
Eo3 −0.1 1.0 −0.3 – – – – –
Eo4 – – – – 1.0 – – –
Eq3 – – 0.1 – – – – –
Eq4 – 0.2 0.8 −0.5 – – – –
Er2 – – – – – – – −1.0
Er3 – – – – – −0.1 1.0 –
Γ – – – – – −1.0 −0.1 –

Kp3 −1.0 −0.1 – – – – – –
Vq2 – – −0.1 – – – – –

Up to now, only the Jacobian of the forward map has been used to discuss the uncertainty

of the parameter estimates. To see how the parameter estimates are affected by non-

linearities in the parameter estimation, 250 different realizations of the data were generated

by randomly perturbing the data by at most 10% with a uniformly distributed random

number. The model was then parameterized to each realization of the data by solving the

problem in (3.1) and using the parameterization of each species in Table 3.1 as the initial

estimate. The standard deviation of each parameter was then divided by its corresponding

value in Table 3.1. The results are presented in Figure 3.10 and show that most of the

parameters change on an order similar to the order of the error in the data. Therefore,

with the exception of a few parameters, the parameter estimation for both V. harveyi

and V. cholerae is robust in the sense that errors in the data give similar parameters. A

Bayesian estimation (Monte Carlo analysis) is a more rigorous analysis of the uncertainty of

parameter estimates. However, the cost of evaluating the forward problem and the number

of realizations typically necessary for a Bayesian analysis made this analysis prohibitive, so

it was not carried out here. Therefore, some parameters in the model cannot be reliably

estimated from the experimental data considered. However, new experiments could be

designed to specifically target these unresolved parameters and complete the model.
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Figure 3.10. The standard deviation of each parameter in V. harveyi (left) and V. cholerae
(right) relative to its corresponding value in Table 3.1. Results are based on 250 synthetic
data generated by randomly perturbing the empirical data by at most 10%.

3.2.4 Species Comparisons and Qualitative
Predictions

Although the sRNA circuits in V. harveyi and V. cholerae are topologically equivalent,

the parameterization for each species is different. Here, the model is used to consider a series

of experiments designed to identify qualitative differences in the responses of V. harveyi and

V. cholerae and to understand the mechanisms responsible for these differences. The results

show that abundance of Hfq-Qrr and changes to LuxO via the LuxO-Qrr feedback drive

changes in V. cholerae Qrr concentration at LCD. Conversely, Hfq-Qrr is less abundant and

Qrr less sensitive to changes in target mRNA in V. harveyi . Hence, dosage compensation

is stronger in V. cholerae than in V. harveyi and that HapR is less sensitive than LuxR to

changes in Qrr.

In what follows, the fold change of qrr4 concentration is compared to the fold change in

qrr4 promoter activity between various strains. The concentration of qrr4 is measured by

modeling a real-time PCR analysis experiment and measure qrr4 promoter activity by mod-

eling the luminescence from a qrr4-lux construct. If the fold change in qrr4 concentration is

similar to the fold change in qrr4-lux luminescence, then the change in qrr4 concentration

is driven by a change in its expression rather than a change in its degradation via Hfq.

Therefore, by comparing the fold change in qrr4 concentration with the fold change in qrr4

promoter activity, the degree to which changes in Hfq affect qrr4 levels can be understood.

First, the the wild-type parameterization is modified to create parameterizations for
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three different mutant strains: ∆LuxO-Qrr feedback (Eon = 0), ∆Qrr feedback (Eon =

K̂Ln = 0), and ∆Qrr feedback −LuxR/HapR (Eon = Ern = K̂Ln = 0). For each strain

including the wild-type strain, the steady state concentration of qrr4, luxR/hapR, and luxO

at LCD (Γ = ΓLCD) are computed. The steady state concentration of luxR/hapR and luxO

along with (3.2) is used to measure the qrr4-lux luminescence for that particular strain.

The qrr4-lux construct has the same mutations as the mutant strain (i.e., the model of the

qrr4-lux construct for the ∆Qrr feedback strain has K̂Ln = 0). Lastly, the fold change in

qrr4 concentration and in qrr4-lux luminescence is compared between the strains indicated

in Table 3.3. The results identify how Hfq and Qrr feedback regulate the concentration of

qrr4 in V. harveyi and V. cholerae at LCD.

The first row of Table 3.3 shows that addition of LuxR/HapR decreases qrr4 in V. cholerae

more than in V. harveyi because Hfq-Qrr is less abundant in V. cholerae than in V. harveyi

in the absence of Qrr feedback. Note that qrr4-lux luminescence is constant because Qrr

feedback is absent from both strains, so the change in qrr4 concentration is driven by the

change in Hfq-Qrr. In a ∆Qrr feedback −LuxR/HapR strain, there is no target mRNA for

Qrr to repress, so all available Hfq is bound by Qrr (i.e.,
∑4

n=1Hn = 1). On reintroducing

LuxR/HapR, Qrr unbinds Hfq to repress LuxR/HapR. This diminishes the concentration

of Hfq-Qrr and qrr4 because more Hfq is available for it to bind. Therefore, Hfq-Qrr is less

abundant in V. cholerae than in V. harveyi in the absence of Qrr feedback because qrr4

decreases more in V. cholerae than in V. harveyi .

The second row of Table 3.3 shows that qrr4 increases when the LuxR/HapR-Qrr

feedback is reintroduced because LuxR/HapR enhances qrr4 expression. This also shows

that the concentration of Hfq-Qrr in the ∆LuxO-Qrr feedback strain is similar to that

in a ∆Qrr feedback strain because the change in qrr4-lux luminescence is similar to the

Table 3.3. Activation at the qrr promoter and Hfq determines the fold change in qrr4
expression. Differences between the fold change of qrr4 concentration compared to the fold
change in qrr4-lux luminescence shows the degree to which a change in qrr4 concentration
is driven by a change in qrr4 activation vs. Hfq.

qrr4 Concentration qrr4-lux Luminescence
Expression in... Relative to... V. harveyi V. cholerae V. harveyi V. cholerae

∆Qrr feedback
∆Qrr feedback
−LuxR/HapR

0.88 0.75 1.00 1.00

∆LuxO-Qrr
feedback

∆Qrr feedback 1.61 1.53 1.59 1.19

WT
∆LuxO-Qrr
feedback

0.86 0.042 0.89 0.71
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change in qrr4 concentration. Therefore, although qrr4 increases more in V. harveyi than

in V. cholerae, V. cholerae qrr4 remain less abundant than V. harveyi qrr4.

The last row of Table 3.3 shows that qrr4 decreases more in V. cholerae than in V. har-

veyi when the LuxO-Qrr feedback is reintroduced because V. cholerae qrr4 is more sensitive

to changes in LuxO. The LuxO-Qrr feedback represses LuxO, so the qrr4 concentration

should decrease as it does for both species. The results show that the change in qrr4− lux

luminescence is comparable between the two species, so the changes in qrr4 concentration

arise from differences in the sensitivity of their respective qrr4 promoter to changes in LuxO.

Given the significantly greater decrease in V. cholerae qrr4 relative to the V. harveyi qrr4

concentration, hence, V. cholerae qrr4 is more sensitive to changes in LuxO than V. harveyi

qrr4. The fold changes in qrr4 concentration between the second and third rows of Table 3.3

indicate that V. harveyi and V. cholerae are approximately equally sensitive to changes in

LuxR/HapR whereas V. cholerae qrr4 is significantly more sensitive than V. harveyi qrr4

to changes in LuxO. These results were similar across all Qrr in V. harveyi and V. cholerae.

The above results suggest that dosage compensation is driven by changes in LuxO only

in V. cholerae and by changes in LuxR and/or LuxO in V. harveyi . To test this, the fold

change in qrr4, luxR/hapR, and luxO in V. harveyi and V. cholerae in a wild-type strain

relative to a ∆qrr1− 3 strain are measured. As expected, qrr4 concentration increases in

the ∆qrr1 − 3 strain for both species (see Table 3.4). The results show that luxR and

luxO increase significantly, but hapR increases only marginally. These results reflect the

different sensitivities of the Qrr promoter to target mRNA. Dosage compensation of Qrr

(i.e., the fold change in qrr4) arises when the expression of Qrr is sensitive to changes in

target mRNA and when target mRNA is sensitive to changes in Qrr via Hfq. Given that

V. cholerae qrr4 is significantly more sensitive to changes in LuxO than HapR, dosage

compensation in V. cholerae is primarily driven by changes in LuxO. Similarly, V. harveyi

Qrr are sensitive to changes in both LuxR and LuxO, so dosage compensation in V. harveyi

is driven by changes in LuxR and LuxO.

Table 3.4. Fold change in qrr4, LuxR/HapR, and LuxO in a ∆qrr1− 3 strain relative to
a wild-type strain at LCD for V. harveyi and V. cholerae.

Species Fold Change in...
qrr4 luxR/hapR luxO

V. harveyi 1.71 5.25 2.55
V. cholerae 6.32 1.14 3.16
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3.3 Conclusion

In this work, the parameters for the mathematical model of the V. harveyi and V. cholerae

sRNA circuit from Chapter 2 are estimated to explain why HapR is more robust than

LuxR to changes in Qrr [57, 102]. The behavior of the model is consistent with a variety of

empirical data from V. harveyi and V. cholerae sRNA. The model was parameterized by

solving a nonlinear least-squares problem and identified most of the parameters from the

data. The overall reliability of the parameter estimates and correspondence between the

behavior of the model and the data implies that the current understanding of the biology

is sufficient to explain a wide variety of behavior in V. harveyi and V. cholerae.

The similarities between the V. harveyi and V. cholerae quorum sensing circuits make

it difficult to identify experimentally how and why their responses differ, yet it is much

easier to do with the model. For example, an experiment that measures the difference in

the qrr concentration and the luminescence from a qrr-lux construct between a wild-type

strain and strains without one or both types of the Qrr feedback. This will determine the

extent to which qrr levels change from dosage compensation compared to changes in Hfq.

The results suggest that dosage compensation is driven by LuxO in V. cholerae, but by

LuxO and LuxR in V. harveyi . This, in turn, may explain why hapR, rather than luxR,

expression is more robust to changes in Qrr.

This same principle can help reduce the uncertainty in the estimates of the parameters.

For example, there is little benefit estimating the parameters with new realizations of the

same experiments, so new data from different experiments is needed. In particular, the SVD

of the linearized forward map representing the experiments can be used to identify the set

of experiments that reduce the dimension of its null space (for similar discussions see [14,

4, 6, 107]). The right-singular vectors associated with the smallest singular values identify

the parameters that span the null space of the linearized forward map. The corresponding

left-singular vectors, however, identify the measurements that yield little information about

the parameters in the null space.

This work supports the hypothesis that the V. harveyi and V. cholerae quorum sensing

circuits are topologically equivalent, yet tuned differently to elicit different responses [77].

Furthermore, these results show how V. harveyi and V. cholerae are tuned differently. To

our knowledge, this is the first detailed model of the V. harveyi and V. cholerae sRNA

circuits with physiologically-based estimates of the parameters. As such, the parameters

can be used in similar models and the model can help design future experiments.



CHAPTER 4

MECHANISMS UNDERLYING THE

ADDITIVE AND REDUNDANT

QRR PHENOTYPES IN

VIBRIO HARVEYI AND

VIBRIO CHOLERAE

The quorum sensing systems of V. harveyi and V. cholerae are homologous and topo-

logically similar, yet they respond differently to the same experimental conditions. In

particular, V. harveyi Qrr are additive because all of its Qrr are required to maintain

wild-type-like repression of LuxR whereas V. cholerae Qrr are redundant because any of

its Qrr are sufficient to repress HapR. Given the striking similarities between their quorum

sensing systems, experimentalists have been unable to identify conclusively the mechanisms

behind these phenotypic differences. Nevertheless, the current hypothesis in the literature

is that dosage compensation is the mechanism underlying redundancy.

In this chapter, the mechanisms underlying Qrr redundancy are studied using the model

of the V. harveyi and V. cholerae sRNA circuit in Chapter 2 and the corresponding

parameter estimates from Chapter 3. There are exactly two different cases underlying

Qrr redundancy and that dosage compensation is unnecessary and insufficient to explain

Qrr redundancy. Although V. harveyi Qrr are additive when the perturbations in Qrr

are large, the model shows that V. harveyi and V. cholerae Qrr are redundant when

the perturbations in Qrr are small. Hence, the additive and redundant Qrr phenotypes

can emerge from parametric differences in the sRNA circuit. In particular, the affinity of

Qrr and its expression relative to the master transcriptional regulator determine the level

of redundancy in V. harveyi and V. cholerae. Furthermore, the results show that the

additive and redundant Qrr phenotypes reflect differences in the concentration of Hfq-Qrr

in V. harveyi and V. cholerae. The model is used to test the dosage compensation

hypothesis with our alternative hypothesis and shows that decreasing the expression of
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qrr, rather than removing dosage compensation, abolishes Qrr redundancy in V. cholerae.

Further experimentation is needed to validate these results and test both Qrr redundancy

hypotheses.

4.1 Introduction

Experiments show that V. harveyi Qrr are additive and V. cholerae Qrr are redundant

[57, 102, 94]. The mechanistic reason for these phenotypic differences is not immediately

apparent given the homology of their quorum sensing components and topology of their

quorum sensing systems. Recently, experimentalists have shown that qrr expression in-

creases via the Qrr feedback to compensate for the loss of Qrr and called this phenomenon

dosage compensation [94]. They proposed, therefore, that differences in dosage compen-

sation between V. harveyi and V. cholerae could explain the additive and redundant Qrr

phenotypes. To understand how, note that removing one or more Qrr species partially

derepresses target mRNA. This then increases expression of the remaining Qrr via the Qrr

Feedback. They suggest that Qrr expression increases enough to offset the derepression

of HapR in V. cholerae, so its Qrr are redundant, but not the derepression of LuxR in

V. harveyi , so its Qrr are additive [94]. Recent studies mention their hypothesis, yet it

remains untested [8, 33, 85, 91, 13].

In this chapter, the mechanisms underlying Qrr redundancy are identified then compared

to the Qrr redundancy hypothesis in the literature. Analysis of the model shows that there

are two different sets of criteria underlying Qrr redundancy. Although Qrr feedback con-

tributes to redundancy in each case, the analysis suggests that Qrr can be redundant when

one Qrr feedback is more dominant than the other rather than some synergetic relationship

between the two. In general, however, Qrr feedback is unnecessary and insufficient for Qrr

redundancy and dosage compensation diminishes when Qrr are redundant. Therefore, the

results suggest that dosage compensation is not the mechanism underlying Qrr redundancy.

The parameterizations from Chapter 3 are then used to relate the results to V. harveyi

and V. cholerae. First, the model independently produces qualitatively similar additive

and redundant Qrr phenotypes for V. harveyi and V. cholerae to those in the literature.

This suggests that parametric differences between the V. harveyi and V. cholerae sRNA

circuit can explain the additive and redundant phenotypes. Surprisingly, the model shows

that Qrr are redundant in both species when perturbations in Qrr are small. Additionally,

the rate of qrr expression relative to the rate of luxR/hapR expression and the affinity of

Qrr to luxR/hapR mRNA underly Qrr redundancy in both species. This implies that the
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additive and redundant Qrr phenotypes reflect differences in the saturation of Hfq with Qrr.

Lastly, the dosage compensation Qrr redundancy hypothesis in the literature is con-

trasted with our alternate hypothesis. Changing the rate of qrr expression relative to

luxR/hapR expression, for example, rather than removing the Qrr feedback, abolishes Qrr

redundancy in V. cholerae and supports our alternate hypothesis. To our knowledge, this is

the first to test the Qrr redundancy hypothesis of [94]. Additionally, the model lends itself

well to testing what pathways in the V. harveyi and V. cholerae sRNA circuit contribute

to the additive and redundant Qrr phenotypes.

In a similar study, [33] created a mathematical model of the V. harveyi and V. cholerae

quorum sensing system using parameters that are guided by experiments to explain the

additive and redundant Qrr phenotypes and other phenotypes up/downstream of the sRNA

circuit [33]. They used a Gamma distribution to model the distribution of LuxR/HapR

in a colony and showed that their model reproduces the phenotypic differences. They

assumed that V. harveyi and V. cholerae only differ in the fold change of LuxR/HapR

concentration necessary to activate luminescence and that, when cells enter stationary

phase, environmental factors are necessary to increase HapR above a threshold to activate

luminescence in V. cholerae. They also suggested that a decrease in Hfq during the

stationary phase [46] could increase HapR over the desired threshold.

By contrast, our approach uses a detailed model of the V. harveyi and V. cholerae

sRNA circuit with data-derived estimates of the parameters to model the expression of

luxR/hapR as a function of LuxO-P:LuxO [45]. This approach has the advantage that the

Qrr redundancy hypothesis from [94] can be tested and the specific differences between

the V. harveyi and V. cholerae sRNA circuits underlying the additive and redundant

Qrr phenotypes can be identified. Lastly, this approach shows a direct cause and effect

relationship between Hfq and the additive and redundant Qrr phenotypes without additional

assumptions about other regulatory pathways interacting with the sRNA circuit.

