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ABSTRACT 

 

 Water and energy are two inextricably linked resources.  Each has the potential to 

limit the development of the other.  There is a substantial body of research dedicated to 

understanding how the availability of water can limit energy production, but the alternate 

relationship – that of energy limiting water production – has received much less scrutiny.  

The demand for both resources is predicted to increase in tandem with population growth, 

potentially creating or adding to conflict in regions of water or energy scarcity.   

To greater understand the “water/energy nexus,” – a commonly used term to 

describe their interdependence – each phase of water supply and consumption can be 

broken into discrete segments that have an associated energy requirement, called an 

energy factor.  An energy factor is the amount of energy used to develop, convey and 

treat a given volume of water.  This study presents a methodology for calculating the 

energy factors of each phase of the water supply cycle that is “outside the retail meter.”  

A case study of a large water system in an arid region of the United States is used as an 

example system for applying these methods.  Using the case study system as a 

framework, an energy demand model is developed that estimates baseline energy usage 

for heterogeneous water systems, and then models changes in energy requirement under 

three alternate water supply and demand scenarios.  The results of the model scenarios 

reveal that water demand reductions, as can be brought about by targeted water efficiency 

programs, can have extended energy-saving impacts – affecting all other phases of the 



 

iv 

water supply cycle.  A demand reduction of 25% for the case study water system resulted 

in a cumulative annual energy savings of 8.9 million kilowatt hours (kWh) – a decrease 

of 28% from its current level of energy consumption.  Modeling the conversion of 

agricultural or currently untreated water to municipal uses within the case study resulted 

in an increase in energy requirement by 6.3 million kWh – a 20% increase.  Reductions in 

the availability of imported surface water supply, such as those brought about by 

prolonged drought, climate change or reservoir sedimentation, can increase energy 

demand as well.  An additional 5.7 million kWh are needed to ameliorate the effects of a 

35% reduction in surface water supply for the case study water system – an 18% increase 

from its current energy requirement.  The process and findings of this study reveal a lack 

of emphasis among water agencies concerning energy consumption, and indicate that 

changes in supply and use patterns have dramatic effects on energy usage.
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CHAPTER 1 

 

INTRODUCTION 

 

Population in the United States is projected to grow to 364 million by 2030 and 

420 million by 2050 (U.S. Census Bureau).  During the same time frame, energy use is 

projected to grow at an annual rate of 1.3%, requiring an estimated additional 1,328 

billion kilowatt hours (kWh) of electricity and water demand is projected to grow in 

tandem (DOE/EIA 2008).  As population grows, so does the demand for energy and 

water.  Meeting demand for both of these critical resources poses a challenge to energy 

utilities and water managers alike, on a global and local scale.  The lack (or shortage) of 

water can limit the production of energy.  All methods of energy extraction or generation, 

whether from coal, oil shale, nuclear, geothermal, solar power, etc., come with a requisite 

demand for water (Sovacool, 2009, DOE 2006, Bauer 2009).  These demands have 

already become a limiting factor in energy development, such that many plans for new 

power-plants have experienced delays or been shelved indefinitely (DOE/NETL 2008).  

The alternate relationship – that of the availability of energy limiting the availability of 

water – is also constrained.  Providing water where it is needed, whether near or far, for 

agriculture or culinary use, can be a highly energy-intensive process and extremely 

contentious (Zimmerman 2008). 
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In an effort to facilitate the study of the water supply and consumption processes, 

a conceptual diagram of water collection, conveyance, distribution, treatment, end-use, 

wastewater treatment, recycling and discharge back to the natural system is presented in 

Figure 1.  Each phase in the diagram has existing or emerging energy-related issues that 

have often not been of primary importance when considering possible water supply, 

conveyance and treatment options.  The need to develop new water supply sources and 

the associated capital investment costs can obscure or down-play the long-term energy 

costs involved in operation and maintenance. 

 

 

Figure 1. Water supply and consumption cycle diagram  
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Also, water agencies frequently purchase energy at an industrial rate that may be 

much lower than that paid by a typical residential or retail customer, making energy-

intensive projects more likely than they would be otherwise.  An example of neglecting 

energy within the “Source” phase of the cycle has occurred in southern California.  State 

regulators approved the installation of one of the world’s largest desalination plants near 

San Diego.  Currently, desalination is one of the most energy-intensive and financially 

costly means of supplying water.  The new facility will require about 274,400 Megawatt 

hours (MWh) of electricity each year, to produce 50 million gallons per day (MGD) of 

drinking water.  For comparison, importation via California’s State Water Project (SWP) 

– over 444 miles and 3,000 feet over the Tehachapi mountain range – requires about 

134,000 MWh for the same volume of water (Wilkinson 2000, California Energy 

Commission 2005, California Department of Water Resources 2009).  A study conducted 

by Stokes et al. (2009) further quantified this gap in energy expenditures and extrapolated 

them into the future.  First, they estimated that the energy and greenhouse gas (GHG) 

footprint of seawater desalination is 1.5 – 2.4 times larger than that of imported water in 

California, similar to the figures estimated above.  They also estimated that meeting the 

annual water needs of a typical Californian (about 11,700 cubic feet) with desalinated 

water would require 3,889 kWh of energy and emit 1,760 pounds (lbs) of carbon dioxide 

(CO2) annually, compared to 1,612 kWh and 790 lbs of CO2 using imported water.  

Second, they analyzed the energy and GHG impacts of meeting the state’s additional 

water demand in 2030 using a variety of sources, including water importation, water 

recycling and three desalination treatment methods.  They found that meeting future 

demand with the most energy-intensive method, that of desalinated ocean water with 
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conventional pretreatment, would consume 52% of California’s total energy budget at 

that time.  Although desalination is growing quickly as a water supply source – on the 

order of 10% growth each year – it is only one available option when considering 

alternative water supplies (Hightower 2007).  In contrast to desalination, using recycled 

water (reclaimed wastewater) to meet demand in 2030 would require only 21% of 

California’s total energy budget (Stokes 2009).  Recycled water, although not of drinking 

water quality and requiring separate distribution systems, has been found to be 

functionally equivalent for landscape irrigation and other applications, and can be one of 

the least energy intensive sources of water available (California Energy Commission 

2006).  It has the potential to significantly offset culinary water use, but is less likely to 

be considered an option because it is perceived as a lower quality product, has a high 

initial cost of implementation and may require additional pumping to return it to the point 

of use.  Nevertheless, water recycling is forecast to grow at an appreciable 15% every 

three to four years (Hightower 2008).  The difference in energy consumption between the 

two water supply options reinforces the need for water suppliers to consider the long-

term energy impacts or life-cycle costs when assessing water supply options and 

proposed projects. 

Another example of the lack of energy awareness when looking at water supply 

options is the increasing reliance on groundwater.  With the advent of hydraulic pumping, 

groundwater supplies became available for withdrawal on a much greater scale than they 

were historically.  When groundwater is withdrawn faster than the natural system can 

replenish, the water level drops and even greater amounts of energy are required to pump 

water to the surface.  The added financial cost is usually negligible (because it occurs 
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gradually) and in this way inexpensive fossil fuels enable often unregulated pumping of 

“fossil” groundwater aquifers.  Groundwater overdraft is widespread around the globe, 

from the U.S. to India, from Mexico to the Middle East.  Many of these countries or 

regions have been withdrawing water from historic aquifers at accelerated rates, such that 

their withdrawals far exceed the rate of aquifer recharge (Gleick 1994, Shah 2009).  

Periods of greater groundwater demand commensurate with dry years and prolonged 

drought can exacerbate this condition.  During such periods, groundwater sources may be 

used to compensate for a reduction in surface water storage (California Energy 

Commission 2005).  This, combined with existing overdraft practices, creates a “lose-

lose” situation wherein the resource is depleted and the energy to retrieve it also rises 

prohibitively.  Despite attempts to institute legal and regulatory oversight over 

groundwater mining, there is little incentive to correct the practice until issues 

surrounding subsidized or inexpensive fossil fuels are addressed as well (Scott 2004).  

How much water will be available to meet future demand from groundwater sources, and 

how much energy its retrieval will require, is unknown. 

After a water source has been developed it must oftentimes be conveyed, 

sometimes over long distances and high elevations, to its destination.  In some locations 

water suppliers can take advantage of gravity to move water from higher elevations to its 

place of use, perhaps generating hydropower and pressurizing distribution networks at the 

same time.  However, in many regions these “easy” sources of water have already been 

fully developed.  Future supplies will require developing sources that are farther away 

and require additional energy to deliver.  Many long-distance water transfers are 

currently being considered or implemented that involve pumping water over great 
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distances or elevations (Tellinghuisen 2009).  An example of how energy-intensive water 

conveyance can be is the California Aqueduct, a pipeline that conveys water across two 

mountain ranges to southern California.  The combined pumps and booster stations on 

this system constitute the largest energy consumer in the state (Webber 2008).   

Great geographic and temporal disparities can exist between locations with high 

precipitation and the urban centers where water is ultimately delivered.  China faces this 

common problem, with plentiful precipitation in the southern regions and an arid north.  

In an effort to resolve this disparity, massive water projects are under construction.  

These include the South-to-North Water Transfer Project, the largest water transfer of its 

kind ever undertaken (Cheng 2009).  After its completion in 2050, China’s four largest 

rivers will be interconnected and will convey almost 36.3 million acre-feet (ac-ft) over a 

total distance of about 2,300 miles.  The lifts required for this conveyance are small, 

(requiring only 30 pump stations with a capacity of 453.7 MWh), but the design plans 

call for miles of tunnels bored through mountain ranges to avoid pumping (Changjiang 

Water Resources Commission 2009, Watertechnology.net 2009).  The energy related to 

simply construct such a project is very large.  In general, around the world, solving the 

spatio-temporal disparity of water supply and consumption will require longer transfers 

and greater lifts, with a requisite energy demand that is unknown. 

Water treatment is the third phase within the water supply and consumption cycle.  

Only a portion of the water of a particular source may be treated to culinary drinking 

water standards.  Water used for agricultural purposes or within a secondary system 

(untreated water designated for residential and commercial landscape irrigation) has no 

water treatment energy costs.  However, many water suppliers suggest that some of their 
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future water supply will be found by converting agricultural water to municipal and 

industrial uses (Utah Division of Water Resources 2004).  The additional energetic cost 

of treating agricultural/secondary water is usually low, but can become expensive if the 

water is heavily contaminated, brackish or saline.  For most water treatment systems the 

primary energy costs are related to the amount of water that must be pumped at the 

facility, and to the life-cycle energy costs of chemicals used in the treatment process 

(NRDC 2004).  In this manner, the volume of water treated directly impacts the required 

energy.   

Another concern for water treatment plant operators is that of new and more 

stringent water quality standards.  Energy costs for water treatment rose in the mid-1990s 

in response to new environmental regulations as mandated in the Clean Water Act 

(CWA) (Neukruq 1995).  These regulations placed new restrictions on pollutants that 

were previously unregulated and also required reductions in disinfection byproducts.  To 

meet those new standards and for safety reasons, more water suppliers explored 

alternative water treatment technologies such as ozonation and ultraviolet light 

disinfection.  These methods of treatment are more energy intensive than traditional 

flocculation, settling and chlorination disinfection processes (Douglas 1993). 

One of the greatest energy expenditures in the water supply and consumption 

cycle is wastewater treatment.  Facilities are meeting current discharge water quality 

standards, but there is growing evidence that the nutrient loads in wastewater are 

damaging to the environment.  Wastewater treatment facility managers are concerned 

about more aggressive nutrient removal regulations, possibly necessitating additional 

infrastructure and energy costs.  It has been estimated that advanced wastewater 



    

 

 
 

8 

8
 

treatment with additional nitrogen removal can triple energy costs compared to simpler 

treatment methods like trickling filtration (EPRI 2002).  Alternate disinfection methods 

of treatment such as ozonation and ultraviolet light disinfection are more energy-

intensive than more traditional chlorination.  Endocrine disrupting compounds (EDCs) 

and other micro-pollutants are of concern for human and ecosystem health, would likely 

increase required treatment energy substantially and are under review for inclusion in 

water quality standards (Ternes 2007).  Pilot projects exploring EDC removal, such as 

granular activated carbon, ozone, membrane filtration and reverse osmosis, are underway 

in the U.S., the European Union (E.U.) and the United Kingdom (U.K.) (Burke 2004, 

Clara 2005, Benotti 2009).  These methods of water purification are used for culinary 

water treatment already, but may be environmentally and fiscally undesirable for large-

scale wastewater application due to their high energy costs and related GHG emissions 

(Jones 2007).  More aggressive contaminant removal is presumed to benefit the aquatic 

systems within the receiving body of water and the environment as a whole, but a 

corresponding higher energy demand and greater GHG emissions should be considered 

as well.  The prevailing consensus among wastewater industry professionals is not if 

more regulation will be enacted, but simply a matter of when and how much.  Whatever 

additional water quality regulations are put in place will likely affect the industry in a 

broad fashion and require more infrastructure and energy.  The energy impacts of treating 

water to more stringent standards, especially with the possible inclusion of micro-

pollutant removal, are not well understood. 

The end-use segment is the largest consumer of energy within the water supply 

and consumption cycle, and constitutes over half of the total system energy demand in 
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places like California (California Energy Commission 2006).  This reflects the large 

amount of energy that is required to heat, cool and pump water within residential, 

commercial and industrial facilities. As a consequence, efficiency programs targeted 

toward end-use have the greatest potential to reduce water-related energy consumption 

and can be greater than actions directed toward water supply and treatment.  Prioritizing 

water efficiency funding, offering incentives, implementing effective pricing structures 

and enforcing water efficiency ordinances can have significant environmental and 

economic impacts.  This stage is also considered to be “within the retail meter” and is 

therefore under the purview of water agencies themselves, usually with program 

assistance from governmental agencies.  This study focuses on the energy costs 

associated with “outside the retail meter” phases of the water supply and consumption 

cycle, which are highly variable and more difficult to assess. 