4.2 Results and Discussion

To discuss Qrr redundancy in the context of the model, a quantitative measure of Qrr

redundancy that is consistent with the interpretation of experiments is needed. Qrr are

redundant when there is relatively little change in luxR/hapR expression between a wild-

type strain and an isogenic strain with one or more Qrr removed. Typically experimentalists

change the concentration of qrr by deleting its gene. This corresponds to setting K̂Pn = 0 in

the model. However, the relative change in luxR/hapR expression scales with the relative

change in qrr expression in the sense that the larger the change in qrr expression, the larger
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the change in luxR/hapR expression. To account for this, the relative change in luxR/hapR

expression is normalized by the relative change in qrr expression, i.e.,
∣∣∣∣∣
∆r

r
÷

∆K̂Pn

K̂Pn

∣∣∣∣∣ . (4.1)

[94] argued that wild-type-like repression of LuxR/HapR occurs only when the changes in

Qrr are small, so, as ∆K̂Pn → 0, the sensitivity becomes

σn ≡ lim
∆K̂Pn→0

∣∣∣∣∣
∆r

r
÷

∆K̂Pn

K̂Pn

∣∣∣∣∣ =
∣∣∣∣∣
K̂Pn

r

dr

dK̂Pn

∣∣∣∣∣ . (4.2)

Therefore, Qrr are redundant if LuxR/HapR is insensitive to changes in K̂Pn .

Conversely, Qrr are additive when a small relative change in Qrr causes a large relative

change in LuxR/HapR. Following a similar reasoning to that above, Qrr additivity cor-

responds to when the sensitivity of LuxR/HapR with respect to K̂Pn is large. Thus, the

sensitivity of LuxR/HapR with respect to K̂Pn is a measure of the degree to which Qrr are

redundant. Importantly, that this measure of Qrr redundancy is based on the interpretation

of the additive and redundant Qrr data proposed by [57, 102, 94].

4.2.1 Steady State Analysis of the Simplified Model

In this section, the model is simplified to make its analysis more tractable and to

illustrate the essential ideas underlying Qrr redundancy. Suppose that each Qrr degrades

target mRNA equally (i.e., Ern = E∗
r , Eon = E∗

o ) and that there is no autoregulation (i.e.,

K̂R = K̂O = 0). Throughout this work, the model with these simplifications is referred to

as the simplified model and the model without these simplifications is referred to as the full

model. With these simplifications, the steady state solution for r and o can be expressed in

terms of S =
∑

nHn:

r =
1

1 + E∗
rS

o =
1

1 + E∗
oS

. (4.3)

Similarly, the steady state solution for qn in terms of S is

qn =

(
1

1 +Eqn(1− S)

)(
K̂PnΓ

1 + E∗
oS + K̂PnΓ

)

(
(1 +E∗

rS)
2 + VqnK̂

2
Ln

(1 + E∗
rS)

2 + K̂2
Ln

)
. (4.4)

Using (4.3) and (4.4), (2.51) simplifies to 0 = Φn −D(S)Hn where

Φn =
1

Vrn

POn(S)PRn(S)PHn(S) (4.5)
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D(S) =
E∗

r

1 + Er∗S
+ Vor

E∗
o

1 + E∗
oS

, (4.6)

POn(S) =
K̂PnΓ

1 + E∗
oS + K̂PnΓ

, (4.7)

PRn(S) =
(1 + E∗

rS)
2 + VqnK̂

2
Ln

(1 + E∗
rS)

2 + K̂2
Ln

, (4.8)

PHn(S) =
Eqn(1− S)

1 + Eqn(1− S)
. (4.9)

Summing over all n gives the following equation for the steady state solution of S:

0 = Σn(S)−D(S)S, (4.10)

where

N∑

n=1

Φn ≡ Σn(S). (4.11)

Given that the solution of r, o, qn, and Hn are expressed in terms of S, understanding the

steady state behavior of S is sufficient to understand the steady state behavior of the system

as a whole. To this end, note that D(S)S is an increasing, concave down function that is

zero at S = 0 and approaches 1 + Vor for large S. Φn is the product of three decreasing

functions of S.

The first function, POn(S), represents the expression of qrr from LuxO-P and is a

decreasing, concave up function of S that is bounded below by 0 and above by K̂PnΓ/(1 +

K̂PnΓ) < 1. Additionally, POn(S) is an increasing, concave down function of K̂PnΓ. The

second function in Φn, PRn(S), represents the degree to which LuxR/HapR enhances qrr

expression. This is a decreasing, sigmoidal function of S that is bounded below by 1 and

above by Vqn (note that Vqn ≥ 1 because LuxR/HapR enhances Qrr expression). The

amplitude of PRn(S) is determined by Vrn , whereas the transition between its extremes

occurs when K̂Ln ≈ 1 +E∗
rS. This function increases the amplitude of Φn when S ≈ 0 and

has little effect on Φn when K̂Ln ≪ 1 + E∗
rS.

The last function, PHn(S), reflects how the availability of Hfq limits repression of target

mRNA. Similar to the previous two functions, PHn(S) is a decreasing, concave down function

of S that is bounded below by 0 and below by Eqn/(1 + Eqn). Importantly, PHn(S) is

responsible for establishing an upper bound on the solution of S because PHn(S) ≤ 0 for

S ≥ 1. Figure 4.1 shows an example of each function in Φn (top) and the intersection of

D(S)S = Σn(S) (bottom).

There is only one steady state solution for S because D(S)S and Σn(S) are, respectively,

increasing and decreasing functions of S that intersect only once. We know that D(S)S
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Figure 4.1. General structure of the steady state solution of S in the simplified model.
The general qualitative structure of the functions in Φn are shown on the top and the
representative nullclines of Σn(S) and D(S)S are shown on the bottom. Parameters are
chosen to highlight the qualitative features of the each curve.
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starts at the origin and increases with S whereas Σn(S) starts above the origin and decreases

to 0 when S = 1. Therefore, these curves intersect exactly once between 0 ≤ S < 1.

Furthermore, given that Σn(S) > D(S)S = 0 at S = 0 and 0 = Σn(S) < D(S)S at S = 1,

the steady state is stable. This result is consistent with empirical data that show there is a

single, graded transition to/from the LCD and HCD states [57, 102, 62, 99]. This type of

stability differs from LuxIR-type quorum sensing systems. These latter systems are bistable

[24] and, therefore, have two different critical cell-population densities for the LCD to HCD

transition [116, 117].

4.2.2 An Overview of Redundancy

The plots of D(S)S and Σn(S) in Figure 4.2 illustrate how the curves look when Qrr

are redundant. In Figure 4.2 (top), the amplitude of Σn(S) is significantly lower than that

of D(S)S and, most importantly, the curves intersect where D(S)S is increasing rapidly.

Therefore, although a change in K̂Pn moves Σn(S) up/down along D(S)S, the equilibrium

of S remains relatively constant. The other case of Qrr redundancy is illustrated in Figure

4.2 (bottom). The amplitudes of the curves are significantly different once again, but they

intersect near S = 1 where Σn(S) decreases rapidly. Changing K̂Pn moves Σn(S) up/down

(i.e., parallel to its slope), but the equilibrium value of S remains relatively constant.

Figure 4.2 shows that, as a consequence of Qrr redundancy, D(S)S and Σn(S) intersect

one another when one of them is approximately vertical. Given that the curves are vertical

near S ≈ 0, 1, this means that there are two different criteria resulting in Qrr redundancy

and each corresponds to different saturated levels of Hfq.

4.2.3 Qrr Are Redundant when S ≈ 0, 1 Only

First we show that Qrr are redundant when S ≈ 0, 1 then use the geometry of the

intersection of D(S)S with Σn(S) to argue that these are the only cases of redundancy.

Using (2.51) in the full model, Hn → 0 as Vrn → ∞. In this limit, repression of r is

independent of Qrr and σn = 0. Therefore, Qrr are redundant in this limit. Similarly,
∑

nHn → 1 as Vrn → 0 from (2.51). Using
∑

n Hn = 1 to eliminate H4 in (2.48) results in

the following steady state solution of r:

0 = r0 +
1− r0

1 + (K̂Rr)2
−

(
3∑

n=1

(Ern − Er4)Hn + Er4 + 1

)
r. (4.12)

If Ern = E∗
r for all n, then r is independent of Hn, so σn = 0. Therefore, Qrr are redundant

when Vrn →∞ or as Vrn → 0 and Ern ≈ E∗
r for all n.
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Figure 4.2. The intersection of D(S)S with Σn(S) when Qrr are redundant. Parameters
are chosen manually to highlight the qualitative features of D(S)S and Σn(S).
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The geometry of the intersection ofD(S)S with Σn(S) of the simplified model imply that

these are the only two cases where Qrr are redundant. First note that D(S)S is independent

of Vrn , so consider how the intersection of Σn(S) with D(S)S changes as Vrn → ∞. In

this limit, Qrr are redundant and S ≈ 0. Based on (4.11), Σn(S) → 0 as Vrn → ∞.

Consequently, the curves intersect near S ≈ 0 where the derivative of D(S)S with respect

to S is greatest. When K̂Pn changes, Σn(S) moves up/down along D(S)S and, because the

slope of D(S)S is steep, the equilibrium solution of S changes little. Similarly, as Vrn → 0

and all other parameters are fixed, Σn(S) ≫ D(S)S for S < 1. However, Σn(S) → 0 as

S → 1 because Σn(1) = 0, regardless of Vrn . Consequently, D(S)S and Σn(S) intersect

near S ≈ 1 where the slope of Σn(S) is steepest. Therefore, their intersection is relatively

unchanged when K̂Pn changes. In both cases, the slope of either D(S)S or Σn(S) is steep

at its intersection, which limits the relative change in the equilibrium value of S when K̂Pn

changes. Therefore, Qrr are redundant when the slope of either D(S)S or Σn(S) is steep at

its intersection. Given that this only occurs when S ≈ 0, 1, these are the only two solutions

of S when Qrr are redundant.

4.2.4 General Qrr Redundancy Criteria when S ≈ 0

In this section, specific criteria underling redundancy in the simplified model when

S ≈ 0 are identified by approximating the solution of S to estimate σn. Because S → 0+ as

Vrn →∞, the solution for S is assumed to be a power series of the form S =
∑

n c
(0)
n V −1

rn .

This expression is substituted into D(S)S = Σn(S) and c
(0)
n solved for to first order in V −1

rn

to get

S =
1

D(0)

∑

n

PHn(0)POn(0)PRn(0)

Vrn

. (4.13)

This result is used to estimate the sensitivity when S ≈ 0, σ
(0)
n . To this end, (4.13) is

substituted into (4.2) to get

σ(0)
n =

(
1

1 + K̂PnΓ

)
E∗

r c
(0)
n

Vrn

. (4.14)

Note that, because the term in the parentheses in (4.14) is bounded above by 1 and that

E∗
rD(0)−1 → 1 as E∗

r → ∞, the sensitivity is on the same order as E∗
r c

(0)
n V −1

rn . The

approximation (4.13) and corresponding sensitivity estimate (4.14) also hold under the more

general assumption that c
(0)
n V −1

rn
≪ 1. Therefore, if c

(0)
n V −1

rn
≪ 1, then Qrr are redundant.
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Although Vrn → ∞ is sufficient for Qrr redundancy, other parameter ranges can result

in redundancy as well. Rewriting (4.14) gives

σ(0)
n =

E∗
r

E∗
r + VorE∗

o

·
1 + VqnK̂

2
Ln

1 + K̂2
Ln

·
1

Vrn

·
K̂PnΓ

(1 + K̂PnΓ)
2
·

Eqn

1 + Eqn

. (4.15)

This shows, for example, that the stronger the LuxO-Qrr feedback is relative to the LuxR/HapR-

Qrr feedback (Vqn ≈ 1, E∗
o ≫ E∗

r ), the smaller the sensitivity. Furthermore, the sensitivity

is also small when the rate of qrr expression is less than luxR/hapR expression (Vrn ≫ 1),

the rate of luxR/hapR expression is less than luxO expression (Vor ≫ 1), Qrr are unstable

(Eqn ≈ 0), or when the binding affinity of LuxO-P to the qrr promoter is weak (K̂PnΓ≪ 1).

Therefore, Qrr feedback is unnecessary nor sufficient for Qrr to be redundant in general

because other mechanisms can diminish sufficiently the sensitivity.

4.2.5 General Qrr Redundancy Criteria when S ≈ 1

The analysis above is repeated to estimate S when S ≈ 1 and approximate the sensitivity

in this case. Given that S → 1− as Vrn → 0, the solution of S is approximated using a

power series in terms of Vrn of the form S = 1 −
∑N

n=1 c
(1)
n Vrn where Vrn ≪ 1 for all n.

After substituting this expression into D(S)S =
∑N

n=1Φn, c
(1)
n is solved for to get

S = 1−D(1)

N∑

n=1

Vrn

EqnPOn(1)PRn(1)
. (4.16)

This approximation is used to estimate the sensitivity when S ≈ 1, σ
(1)
n ,

σ(1)
n =

(
E∗

r

1 + E∗
r

)(
1 + E∗

o

1 + E∗
o + K̂PnΓ

)
c(1)n Vrn . (4.17)

Each term in the parentheses in (4.17) is bounded above by 1, so σ
(1)
n is on the same order

as c
(1)
n Vrn . As before, the sensitivity is small provided c

(1)
n Vrn ≪ 1, so a variety of criteria

summarized by the relationship c
(1)
n Vrn ≪ 1 cause Qrr redundancy.

As before, there is no minimum sensitivity, so Qrr are redundant whenever the sensitivity

is reduced. To understand this balance, note that (4.17) can be rewritten as

σ(1)
n =

(
(1 + E∗

o )

(
E∗

r

1 + E∗
r

)2

+ Vor
E∗

oE
∗
r

1 + E∗
r

)
(1 + E∗

r )
2 + K̂2

Ln

(1 + E∗
r )

2 + VqnK̂
2
Ln

·
1

Eqn

·
Vrn

K̂PnΓ
(4.18)

Similar to the previous case of redundancy, Qrr are redundant when the LuxR/HapR-Qrr

feedback is stronger than the LuxO-Qrr feedback (Vqn ≫ 1, E∗
o ≪ 1, and K̂Ln ≫ 1 + E∗

r ).

Additionally, other factors decrease the sensitivity such as when the rate of qrr expression
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is greater than that of luxR/hapR (Vrn ≪ 1), the rate of luxO expression is less than

luxR/hapR expression (Vor ≪ 1), Qrr are stable (Eqn ≫ 1), or when the binding affinity

of LuxO-P to the qrr promoter is strong (K̂PnΓ≫ 1). Again, Qrr can be redundant in the

absence of feedback provided that Vrn/(EqnK̂PnΓ)≪ 1. Therefore, Qrr feedback is neither

necessary nor sufficient for Qrr redundancy.

4.2.6 The Relationship Between Dosage
Compensation and Qrr Redundancy

Svenningsen et al. sequentially removed Qrr in V. cholerae and showed that the Qrr

feedback is necessary to increase the activity of the remaining qrr promoters. They called

this phenomenon dosage compensation. Consequently, they also noticed that HapR repres-

sion remained relatively unchanged between a wild-type strain and mutant strains with one

to three Qrr [94]. They, therefore, argued that qrr expression changed to compensate for the

loss of other Qrr and maintain a similar level of HapR repression [94, 102, 57]. The results

suggest that, not only is Qrr feedback unnecessary and insufficient for Qrr redundancy in

general, but that dosage compensation diminishes as the sensitivity of LuxR/HapR with

respect to Qrr diminishes.

Qrr feedback is unnecessary and insufficient for Qrr redundancy since the criterion for

Qrr redundancy depends on a variety of mechanisms other than the Qrr feedback. The

sensitivity is small when there is a strong bias for one Qrr feedback rather than some

synergy between the two. Redundancy also depends on the binding affinity of LuxO-P to

each qrr promoter (K̂PnΓ), the relative rates of expression of luxR/hapR and qrr (Vrn), and

the stability of Qrr relative to its binding rate to Hfq (Eqn). In other words, the sensitivity

can be small even in the absence of Qrr feedback. Therefore, although a strong bias for one

Qrr feedback can decrease the sensitivity, Qrr feedback is neither necessary nor sufficient

for Qrr redundancy.

Dosage compensation decreases with the sensitivity. Dosage compensation is the relative

fold change in the qrr promoter activity as the concentration of the other Qrr changes. The

model of the qrr promoter activity is QPn = POn(S)PRn(S) and, hence, measure of dosage

compensation is

dQPn

QPn

=

(
1

POn(S)

dPOn(S)

dS
+

1

PRn(S)
·
dPRn(S)

dS

)
dS. (4.19)

Based on the geometry of the intersection of D(S)S and Σn(S), along with the qualitative

shape of POn(S) and PRn(S), dS and the derivatives of POn(S) and PRn(S) are small

when Qrr are redundant. This implies that dosage compensation is small as well. This
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agrees with our intuition on the relationship between dosage compensation and redundancy

as well. Dosage compensation relies on the expression of qrr being sensitive to changes

in target mRNA and on target mRNA being sensitive to changes in Qrr via Hfq. When

Qrr are redundant, target mRNA remain relatively constant with changes in Qrr and the

qrr promoter is saturated. Therefore, the lower the sensitivity, the weaker the dosage

compensation response.

4.2.7 V. harveyi Qrr Are Redundant when Qrr
Perturbations Are Small

Up to this point, the discussion has mainly focussed on identifying the mechanisms

underlying Qrr redundancy in the simplified model. In this and the following sections,

the mechanisms underlying the additive and redundant Qrr phenotypes in V. harveyi and

V. cholerae are studied by analyzing the full model. First, the model with the V. harveyi

and V. cholerae parameterizations are shown to qualitatively produces the additive and

redundant Qrr phenotypes. This serves as validation of the model with independent data

and, hence, as motivation to use the model for further study. Then S =
∑

nHn is measured

to predict whether S ≈ 0 or S ≈ 1 when Qrr are redundant. This result leads to identifying

30 different parametric constraints that lead to Qrr redundancy.