 

1.1 Literature on Energy for Water 

 There are many studies addressing energy requirements for water-related services 

at both large and small scales.  The Electric Power Research Institute (EPRI) began 

releasing broad-based, national studies in the late 1990s that address energy consumption 

by water-related services and by end-use categories (EPRI 1999b, EPRI 2002).  Their 

report issued in 2002, Water & Sustainability (Volume 4), quantified energy required per 

volume of water (kilowatt hours per million gallons) and then applied these figures to 

estimate total energy usage by selected sectors of the economy.  EPRI has since updated 

its 2002 evaluation to include a thorough analysis of water technologies with energy 
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efficiency potential such as high-efficiency pumping, pipeline optimization, end-use 

efficiency measures, advanced treatment methods and desalination (EPRI 2009).   

Another broad-based study was conducted by the California Energy Commission 

(CEC) in 2005.  They found that 19% of the state’s electrical energy use and 30% of their 

natural gas consumption was dedicated to water-related services, including end-user 

heating and cooling (California Energy Commission 2005).  The same approach to 

quantifying energy usage – that of energy use per volume of water – was also used, and 

illustrated the high energetic cost of water particularly within the “Source and 

Conveyance” category, reflecting the long distances and lifts of California’s water 

importation.  This study was later updated with the inclusion of better substantiated data 

and more refined estimates for each per-unit energy demand for each phase of the water 

supply and consumption cycle (California Energy Commission 2006).  These energy 

intensity estimates also took “water system losses” into account.  This is an estimate of 

the amount of water lost as it flows from source to end-user due to leaking, evaporation, 

seepage or maintenance processes.  Another important inclusion in the CEC 2006 update 

is a breakdown of the energy requirements within each cycle and also by geographic area 

(Northern and Southern California) an acknowledgement that geography-related 

characteristics (elevation change, water quality, groundwater table, etc.) plays an 

important role when estimating energy demand for local or regional water. 

In 2004 the National Resources Defense Council and Pacific Institute released a 

report that addressed each phase of the water supply and consumption cycle, and 

extended estimated energy quantities further, by calculating the resulting GHG emissions 

under a variety of energy-mix regimes.  These ranged from the current California mix, to 
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wider use of “renewables,” to strictly thermoelectric energy use.  They also released a 

tool that would assist water managers by estimating their energy demand by sector and 

the resulting GHG emissions from energy mix scenarios (NRDC 2004).  This 

extrapolation to GHG impacts was used again by water planners in Fairfax, Virginia.  

They developed a Geographic Information System (GIS) based tool that used the spatial 

extent of a water system and other parameters to estimate energy consumption and GHG 

emissions (Bahkshi 2009). 

Life-cycle assessment (LCA) has become an important tool for quantifying and 

minimizing the environmental aspects of a product, process or service.  LCA addresses 

all phases of development, from material extraction and construction, through a period of 

use and eventual disposal or reuse.  For example, a typical LCA for water-related services 

attempts to quantify the expenditures of fabrication, use and end-of-life stages of a water 

source conveyance, a pipe network, a treatment plant or even new treatment methods or 

processes.  Stokes et al. (2009) provided a comprehensive LCA of different water supply 

options for California.  Their results also included GHG impacts using a variety of energy 

mixes and a comparison of desalination in California to other regions that are heavily 

reliant on the same technologies for their water supply.  LCA research conducted by 

Filion et al. (2004) quantified the energy costs of a water distribution system.  They 

modeled pipe fabrication, installation costs and pipeline breaks over the lifetime of a 

distribution system.  They concluded that, for the kind of distribution networks in their 

modeling and analysis, a pipeline replacement timeline of 50 years was optimal.  There 

are many LCA studies dedicated to wastewater processes and new treatment 

technologies.  Tangsubkul et al. (2005) evaluated different treatment methods of 
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recycling water to nonpotable standards for energy and environmental impacts.  

Similarly, a LCA by Das et al. (2002) compared the use of ultraviolet light disinfection to 

more traditional chlorination and de-chlorination methods.  They presented evidence to 

support the theory that, despite the increase in energy consumption, the newer treatment 

technologies were environmentally beneficial in the long-run.  Racoviceanu et al. (2007) 

performed an LCA on initial water treatment chemical production, transport and plant 

operation, finding that plant operational components accounted for most of its energy 

usage.  They also found that pumping of effluent throughout the plant was usually the 

primary energy consumer.  Arpke et al. (2006) examined the water supply and 

consumption cycle phase with the highest energy requirement, that of indoor end-use, by 

performing LCA on water usage within four building types.  They found that, of the four 

types – apartment complex, college dormitory, motel and office building – apartment 

buildings have the highest energy usage per unit volume of water, and office buildings 

have the most energy efficient water use. 

 Studies on energy optimization of water treatment or the individual components 

of water supply are prevalent in the literature.  Some focus on optimal energy mixes and 

operations for water given a locale with specific physiographic characteristics, such as in 

Ramos et al. (2009) and Vieira et al. (2008).  Components of a water distribution or 

treatment system can often increase their energy efficiency by optimizing their operation, 

as is suggested by Bunn et al. (2009), or by using a Supervisory Control and Data 

Acquisition (SCADA) system, as suggested by EPRI (1998, 1999a).  Suggestions for 

removal of pressure reduction valves in favor of small hydropower energy generation, 

also called micro-turbines, are beginning to be investigated as a means of offsetting water 
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system energy costs (Ramos 2007, Smith 2008).  Wastewater processes have significant 

potential for energy generation, and it has even been suggested that biogas and methane 

production serve as source of revenue in the form of carbon credit and emission trading 

(Show 2008).   

Finally, many studies suggest that the greatest energy efficiency gains to be made 

in many locations are found with reductions in water demand itself.  Using a case study 

site in Melbourne, Australia, Flower et al. (2007) found that with a combination of 

structural and non-structural demand management strategies, individual household water 

consumption could be reduced by 65% and GHG emissions by 63%.  The savings had a 

cascading effect from the end-user phase throughout the entire water supply and 

consumption cycle.  They proposed that, with carefully targeted demand reducing 

programs, the environmental and economic benefits would not only be seen by 

consumers, but by water agencies that would be able to delay costly water development 

and treatment.  The California Energy Commission also stated that it was possible to 

meet 95% of their energy efficiency goals indirectly through less expensive water 

efficiency programs, emphasizing the gains to be made in the end-use sector for that 

region (California Energy Commission 2005, Alliance for Water Efficiency 2008). 