To show that the model qualitatively reproduces the additive and redundant Qrr phe-

notypes in the data, the experiment is modeled using the model of the sRNA circuit along

with the V. harveyi and V. cholerae parameterizations. To this end, the steady state

concentration of LuxR/HapR is computed over a large range of Γ in a wild-type strain

and in isogenic mutant strains that have only one Qrr. This protocol is almost identical

to that used in the original studies showing that V. harveyi and V. cholerae Qrr were

additive and redundant, respectively [57, 102]. The main difference is that we measure the

steady state concentration of LuxR/HapR as a function of LuxO-P:LuxO rather than the

bioluminescence as a function of time and cell-population density.

The results in Figure 4.3 show that the model qualitatively reproduces the additive and

redundant Qrr phenotypes in V. harveyi and V. cholerae, respectively. In particular, HapR

repression at LCD, as well as the rate and onset of the LCD to HCD transition, are similar

between the V. cholerae strains but not between the V. harveyi strains. Importantly, the

additive and redundant Qrr phenotype data were not used to parameterize the model in

Chapter 3, so this result independently validates the model and its parameters. Altogether,

this suggests that parametric differences in the V. harveyi and V. cholerae sRNA circuits

can cause the additive and redundant Qrr phenotypes as suggested in [94].
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Figure 4.3. LuxR/HapR in a wild-type strain and isogenic strains with one Qrr over a
range of Γ spanning LCD to HCD. The model qualitatively reproduces the additive and
redundant Qrr phenotypes of the V. harveyi and V. cholerae, respectively.
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The analysis of the simplified model showed that there are two different conditions that

lead to Qrr redundancy. We set out to identify which case applies to V. cholerae and

expected to show that the sensitivity is greater in V. harveyi than in V. cholerae. Based on

Figure 4.3, Γ = 105 is assumed to be large enough to represent the LCD state for V. harveyi

and V. cholerae. We compute σn for the full model at Γ = 105. The results in Table 4.1 show

that S ≈ 0 in V. harveyi and S ≈ 1 in V. cholerae and that the sensitivity is comparatively

small in both species, rather than in V. cholerae only. Even though V. harveyi Qrr are

additive when the perturbations in Qrr are large (Figure 4.3, top), Table 4.1 suggests that

V. harveyi Qrr are redundant when the perturbations in Qrr are small. Although these

results are contrary to what was expected, they support the claim that the sRNA circuit

can only compensate for small changes in Qrr [94]. These results are also consistent with

the results of the simplified model for they show that S ≈ 0, 1 when Qrr are redundant.

4.2.8 Mechanisms Underlying Redundancy in
V. harveyi and V. cholerae

To identify why V. cholerae Qrr, but not V. harveyi Qrr, are redundant when the

perturbations in Qrr are large, the reason(s) underlying Qrr redundancy when the pertur-

bations in Qrr are small must be understood. Given that V. harveyi Qrr are redundant

and S ≈ 0 at LCD, then V. harveyi σ2 should increase if Vq2 , K̂L2
, Er2 or Eq2 are increased

and should decrease if Eo2 , Vor, Vr2 , or K̂P2
Γ are increased based on (4.15). Similarly, given

that V. cholerae Qrr are redundant and S ≈ 1 at LCD, V. cholerae σ3 should increase

if Vor, Vr3 , Eo3 , or Er3 are increased and decrease if Vq3 , Eq3 , K̂L3
, or K̂P3

Γ are decreased

following from (4.18). We chose σ2 in V. harveyi because σ2 is the second smallest sensitivity

next to σ3 andH2 is approximately 102 smaller thanH3. We chose σ3 in V. cholerae because

Table 4.1. Measurements of the sensitivities for each Qrr (σn), total concentration of
bound Hfq (S), and the concentration of Hfq bound with each Qrr (Hn) in V. harveyi and
V. cholerae at Γ = 105 using the parameters in Table 3.1.

V. harveyi V. cholerae

σ1 1.03·10−1 1.60·10−4

σ2 8.52·10−4 7.48·10−8

σ3 7.04·10−4 9.53·10−3

σ4 1.35·10−2 1.05·10−3

S 9.95·10−2 1.00
H1 5.32·10−5 4.87·10−3

H2 1.17·10−3 4.77·10−4

H3 8.80·10−2 9.07·10−1

H4 1.02·10−2 8.70·10−2
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σ3 is small and approximately 90.7% of the total concentration of bound Hfq is bound to

Qrr3.

To show that the results of the full model are consistent with those of the simplified

model, the relative change in sensitivity in the wild-type strain from increasing a single

parameter by 10% is measured. The parameter and corresponding relative change in sensi-

tivity is shown in Figure 4.4. These results show that the relative change in the sensitivity

in the full model is consistent with the analysis of the simplified model. For example,

increasing Vr3 increases σ3 in V. cholerae and increasing Vr2 decreases σ2 in V. harveyi .

The only exception is that perturbations in Eq3 increased, rather than decreased, σ3 in

V. cholerae and vise versa for Eq2 in V. harveyi . The results are similar for the other Qrr

as well. Therefore, the mechanisms underlying Qrr redundancy suggested by the analysis

of the simplified model are consistent with those underlying redundancy in the full model

as well.

V. harveyi and V. cholerae Qrr are redundant when perturbations in Qrr are small

and, in general, there are 30 different constraints that contribute to Qrr redundancy. To

identify the mechanisms underlying Qrr redundancy in V. harveyi and V. cholerae when

the perturbations in Qrr are small, the above computational analysis of the full model is

extended. The relative change in σ2 and σ3 in V. harveyi and V. cholerae, respectively, is

measured as the parameters are increased by 10%. The mechanisms that are responsible for

redundancy are those that change the sensitivity by at least 10%. Overall, the model shows

that σ2 in V. harveyi and σ3 in V. cholerae are most sensitive to changes in Vrn , K̂Pn , and

Ern , as shown in Figure 4.5. The only exception is that V. harveyi σ3 is sensitive to Eq3 as

well. This shows that perturbations in the Qrr feedback (i.e., Eon , K̂Ln , and Vqn) do not

significantly change the sensitivity. Therefore, the expression of qrr relative to luxR/hapR

(Vrn), affinity of LuxO-P to the qrr promoter (K̂Pn), and the affinity of Qrr to luxR/hapR

mRNA (Ern) underly Qrr redundancy in V. harveyi and V. cholerae when perturbations

in Qrr are small.

Given that similar parameters underly redundancy in each species, the differences in the

redundancy of Qrr between large vs. small perturbations in Qrr are, therefore, related to

the saturation of Hfq, rather than to the differences in the mechanisms underlying each.

Figure 4.3 shows that repression of LuxR, but not HapR, depends on the stoichiometry

of Qrr at LCD. Furthermore, Table 4.1 shows that S ≈ 0 and S ≈ 1 for V. harveyi and

V. cholerae, respectively, when all of the Qrr are present. The model also shows that Hfq

remains mainly unsaturated in V. harveyi and saturated in V. cholerae at LCD when all
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Figure 4.4. The relative change of σ2 in V. harveyi and σ3 in V. cholerae after increasing
the indicated parameter by 10%. The change in sensitivity is relative to the sensitivity in
the wild-type strain. The parameters are listed in Table 3.1 and Γ = 105.
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Figure 4.5. The relative change of σ2 in V. harveyi and σ3 in V. cholerae after increasing
the indicated parameter by 10%. The change in sensitivity is relative to the sensitivity in
the wild-type strain. The parameters that change σ by at least 10% are those that are
associated with Qrr redundancy in V. harveyi and V. cholerae. The parameters are listed
in Table 3.1 and Γ = 105.
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but one Qrr are removed (not shown). This means that V. cholerae Qrr compete with

one another at LCD to saturate Hfq. Additionally, the repression of HapR is relatively

independent of the stoichiometry of Qrr because Ern are similar in V. cholerae. The Qrr

in V. harveyi , however, neither saturate Hfq nor repress LuxR similarly, so V. harveyi Qrr

are unable to compensate for large fluctuations in Qrr. Therefore, V. cholerae Qrr, rather

than V. harveyi Qrr, are redundant to large perturbations in Qrr because V. cholerae Qrr

saturate Hfq at LCD and repression of HapR is relatively independent of the stoichiometry

of Qrr.

Although the same mechanisms underly redundancy in both species, they lead to differ-

ent concentrations of Hfq-Qrr in V. harveyi and V. cholerae. For example, a 10% change

in Vrn corresponds to at least a 10% change in the sensitivity of LuxR/HapR to Qrr in

V. harveyi and V. cholerae. In this sense, the expression of luxR/hapR relative to qrr

underlies Qrr redundancy in V. harveyi and V. cholerae. However, Vrn is at least 10-fold

less in V. cholerae than it is in V. harveyi and, hence, saturates Hfq with Qrr in V. cholerae

more than in V. harveyi . Therefore, even though the relative expression of luxR/hapR to

qrr (Vrn) underlies redundancy in both species, differences in Vrn contribute to differences

in the concentration of Hfq-Qrr between the species.

4.2.9 Qrr Redundancy is Independent of Dosage
Compensation

Svenningsen et al. suggested that dosage compensation is the mechanism underlying

Qrr redundancy [94]. However, analysis of the simplified model suggests that dosage

compensation diminishes with sensitivity. This is also reflected in the full model.

The relative change in the qrr promoter activity (4.19) (i.e., dosage compensation)

and the sensitivity are computed using the V. cholerae parameterization and 10−3 ≤ Γ ≤

105. The results, in Figure 4.6, show that the fold change in the qrr promoter activity

decreases with the sensitivity. The results are qualitatively similar using the V. harveyi

parameterization as well (not shown). Therefore, because dosage compensation is driven by

changes in target mRNA levels and Qrr redundancy implies that the target mRNA levels are

relatively constant, dosage compensation is not the mechanism underlying Qrr redundancy.

4.2.10 Testing the Qrr Redundancy Hypotheses

To test the Qrr redundancy hypothesis of [94] with the model, the same experiment

from Figure 4.3 is repeated using two different V. cholerae strains. The first strain has
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Figure 4.6. Relationship between the fold change in the qrr promoter activity and
sensitivity in V. cholerae for 10−3 ≤ Γ ≤ 105. Parameters are listed in Table 3.1.
Qualitatively similar results were obtained using the V. harveyi parameters (not shown).

no Qrr feedback from setting K̂Ln = Vqn = Eon = 0. The second strain has an increased

expression of hapR relative to qrr from increasing Vrn 10-fold. If either the Qrr feedback

or the expression of hapR relative to qrr is a mechanism underlying Qrr redundancy, then

the aforementioned changes to the parameters will diminish V. cholerae Qrr redundancy.

Figure 4.7 (top) shows that removing the Qrr feedback tends to increase rather than

decrease Qrr redundancy in V. cholerae. Conversely, Figure 4.7 (bottom) shows that

Qrr redundancy is abolished when the expression of hapR relative to qrr is increased.

Importantly, the V. cholerae response in this latter case is qualitatively similar to that of

V. harveyi (compare Figure 4.3, top, with Figure 4.7, bottom). Therefore, the expression

of hapR relative to qrr, rather than dosage compensation, is a mechanism underlying Qrr

redundancy in V. cholerae.
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Figure 4.7. HapR expression in a V. cholerae wild-type strain and isogenic strains where all
but one Qrr are removed. Increasing the expression of hapR relative to qrr (bottom), rather
than removing the Qrr feedback (top), abolishes the redundancy phenotype in V. cholerae.
Parameters are listed in Table 3.1.
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4.3 Conclusion

The mechanisms underlying the additive and redundant Qrr phenotypes in V. harveyi

and V. cholerae are unknown given the similarities between their quorum sensing systems.

The current hypothesis in the literature proposes that the phenotypes arise from differences

in the dosage compensation between V. harveyi and V. cholerae [94]. To our knowledge, this

hypothesis remains untested, although it continues to be discussed in the current literature

[8, 33, 85, 91]. In this work, the mechanisms underlying Qrr redundancy in V. harveyi and

V. cholerae are identified and the dosage compensation hypothesis tested.

Qrr are redundant when the sensitivity of LuxR/HapR with respect to Qrr is small. This

definition consistent with the interpretation of the additive and redundant Qrr phenotypes

in the literature and is used to measure Qrr redundancy in the model. There are two

different criteria leading to Qrr redundancy. In the first case, Qrr are redundant when

there is a strong LuxO-Qrr feedback, weak LuxR/HapR-Qrr feedback, weak affinity of

LuxO-P to the qrr promoter, high expression of luxO relative to luxR/hapR, and/or a

high expression of luxR/hapR relative to qrr. These factors cause Qrr redundancy by

limiting the concentration of Hfq-Qrr and, hence, the repression of LuxR/HapR by Qrr.

In the second case, Qrr are redundant when there is a weak LuxO-Qrr feedback, strong

LuxR/HapR-Qrr feedback, low expression of luxO relative to luxR/hapR, low expression

of luxR/hapR relative to qrr, high binding affinity of qrr to Hfq, and/or when the binding

affinities for each qrr to luxR/hapR are approximately equal. In this case, Qrr redundancy

reflects that Hfq is saturated with Qrr and repression of LuxR/HapR is independent of the

stoichiometry of the Qrr. Importantly, these results show that differences in Qrr feedback

are neither necessary nor sufficient to explain Qrr redundancy and is in contrast to [94].

The behavior of the model independently produces qualitatively similar additive and

redundant Qrr phenotypes for V. harveyi and V. cholerae to those in the literature. This

result acts as validation of the model and strengthens its correspondence with the biology.

Furthermore, this result also supports the hypothesis that the additive and redundant Qrr

phenotypes originate from kinetic differences between the V. harveyi and V. cholerae sRNA

circuits [57, 102, 94].

The model predicts that V. harveyi and V. cholerae Qrr are redundant at LCD when

the changes in Qrr levels are small. Consequently, the affinity of Qrr to luxR/hapR mRNA

and the expression of qrr relative to luxR/hapR lead to the redundancy of Qrr in both

species. Therefore, the additive and redundant Qrr phenotypes emerge from differences in

the concentrations of Hfq-Qrr between the species and dosage compensation diminishes as
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the sensitivity of LuxR/HapR to Qrr diminishes in V. harveyi and V. cholerae. Increasing

the expression of hapR relative to qrr, rather than removing the Qrr feedback, abolishes

Qrr redundancy in V. cholerae and supports our alternate hypothesis.

To our knowledge, this is the first detailed model of the V. harveyi and V. cholerae

sRNA circuit to identify the mechanisms underlying Qrr redundancy and to test the Qrr

redundancy hypothesis of [94]. Contrary to their hypothesis, dosage compensation is neither

necessary nor sufficient for Qrr redundancy in V. harveyi and V. cholerae. Rather, expres-

sion of luxR/hapR relative to qrr and the affinity of Qrr to luxR/hapR mRNA underly

redundancy in both species. Furthermore, the additive and redundant Qrr phenotypes

emerge from differences in the concentration of Hfq-Qrr. Although the concentration of Hfq

is constant in the model, environmental factors might regulate its availability for quorum

sensing [46]. Altogether, this suggests that Hfq has a significant role in quorum sensing

(for an alternate reasoning see [33]). This study does not address other mechanisms that

might underly the additive and redundant Qrr phenotypes as well such as environmental

factors [84, 87, 55, 56], factors up/downstream of the sRNA circuit [33], or temporal

differences between the V. harveyi and V. cholerae quorum sensing systems. Lastly, further

experimentation is needed to verify the results.



CHAPTER 5

CONCLUSION

Bacteria were once thought to act as individuals; however, experiments over the last 40

years have shown that they can coordinate their behavior with other bacteria based on the

local cell-population density. Most of the research in this field has focused on understanding

the gene regulatory mechanisms underlying these quorum sensing systems, although recent

research is investigating the ecological benefits and evolutionary stability of quorum sensing

systems. There are different variations of quorum sensing systems in bacteria, but each is

comprised of any number of only three canonical quorum sensing circuits. LuxIR-type

circuits have a nonlinear positive feedback loop governing the synthesis of autoinducer.

This feedback loop has been shown to facilitate a robust response, although experimental

validation of this behavior has only been observed in a few bacteria. The remaining two

canonical quorum sensing circuits, two-component-type and hybrid circuits, are functionally

identical to one another and respond in a graded manner.

The hybrid quorum sensing circuits in V. harveyi and V. cholerae regulate expression

of their respective virulence factors and are essential for the full efficacy of their virulence

response. Their quorum sensing systems are comprised of a phosphorelay cascade that

relays information about the local cell-population density to the sRNA circuit. The sRNA

circuit regulates expression of the master transcriptional regulator that is responsible for

regulating genes downstream of the quorum sensing system. The V. cholerae quorum

sensing system is topologically identical to that of V. harveyi and the components of

their quorum sensing systems are homologous. Although their quorum sensing systems

are similar, V. harveyi and V. cholerae respond differently under identical experimental

conditions. In particular, V. harveyi Qrr are additive because all of its Qrr are needed to

repress LuxR. The V. cholerae Qrr, however, are redundant because any one of its Qrr is

sufficient to repress HapR.

Experimentalists propose that the additive and redundant Qrr phenotypes arise from

subtle tuning differences between their sRNA circuits. This hypothesis, however, is difficult,
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time consuming, and costly to verify experimentally. In this work, a novel mathematical

model of the V. harveyi and V. cholerae sRNA circuit was formulated then parameterized

to identify parametric differences that underly the phenotypic differences. Chapter 3 details

the parameterization of the model. Overall, the behavior of the model agrees quantitatively

with a variety of empirical data from V. harveyi and V. cholerae. This suggests that

the current understanding of the biology is sufficient to understand quorum sensing in

V. harveyi and V. cholerae. Analysis of the linearized forward map shows that there are,

respectively, four and eight weak search directions in the parameter estimation of V. harveyi

and V. cholerae. This means that more experimentation is needed to complete the model.

Since the parameter estimation is robust, different experiments with new information are

needed to complete the model.