 In summary, the body of knowledge concerning the “water/energy nexus” is 

growing rapidly.  Much progress has been made toward substantiating viable solutions to 

problems created by this growing issue.  However, on a local and regional scale, every 

water system is unique and has its own configuration of water sources, conveyance, 

distribution and treatment.  Large-scale studies provide an overview of common issues, 

but are generally too coarse to apply to the majority of small and moderately-sized water 
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systems.  Conversely, LCA studies look to define the lifetime energy costs of a system in 

extreme detail.  Information is available for water suppliers at these two scales and for 

individual components, but studies addressing the needs of more common water systems 

– those that are comprehensive but detailed enough to include key system components -  

are lacking.  As a consequence, water suppliers are often at a loss to assess their current 

energy requirements and to extrapolate these energy requirements into the future.  They 

need a methodology for discovering their current energy requirements.  They also need to 

be able to adapt their system management to sometimes abrupt changes like decreasing 

water supply, water demand or new regulations.  For example, a decrease in demand 

from end-users, such as provided by a successful water efficiency program, has the 

potential to decrease energy requirement significantly but not always in an obvious or 

linear fashion.  The opposite is true for urban growth and increased water demand.  

Energy requirements could also change with alteration in usage patterns.  As mentioned 

earlier, many municipalities are expecting to meet some of their future demand with 

conversions in water application, such as a conversion from agricultural irrigation to 

municipal and industrial uses.  In such cases, the source of water is often already 

developed and a distribution network in place.  However, agricultural water is untreated 

and converting it for purposes that require higher water quality would require added 

energy for each phase in the “downstream” cycle.  Surface water sources are the least 

energy intensive water for many communities, but these are also subject to drought and 

shortages.  Even more significant reductions in precipitation and surface storage are 

implied by recent studies and literature surrounding climate change.   
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The objectives of this study are to develop an analysis framework to assess the 

“outside the retail meter” energy requirements for a typical water system and how they 

fluctuate with changes such as those proposed above.  Such a framework would require 

testing and validation using water systems whose energy requirements are unknown.  It 

would have to provide estimates with an acceptable degree of confidence.  Also, it would 

further an understanding of how energy requirements for water-related services behave or 

change under anticipated or common water supply and demand scenarios for the input 

system.  To this end, a framework was developed that allows a user to estimate energy 

demand changes in response to reductions in end-user demand, end-use application, and 

reductions in surface water supply availability.  In each of these commonly proposed 

scenarios, baseline data and observed fluctuations in energy usage are extrapolated into 

the future.  The first proposed scenario incorporated into the study framework involves a 

reduction of end-user demand, as would be achieved with a successful water efficiency 

program.  By analyzing how sensitive individual components and phases are to 

reductions in flows, the amount of energy saved congruent to a drop in end-use is 

estimated.  The second scenario assesses the energetic effects of a conversion of 

untreated agricultural or secondary system water to municipal uses.  Such a conversion 

would require additional pretreatment, distribution and wastewater effluent treatment.  By 

analyzing the impacts of increases within these three phases of the water cycle, the 

energy demand increase congruent to conversions of usage is estimated.  The third and 

final scenario incorporated into the study framework estimates the additional energy 

required to compensate for reduced surface water supply with other sources, such as an 
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increased reliance on groundwater due to drought, climate change or reservoir 

sedimentation. 

To achieve the study objectives, energy data taken from a large wholesale water 

supplier, its municipal customers, and the wastewater treatment facilities that receive 

their effluent, are synthesized.  The data are subjected to analysis for key factors and 

components of the system that affect energy requirements for large water wholesalers, 

retailers and wastewater facilities.  Using the parameters that are determined to be the 

best predictors of energy expenditure, a model is developed that estimates baseline 

energy usage for the water system in question.  The baseline data is used to extrapolate 

energy requirement into the future under the aforementioned scenarios. 

The following chapters describe the selection of the case study, gathering and 

synthesis of energy data, and the evaluation of system characteristics that strongly predict 

energy requirement for that water system.  A validation of the model estimation capacity 

was conducted using several water agencies/municipalities whose extant energy 

requirement was unknown.  The estimates were compared to the agency’s actual energy 

data once acquired.  Scenarios for alternate water supply and demand, as described 

above, were then applied to the case study system, resulting in estimates for future energy 

requirement.



   

CHAPTER 2 

 

METHODS 

 

2.1 Overview 

 The methodology presented by this study involves acquiring utility data for a case 

study water system, including wholesale, retail and wastewater facilities.  Each line item 

within the utility data is then categorized into the appropriate water supply cycle phase 

based on the facility description.  Categorized data points are combined to derive an 

average energy factor, a value described in detail in the following section.  Using the 

energy factors as a framework for assessing energy requirement by component, a 

spreadsheet model is created.  A baseline energy requirement for the water system is 

estimated by multiplying water volume inputs from the user and the energy factors.  The 

resulting spreadsheet model is tested by comparing the estimate to the actual energy 

requirement reported by the water agency.  The spreadsheet model is then used to 

forecast energy usage into the future and answer the three scenario questions posed by the 

study. 

 

2.2 Energy Factors 

Preliminary steps of the study involve defining a mean value and a range of 

energy intensities or energy factors for each phase of the water cycle.  Assuming other 
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water systems have similar energy demand for similar types of components, generalized 

values for each phase can then be used to estimate the total energy demand for a water 

system, geographic or jurisdictional area.  The energy factor is the proportion of each 

phase’s energy demand (kilowatt-hours per year) to the water delivered, processed or 

consumed (acre-feet per year) by that phase.  Dividing the annual energy demand by the 

corresponding water volume allows for comparisons on a per water unit basis (kilowatt-

hour per acre-foot).  If the energy factors for each water cycle phase are fairly consistent 

and uniform, they can then be applied to water systems whose energy usage is unknown 

or not readily available.  Benchmarking of energy factors also enables a comparison of 

the relative efficiency of different system configurations, processes and technologies.  

This approach was initially presented by EPRI, the CEC, and even more explicitly by the 

National Resources Defense Council (NRDC) and the Pacific Institute.  The “Water-to-

Air” model presented by the NRDC in 2004 uses the energy factor approach to estimate 

energy requirement for a given water system and then calculate an estimate of GHG 

impacts with different energy mix scenarios.  However, this study is different from the 

NRDC study and model, as it accommodates more predictive system component 

parameters, presents a refinement of the water cycle phase energy factors, and uses the 

system baseline energy estimate to model and predict energy requirement under future 

water supply and demand scenarios. 

The ease or difficulty of determining energy factors from utility data is a function 

of whether the agency has a digital record of their energy usage, or whether the local 

utility company is willing to provide that data in a digital format.  Once acquired, utility 

billing data can be extracted for a specified time interval and synthesized for analysis.  
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Each utility account line item is categorized into the water cycle phase that it most 

represents.  For example, the energy used at an automated diversion gate would be 

categorized as “Source & Conveyance – Surface Water.”  Groundwater well pumps 

would be categorized as “Source & Conveyance – Groundwater,” while a lift or booster 

pump station would be categorized as part of the “Distribution” or “Wastewater 

Treatment” phase.  Each category is then analyzed for any predictive characteristics that 

may affect their energy requirement.  An example is the depth to the water surface 

elevation of a well source within “Source & Conveyance – Groundwater.”  Although, the 

energy required to pump groundwater varies, depending on pump size and efficiency, the 

total dynamic head or the elevation lift the pump must overcome is a strong predictor of 

how much energy will be required by the pump and for the category as a whole (CEC 

2003).  This was stated explicitly in the CEC’s 2006 revised report, where the units for 

the groundwater energy factor were altered to incorporate water surface depth – namely 

kilowatt-hours per acre-foot per foot of lift (CEC 2006).   

It is helpful to refine the water supply cycle categories into sub-categories that are 

more specific, either by technology employed, geographic location or some other 

predictive characteristic.  The energy use of some segments varies strongly with regard to 

geography, such as the “Source” and “Distribution” segments.  Other phases vary with 

regard to the technologies employed.  An example of the latter is the wastewater 

treatment phase, where the primary determinants of a plant’s energy use are the 

technology employed and the operating capacity.  The functionality of the model 

presented in this study is based on energy factors that have been further subdivided with 

regard to these characteristics. 
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2.3 Energy Requirement Analysis Framework 

To simplify the analysis of energy factor data, a framework is developed to 

calculate current and future energy requirements.  Each segment of the water cycle is 

captured in a spreadsheet model that performs the calculation for the total energy used by 

the segment.  It does this by multiplying the appropriate energy factor by the volume of 

water for that subcategory, as entered by the model user.  Once all categories and sub-

categories for a water system are entered by the user, they are summarized to arrive at an 

estimated systemwide annual total energy requirement.  The values entered by the user 

generate an estimate of the system’s baseline energy usage for that year.  A low and high 

energy use estimate is also generated, based on the standard deviation of the category’s 

energy factors, to provide a window of confidence in the model results.   

Use of the model requires knowledge of the water system in question.  Figure 2 

provides an overview of the model process flow from user input to modeled scenarios.  

Primary inputs to the model include the volume of surface water imported by the system, 

groundwater pumped, spring sources, and all other sources for a given year.  The user 

must also be acquainted with general technologies employed by treatment facilities, such 

as the design capacity and the volume of water treated.  Other basic operational 

characteristics of the system can be selected for input into the model, such as whether  
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Figure 2. Overview of model processes 

 

SCADA or cathodic protection is employed, how much water is distributed by booster 

stations or how much water flows through pressure reduction valves on the system.  If a 

wastewater facility is part of the water system, information about technology employed, 

the design capacity and whether biogas is generated is also required.  The model uses 

information provided by the user to determine which energy factor to apply to the volume 

of water delivered or treated by each listed facility.  Once the parameters are entered into 

the model, they are summarized for the given year.  Figure 3 provides an example of the 

formatting of the user interface of the model for required inputs concerning wastewater 

treatment. 

A column of cells in the spreadsheet model are reserved for the user to manually 

enter energy requirement for any facility, if it is available.  This allows for even greater 

accuracy of the total estimated energy figure. 

 

User Input 

Data 

(Source ac-
ft, etc.)

Multiply by 

Energy Factors 

(EF by phase)

Estimated 

Energy

Totals

(Total energy 

by phase)

Demand 

Reductions

Scenario

(ac-ft of marginal 

source saved * EF)

Agricultural

Conversions 

(ac-ft  of newly  
treated * EF)

Reduced Surface     

Water Availability 

(ac-ft of compensating 
source * EF)
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Figure 3. Model interface for user inputs 

 

A function is also provided that allows the user to send the water system’s actual 

energy usage to a study coordinator for input into a maintained database.  The purpose of 

the database is to expand the dataset of known energy values for different types of facility 

components, based on their characteristics, geography and employed technologies, and to 

allow for energy factor refinement.  Further refinement of subcategories of the water 

cycle phase increases user confidence in the methods and estimated results when it is 

used by water planners for research and development or as an adaptive management tool. 

Once the model inputs are summarized, the user is asked to assess whether the 

system in question is nearer the low or high range values for total energy consumption.  

A selection of “Low” or “High” range is made based on the user’s knowledge of the 

system.  The user is asked to enter a depletion factor, used to calculate the additional 

wastewater effluent that will require treatment for the agricultural water conversion 

scenario.  Once this is entered into the model, the user has access to all graphs that detail 

the calculated results of the alternate water supply and demand scenarios for both low and 

Type of Treatment Facility AF/Year Biogas?

Plant 

Capacity 

(MGD)

Use 

Estimate? 

Estimated 

Low

Estimated 

Mean

Estimated 

High

Actual 

Use

1 Trickling Filter/Sewage Lagoon(1) 7,000   No 10 - 50 MGD Yes 2,380,000  2,817,500  3,255,000  

2 Activated Sludge(1) No < 10 MGD No

3 Advanced Treatment(1) No < 10 MGD No

4 Advanced w/ Nitrification (1) No < 10 MGD No

5 Trickling Filter/Sewage Lagoon(2) No < 10 MGD No

6 Activated Sludge(2) No < 10 MGD No

7 Advanced Treatment(2) No < 10 MGD No

8 Advanced w/ Nitrification(2) No < 10 MGD No

Total 7,000   2,380,000  2,817,500  3,255,000  

Energy Use (kWh/Yr)

Wastewater Treatment
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high range water systems.  The user also has access to the underlying tables and 

calculated values of the scenarios via the “Engine” tab of the model, and to the 

underlying energy factors associated with different water system parameters. 

 

2.4 Model Validation 

The developed framework needs to be tested by comparing estimated energy to 

that reported by a series of water agencies or municipalities.  A variety of systems are 

used in the validation step, ranging from small rural communities to mid-sized urban 

municipalities to larger water wholesale systems.  They have a diversity of 

characteristics, from heavy reliance on groundwater withdrawals to surface water sources 

or local springs, and a wide range of applications such as agricultural, municipal and 

industrial use.  The model is tested for municipalities and water agencies that are 

geographically or climatically similar to the system used to derive the energy factors 

before use on dissimilar systems.  To complete the validation step, the components of 

each selected water system are entered into the model along with their water deliveries 

for a given year.  The actual energy data are acquired from the system’s utility companies 

and compared to the values predicted by the model.  The amount of error within the 

estimates predicted by the model is summarized.  The selection of validation cities and 

the results of the validation step conducted for this study are discussed in the “Case 

Study” sections below. 
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2.5 Case Study 

2.5.1 Background 

The energy requirements to treat and convey water in Utah are not well 

understood and have never been quantified.  Utah’s annual snowmelt runoff and 

topography lends itself well to the state’s water agencies and for this reason energy 

requirement for water, and also market costs, are thought to be relatively low.  High-

quality water from mountain runoff is collected and distributed via a system of gravity-

fed canals and pipelines.  The effect is to use gravity to pressurize the water distribution 

system, which minimizes pumping to move the water or to maintain constant water 

pressure.  Some agencies, such as the Central Utah Water Conservancy District 

(CUWCD), Provo River Water Users Association (PRWUA) and Weber Basin Water 

Conservancy District (WBWCD), maintain hydropower facilities on these distribution 

networks, which they use to offset some of their own energy costs (Denos 2009, Hogge 

2009, Tullis 2009).  These systems are sometimes net energy producers. 