Parameter estimates are often needed to understand the behavior of a particular instance

of a system and to know whether the results are biologically relevant. Most parameters

are unknown, however, and is a common limitation cited in modeling papers of LuxIR-

type circuits [3, 17, 16, 39, 40, 83], phosphorelay models [7, 65, 62], and sRNA models

[28, 67, 58, 5, 66, 60, 69]. In particular, although LuxIR-type circuits are bistable under

certain parametric constraints, this behavior has not been observed in P. aeruginosa, for

example [88]. Most parameters in this work are reliably estimated and, as such, can aid

in the development of quorum sensing and related models. Furthermore, the parameter

estimation work flow and analysis of its robustness and weak search directions serve as an

example for future work.

A related area of active research is to develop methods that reduce the uncertainty of the

parameter estimates [14, 4, 6, 107]. These methods are based on a Bayesian (Monte-Carlo)

analysis because this approach is also used to estimate parameters and their corresponding

uncertainties. In general, however, this analysis is computationally intensive and, in the case

of the sRNA model, impractical because the forward map is costly to evaluate. Therefore,

the work in Chapter 3 suggests that the left-singular vectors associated with the smallest

singular values can be used to identify the set of experiments where more information is

needed. The reasoning behind this result is analogous to using the right-singular vectors

associated with the smallest singular values to identify the weak search directions. Although

the singular vectors are derived from the linearization of the forward map evaluated at a spe-

cific parameterization, this approach might, nevertheless, be an appropriate, intermediate

analysis applicable in cases where a full Bayesian analysis is impractical.

Chapter 3 shows that the behavior of the model is quantitatively consistent with a variety
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of empirical data. This means that the model can be used for in silico design, testing, and

analysis of experiments. Hence, it can be used to identify experiments with new information

to complete the model. For example, there is some debate concerning whether the sRNA

within V. harveyi and V. cholerae repress target mRNA equally [102, 94, 44, 33]. The

sRNA model be used to design and predict the outcome of an experiment testing this then

the results can be validated in the lab. In this sense, the model can be viewed as a utility

to identify experiments that can complete the model and formulate new, experimentally

verifiable hypotheses. This application of the model is similar to that cited in the early

models of LuxIR-type circuits [47, 24, 11].

Efforts to parameterize models that are more complex the sRNA model in this work

are also underway. Recently, for example, researchers have developed a whole-cell model

representing the expression of the 525 genes in Mycoplasma genitalium then used data from

more than 900 scientific papers to parameterize the model [50] (for models of a similar scope

see [29, 53, 18, 100]). These models are useful to understand the causes and treatments of

emergent diseases such as cancer, parkinson’s disease, and alzheimer disease.

The model was analyzed in Chapter 4 to understand the general mechanisms underlying

the additive and redundant Qrr phenotypes as well as those that are specific to V. harveyi

and V. cholerae. The results suggest that the additive and redundant Qrr phenotypes are

an emergent phenomenon and, in the case of V. harveyi and V. cholerae, reflect differences

in the saturation of Hfq with Qrr. Preliminary analysis of the model showed that the

concentration of Hfq-Qrr is necessarily very large or very small when Qrr are redundant.

Subsequent analysis showed that there were up to 30 different combinations of parametric

constraints that could lead to Qrr redundancy, so the parametric constraints underlying

Qrr redundancy depend on the particular species.

Although the model independently produces the additive and redundant Qrr phenotypes

that are qualitatively similar to the data, the model suggests that V. harveyi and V. cholerae

Qrr are redundant when the perturbations in Qrr are small. Further analysis showed that

the parameters associated with the expression of qrr relative to luxR/hapR, affinity of qrr

to luxR/hapR mRNA, and the affinity of LuxO-P to the qrr promoter were responsible for

Qrr redundancy in both species. However, differences in the V. harveyi and V. cholerae

estimates of these parameters lead to different total concentrations of Hfq-Qrr. Therefore,

the additive and redundant Qrr phenotypes reflect differences in the total concentration of

Hfq-Qrr between the two species.

Even though Hfq and Qrr feedback have been implicated in the mechanism(s) underlying
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the additive and redundant Qrr phenotypes [94, 33], this work presents the first analysis of a

mathematical model that incorporates either of these features. Fenley et al. suggested that

differences in the availability of Hfq could be responsible for the additive and redundant

Qrr phenotypes. In their simplified model of the sRNA circuit, they assumed that the

sRNA circuits in V. harveyi and V. cholerae are identical (implying that there are no

parametric differences) and ignored both Hfq and Qrr feedback. To produce the additive and

redundant phenotypes with their model, they suggested that environmental factors acted to

establish different activation thresholds for the expression of LuxR/HapR by Hfq limiting

the repression of target mRNA or other factors [33, 44]. Hence, their argument implicating

Hfq is indirect and necessitated by the assumption that there are no parametric differences

between V. harveyi and V. cholerae. By contrast, in this work Hfq was first implicated

following from the steady–state analysis of the model and the parameter estimates.

Svenningsen et al. showed that Qrr feedback is responsible for increasing Qrr expression

when one or more Qrr are removed and argued that a strong Qrr feedback is the mechanism

underlying Qrr redundancy [94]. Contrary to their hypothesis, this work shows that Qrr

can be redundant when the LuxR/HapR-Qrr feedback is stronger than the LuxO-Qrr

feedback, or vise versa, rather than some synergy between the two. Furthermore, this

work shows that Qrr feedback is neither necessary nor sufficient for Qrr redundancy. Most

importantly, however, the model shows that the more redundant the Qrr, the smaller the

dosage compensation. This counter-intuitive result is explained by the fact that dosage

compensation reflects a change in target mRNA levels, yet target mRNA levels are relatively

constant when Qrr are redundant. Other than fine-tuning the rate and onset of the LCD

to HCD transition [103, 94, 57, 102, 104], the role of the Qrr feedback remains unknown.

This work and other investigations have not addressed the ecological benefits and evo-

lutionary stability of the additive/redundant Qrr phenotype. For example, although Qrr

feedback is not important for Qrr redundancy, the Qrr feedback might act to dampen noise

during the LCD to HCD transition. The additivity of V. harveyi Qrr might explain why

it targets hosts with weakened immune systems. Similarly, the redundancy of V. cholerae

Qrr might act to facilitate a robust transition to/from LCD and HCD mode and aid in its

rapid dissemination. These and other open questions can be investigated using the sRNA

model in this work.

Lastly, this work contributes to the broader understanding of the role and function of

noncoding regulatory RNA. Less than 5% of the human genome codes for proteins, which

is only 2- to 3-fold more than some species of bacteria [89], yet approximately 66% of the
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human genome is transcribed into RNA [54]. The role of these noncoding RNA remains

an active area of research, for they are thought to be responsible for the higher complexity

of humans [89]. The discovery of noncoding regulatory RNA in simple organisms along

with bioinformatics tools helps to discover noncoding RNA in complex organisms and their

function [54]. Some noncoding RNA, such as Qrr in V. harveyi and V. cholerae, are known

to regulate gene expression. This work argues that Hfq modulates Qrr-facilitated repression

of mRNA and is essential to create a robust redundant Qrr phenotype.



APPENDIX A

MATLAB CODE: V. harveyi

PARAMETERIZATION

The following is a collection of the essential Matlab code used to parameterize V. harveyi .

A.1 Main V. harveyi Parameterization Code

function varargout = paramVHARVEYI(varargin)

% Run this to parameterize the model to the V. harveyi data

% Files representing the V. harveyi raw data

% Tu2010LuxRvsAIAllQrr_RawData.mat

% Tu2010LuxRvsAIQrr4Only_RawData.mat

% TuLuxRqrrFeedbackProgressiveKnockout_RawData.mat

%% Reset the seed for the random number generator based on

%% the time of day.

RandStream.setDefaultStream(RandStream(’mt19937ar’,’seed’,...

sum(100*clock)));

global fileNameAppend

global computeAbsoluteError makeErrAMatrix

global globalTolerance

computeAbsoluteError = false;

makeErrAMatrix = false;

fileNameAppend = ’a_filename_’;
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% % Generate the data sets for the robust analysis

% solnDistribution

theNoise = 0;

[allData,p] = initializeVharveyi(’add noise’,theNoise);

states = [];

%% Run this function to parameterize the model to the V. harveyi data

masterMainIterates(p,states,allData);

%=========================================================================

function masterMainIterates(p,states,allData)

global fileNameAppend

global globalTolerance

thePlan = plans(’VhOpt’,’numGam’,2);

numParams = getNumVarsInPlan(thePlan);

%% General optimization parameters and preferences

maxIter = 25; % # of iterations/lsqnonlin iterate

maxEvals = 1000000;

tol = 1e-14;

genTol = 1e-15;

optimality = tol;

dispStr = ’iter’;

ctrMax = 1; % # of repetitions of lsqnonlin

globalTolerance = tol;

numEst = 10;

numSolns = 15;

diaryFileName = @(n)[fileNameAppend ’DiaryForEstimate’ num2str(n) ’.txt’];

fileName = @(n) [fileNameAppend ’mainVhSoln_JacobianIterates_’ ...

num2str(n) ’.mat’];
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for i = 1:numSolns

diary(diaryFileName(i))

tic

disp([’Current solution attempt #’ num2str(i)])

files = dir(’VHguessRanges.txt’);

% Get the date for the most recent initial guess domain

soln.guessFileDate = files.date;

[soln.bestEst, soln.bestNorm, soln.estData] = ...

findBestMainEstimateIterates(allData,p,numEst,states,numParams);

%% Parameterize the model to the V.harveyi data

[soln.X2, soln.err, soln.opt] = generalOptRoutine(

@(x)masterIterateOptimization(x,states,p,allData),...

soln.bestEst,’maxIter’,maxIter,’maxEvals’,maxEvals,...

’normTol’,tol,’genTol’,genTol,’dispStr’,dispStr,...

’optimality’,optimality,’ctrMax’,ctrMax,’computeJacobian’,true);

%% Compute the norm of the error

soln.normSoln = norm(soln.err);

%% Save the result

cd(’C:\..\MATLAB\VH Data’)

save(fileName(i),’soln’)

cd(’C:\..\MATLAB\VHarveyiParamCode’)

theTime = toc/60;

disp([’Running time: ’ num2str(theTime) ’ min’])

diary off

end

%=========================================================================

function solnDistribution
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%% Find the variance of the V. harveyi model parameters to determine

%% the robustness of the parameters

global fileNameAppend

global globalTolerance

noiseRange = [0.1];

thePlan = plans(’VhOpt’,’numGam’,2);

maxIter = 10; % # of iterations/lsqnonlin iterate

maxEvals = 1000000;

tol = 1e-14;

genTol = 1e-15;

optimality = tol;

dispStr = ’iter’;

ctrMax = 1; % # of repetitions of the lsqnonlin

numNoiseSamples = 48;

globalTolerance = tol;

diaryFileName = @(n)[fileNameAppend ’SampleDiary’ num2str(n) ’.txt’];

fileName = @(n,m) [fileNameAppend ’VhD_’ num2str(n) ’_’ num2str(m)’.mat’];

pWT = makeStrain([],{’WT V.harveyi’});

pInit = stovec(pWT,thePlan);

% A function used to randomly perturb the data by at most 10%

noiseAmt = 0.1;

addNoise = @(theData)( theData.*(1+noiseAmt*(2*rand(size(theData))-1) ) );

for j = 1:length(noiseRange)

noiseAmt = noiseRange(j);

for i = 1:numNoiseSamples

[allData,p,states] = initializeVharveyi;

%% Randomly perturb data.
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allData.dataStep1 = addNoise(allData.dataStep1);

allData.dataStep2 = addNoise(allData.dataStep2);

allData.Tu2008LuxRFeedback.Y = addNoise(allData.Tu2008LuxRFeedback.Y);

allData.Tu2010AllQrr4Only.Y = addNoise(allData.Tu2010AllQrr4Only.Y);

allData.Tu2010AllQrr.Y = addNoise(allData.Tu2010AllQrr.Y);

tic

disp([’Current sample #’ num2str(i)])

soln.initEst = pInit;

initEstResult = masterIterateOptimization(...

pInit,states,pWT,allData);

soln.initEstNorm = norm(initEstResult(:));

disp(’Starting the parameterization’)

[soln.X2, soln.err, soln.opt] = generalOptRoutine(

@(x)masterIterateOptimization(x,states,pWT,allData),...

pInit,’maxIter’,maxIter,’maxEvals’,maxEvals,’normTol’,tol,...

’genTol’,genTol,’dispStr’,dispStr,’optimality’,optimality,...

’ctrMax’,ctrMax,’computeJacobian’,true);

soln.normSoln = norm(soln.err(:));

soln.noiseAmt = noiseAmt;

cd(’C:\..\MATLAB\VH Data\Vh Distributions’)

save(fileName(i,j),’soln’)

cd(’C:\..\MATLAB\VHarveyiParamCode’)

runTime = toc;

disp([’Running Time: ’ num2str(runTime/60) ’ min’])

end

end

%=========================================================================

function [bestEst, bestNorm, estData] = ...

findBestMainEstimateIterates(allData,p,numEst,states,numParams)
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sampleResult = masterIterateOptimization(...

rand(numParams,1),states,p,allData);

numData = length(makeVect(sampleResult));

estData.x = zeros(numParams,numEst);

estData.err = zeros(numData,numEst);

estData.norm = zeros(1,numEst);

i = 1;

while i <= numEst

disp([’Working on main estimate #’ num2str(i)])

estData.norm(i) = norm(estData.err(:,i));

i = i+1;

end

[theMin, at] = min(estData.norm);

bestEst = estData.x(:,at);

bestNorm = estData.norm(at);

disp([’Norm of the best estimate is: ’ num2str(bestNorm)])

%=========================================================================

function [iterateError, Derror] = ...

masterIterateOptimization(Z0,states,p,allData)

p = updateIterateGuess(Z0,states,p,allData);

[iterateError,Derror] = harveyiSingleIterate(p,states,allData);

%=========================================================================

function [p,states] = updateIterateGuess(Z0,states,p,allData)

thePlan = plans(’VhOpt’,’numGam’,2);

p = vectos(Z0,thePlan);

A.2 Initialize the V. harveyi Optimization

function [allData,p,varargout] = initializeVharveyi(varargin)

% Returns all of the V. harveyi data and objects for its optimization.

% Known parameters found in previous articles
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knownParams = getKnownParams;

numsRNA = 4;

for i = 1:2:length(varargin)

switch varargin{i}

case lower(’add noise’)

noiseAmt = varargin{i+1};

otherwise

error(’Unknown option in initializeVharveyi’)

end

end

load(’Tu2010LuxRvsAIAllQrr_RawData.mat’)

for i = 1:4

Tu2010AllQrr.Y(i,:) = Data(1,i).Y;

Tu2010AllQrr.X(i,:) = Data(1,i).X;

end

Tu2010AllQrr.Y = VHformatAllQrrData(Tu2010AllQrr.Y);

load(’Tu2010LuxRvsAIQrr4Only_RawData.mat’)

for i = 1:4

Tu2010AllQrr4Only.Y(i,:) = Data(1,i).Y;

Tu2010AllQrr4Only.X(i,:) = Data(1,i).X;

end

Tu2010AllQrr4Only.Y = VHformatAllQrrData(Tu2010AllQrr4Only.Y);

load(’TuLuxRqrrFeedbackProgressiveKnockout_RawData.mat’)

for i = 1:5

Tu2008LuxRFeedback.Y(i,:) = Data(1,i).Y;

Tu2008LuxRFeedback.X(i,:) = Data(1,i).X;

end

Tu2008LuxRFeedback.Y = VHformatLuxRQrrFeedbackData(Tu2008LuxRFeedback.Y);

% Get the data for both steps
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dataStep1 = VHgetStep1Data(numsRNA);

dataStep2 = VHgetStep2Data(numsRNA);

% Get the params

p = getParams(’new’);

p = getParams(’updateParams’,’numsRNA’,numsRNA);

% Weights for each experiment

allData.knownParams = knownParams;

allData.Tu2010AllQrr = Tu2010AllQrr;

allData.Tu2010AllQrr4Only = Tu2010AllQrr4Only;

allData.dataStep1 = dataStep1;

allData.dataStep2 = dataStep2;

allData.numsRNA = numsRNA;

allData.Tu2008LuxRFeedback = Tu2008LuxRFeedback;

allData.residualKey = residualKey(’species’,’Vh’);

A.3 Model of All V. harveyi Experiments

function [x, dx] = harveyiSingleIterate(p,states,allData)

% This function represents F(p) and DF(p) for V. harveyi

%

% pWT: Structure containing the WT parameters

% states: Structure containing estimates of the steady-states for given

% parameterizations

% allData: Structure containing all of the V. harveyi data

if nargout ==1

step2Error = VHtoOptStep2(p,’allData’,allData,...

’expt data’,allData.dataStep2);

AI = allData.Tu2010AllQrr.X(1,:);

exptData = allData.Tu2010AllQrr.Y;

ptr = 4;

step3Error = luxRvsAI(p,AI,’allData’,allData,’expt data’,...
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exptData,’state pointer’,ptr);

AI = allData.Tu2010AllQrr4Only.X(1,:);

exptData = allData.Tu2010AllQrr4Only.Y;

ptr = 8;

pMut = makeStrain(p,{’qrri RNA’},{1:3});

step4Error = luxRvsAI(pMut,AI,’allData’,allData,’expt data’,...

exptData,’state pointer’,ptr);

else

[step2Error, Dstep2] = VHtoOptStep2(p,’allData’,allData,...