In addition to these advantages, Utah’s snowmelt runoff has remarkably high 

water quality and requires very little pretreatment, further reducing energy requirement 

(U.S. Geological Survey 2002).  The above factors combine to make water one of the 

least expensive utilities paid for by residents – surprisingly lower than most of the rest of 

the United States.  The average water user in Utah pays about $1.34 per thousand gallons, 

which is 43% less than the national average and 45% below the average for western 

states (Klotz 2009, Utah Foundation 2002).  However, as Utah’s population continues to 

grow, these inexpensive and less energy intensive sources of water are becoming rarer.  

Much of Utah’s “easy” water – flows that originate from mountain ranges and can easily 
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be diverted and treated – has already been developed and put to beneficial use.  Major 

water projects on the horizon will require greater amounts of energy.  Both the Lake 

Powell Pipeline and Bear River Development Projects will require long distance water 

importation and greater amounts of energy to lift water from remote sources to urban 

communities.  Published reports on the Bear River Development Project refer to it as 

being, “Utah’s last untapped water source” (Division of Water Resources 2005a).  In 

addition to new water development projects, Envision Utah suggests that other water 

sources may include more extensive groundwater development within the safe yield of 

local aquifers, additional diversion and treatment of Wasatch mountain streams, 

agricultural irrigation conversions and water conservation. (Utah Governor’s Office of 

Planning and Budget 2008).  Water demand reduction and the efficiencies found with 

new techniques and methods of extracting and treating water can help reduce energy 

costs of future development.  However, if it is true that Utah’s easily developable water 

supplies are becoming rarer, then the issue of energy consumption within each phase of 

the water supply and consumption cycle will take on a new importance and play an 

increased role in the decision-making process. 

 

2.5.2 Water Agency Types 

Utah’s residents are supplied both by water retailers and municipalities, large 

wholesalers, noncommunity systems and private wells.  Understanding and estimating the 

energy demand for a typical system in Utah requires an examination of each type of 

system.  Figure 4 illustrates a general progression of the water supply chain from the 

wholesaler to the end-user and back to the natural environment.  Wholesale water 
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agencies own and/or maintain larger conveyance systems that bring water from distant 

watersheds into major population centers, such as the Wasatch Front or Utah’s fast-

growing “Dixie” region.  A typical wholesale system consists of surface storage 

conveyance facilities – such as reservoirs, diversions and pumps, water treatment 

facilities and an expansive distribution network of tunnels, canals and pipelines.   These 

larger projects are the primary beneficiaries of Utah’s geography via gravity-fed and 

distributed water systems.  Water wholesalers may also have significant groundwater 

sources to complement other supplies.  They are likely to have substantial existing 

infrastructure upgrades to fund, and larger capital improvement projects planned for the 

future.  These entities may have the most energy savings to gain – not by implementing 

efficiency upgrades since their systems are already quite efficient – but by implementing 

targeted demand reduction programs that forestall expensive water development projects 

and by choosing future infrastructure options that minimize energy costs. 

Unlike most wholesalers, water retailers own and maintain a smaller water system 

that serves water directly to end-users.  These are usually smaller, nonprofit agencies 

such as water improvement districts, water user associations or municipalities.  Aside 

from purchasing water from a wholesaler, they also operate their own springs and 

groundwater wells.  They may pump or purchase additional water to meet peak demand 

 

Figure 4. Generalized large water supply system distribution in Utah 
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over the summer months or to supplement supplies during periods of shortage.  A typical 

retail water system consists of an array of smaller groundwater pumps, booster stations, 

chlorination facilities, meters and distribution networks that contribute to their overall 

energy demand. 

Non-community systems supply water to areas that have transient populations or 

fewer connections than community systems, such as mobile home parks and campground 

sites.  Their water use is estimated to be a little more than 10,000 acre-feet of water out of 

about 952,000 acre-feet of water used in the state of Utah (Klotz 2009).  Private wells 

used to supply individual homesteads are also a relatively small percentage of the water 

used in the state.  Quantification of requirements to supply noncommunity systems and 

private wells would be extremely difficult and is not included in this study.  One other 

category of water provider and water usage is that of self-supplied industries.  This 

category of water user withdraws approximately 209,000 acre-feet out of the above total 

– a significant amount.  The water and energy requirements to withdraw and treat water 

designated for these industrial purposes is reported each year to the state’s regulatory 

agencies, but individual industry figures are not released to the public (Utah Division of 

Water Resources 2009). 

 

2.5.3 Jordan Valley Water Conservancy District (JVWCD) 

A major water provider in Utah and its member agencies were selected to 

represent a large water system that could provide a framework for an energy estimation 

model.  Jordan Valley Water Conservancy District (JVWCD) is situated on the south-

western quadrant of the Salt Lake Valley and has supplied an average of 118,000 ac-ft 
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per year over the last 5 years to its member agencies and other smaller customers 

(JVWCD 2009).  Member agencies are comprised of both municipalities and water 

retailers that in turn, supply and sell water directly to retail customers.  Figure 5 is a 

diagram of a distribution relationship JVWCD has as a wholesaler, with its member 

agencies, customers and wastewater providers.  JVWCD’s water supply sources include 

imported water from the Uinta Mountains via tunnels, diversions and canals, which they 

also supplement with groundwater wells.  Its geographic extent is large, but typical of a 

large wholesaler-to-retailer-system and serves as a good template for the model.  Figure 6 

is a map of JVWCD’s service boundaries, selected member agencies and two wastewater 

facilities that treat the system’s effluent.  JVWCD’s deliveries change over time due to 

fluctuations in pricing, water availability, demand and a growing customer base.  The 

listing of member agencies for this case study was taken from the Utah Division of Water 

 

 

Figure 5. Generalized distribution diagram for the JVWCD system 
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Figure 6. JVWCD service boundaries, selected member agencies and water reclamation 

facilities   

 

Resource’s “Municipal and Industrial Water Supply and Uses in the Jordan River Basin,” 

(Utah Division of Water Resources 2009).  Table 1 lists the member agencies selected for 

the study and the deliveries made to them (JVWCD 2009).  JVWCD’s smaller retail 

component was omitted as a member agency for clarity.  Wastewater treatment facility 

data was acquired directly from the wastewater facilities themselves.  Most wastewater 

treatment facilities are not dispersed like a municipal water system, and therefore usually 

have only a few utility account numbers to reference.  Also, being such energy intensive 

facilities, they have a vested interest in continually monitoring their energy demand per 
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volume of water processed.  The two wastewater plants that service the surrounding area 

and municipalities within the JVWCD system are Central Valley Water Reclamation 

Facility (CVWRF) and South Valley Water Reclamation Facility (SVWRF).  Both were 

readily able to provide their annual energy demand per volume of water processed.  