’expt data’,allData.dataStep2);

AI = allData.Tu2010AllQrr.X(1,:);

exptData = allData.Tu2010AllQrr.Y;

ptr = 4;

[step3Error, Dstep3] = luxRvsAI(p,AI,’allData’,allData,’expt data’,...

exptData,’state pointer’,ptr);

AI = allData.Tu2010AllQrr4Only.X(1,:);

exptData = allData.Tu2010AllQrr4Only.Y;

ptr = 8;

pMut = makeStrain(p,{’qrri RNA’},{1:3});

[step4Error, Dstep4] = luxRvsAI(pMut,AI,’allData’,allData,...

’expt data’,exptData,’state pointer’,ptr);

% Jacobian when the steady states are given

dx = [Dstep2*allData.residualKey.step2Error.weight;

Dstep3*allData.residualKey.step3Error.weight;

Dstep4*allData.residualKey.step4Error.weight];

end

x = [step2Error(:)*allData.residualKey.step2Error.weight;

step3Error(:)*allData.residualKey.step3Error.weight;

step4Error(:)*allData.residualKey.step4Error.weight];
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A.4 Model of the Experiment in Figures 3.3 and 3.4

function [f, df, varargout] = luxRvsAI(p,AI,varargin)

% Plot LuxR expression vs. AI concentration.

% Models the experiment in Tu et al. 2010

global computeAbsoluteError

statePtr = 0;

if nargin >=3

for i = 1:2:length(varargin)

switch lower(varargin{i})

case lower(’expt data’)

exptData = varargin{i+1};

case lower(’sdy states’)

states = varargin{i+1};

case lower(’state pointer’)

statePtr = varargin{i+1};

if statePtr ~= 4 && statePtr ~= 8

error([’state pointer needs to be either 4 or 8: ’ num2str(statePtr)])

end

case lower(’allData’)

allData = varargin{i+1};

otherwise

error(’Wrong string argument in luxRvsAI’)

end

end

end

if statePtr == 0

error(’Need to define statePtr to calculate the weights for the errors.’)

end

if ~exist(’allData’,’var’) && exist(’states’,’var’) && ...

exist(’statePtr’,’var’)

error(’Missing allData, states, and statePtr’)
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end

p.AI = AI;

pWT = p;

pNoLuxOAuto = makeStrain(pWT,{’LuxO Auto’});

pNoLuxOQrr = makeStrain(pWT,{’LuxO-qrr feedback’});

pNoLuxORegulation = makeStrain(pWT,{’LuxO Auto’,’LuxO-qrr feedback’});

if exist(’states’,’var’) % You’re given the steady states

theNames = fieldnames(states);

statesWT = states.(theNames{statePtr});

statesOAuto = states.(theNames{statePtr+1});

statesOFeed = states.(theNames{statePtr+2});

statesMut = states.(theNames{statePtr+3});

ssWT = vectToSS(statesWT);

ssOAuto = vectToSS(statesOAuto);

ssOFeed = vectToSS(statesOFeed);

ssOMut = vectToSS(statesMut);

if nargout == 3

t=0;

error(’This uses "hybrid", which is outdated...’)

errorWTAISS = makeVect(hybrid(t,statesWT,pWT,pWT.Gamma))...

*allData.residualKey.(theNames{statePtr}).weight;

% 3b) No LuxO Autoregulation

errorNoLuxOAutoSS = makeVect(hybrid(t,statesOAuto,pNoLuxOAuto,...

pNoLuxOAuto.Gamma))*allData.residualKey.(...

theNames{statePtr+1}).weight;

% 4) No LuxO-Qrr feedback

errorNoLuxOQrrSS = makeVect(hybrid(t,statesOFeed,pNoLuxOQrr,...

pNoLuxOQrr.Gamma))*allData.residualKey.(...

theNames{statePtr+2}).weight;
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% 5) No LuxO Regulation

errorNoLuxORegulationSS = makeVect(hybrid(t,statesMut,...

pNoLuxORegulation,pNoLuxORegulation.Gamma))...

*allData.residualKey.(theNames{statePtr+3}).weight;

varargout{1} = [errorWTAISS;errorNoLuxOAutoSS;...

errorNoLuxOQrrSS;errorNoLuxORegulationSS];

end

else % otherwise compute the steady states

% WT expression

ssWT = getSSAt(pWT);

% No LuxO Autoregulation

ssOAuto = getSSAt( pNoLuxOAuto );

% No LuxO-Qrr Feedback

ssOFeed = getSSAt( pNoLuxOQrr );

% No LuxO-Qrr Feedback

ssOMut = getSSAt( pNoLuxORegulation );

end

RExpression = modelExpt(ssWT, ssOAuto, ssOFeed, ssOMut);

if nargout >=2

df = computeJack(pWT ,ssWT, pNoLuxOAuto,ssOAuto, pNoLuxOQrr , ...

ssOFeed,pNoLuxORegulation, ssOMut);

if exist(’exptData’,’var’)

if ~computeAbsoluteError

df = scaleJacobianByData(df,exptData);

end

end

end

if exist(’exptData’,’var’)
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f = computeError(RExpression,exptData);

else

f = RExpression;

end

%=========================================================================

function f = modelExpt(ssWT, ssOAuto, ssOFeed, ssOMut)

f = VHformatAllQrrData([ssWT.r; ssOAuto.r; ssOFeed.r; ssOMut.r]);

%=========================================================================

function DF = computeJack(pWT ,ssWT, pNoLuxOAuto,ssOAuto,pNoLuxOQrr, ...

ssOFeed,pNoLuxORegulation, ssOMut)

% Compute the jacobian associated with this experiment

planName = ’VhOptStep2Jack’;

thePlan = plans(planName,’AI’,pWT.AI,’numGam’,2);

sigmaWT = sensitivityStatesToParams(ssWT,pWT,thePlan);

sigmaOAuto = sensitivityStatesToParams(ssOAuto,pNoLuxOAuto,thePlan);

sigmaOFeed = sensitivityStatesToParams(ssOFeed,pNoLuxOQrr,thePlan);

sigmaOMut = sensitivityStatesToParams(ssOMut,pNoLuxORegulation,thePlan);

dWT = diffModel(ssWT,sigmaWT,ssWT,sigmaWT);

dOAuto = diffModel(ssOAuto,sigmaOAuto,ssWT,sigmaWT);

dOFeed = diffModel(ssOFeed,sigmaOFeed,ssWT,sigmaWT);

dOMut = diffModel(ssOMut,sigmaOMut,ssWT,sigmaWT);

[numDensity,numParams] = size(dWT);

DF = zeros(4*numDensity,numParams);

DFctr = 1;

for i = 1:numDensity

DF(DFctr,:) = dWT(i,:);

DFctr = DFctr +1;

DF(DFctr,:) = dOAuto(i,:);

DFctr = DFctr +1;
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DF(DFctr,:) = dOFeed(i,:);

DFctr = DFctr +1;

DF(DFctr,:) = dOMut(i,:);

DFctr = DFctr +1;

end

%=========================================================================

function df = diffModel(ss,DssDp,ssWT,DssWTDp)

% Derivative of the model data with respect to all of the parameters

rWTHCD = ssWT.r(end);

DrWTDpHCD = DssWTDp{end}(1,:);

numDensity = length(ssWT.r);

numParams = length(DrWTDpHCD);

df = zeros(numDensity,numParams);

for densityCtr = 1:numDensity

df(densityCtr,:) = (rWTHCD*DssDp{densityCtr}(1,:)-ss.r(densityCtr)*...

DrWTDpHCD)/rWTHCD^2;

end

A.5 Model of the Experiment in Figure 3.2

function [f,df, varargout] = VHtoOptStep2(p,varargin)

% Model the experiment in Tu et al. 2008

global computeAbsoluteError

pWT = p;

pNoRQFeedback = makeStrain(p,{’hapR-Qrr Feedback’});

pNoRRepression = makeStrain(p,{’hapR mRNA’});

if nargin >=2
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for i = 1:2:length(varargin)-1

switch lower(varargin{i})

case lower(’allData’)

allData = varargin{i+1};

case lower(’expt data’)

data = varargin{i+1};

case lower(’sdy states’)

states = varargin{i+1};

otherwise

error(’Wrong string argument in VHtoOptStep2’)

end

end

end

% Either get or compute the steady-states

if exist(’states’,’var’) % if you’re given the "states" structure

error(’This code is obsolete. Update to reflect the new jacobian’)

ssWT = vectToSS(states.WT);

ssNoRQFeedback = vectToSS(states.NoRQFeedback);

ssNoRRepression = vectToSS(states.NoRRepression);

if nargout == 3

t=0;

error(’This uses "hybrid", which is outdated.’)

errorWTSS = makeVect(hybrid(t,states.WT,pWT,pWT.Gamma))...

*allData.residualKey.WT.weight;

errorNoRQFeedbackSS = makeVect(hybrid(t,states.NoRQFeedback,...

pNoRQFeedback,pNoRQFeedback.Gamma))...

*allData.residualKey.NoRQFeedback.weight;

errorNoRRepressionSS = makeVect(hybrid(t,states.NoRRepression,...

pNoRRepression,pNoRRepression.Gamma))...

*allData.residualKey.NoRRepression.weight;

ssError = [errorWTSS;errorNoRQFeedbackSS;errorNoRRepressionSS];

varargout{1} = ssError;
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end

else % Otherwise, compute the steady-states with the "getSSAt" function

ssWT = getSSAt(pWT);

ssNoRQFeedback = getSSAt(pNoRQFeedback);

ssNoRRepression = getSSAt(pNoRRepression);

end

f = step2ModelResults(ssWT,ssNoRQFeedback,ssNoRRepression);

if nargout >=2

df = computeJack(pWT,ssWT,pNoRQFeedback,ssNoRQFeedback,....

pNoRRepression,ssNoRRepression);

if exist(’allData’,’var’) && exist(’data’,’var’)

if ~computeAbsoluteError

df = scaleJacobianByData(df,data);

end

end

end

if exist(’data’,’var’)

f = computeError(f,data);

end

%=============================================================================

function X = step2ModelResults(ssWT,ssNoRQFeedback,ssNoRRepression)

% Simulates the model to reproduce Figure 4 in Tu et al. (2008)

ss = ssWT;

relTo = ss.q(:,1); % Qrr WT value at LCD

X = [ss.q(:,1)./relTo ss.q(:,2)./relTo]; % a vector of ones

% No LuxR-Qrr Feedback

ss = ssNoRQFeedback;

Y = [ss.q(:,1)./relTo ss.q(:,2)./relTo];
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% No degradation of LuxR by Qrr

ss = ssNoRRepression;

X = [X ss.q(:,1)./relTo ss.q(:,2)./relTo];

X = VHformatStep2Data([X Y]);

%=============================================================================

function DF = computeJack(pWT,ssWT,pNoRQFeedback,ssNoRQFeedback,...

pNoRRepression,ssNoRRepression)

% Compute the jacobian associated with this experiment

planName = ’VhOptStep2Jack’;

thePlan = plans(planName,’numGam’,2);

sigmaWT = sensitivityStatesToParams(ssWT,pWT,thePlan);

sigmaNoRQFeedback = sensitivityStatesToParams(ssNoRQFeedback,...

pNoRQFeedback,thePlan);

sigmaNoRRepression = sensitivityStatesToParams(ssNoRRepression,...

pNoRRepression,thePlan);

dWT = diffModel(ssWT,sigmaWT,ssWT,sigmaWT);

dNoRQFeed = diffModel(ssNoRQFeedback,sigmaNoRQFeedback,ssWT,sigmaWT);

dNoRRepression = diffModel(ssNoRRepression,sigmaNoRRepression,...

ssWT,sigmaWT);

[r,n] = size(dWT);

DF = zeros(3*r,n);

for i = 1:2

k = 1 + r/2*(i-1);

j = 1 + 3*r/2*(i-1);

DF(j:j+3,:) = dWT(k:k+3,:);

j = j+4;
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DF(j:j+3,:) = dNoRRepression(k:k+3,:);

j = j+4;

DF(j:j+3,:) = dNoRQFeed(k:k+3,:);

end

%=========================================================================

function df = diffModel(ss,DssDp,ssWT,DssWTDp)

% \/---- "1" indicates LCD

dWTLCD = DssWTDp{1}(3:6,:);

relTo = ssWT.q(:,1); % WT LCD levels

numDensity = length(ssWT.r);

df = zeros(length(relTo)*numDensity,length(dWTLCD(1,:)));

ptr = 1;

for densityCtr = 1:numDensity

for i = 1:length(relTo)

df(ptr,:) = (relTo(i)*DssDp{densityCtr}(2+i,:)-...

ss.q(i,densityCtr)*dWTLCD(i,:))/relTo(i)^2;

ptr = ptr +1;

end

end

function Y = VHformatStep2Data(X)

% To format identically the raw data and the model results.

[r,c] = size(X);

Y = zeros(r,c);

Y(:,1:c/2) = X(:,1:2:end);

Y(:,c/2+1:end) = X(:,2:2:end);



APPENDIX B

MATLAB CODE: V. cholerae

PARAMETERIZATION

The following is a collection of the essential Matlab code used to parameterize V. cholerae.

B.1 Main V. cholerae Parameterization Code

function varargout = FINALVcParams(varargin)

cd(’C:\..\MATLAB\VC’)

% Randomize the seed for the random number generator

RandStream.setDefaultStream(RandStream(’mt19937ar’,...

’seed’,sum(100*clock)));

global fileNameAppend

global computeAbsoluteError makeErrAMatrix

global globalTolerance

computeAbsoluteError = false;

makeErrAMatrix = false;

fileNameAppend = ’a_filename_’;

doOptimization = false;

doSingleIterate = false;

diaryFileName = @(n)[fileNameAppend ’DiaryForEstimate’ num2str(n) ’.txt’];

%%% LOAD DATA & WEIGHTS %%%

[allData,p]= VCinitialize;
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if doSingleIterate

thePlan = plans(’VcholeraeOpt’,’numGam’,1);

p = makeStrain([],{’WT V.cholerae’});

printParams(p)

X = stovec(p,thePlan);

[f,df] = mainToOpt(X,allData);

if nargout >=1

varargout{1} = f;

end

if nargout >=2

varargout{2} = df;

end

end

if doOptimization

ansFileName = @(n)[fileNameAppend ’VCfullSoln’ num2str(n) ’.mat’];

maxSamples = 1; %5

numEstimates = 1; %25

hold on

for i = 1:numEstimates

diary(diaryFileName(i))

tic

disp([’Current solution attempt #’ num2str(i)])

files = dir(’VC*Ranges.txt’);

theSoln.guessFileDate = files.date;

[bestNorm, bestEst, otherEst] = findBestEst(maxSamples,allData);

disp(’Best estimate is found’)

theSoln.otherEst = otherEst;

theSoln.X0 = bestEst;
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theSoln.estNorm = bestNorm;

[p, ERR, X, opt] = main(bestEst,allData);

theSoln.X = X;

theSoln.ERR = ERR;

theSoln.ansNorm = norm(ERR);

theSoln.opt = opt;

theSoln.computeAbsoluteError = computeAbsoluteError;

theSoln.allData = allData;

cd(’C:\..\MATLAB\VC Data’)

save(ansFileName(i),’theSoln’)

cd(’C:\..\MATLAB\VC’)

theTime = toc/60;

disp([’Running time: ’ num2str(theTime) ’ min’])

diary off

end

end

%%%% Look at the stats for the distribution of Vc solution

% load(’VCsolution’)

% pStar = p;

% numSamples = 1;

% noiseAmt = 0.1;

%

% ansFileName = @(n)[fileNameAppend ’VCnoiseSoln’ num2str(n) ’.mat’];

% hold on

% for i = 1:50

% diary(diaryFileName(i))

% tic

% disp([’Current solution attempt #’ num2str(i)])

% solDistribution = paramDistribution(numSamples,noiseAmt,...
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% allData,pStar);

% save(ansFileName(i),’solDistribution’,’noiseAmt’,’numSamples’)

%

% toc

% diary off

% end

disp(’Finished FINALVcParams’)

%=========================================================================

function solnDistribution

global computeAbsoluteError

fileNameAppend = ’VCdistribution_B7_’;

diaryFileName = @(n)[fileNameAppend ’DiaryForEstimate’ num2str(n) ’.txt’];

ansFileName = @(n)[fileNameAppend ’VCDistributionSoln’ num2str(n) ’.mat’];

maxSamples = 1; %5

numEstimates = 100; %25

VcPlan = plans(’VcholeraeOpt’,’numGam’,1);

pWT = makeStrain([],{’WT V.cholerae’});

theSoln.X0 = stovec(pWT,VcPlan);

bestEst = theSoln.X0;

noiseAmt = 0.1;

addNoise = @(theData)( theData.*(1+noiseAmt*(2*rand(size(theData))-1) ) );

hold on

for i = 1:numEstimates

diary(diaryFileName(i))

tic

disp([’Current solution attempt #’ num2str(i)])
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[allData,p]= VCinitialize;

allData.step2Data = addNoise(allData.step2Data);

allData.hapRLevels = addNoise(allData.hapRLevels);

allData.Fig7 = addNoise(allData.Fig7);

[p, ERR, X, opt] = main(bestEst,allData);

theSoln.X = X;

theSoln.ERR = ERR;

theSoln.ansNorm = norm(ERR);

theSoln.opt = opt;

theSoln.computeAbsoluteError = computeAbsoluteError;

theSoln.allData = allData;

cd(’C:\..\MATLAB\VC Data\Vc Distributions’)

save(ansFileName(i),’theSoln’)

cd(’C:\..\MATLAB\VC’)

theTime = toc/60;

disp([’Running time: ’ num2str(theTime) ’ min’])

diary off

end

%=========================================================================

function [bestNorm, bestEst, otherEst] = findBestEst(maxSamples,allData)

global fileNameAppend

paramPlan = plans(’VcholeraeOpt’,’numGam’,1);

numParams = getNumVarsInPlan(paramPlan);

sampleResult = mainToOpt(5*rand(numParams,1)+1,allData);

numData = length(makeVect(sampleResult));
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otherEst.ERR = zeros(numData,maxSamples);

otherEst.ERRnorm = zeros(1,maxSamples);

otherEst.X = zeros(numParams,maxSamples);

for i = 1:maxSamples

disp([’Working on estimate #’ num2str(i)])

otherEst.X(:,i) = generateRandEstimate(’VCguessRanges.txt’);

otherEst.ERR(:,i) = mainToOpt(otherEst.X(:,i),allData);

otherEst.ERRnorm(i) = norm(otherEst.ERR(:,i));

save([fileNameAppend ’otherEstData.mat’],’otherEst’)

end

[theMin, at] = min(otherEst.ERRnorm);

bestEst = otherEst.X(:,at);

bestNorm = theMin;

%=========================================================================

function varargout = main(X0,allData)

% Optimization parameters

maxIter = 10; % # of iterations/lsqnonlin iterate

maxEvals = 1000000;

tol = 1e-14;

genTol = 1e-15;

optimality = tol;

dispStr = ’iter’;

ctrMax = 1; % # of repetitions of the lsqnonlin

LB = zeros(size(X0));

LB(25:28) = 1;

UB = inf*ones(size(X0));

UB(end) = 1;

[X,ERR,opt] = generalOptRoutine(@(y)mainToOpt(y,allData),X0,’maxIter’,...

maxIter,’maxEvals’,maxEvals,’normTol’,tol,’genTol’,genTol,...
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’dispStr’,dispStr,’optimality’,optimality,’ctrMax’,ctrMax,...

’computeJacobian’,true,’upper bound’,UB,’lower bound’,LB);

disp(’Final answer found’)

paramPlan = plans(’VcholeraeOpt’,’numGam’,1);

p = vectos(X,paramPlan);

if nargout > 0

varargout{1} = p;

end

if nargout > 1

varargout{2} = ERR;

end

if nargout > 2

varargout{3} = X;

end

if nargout >3

varargout{4} = opt;

end

%=========================================================================

function [f,df] = mainToOpt(X,allData)

paramPlan = plans(’VcholeraeOpt’,’numGam’,1);

p = vectos(X,paramPlan);

if nargout ==1

ERR2 = makeTable1(p,’data’,allData.step2Data,’allData’,allData);

ERR3A = makeFig6(p,’data’,allData.hapRLevels,’allData’,allData);

ERR3B = makeFig7(p,’data’,allData.Fig7,’allData’,allData);

else

% disp(’Table 1’)

[ERR2, Diff2] = makeTable1(p,’data’,allData.step2Data,’allData’,allData);

% disp(’Fig 6’)

[ERR3A, Diff3A] = makeFig6(p,’data’,allData.hapRLevels,’allData’,allData);
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% disp(’Fig 7’)

[ERR3B, Diff3B] = makeFig7(p,’data’,allData.Fig7,’allData’,allData);

df = [Diff2; ...

Diff3A; ...

Diff3B];

end

f = [makeVect(ERR2); ...

makeVect(ERR3A); ...

makeVect(ERR3B)];

B.2 Initialize the V. cholerae Optimization

function [allData, p]= VCinitialize

allData.TableData = [5568768606 13975133803 661927655 7368254360

14880099371 37274606372 15864812309 37784865916

2827296191 15399782928 602901871 4694930889

3400395244 22618133039 2886491855 17857246552

3840124475 9265658740 384474828 9182292778

6624330372 18236619628 6164785959 27906352549];

load(’Svenningsen2009Fig5_RawData.mat’,’Data’)

allData.luxOAUCC = Data.Y(:,3)’;

allData.step2Data = VCformStep2Data(allData.TableData,allData.luxOAUCC);

% Figure 6 from Svenningsen 2009

allData.hapRLevels = [6.3 2.3 2.3 1.1 35];

% Figure 7 from Svenningsen 2009

load(’Svenningsen2009Fig7_RawData.mat’,’Data’)

Fig7 = Data.Y;

Fig7(logical(Fig7<0.04)) = 0;

allData.Fig7 = Fig7(:,1:4);
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allData.qrr4HCDFold = 2.9311e+007/3.5904e+006;

if nargout >= 2

%%% Initialize Parameters %%%

p = getParams(’updateParams’,’numsRNA’,4);

end

allData.residualKey = residualKey(’species’,’Vc’);

B.3 Model Experiment in Figure 3.7

function [f,df] = makeTable1(P,varargin)

toPlot = false;

onlyData = false;

weightAnswer = false;

for i = 1:2:length(varargin)

switch lower(varargin{i})

case lower(’SS’)

WT = varargin{i+1};

case lower(’Data’)

data = varargin{i+1};

withData = true; % Obsolete??

case lower(’Plot’)

toPlot = varargin{i+1};

case lower(’Data only’)

data = varargin{i+1};

onlyData = true;

case lower(’allData’)

allData = varargin{i+1};

weightAnswer = true;

otherwise

error(’Unknown case’)

end

end

returnJac = false;
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if nargout == 2

returnJac = true;

end

if onlyData

f = data;

toPlot = true;

else

if ~exist(’WT’,’var’)

WT = getSSAt(P);

end

if ~returnJac

promInfoWT = computePromInfo(P,P);

promInfoHapR = computePromInfo(makeStrain(P,{’hapR mRNA’}),P);

promInfoAUCC = computePromInfo(makeStrain(P,{’luxO-Qrr Feedback’}),P);

else

[promInfoWT dWT] = computePromInfo(P,P);

[promInfoHapR dHapR]= computePromInfo(makeStrain(P,{’hapR mRNA’}),P);

[promInfoAUCC dAUCC]= computePromInfo(makeStrain(P,{...

’luxO-Qrr Feedback’}),P);

end

%6x4 same interpretation as the input for "TableData"

prom = [promInfoWT promInfoHapR promInfoAUCC]’;

luxOAUCC = promInfoAUCC(:,2)./promInfoAUCC(:,1);

f = VCformStep2Data(prom,luxOAUCC’);

if returnJac

df = computeTable1Jac(prom,dWT,dHapR,dAUCC);

end

if exist(’data’,’var’)

if returnJac
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[f df] = computeError(f,data,df);

else

f = computeError(f,data);

end

end

end

if toPlot

bar(f(:,end-1),’group’);

set(gca,’XTickLabel’,{’qrr1’,’qrr2’,’qrr3’,’qrr4’})

xlabel(’Reporter Fusion’)

ylabel(’Fold Change in Luminesence’)

xlim([0 5])

ylim([0 18])

end

if weightAnswer

f = f*allData.residualKey.Table1.weight;

if returnJac

df = df*allData.residualKey.Table1.weight;

end

end

%=========================================================================

function dF = computeTable1Jac(prom,dWT,dHapR,dAUCC)

[mp np] = size(prom); %mp=6,np=4

dF = [dWT;dHapR;dAUCC];

[m,n] = size(dF);

J = dF; % <-- Reflects the jacobian of prom’

dF = zeros(m,n);

%%% VERSION A %%%

PROM = prom;
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relToSS = PROM(4,1);

relToSen = dHapR(4+1,:);

prom = prom’;

for j = 1:4 % qrr index

for i = 1:mp-2 % experiment index

startIdx = j+4*(i-1);

dF(startIdx,:) = diffModel(relToSS,relToSen,prom(startIdx),...

J(startIdx,:));

end

idx = mp-1;

startIdx = j+4*(idx-1);

dF(startIdx,:) = diffModel(PROM(end-1,j),dAUCC(j,:),PROM(end,j),...

dAUCC(4+j,:));

end

%=========================================================================

function df = diffModel(ssRelTo,senRelTo,ss,sen)

df = 1/ssRelTo^2*(ssRelTo*sen-ss*senRelTo);

%=========================================================================

function labelPlot(p)

% Make labels for graph

xLabels = {};

legNames = {’WT’,’\Deltaqrr1-4’,’\DeltahapR’,’\DeltahapR,\Deltaqrr1-4’,...

’luxO AUCC’,’luxO AUCC, \Deltaqrr1-4’};

for i = 1:p.numsRNA

xLabels = { xLabels{:}, [’qrr’ num2str(i)]};

end

set(gca,’XTickLabel’,xLabels)

xlabel(’Reporter Fusion’)

ylabel(’Luminesence’)

legend(legNames,’Location’,’North’)

%=========================================================================
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function [promInfo Dprom]= computePromInfo(p,pWT) %,varargin)

% ******************************************

% Make sure that ss.r =0 in the hapR strain

% ******************************************

pMut = makeStrain(p,{’qrri RNA’},{[1:4]});

ssWT = getSSAt(p);

ssMut = getSSAt(pMut);

% if no hapR

if sum(logical(p.Er~=0))==0 && sum(logical(p.Kl~=0))==0 && ...

sum(logical(p.Vq~=0))==0

ssWT.r = 0;

ssMut.r = 0;

end

if nargout ==1

promWT = VCpromoters(pWT,ssWT);

promMut = VCpromoters(pWT,ssMut);

elseif nargout >=2 % && nargin == 2

[promWT, Dwt] = VCpromoters(pWT,ssWT);

[promMut, Dmut] = VCpromoters(pWT,ssMut);

thePlan = plans(’VcholeraeOptWStates’,’numGam’,1);

numParams = thePlan.numParams;

temp = sensitivityStatesToParams(ssWT,p,thePlan);

sigmaP = temp{1};

temp = sensitivityStatesToParams(ssMut,pMut,thePlan);

sigmaPmut = temp{1};

numProms = size(Dwt,1);

Dprom = zeros(2*numProms,numParams);
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%Dwt*SIG;

Dprom(1:numProms,:) = Dwt(:,1:numParams) + ...

Dwt(:,numParams+1:end)*sigmaP;

%Dmut*SIG;

Dprom(1+numProms:2*numProms,:) = Dmut(:,1:numParams) + ...

Dmut(:,numParams+1:end)*sigmaPmut;

else

error(’Wrong input types in computePromInfo(p,varargin)’)

end

promInfo = [promWT.q promMut.q];

B.4 Model Experiment in Figure 3.5

function [hapR,dhapR] = makeFig6(P,varargin)

global computeAbsoluteError

toPlot = false;

numArgs = 5;

onlyData = false;

weightAnswer = false;

knockOutStrains = @(n)[[1:n-1], [n+1:4]];

for i = 1:2:length(varargin)

switch lower(varargin{i})

case lower(’SS’)

WT = varargin{i+1};

case lower(’Data’)

data = varargin{i+1};

numArgs = length(data);

case lower(’Plot’)

toPlot = varargin{i+1};

case lower(’Data only’)

data = varargin{i+1};

onlyData = true;
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case lower(’allData’)

allData = varargin{i+1};

weightAnswer = true;

otherwise

error(’Unknown case’)

end

end

returnJac = false;

if nargout == 2

returnJac = true;

end

if onlyData

toPlot = true;

hapR = data;

else

if ~exist(’WT’,’var’)

WT = getSSAt(P);

end

hapR = zeros(1,numArgs);

mutSS = cell(1,numArgs+1);

mutP = cell(1,numArgs+1);

for i = 1:numArgs-1 % Insert one sRNA only

mutP{i} = makeStrain(P,{’qrri RNA’},{knockOutStrains(i)});

mutSS{i} = getSSAt(mutP{i});

hapR(i) = mutSS{i}.r;

end

mutP{numArgs} = makeStrain(P,{’qrri RNA’},{[1:4]});

mutSS{numArgs} = getSSAt(mutP{numArgs});

hapR(end) = mutSS{numArgs}.r;

mutP{numArgs+1} = P;

mutSS{numArgs+1} = WT;
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hapR = hapR/mutSS{numArgs+1}.r;

if returnJac

dhapR = computeFig6Jac(mutSS,mutP);

end

if exist(’data’,’var’)

if returnJac

[hapR, dhapR] = computeError(hapR,data,dhapR);

else

hapR = computeError(hapR,data);

end

end

if weightAnswer

hapR = hapR*allData.residualKey.Fig6.weight;

if returnJac

dhapR = dhapR*allData.residualKey.Fig6.weight;

end

end

end

if toPlot

bar(hapR)

labelPlot(P)

end

%=========================================================================

function dF = computeFig6Jac(ssMut,mutP)

thePlan = plans(’VcholeraeOptWStates’,’numGam’,1);

numStrains = length(mutP);

% COMPUTE SENSITIVITIES
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sigma = cell(numStrains,1);

for i = 1:numStrains

temp = sensitivityStatesToParams(ssMut{i},mutP{i},thePlan);

sigma{i} = temp{1};

end

dF = zeros(numStrains-1,length(sigma{1}(1,:)));

for i = 1:numStrains-1

dF(i,:) = diffModel(ssMut{end},sigma{end},ssMut{i},sigma{i});

end

%=========================================================================

function df = diffModel(ssWT,senWT,ssMut,senMut)

rWT = ssWT.r;

df = 1/rWT^2*(senMut(1,:)*rWT-ssMut.r*senWT(1,:));

%=========================================================================

function labelPlot(p)

% Make labels for graph

xLabels = {};

for i = 1:p.numsRNA

xLabels = { xLabels{:}, [’qrr’ num2str(i)]};

end

xLabels = {xLabels{:}, ’-qrr1-4’};

set(gca,’XTickLabel’,xLabels)

xlabel(’Qrr genotype’)

if strcmpi(p.name,’V. cholerae’)

ylabel(’Relative {\it hapR} mRNA Concentration’)

else

ylabel(’Relative {\it luxR} mRNA Concentration’)

end

B.5 Model Experiment in Figure 3.6

function [RNA,dRNA] = makeFig7(P,varargin)

global computeAbsoluteError
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toPlot = false;

onlyData = false;

weightAnswer = false;

numsRNA = 4;

for i = 1:2:length(varargin)

switch lower(varargin{i})

case lower(’SS’)

WT = varargin{i+1};

case lower(’Data’)

data = varargin{i+1};

case lower(’Plot’)

toPlot = varargin{i+1};

case lower(’Data only’)

data = varargin{i+1};

onlyData = true;

case lower(’allData’)

allData = varargin{i+1};

weightAnswer = true;

otherwise

error(’Unknown case’)

end

end

if onlyData

RNA = data;

toPlot = true;

else

if ~exist(’WT’,’var’)

WT = getSSAt(P);

end

% Figure 7 progressive sRNA knockout strains

params4Strains = cell(4,1);

ss4Strains = cell(4,1);

params4Strains{1} = P;

ss4Strains{1} = WT;
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formRNA = @(ss)[ss.q; ss.r];

RNA = zeros(5,numsRNA);

relTo = formRNA(WT);

RNA(:,1) = relTo./relTo;

knockOutStrains = [3 2 1];

for i = 1:3

params4Strains{1+i} = makeStrain(P,{’qrri RNA’},...

{knockOutStrains(1:i)});

ss4Strains{1+i} = getSSAt(params4Strains{1+i});

RNA(:,i+1) = formRNA(ss4Strains{1+i})./relTo;

end

RNA(logical(RNA<1e-13)) = 0;

if exist(’data’,’var’)

RNA = computeError(RNA,data);

RNA(isnan(RNA)) = 0;

end

end

if toPlot

bar(RNA,’group’);

labelPlot

end

if weightAnswer

RNA = RNA*allData.residualKey.Fig7.weight;

end

if nargout == 2

dRNA = computeFig7Jac(params4Strains,ss4Strains);

if exist(’data’,’var’) && ~computeAbsoluteError

dRNA = scaleJacobianByData(dRNA,data);

end

if weightAnswer
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dRNA = dRNA*allData.residualKey.Fig7.weight;

end

end

%=========================================================================

function dF = computeFig7Jac(params4Strains,ss4Strains)

everythingPlan = plans(’VcholeraeOptWStates’,’numGam’,1);

paramPlan = plans(’VcholeraeOpt’,’numGam’,1);

N = getNumVarsInPlan(paramPlan);

numRNA = 5;

numStrains = length(params4Strains);

dF = zeros(numStrains*numRNA,N);

sigma = cell(numStrains,1);

% Compute sensitivities

for i = 1:numStrains

temp = sensitivityStatesToParams(ss4Strains{i},params4Strains{i},...

everythingPlan);

sigma{i} = temp{1};

end

% Compute derivative of the model

for i = 1:numStrains

dF(1+numRNA*(i-1):i*numRNA,:) = diffModel(ss4Strains{1},sigma{1},...

ss4Strains{i},sigma{i},params4Strains{i});

end

%=========================================================================

function df = diffModel(ssWT,senWT,ssMut,senMut,p)

numStates = 5;

numParams = size(senWT,2);

df = zeros(numStates,numParams);

for i = 1:4
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if p.Kp(i) ~=0

df(i,:) = (ssWT.q(i)*senMut(2+i,:)-...

ssMut.q(i)*senWT(2+i,:))./(ssWT.q(i))^2;

end

end

df(end,:) = (ssWT.r*senMut(1,:)-ssMut.r*senWT(1,:))*1/(ssWT.r)^2;

%=========================================================================

function labelPlot

% Make labels for graph

numsRNA = 4;

xLabels = {};

legNames = {’WT’,’\Deltaqrr3’,’\Deltaqrr2,3’,’\Deltaqrr1,2,3’};

for i = 1:numsRNA

xLabels = { xLabels{:}, [’qrr’ num2str(i)]};

end

xLabels = {xLabels{:}, ’hapR’};

set(gca,’XTickLabel’,xLabels)

xlabel(’RNA’)

ylabel(’Relative RNA Concentration’)

legend(legNames,’Location’,’NorthWest’)

B.6 Format V. cholerae Data

function data = VCformStep2Data(prom,luxOAUCC)

[m,n] = size(prom);

%%% VERSION A %%%

%%% Normalize the data according to the original version.

relTo = prom(4,1);

prom(1:end-2,:) = prom(1:end-2,:)/relTo;

prom(end-1,:) = prom(end,:)./prom(end-1,:);

prom(end,:) = 1;

data = prom’;



APPENDIX C

MATLAB CODE: SRNA MODEL

The following is a collection of the essential Matlab code used for the steady-state

equations for the sRNA circuit.