CVWRF identified their facility as a plant that employs advanced wastewater treatment 

without additional nitrogen removal.  They use biogas generation as a moderate offset to 

their energy consumption and they also treat a small volume of water to tertiary standards 

for water recycling.  This is used as supplementary irrigation for a nearby golf course.  

CVWRF’s primary energy consumers on site were their influent lift stations at the head 

of the plant.  Because of their configuration, they confirmed that reductions in demand, 

and hence reductions in plant inflows, resulted in a corresponding decrease in energy 

requirement and vice-versa. 

 

Table 1. 2003 - 2009 Fiscal Year JVWCD water deliveries to selected member agencies 

 

 

 FY 03/04 FY 04/05 FY 05/06 FY 06/07 FY 07/08 FY 08/09

Bluffdale City 1,278        1,137        1,420        1,573        1,574        1,410        

Draper City 2,470        2,268        3,033        3,590        3,372        3,207        

Granger-Hunter Improvement District 18,320      16,575      18,734      15,988      17,411      17,707      

Herriman City 1,503        802           1,658        2,023        2,507        2,165        

Kearns Improvement District 7,113        6,802        8,264        8,258        8,321        7,759        

Midvale City 102           176           928           951           172           159           

City of South Jordan 9,300        8,564        10,427      11,522      12,034      11,327      

City of South Salt Lake 1,117        1,021        705           603           883           804           

Taylorsville-Bennion Improvement District 5,479        5,256        5,012        3,955        5,354        5,005        

West Jordan City 14,992      1,664        642           582           1,247        16,419      

White City Water Improvement District 109           69             -           -           -           -           

Subtotal - Selected Member Agencies 61,783      44,334      50,823      49,045      52,875      65,962      

Other Wholesale Deliveries 6,832        16,469      19,322      19,709      21,099      4,628        

Total Wholesale Deliveries 68,615      60,803      70,145      68,754      73,974      70,590      

*all deliveries in acre-feet
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SVWRF categorized itself as a facility that employs advanced treatment with an 

additional nitrification and de-nitrification processes.  They also employ ultraviolet 

radiation and ozonation for their disinfection process.  Their primary energy consumers 

are the aerators and biosolid dryers that must be kept at a full-power state regardless of 

variation in inflow.  As a result, SVWRF’s energy requirement is almost twice that of 

CVWRF for the same volume of treated water.  The energy requirements provided by 

plant operators were used to estimate the energy factors for these two treatment 

technologies, but energy factors for others were extracted from the NRDC report (Wolff 

2004). 

 

2.5.4 Case Study Data Synthesis and Analysis 

Each water district, member agency and validation city/agency that agreed to 

participate in the case study was asked to make a data request to their local utility 

providers, including electric and natural gas utilities, for any water-related service 

accounts.  Once sent in, these requests were coordinated by utility staff and a database 

query was run for each agency for the study period of 2004 to 2008.  The database query 

extracted each account and line item, including the site description and the annual 

kilowatt hours of each facility component.  The query data given to the water agency 

were then forwarded to the study coordinator.  Each line item was checked to ensure that 

it was indeed part of the city or agency’s water system, as opposed to a park light or other 

municipal service.  Each water facility line item was then catalogued into the most 

applicable water supply cycle phase.  An average of each agency’s annual kilowatt hour 
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demand within each phase was calculated and compared to that of other agencies.  Tables 

for comparison between agencies can be found in the Appendix. 

The volumes of water related to the energy cost were taken from the Utah 

Division of Water Right’s website, unless they were reported directly by the member 

agency (Utah Division of Water Rights 2009).  JVWCD also provided a summary of 

water usage and delivery estimates for themselves and all of their member agencies.  

These were compared to the volumes of water delivered as reported on the Division of 

Water Right’s website and were found to be consistent in most cases.  Where there were 

discrepancies, the value reported by JVWCD was used, as it was deemed to be more 

consistent.  The water supply values were further categorized as originating from 

imported surface water, groundwater or another local source, such as a spring.  The 

energy used by facilities dedicated to surface water sources and conveyance was then 

divided by the volume of water diverted from that source.  Similarly the energy used by 

facilities dedicated to groundwater pumping was divided by the volume of water 

extracted from groundwater sources, to arrive at an energy factor for these subgroups of 

the “Source & Conveyance” water cycle phase.   

Water treatment facilities within the JVWCD systems were categorized by design 

capacity.  The energy consumption for the treatment facilities was then divided by the 

total amount of water treated.  In JVWCD’s case, the amount of treated water constituted 

approximately 75% of their total water supply and deliveries, with the remainder 

allocated for agricultural purposes (JVWCD 2009).  Facilities related to distribution 

costs, such as meters and booster stations, were summarized and divided by the total 

volume of water transported or delivered by JVWCD or the member agency in question.   
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The wastewater treatment plants within the JVWCD system were classified 

according to their treatment capacity and their method of wastewater treatment (Fisher 

2009, Hedges 2009).  Annual energy data, including electricity, natural gas and biogas 

estimates, were retrieved for both facilities for the period of analysis.  The net energy 

total (energy used minus generated biogas energy) was divided by annual plant flows for 

both wastewater treatment facilities to determine the energy factor for each plant.  The 

energy factor for the JVWCD system was calculated as an average of these two values, 

weighted by the number of member agencies that supplied each plant with its effluent.   

 After the calculation of all energy factors for JVWCD (the wholesale district 

only) and all member agencies, they were compared to each other by type of system and 

by category.  For example, JVWCD’s total energy consumption was compared to 

member agency totals within water cycle phases to see if there was a difference between 

a largely gravity-fed wholesale system and a small retail system.  Similarly, JVWCD’s 

unit energy demand within each water cycle segment was compared to member agency 

unit energy demand.  Annual energy factors for the wholesale district and the member 

agencies were combined to calculate a systemwide average for each water cycle phase.  

These results were compared to the energy factor values estimated for the water supply 

cycle in California’s original and updated CEC reports (CEC 2005, CEC 2006). 

 Other analyses conducted include a statistical analysis of the relationship of 

surface water supply and groundwater withdrawals.  The imported surface water and 

groundwater extracted by JVWCD for the period of 2001–2008 were analyzed to 

determine if any correlation existed between reduced surface storage availability and 

increased groundwater withdrawal.  The time period analyzed incorporated the majority 



   34               

 

 
 

3
4
 

of a drought experienced locally that began in 2000 and ended in 2005.  The data were 

also analyzed with regard to other factors that may impact groundwater withdrawals, 

such as precipitation and the net evapotranspiration rate (ETnet) experienced in the basin. 

 The volume of untreated water delivered by JVWCD was analyzed with regard 

to its possible conversion to a municipal and industrial use.  An assumption was made by 

the model that agricultural water was of sufficient quality that it could be treated using 

conventional culinary water treatment methods.  Estimates of how much additional water 

would need to be treated and distributed were calculated with each percentage conversion 

of untreated water.  Similarly the additional amount of influent to be treated by a 

wastewater facility was estimated based on an assumed indoor end-user depletion rate of 

20%.  This percentage was used based on the indoor use and return flows reported by 

each agency in the Municipal and Industrial Water Supply and Uses in the Jordan River 

Basin report (Utah Division of Water Resources 2009). 