C.1 Steady-state Map

function [G,DG] = steady_state_map(params,varargin)

% This is the steady-state ODE model for the sRNA circuit and is used to

% compute the steady-state solutions.

%

% params: A structure containing all of the parameters and states for a

% SINGLE Gamma/AI

% thePlan: Output from "plans.m" specifying the plan for the Jacobian.

if nargin == 2

thePlan = varargin{1};

end

sp = params;

if isfield(params,’AI’) && ~isempty(params.AI)

% If Gamma is a function of AI, then evaluate Gamma at that AI

GAMMA = GamAI(params.AI,sp);

sp.Gamma = GAMMA;

else

sp.AI = [];

end

if length(sp.Gamma) >1
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error(’Gamma can only be a length of at most 1.’)

end

numsRNA = length(sp.Kp);

G = zeros(2+2*numsRNA,1);

j=1;

% dr/dt = 0

G(j) = sp.r0 + (1-sp.r0)/(1+(sp.K_R * sp.r)^2) - ( sp.H’*sp.Er + 1)*sp.r;

j = j+1;

% do/dt = 0

G(j) = 1/(1+sp.K_O*(1+sp.Gamma)*sp.o) - (sp.H’*sp.Eo +1)*sp.o;

j = j+1;

% dq/dt = 0

for i=1:numsRNA,

G(j) = (sp.Kp(i) * sp.Gamma * sp.o) / (1 + sp.Kp(i) * sp.Gamma * sp.o)...

* (1 + sp.Vq(i) * (sp.Kl(i) * sp.r)^2) / (1 + (sp.Kl(i) * sp.r)^2)...

- (sp.Eq(i) * (1- sum(sp.H)) +1)*sp.q(i);

j = j+1;

end;

% dH/dt = 0

for i=1:numsRNA,

G(j) = (1- sum(sp.H)) * sp.q(i) - (sp.Er(i) * sp.r + ...

sp.Vor * sp.Eo(i) * sp.o ) * sp.Vr(i) * sp.H(i);

j = j+1;

end;

if nargout == 2 && nargin == 2

% Compute the Jacobian if asked

DG = makejac(D_steady_state_map(params),thePlan);

end
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C.2 Jacobian of the Steady-state Map

function DG = D_steady_state_map(sp)

% To compute the Jacobian of the steady-state map (DF(p) in the manuscript)

% sp: A structure containing parameters and (steady)states for multiple

% cell densities

%

% DG: 10x1 cell where the DG{i,1} entry is a structure whose fields are the

% variables/parameters for the i’th steady-state equation.

% i=1 -> dr/dt =0

% i=2 -> do/dt =0

% i=3:6 -> dq/dt =0

% i=7:10 -> dH/dt =0

numDensity = length(sp.r);

haveLuxR = 1;

haveQrr = logical(sp.Kp>0);

numsRNA = length(sp.Kp);

if isfield(sp,’AI’) && ~isempty(sp.AI)

% If Gamma is a function of AI, the override the default definition

[sp.Gamma diffGamma] = GamAI(sp.AI,sp);

diffByAI = true;

else

sp.AI = [];

diffByAI = false;

end

DG = cell(2+2*numsRNA,1);

j=1;

% Gradient of dr/dt = 0

% G(j) = sp.r0 + (1-sp.r0)/(1+(sp.K_R * sp.r)^2) - (sp.H’*sp.Er + 1)*sp.r;

g = [];
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g.r0 = 1 - 1./(1+(sp.K_R * sp.r)^2);

g.K_R = -(1-sp.r0)*2*sp.r.^2*sp.K_R./(1+(sp.K_R * sp.r).^2).^2...

*logical(sp.K_R>0);

% For Vh...

knownParams = getKnownParams;

g.R0 = g.K_R*knownParams.KRd;

g.r = -(1-sp.r0)*2*sp.r*sp.K_R^2./(1+(sp.K_R * sp.r).^2).^2 - ...

( (sp.H’*sp.Er)’ + 1);

g.H = -sp.Er*sp.r;

g.H(~haveQrr,:)=0; % Derivative =0 if q=0

g.Er = -sp.H*diag(sp.r);

g.Er(logical(sp.Er==0),:) = 0; % Derivative =0 if Er=0

g.Er(~haveQrr,:) = 0; % Derivative =0 if q=0

DG{j} = g;

j = j+1;

% Gradient of do/dt = 0

%G(j) = 1/(1+sp.K_O*(1+sp.Gamma)*sp.o) - (sp.H’*sp.Eo +1)*sp.o;

g = [];

g.K_O = -(1+sp.Gamma).*sp.o./(1+sp.K_O*(1+sp.Gamma).*sp.o).^2...

*logical(sp.K_O>0);

dGamma = -sp.K_O*sp.o./(1+sp.K_O*(1+sp.Gamma).*sp.o).^2;

if diffByAI

g.alpha = dGamma.*diffGamma;

else % if Gamma is not a function of AI...

g.Gamma = dGamma;

end
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g.o = -sp.K_O*(1+sp.Gamma)./(1+sp.K_O*(1+sp.Gamma).*sp.o).^2 - ...

( (sp.H’*sp.Eo)’ +1);

g.H = -sp.Eo*sp.o;

g.H(~haveQrr,:)=0;

g.Eo = -sp.H*diag(sp.o);

g.Eo(logical(sp.Eo==0),:) = 0; % Derivative =0 if Eo=0

g.Eo(~haveQrr,:)=0;

DG{j} = g;

j = j+1;

% Gradient of dq/dt = 0

for i=1:numsRNA,

g = [];

if haveQrr(i)

%G(j) = (sp.Kp(i) * sp.Gamma * sp.o) / (1 + sp.Kp(i) * sp.Gamma * sp.o)...

% *(1 + sp.Vq(i) * (sp.Kl(i) * sp.r)^2) / (1 + (sp.Kl(i) * sp.r)^2)...

% - (sp.Eq(i) * (1- sum(sp.H)) +1)*sp.q(i);

g.Kp = zeros(numsRNA,numDensity);

g.Kp(i,:) = (1 + sp.Vq(i) * (sp.Kl(i) * sp.r).^2) ./ (1 + (sp.Kl(i)...

* sp.r).^2) .* sp.Gamma.* sp.o./(1 + sp.Kp(i)...

* sp.Gamma .* sp.o).^2;

dGamma = (1 + sp.Vq(i) * (sp.Kl(i) * sp.r).^2) ./ (1 + ...

(sp.Kl(i) * sp.r).^2).* sp.Kp(i) .* sp.o ./ (1 + ...

sp.Kp(i) * sp.Gamma .* sp.o).^2;

if diffByAI

g.alpha = dGamma.*diffGamma;

else

g.Gamma = dGamma;

end
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g.o = (1 + sp.Vq(i) * (sp.Kl(i) * sp.r).^2) ./ (1 + (sp.Kl(i)...

* sp.r).^2).* sp.Kp(i) .* sp.Gamma ./ (1 + sp.Kp(i) * ...

sp.Gamma .* sp.o).^2;

g.Vq = zeros(length(sp.Vq),numDensity);

g.Vq(i,:) = (sp.Kp(i) * sp.Gamma .* sp.o) ./ (1 + sp.Kp(i) * ...

sp.Gamma .* sp.o) .* (sp.Kl(i) * sp.r).^2 ./ (1 + (sp.Kl(i)...

* sp.r).^2)*logical(sp.Vq(i)~=1 || sp.Vq(i)~=0);

g.Kl = zeros(numsRNA,numDensity);

g.Kl(i,:) = (sp.Kp(i) * sp.Gamma .* sp.o) ./ (1 + sp.Kp(i) * ...

sp.Gamma .* sp.o)*2*sp.Kl(i).*sp.r.^2 * (sp.Vq(i)-1)./...

(1 + (sp.Kl(i) * sp.r).^2).^2 ;

% For Vh...

g.R0 = g.Kl(i)*knownParams.Kl_prop(i)*haveQrr(i);

g.r = (sp.Kp(i) * sp.Gamma .* sp.o) ./ (1 + sp.Kp(i) * ...

sp.Gamma .* sp.o)*2*sp.Kl(i)^2.*sp.r * (sp.Vq(i)-1)...

./(1 + (sp.Kl(i) * sp.r).^2).^2*haveLuxR;

g.Eq = zeros(numsRNA,numDensity);

g.Eq(i,:) = -(1- sum(sp.H)).*sp.q(i,:);

g.H = sp.Eq(i)*ones(4,numDensity)*diag(sp.q(i,:));

g.H(~haveQrr,:) = 0;

g.q = zeros(numsRNA,numDensity);

g.q(i,:) = -(sp.Eq(i) * (1- sum(sp.H)) +1);

g.q(~haveQrr,:) = 0;

end

DG{j} = g;
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j = j+1;

end;

% Gradient of dH/dt = 0

for i=1:numsRNA,

%G(j) = (1- sum(sp.H)) * sp.q(i) - (sp.Er(i) * sp.r + sp.Vor * ...

% sp.Eo(i) * sp.o ) * sp.Vr(i) * sp.H(i);

g = [];

if haveQrr(i)

g.H = -ones(numsRNA,numDensity)*diag(sp.q(i,:));

g.H(i,:) = g.H(i,:) - (sp.Er(i)*sp.r+sp.Vor*sp.Eo(i)*sp.o)* sp.Vr(i);

g.H(~haveQrr,:) = 0;

g.q = zeros(numsRNA,numDensity);

g.q(i,:) = (1- sum(sp.H));

g.q(~haveQrr,:) = 0;

g.Er = zeros(numsRNA,numDensity);

g.Er(i,:) = - sp.r * sp.Vr(i) .* sp.H(i,:).*logical(sp.Er(i)>0);

g.r = - sp.Er(i) * sp.Vr(i) * sp.H(i,:)*haveLuxR;

g.Vor = - sp.Eo(i) * sp.o * sp.Vr(i) .* sp.H(i,:)*logical(sp.Vor>0);

g.Eo = zeros(numsRNA,numDensity);

g.Eo(i,:) = -sp.Vor*sp.o * sp.Vr(i) .* sp.H(i,:)*logical(sp.Eo(i)>0);

g.o = - sp.Vor * sp.Eo(i) * sp.Vr(i) * sp.H(i,:);

g.Vr = zeros(numsRNA,numDensity);

g.Vr(i,:) = - (sp.Er(i) * sp.r + sp.Vor * sp.Eo(i) * sp.o ) .* ...

sp.H(i,:)*logical(sp.Vr(i)>0);

end

DG{j} = g;
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j = j+1;

end;

C.3 Form the Jacobian

function J = makejac(g,thePlan)

% g: Output from D_steady_state_map(sp)

% (a cell whose entries are vectors representing the derivative of

% the state variables with respect to all of the parameters/states)

% thePlan: A structure that matches the output from "plans.m". Note that

% this structure can be different than the structure used to calculate the

% other input "g".

%

% J: A matrix representing the Jacobian of the system with respect to

% the variables/states outlined in "thePlan.plan". J(i,j) is the derivative

% of the derivative of the i’th parameter/variable in "thePlan.plan" with

% respect to the j’th parameter/variable in "thePlan.plan"

% total number of variables in this plan

N = getNumVarsInPlan(thePlan);

J = zeros(length(g),N);

for i=1:length(g),

J(i,:) = stovec(g{i},thePlan)’;

end;

C.4 Compute the Sensitivity of the States to the
Parameters

function sigma = sensitivityStatesToParams(s,p,thePlan)

% To compute ds/dp. Let F(s,p) be the steady-state map, s the states

% and p the parameters. DF_s is the submatrix of the Jacobian where

% the states are perturbed, while DF_p is the submatrix of the Jacobian

% where the parameters are perturbed.

%

% Note: F(s,p) ~ F(s_0,p_0) + DF_s(s_0,p_0)ds + DF_p(s_0,p_0)dp
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% At s=s_0, p=p_0, we have

% 0 = DF_s(s_0,p_0)ds + DF_p(s_0,p_0)dp

% --> ds/dp = DF_p(s_0,p_0)/DF_s(s_0,p_0)

% s and p are structures representing the steady states (at each cell

% density) and the parameters

% planName is the plan to follow to compute the Jacobian

%

% Returns an nx1 cell sigma where M = sigma{i,1} is a matrix of the

% derivative of the states with respect to parameters at the i’th cell

% density. Furthermore, M(j,k) is the derivative of the j’th state with

% respect to the k’th parameter.

numDensity = length(s.r);

sigma = cell(numDensity,1);

P = p;

S = s;

GammaStartsAt = findVariable(thePlan,’Gamma1’);

if isempty(GammaStartsAt)

GammaStartsAt = findVariable(thePlan,’Gamma’);

end

GammaEndsAt = GammaStartsAt+thePlan.numGam -1;

% Change the plan definition so that I don’t get an out of bounds error

if ~thePlan.fnOfAI

thePlan.plan{strmatch(’Gamma’,{thePlan.plan{:,1}}),2} = 1;

end

thePlan.plan{strmatch(’q’,{thePlan.plan{:,1}}),2} = 4;

thePlan.plan{strmatch(’H’,{thePlan.plan{:,1}}),2} = 4;

thePlan.plan{strmatch(’r’,{thePlan.plan{:,1}},’exact’),2} = 1;
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thePlan.plan{strmatch(’o’,{thePlan.plan{:,1}}),2} = 1;

for i = 1:numDensity

if thePlan.fnOfAI

P.AI = p.AI(i);

else

gammaFiller = zeros(10,thePlan.numGam);

P.Gamma = p.Gamma(i);

end

S.r = s.r(i);

S.o = s.o(i);

S.q = s.q(:,i);

S.H = s.H(:,i);

sp = mergeStructures(P,S);

DF = makejac(D_steady_state_map(sp),thePlan);

if ~thePlan.fnOfAI

gammaFiller(:,i) = DF(:,GammaStartsAt);

DF = [DF(:,1:GammaStartsAt-1) gammaFiller ...

DF(:,GammaStartsAt+1:end)];

end

numStates = 10;

DFDP = DF(:,1:end-numStates);

DFDS = DF(:,end-numStates+1:end);

% Rows that have at least one non-zero

inCell = logical(sum(DFDS,2)~=0);

if sum(~inCell) == 0 % if there are no knockouts

Z = -DFDS\DFDP;

else

Z = -pinv(DFDS)*DFDP;

end
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sigma{i} = Z;

end



APPENDIX D

MATLAB CODE: OPTIMIZATION

FUNCTIONS

The following is a collection of essential Matlab code common to the V. harveyi and

V. cholerae parameterizations.

D.1 Solve for the Steady-State

function ss = getSSAt(p,varargin)

% Returns the steady-state solution for the given parameterization

% [r o q H]

% Want to find the steady-states, knowing the parameters

planStr = ’s’;

numsRNA = length(p.Kp);

if isfield(p,’AI’) && ~isempty(p.AI)

cellDensityRange = p.AI;

thePlan = plans(planStr,’AI’,cellDensityRange(1),’numsRNA’,numsRNA);

fnOfAI = true;

else

cellDensityRange = p.Gamma;

thePlan = plans(planStr,’numGam’,1,’numsRNA’,numsRNA);

fnOfAI = false;

end

N = getNumVarsInPlan(thePlan);

Y0 = 0.1*rand(N,1);

if nargin >1

for i = 1:2:length(varargin)-1
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switch lower(varargin{i})

case lower(’initGuess’)

Y0 = varargin{i+1};

otherwise

error(’Wrong input option in getSSAt’)

end

end

end

maxEvals = 1000000;

maxIter = 17000; %700; %1.75*700;

normTol = 1e-12;

genTol = 1e-12;

dispStr = ’off’;

ctrMax = 8;

computeJacobian = true;

for i=1:length(cellDensityRange)

if fnOfAI

thePlan = plans(planStr,’AI’,cellDensityRange(i));

p.AI = cellDensityRange(i);

p.Gamma = [];

else

p.Gamma = cellDensityRange(i);

p.AI = [];

end

x0 = Y0;

noQrrAt = logical(p.Kp==0);

if sum(noQrrAt)>0

stemp = vectos(x0,thePlan);

stemp.q(noQrrAt,:) = 0;

stemp.H(noQrrAt,:) = 0;

x0 = stovec(stemp,thePlan);
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end

Y = generalOptRoutine(@(x)steady_state_map(vectos(x,thePlan,p),...

thePlan),x0,’maxEvals’,maxEvals,’maxIter’,maxIter,...

’genTol’,genTol,’dispStr’,dispStr,’normTol’,normTol,...

’ctrMax’,ctrMax,’computeJacobian’,computeJacobian);

Y(logical(Y<=normTol*5))=0;

% Make a structure of steadystate values for r o q and H and assign

% them to the output vector.

SS = vectos(Y,thePlan,p);

ss.r(i) = SS.r;

ss.o(i) = SS.o;

ss.q(:,i) = SS.q;

ss.H(:,i) = SS.H;

end

D.2 Optimization Routine

function [X,varargout] = generalOptRoutine(fHandle,X0,varargin)

% An overly complicated function to run lsqnonlin with different

% combinations of options. Overtime, on further development of the

% parameterization code, there was no need to change the optimization

% options.

% options = optimset(’MaxFunEvals’,maxEvals,’MaxIter’,maxIter,...

% ’TolX’,genTol,’TolFun’,genTol,’Display’,dispStr,’DiffMinChange’,...

% diffTol,’DiffMaxChange’,diffTolMax);

global fileNameAppend

global computeAbsoluteError

lb = zeros(size(X0));

ub = inf*ones(size(X0));

options = optimset;
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ctrMax = 1;

normTol = 1e-5;

for i = 1:2:length(varargin)-1

switch lower(varargin{i})

case lower(’maxIter’)

options = optimset(options,’maxIter’,varargin{i+1});

case lower(’maxEvals’)

options = optimset(options,’MaxFunEvals’,varargin{i+1});

case lower(’normTol’)

normTol = varargin{i+1};

options = optimset(options,’TolFun’,normTol);

case lower(’genTol’)

options = optimset(options,’TolX’,varargin{i+1});

case lower(’dispStr’)

options = optimset(options,’Display’,varargin{i+1});

case lower(’ctrMax’)

ctrMax = varargin{i+1};

case lower(’upper bound’)

ub = varargin{i+1};

case lower(’lower bound’)

lb = varargin{i+1};

case lower(’computeJacobian’)

if varargin{i+1}

options = optimset(options,’Jacobian’,’on’);

else

options = optimset(options,’Jacobian’,’off’);

end

case lower(’givenJacobianPattern’)

options = optimset(options,’JacobPattern’,varargin{i+1});

otherwise

error([’Unknown option in generalOptRoutine: ’ varargin{i}])

end

end
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optimset(’MaxFunEvals’,maxEvals,’MaxIter’,maxIter,’TolX’,genTol,...

’TolFun’,genTol,’Display’,dispStr,’JacobPattern’,JacPat);

filePath = @(n)[fileNameAppend ’generalOptRoutine_Result_’ num2str(n) ’.mat’];

oldRes = 1e10;

resnorm = inf;

ctr = 0;

opt = 1e10;

X = X0;

while resnorm> normTol && ctr < ctrMax && resnorm ~= oldRes

computeAbsoluteError = false;

oldRes = resnorm;

[X,resnorm,residual,exitflag,output] = lsqnonlin(...

fHandle,X,lb,ub,options);

opt = output.firstorderopt;

ctr = ctr + 1;

end

err = fHandle(X);

if nargout > 1

varargout{1} = err;

end

if nargout > 2

varargout{2} = opt;

end

if nargout > 3

varargout{3} = ctr;

end



APPENDIX E

MATLAB CODE: UTILITY FUNCTIONS

The following is a collection of the essential utility functions common to the V. harveyi

and V. cholerae parameterization.

E.1 Vector to Structure

function s = vectos(v,thePlan,varargin)

% To transform a vector, v, into a structure, s, given a plan for doing it

%

% 1) Assign the components of v according to thePlan.

% 2) Assign any other known parameters according to the contents of

% varargin{1} (i.e. if you want to find the steady states, v = ss guess,

% varargin{1} = known parmeters)

%

% Returns a structure whose field names are the steadystates (at all cell

% densities) and parameters (incl all Gamma’s).

s = fillOutS(v,thePlan);

if nargin >2

p = varargin{1};

end

switch lower(thePlan.name)

case lower({’VhOpt’,’VhOptStep2Jack’,’Testing’,’TestingWithStates’,...

’VhTest’,’VhTestParams’})

% Need to override these definitions with a "makeStrain" call in

% the event that there’s a LuxR-Auto and/or RQ feedback mutant.

knownParams = getKnownParams;
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s.K_R = knownParams.KRd*s.R0;

s.Kl = knownParams.Kl_prop*s.R0;

s.r0 = knownParams.r0;

s.Vq = [0; s.Vq];

case lower(’params’)

% Guessing the parameters only, so fill in the states

if exist(’p’,’var’)

if isstruct(p)

s = mergeStructures(p,s);

else

thePlan = plans(’s’);

s = fillOutS(p,thePlan.plan,s);

end

end

case lower(’states’)

% Guessing the states only, so fill in the parameters

if exist(’p’,’var’)

if isstruct(p)

s = mergeStructures(p,s);

else

thePlan = plans(’p’);

s = fillOutS(p,thePlan.plan,s);

end

end

case lower({’VcOpt’,’VcholeraeOpt’,’VcholeraeOptWStates’})

if exist(’p’,’var’)

s = mergeStructures(p,s);

end

end

s.name = thePlan.name;

if thePlan.fnOfAI

s.AI = thePlan.AI;
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end

%=============================================================================

function s = fillOutS(v,thePlan,varargin)

% # of sRNA = 4 only.

name = thePlan.name;

plan = thePlan.plan;

if nargin == 2

s = [];

else

s = varargin{1};

end

j=1;

for i=1:length(plan),

n = plan{i,2}; % length of the data for field name in plan{i,1}

if sum(strcmpi(plan{i,1},{’H’,’q’})) && n == 4

% Form a 4 x n/4 matrix

s.(plan{i,1}) = reshape(v(j + (0:n-1)’),4,n/4);

elseif sum(strcmpi(plan{i,1},{’r’,’o’,’Gamma’,’AI’}))

% Form a 1 x n vector (rather than an n x 1 vector)

s.(plan{i,1}) = v(j + (0:n-1)’)’;

else

try

s.(plan{i,1}) = v(j + (0:n-1)’);

catch

if strcmp(plan{i,1},’r0’)

s.(plan{i,1}) = 0;

else

error(’Something is wrong.’)

end

end
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end

j = j + n;

end;

E.2 Structure to Vector

function v = stovec(sp,thePlan)

% Performs the inverse operation of vectos.

% Transforms a structure s with fields scalars or vectors

% into a big vector. The order is alphabetical with the field names

plan = thePlan.plan;

j = 1;

N = getNumVarsInPlan(thePlan);

v = zeros(N,1);

for i=1:length(plan),

n = plan{i,2};

if (isfield(sp,plan{i,1}))

copyThis = makeVect(sp.(plan{i,1}));

if length(copyThis) == n

v(j + (0:n-1)) = copyThis;

elseif length(copyThis) == 2

error(’This case is not handled in this function.’)

elseif length(copyThis) == n +1

Vq = copyThis;

v(j + (0:n-1)) = Vq(2:end);

end

else

v(j + (0:n-1)) = zeros(n,1);

end;

j = j+n;

end;

E.3 Parameterization Plans

function thePlan = plans(str,varargin)

% A structure containing the "plan" (i.e. the combination of parameters
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% and variables one is interested in) along with other attributes of

% the system

i = 1;

%by default, assume there is at least one gamma and no AI.

numGam = 1;

fnOfAI = false;

numAI = 0;

AI = [];

numsRNA = 4; % Default value

while i<=length(varargin)-1

switch lower(varargin{i})

case lower(’numGam’)

numGam = varargin{i+1}; % override numGam

i = i+1;

case lower(’AI’)

AI = varargin{i+1};

numAI = length(AI);

fnOfAI = true;

i = i+1;

% IF you want to override the default value for the number

% of sRNA in the strain

case lower(’numsRNA’)

numsRNA = varargin{i+1};

i = i+1;

otherwise

error(’Unknown option in plans(str,varargin)’)

end

i = i+1;

end

if numGam+numAI == 0

error(’Need to have at least one Gamma or one AI in the plan definition’)

end
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if numAI >0

numDensity = numAI;

else

numDensity = numGam;

end

testing = { ’R0’, 1

’Eo’ , numsRNA

’Eq’, numsRNA

’Er’ , numsRNA

’Gamma’, numGam % <-- different than Vh params

’K_O’, 1

’Kp’, numsRNA

’Vor’, 1

’Vq’, max([numsRNA-1,1])

’Vr’, numsRNA};

VhParams = { ’R0’, 1

’Eo’ , numsRNA

’Eq’, numsRNA

’Er’ , numsRNA

’Gamma’, numGam

’K_O’, 1

’Kp’, numsRNA

’Vor’, 1

’Vq’, max([numsRNA-1,1])

’Vr’, numsRNA};

VhParamsTest = { ’R0’, 1

’Eo’ , numsRNA

’Eq’, numsRNA

’Er’ , numsRNA

’Gamma’, numGam
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’K_O’, 1

’Kp’, numsRNA

’Vor’, 1

’Vq’, max([numsRNA-1,1])

’Vr’, numsRNA};

states = {’r’, 1*numDensity

’o’, 1*numDensity

’q’, numsRNA*numDensity

’H’, numsRNA*numDensity};

% Does not have R0. Use this with Vc optimization

generalParams = {’Eo’ , numsRNA

’Eq’, numsRNA

’Er’ , numsRNA

’Gamma’,numGam

’Kl’, numsRNA

’K_O’, 1

’Kp’, numsRNA

’K_R’, 1

’Vor’, 1

’Vq’, numsRNA

’Vr’, numsRNA

’r0’,1};

dependentVars = 2+2*numsRNA;

switch lower(str)

case ’p’

aPlan = generalParams;

planName = ’Params’;

numStates = 0;

case ’s’

aPlan = states;

planName = ’States’;

numStates = dependentVars*numDensity;
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case ’ps’

aPlan = mergePlans(generalParams,states);

planName = ’ParamsAndStates’;

numStates = dependentVars*numDensity;

case lower(’VcholeraeOpt’)

aPlan = generalParams;

planName = ’VcholeraeOpt’;

numStates = 0;

case lower(’VcholeraeOptWStates’)

aPlan = mergePlans(generalParams,states);

planName = ’VcholeraeOptWStates’;

numStates = dependentVars*numDensity;

case lower(’VhOpt’)

aPlan = VhParams;

planName = ’VhOpt’;

numStates = 0;

case lower(’testing’)

aPlan = testing;

planName = ’Testing’;

numStates = 0;

case lower(’TestingWithStates’)

aPlan = mergePlans(testing,states);

planName = ’TestingWithStates’;

numStates = dependentVars*numDensity;

case lower(’VhOptStep2Jack’)

aPlan = mergePlans(VhParams,states);

planName = ’VhOptStep2Jack’;
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numStates = dependentVars*numDensity;

case lower(’VhTestAll’)

aPlan = mergePlans(VhParamsTest,states);

planName = ’VhTest’;

numStates = dependentVars*numDensity;

case lower(’VhTestParams’)

aPlan = VhParamsTest;

planName = ’VhTestParams’;

numStates = dependentVars*numDensity;

otherwise

error(’Wrong string input argument.’)

end

thePlan.numDensity = numDensity;

thePlan.AI = AI;

thePlan.fnOfAI = fnOfAI;

thePlan.numGam = numGam;

thePlan.numAI = numAI;

thePlan.plan = aPlan;

thePlan.name = planName;

thePlan.numStates = numStates;

numParams = getNumVarsInPlan(thePlan) - numStates;

thePlan.numParams = numParams*logical(numParams>0);

thePlan.numVars = numParams+numStates;

%=========================================================================

function newPlan = mergePlans(planA,planB)

[m,n] = size(planB);

newPlan = planA;



134

for i =1:m

newPlan(end+1,:) = planB(i,:);

end

E.4 Merge Structures

function S = mergeStructures(from,into)

% from and into are structures. The output is the merger of the two

% structures so that "into" = "from" + "into"

S = into;

theNames = fieldnames(from);

for i = 1:length(theNames)

S.(theNames{i}) = from.(theNames{i});

end

E.5 Number of Variables in a Plan

function N = getNumVarsInPlan(thePlan)

N = sum(cell2mat(thePlan.plan(:,2)));

E.6 Find Variable Index

function idx = findVariable(thePlan,varStr)

% Returns the index of the variable indicated by varStr in thePlan

names = varnames(thePlan.plan);

idx = strmatch(varStr,names,’exact’);

E.7 Variable Name and Index for a Plan

function names = varnames(plan,varargin)

% gives variable name and index using a plan

j=1;

for i=1:length(plan),

n = plan{i,2}; % length of the data for field name in plan{i,1}

if n > 1

for k=1:n,

names{j + k -1} = sprintf(’%s%d’,plan{i,1},k);

end
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else

names{j} = sprintf(’%s’,plan{i,1});

end

j = j + n;

end

if nargin==2

names = names{varargin{1}};

end

E.8 Apply Different Weights to Experiments

function key = residualKey(varargin)

% To apply different weights to individual batches of experiments

%

% key for the experimental data

speciesName = ’Vh’;

for i =1:2:length(varargin)

switch varargin{i}

case lower(’species’)

speciesName = varargin{i+1};

case lower(’states’)

states = varargin{i+1};

otherwise

error(’Unknown option in residualKey’)

end

end

% If you’re doing a Vh strain...

if strcmpi(speciesName,’Vh’)

key.step1Error.weight = 0; %1e2;

key.step2Error.weight = 10; %1e1;

key.step3Error.weight = 4; %1; %1;

key.step4Error.weight = 1; %1e-1;

key.step5Error.weight = 0;
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else % If you’re doing a Vc strain...

key.Fig6.weight = 1;

key.Fig7.weight = 1;

key.Table1.weight = 1;

end

E.9 Make a Mutant Strain

function p = makeStrain(params,strainType,varargin)

% "Engineer" a new strain as specified in strainType (a cell), which can

% take on the following forms:

% ’hapR mRNA’

% ’luxOAUCC’, ’luxO-Qrr Feedback’

% ’qrri RNA’

% ’delta qrri’

% ’hapR-Qrri’

% ’hapR-Qrr Feedback’, ’luxR-Qrr Feedback’

% ’luxO-Qrri’

% ’hapR Auto’

% ’luxO Auto’

% ’WT V.harveyi’

% ’WT V.cholerae’

% ’identical qrr’

% ’distribution’

% ’at LCD’, ’at HCD’

% ’no hapR repression’

% Varargin specifies to which sRNA you are applying the knockout to and is

% a cell of same size as strainType

optCtr = 1;

p = params;

for i = 1:length(strainType)

aStrain = lower(strainType{i});

switch aStrain

case lower({’hapR mRNA’,’luxR mRNA’})

p.Er(:) = 0;
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p.Kl(:) = 0;

p.Vq(:) = 0;

p.K_R = 0;

p.R0 = 0;

case lower({’luxOAUCC’,’luxO-Qrr Feedback’})

p.Eo(:) = 0;

p.Vor = 0;

case lower(’luxO-Qrri’)

these = varargin{1}{optCtr};

p.Eo(these) = 0;

optCtr = optCtr +1;

case lower({’delta qrri’,’qrri RNA’})

% removes qrr but doesn’t shrink the array

these = varargin{1}{optCtr};

p.Kp(these) = 0;

p.Er(these) = 0;

p.Eo(these) = 0;

p.Eq(these) = 0;

p.Kl(these) = 0;

p.Vq(these) = 0;

p.Vr(these) = 0;

optCtr = optCtr +1;

case lower({’hapR-Qrri’,’luxR-Qrri’})

these = varargin{1}{optCtr};

p.Kl(these) = 0;

p.Vq(these) = 0;

optCtr = optCtr +1;

case lower({’hapR-Qrr Feedback’, ’luxR-Qrr Feedback’})

p.Kl(:) = 0;
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p.Vq(:) = 0;

case lower({’hapR Auto’,’luxR Auto’})

p.K_R = 0;

case lower(’luxO Auto’)

p.K_O = 0;

case lower({’WT V.harveyi’})

load(’C:\..\MATLAB\SOLUTIONS\ANSWER_Vh.mat’)

p.name = [’V. ’ aStrain(6:end)];

case lower({’WT V.cholerae’})

load(’C:\..\MATLAB\SOLUTIONS\ANSWER_Vc.mat’)

case lower(’WT’)

if isempty(params)

error(’Need to specify a parameter structure.’)

end

p = params;

case lower(’identical qrr’)

qrrIdx = varargin{1}{optCtr};

p.Eq(:) = p.Eq(qrrIdx);

p.Eo(:) = p.Eo(qrrIdx);

p.Er(:) = p.Er(qrrIdx);

p.Kp(:) = p.Kp(qrrIdx);

p.Kl(:) = p.Kl(qrrIdx);

p.Vq(:) = p.Vq(qrrIdx);

p.Vr(:) = p.Vr(qrrIdx);

optCtr = optCtr +1;

case lower(’mean’)

p.Eq(:) = mean(p.Eq);

p.Eo(:) = mean(p.Eo);
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p.Er(:) = mean(p.Er);

p.Kp(:) = mean(p.Kp);

p.Kl(:) = mean(p.Kl);

p.Vq(:) = mean(p.Vq);

p.Vr(:) = mean(p.Vr);

case lower({’mean with distribution’,’distribution’})

p.Eq(:) = abs(mean(p.Eq) + std(p.Eq)*randn(length(p.Eq),1));

p.Eo(:) = abs(mean(p.Eo) + std(p.Eo)*randn(length(p.Eo),1));

p.Er(:) = abs(mean(p.Er) + std(p.Er)*randn(length(p.Er),1));

p.Kp(:) = abs(mean(p.Kp) + std(p.Kp)*randn(length(p.Kp),1));

p.Kl(:) = abs(mean(p.Kl) + std(p.Kl)*randn(length(p.Kl),1));

p.Vq(:) = abs(mean(p.Vq) + std(p.Vq)*randn(length(p.Vq),1));

p.Vr(:) = abs(mean(p.Vr) + std(p.Vr)*randn(length(p.Vr),1));

case lower({’Eo scale’})

scaleFactor = varargin{1}{optCtr};

p.Eo(:) = p.Eo(:)*scaleFactor;

p.Vor = p.Vor/scaleFactor;

optCtr = optCtr +1;

case lower({’Er scale’})

scaleFactor = varargin{1}{optCtr};

p.Er(:) = p.Er(:)*scaleFactor;

p.K_R = p.K_R*scaleFactor;

p.Vr(:) = p.Vr(:)/scaleFactor;

p.Vor = p.Vor*scaleFactor;

p.Kl(:) = p.Kl(:)*scaleFactor;

optCtr = optCtr +1;

otherwise

error(’Unknown strain type’)

end

end
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