 The energy factors for each water source for the JVWCD system were analyzed 

to determine the order of each in terms of marginal use.  One of the assumptions made by 

the model is that the most marginal source of water will be eliminated with reductions in 

demand, followed by the next most expensive source.  The volume of water saved by 

percentage reductions in demand was calculated with regard to reductions in the most 

marginal sources of water sequentially and the resulting volumes multiplied by their 

respective energy factors to arrive at an energy cost savings for each increment.   The 

results of the methodology proposed by the study are visited in greater detail in the 

“Results and Discussion” chapter. 
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2.5.5 Case Study Model Validation 

To further validate the model, system information for JVWCD and its member 

agencies was input into the model and the results included in an error assessment.  These 

systems were used to derive the energy factors and to create the framework for the energy 

estimation model.  In addition to testing the results for JVWCD and its member agencies, 

three water agencies/municipalities were selected for model validation.  These additional 

systems are climatically similar, but are geographically dispersed and characteristically 

different from JVWCD and its member agencies.  The first system selected for the 

extended model validation is Delta City, Utah.  Its population relies entirely on 

groundwater sources and treats at the extraction site with chlorine.  They also have a 

simple distribution systems and sewage lagoon wastewater treatment facility.  It is a good 

example of most small and rural community water systems in the region.  The second 

system selected for model validation is Logan City, Utah.  Its population of about 50,000 

relies heavily on local springs with a small supplement of groundwater.  They also treat 

their water at the source site with chlorine.  A large sewage lagoon system serves the 

population’s wastewater treatment needs.  The third system selected for model validation 

is the Washington County Water Conservancy District (WCWCD).  This agency serves a 

much larger population of approximately 160,000 with a variety of water sources – 

surface water importation, groundwater, springs and recycled water.  They have large 

state-of-the-art water treatment and wastewater treatment facilities and an expansive 

distribution system. 



   

CHAPTER 3 

 

RESULTS AND DISCUSSION 

 

3.1 Energy Factors 

The utility and water supply data gathered from JVWCD the wholesale district, 

the member agencies, water treatment facilities and wastewater treatment facilities within 

JVWCD’s service boundaries were categorized and analyzed to create a composite 

energy factor.  The resulting percentages of each energy factor for the JVWCD system, 

including the wastewater facilities, which are separate entities, are portrayed in Figure 7.  

It is a comparison of the per acre-foot energy cost of each water cycle segment.  The 

percentage of energy for recycling water is omitted because it is relatively small (0.6%).  

The figure shows that the bulk of the energy used per acre-foot is for groundwater 

withdrawals and wastewater treatment.  Given JVWCD’s ability to procure surface water 

from energy efficient, gravity-fed systems, this is a reasonable distribution of energy 

costs.  The actual values for each energy factor and the standard deviation (STDV) for 

each water cycle phase and subgroups within the “Source & Conveyance” category are 

summarized in Table 2.  The largest energy consumption phases are for groundwater 

withdrawal and wastewater treatment.  This is followed by distribution costs, surface 
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Figure 7.  Comparison of energy costs by water cycle segment of the JVWCD system 

 

Table 2. Energy factors for water cycle phases within the JVWCD system. 
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Energy Factor 

(kWh/ac-ft)
STDV

Source & Conveyance Facilities

Surface Water (n = 235) 56                   ±45

Groundwater (n = 495) 817                 ±128

Recycled Water (n = 1) 10                   

Water Treatment (n = 10) 42                   ±3

Distribution (n = 960) 180                 ±37

Wastewater Treatment (n = 2) 643                 ±221

* Wastewater treament STDV is due to different wastewater

treatment technologies and design capacity differences.
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water importation and water treatment respectively.  A full tabular breakdown of the 

wholesale district and each agency’s energy factor is included in the Appendix. 

 When compared to the energy factors presented in the CEC’s 2005 report and the 

revised 2006 figures, JVWCD’s energy intensity is generally comparable in most 

categories.  Energy requirements for groundwater withdrawal, distribution and 

wastewater treatment are comparable at the lower ranges.  Major departures from the 

CEC’s evaluation are for surface water importation, initial water treatment and water 

recycling.  Table 3 shows the energy factor ranges for each water cycle phase for both 

JVWCD and those estimated by the two CEC reports.  Some categories were excluded 

from the CEC 2006 updated report, but these refined estimates include additional 

allowance for system-wide losses and revisions based on a review of the methodologies 

used in the 2005 report.  Again, JVWCD’s system is comparable in most categories, but 

substantially less in others, reflecting its geographic advantages.  The broadness of the 

ranges, both for JVWCD and the CEC, reflect the limitations of utility data gathering and 

 

Table 3. JVWCD’s energy factors compared to the CEC 2005 report and 2006 revisions 

 

Water Cycle Phase

JVWCD       

EF Range 

(kWh/ac-ft)

CEC 2005       

EF Range 

(kWh/ac-ft)

CEC 2006               

EF Range 

(kWh/ac-ft)

Source & Conveyance Facilities 0 - 4500

Surface Water 0 - 100 0 - 3500

Groundwater 700 - 950 600 - 950

Recycled Water 10 130 - 400

Water Treatment 40 - 50 30 - 5200 30

Distribution 140 - 220 230 - 400 400

Wastewater Treatment 400 - 850 360 - 1500 400 - 700

Recycled Water Distribution 400 - 1000 

*Does not include desalination or other sources not used in JVWCD's system
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lack the specificity of a geographically or jurisdictionally regionalized dataset.  Further 

disaggregation of the categories into subgroups, as well as more empirical and calculated 

water facility data, is needed to narrow the range of values within each energy factor. 

 

3.1.1 Energy for Source and Conveyance – Surface Water 

 Surface water sources comprise 81.3% of total water withdrawals made in Utah 

(U.S. Geological Survey 2009).  This percentage includes those made for irrigation of 

agriculture, which is by far the largest end-use diversion – as opposed to depletion – of 

water for any end-use sector.  Within the JVWCD district, the percentage of water supply 

from imported surface water is also quite high – about 91% over the study period.  The 

remaining 9% of water supply is pumped groundwater (JVWCD 2009).  Reliance on 

surface water decreases to 75% when member agency water sources are figured into the 

above.  This is larger than the statewide average of 45% reliance on surface water by 

public water suppliers, reflecting the abundance of inexpensive surface water procured by 

JVWCD (Utah Division of Water Resources 2005b).  The imported surface water energy 

factor related to the JVWCD system (0 – 100 kWh/ac-ft) is comparable to the lower end 

of the CEC’s ranges.  The upper limit of the CEC’s ranges, at 3,500 and 4,500 kWh per 

ac-ft, indicate the high energetic costs of surface water pumping required in that region.  

The CEC acknowledges the energy efficiency of primarily gravity-fed systems by 

keeping zero as the lower value of the surface water range.  In fact, installed hydropower 

facilities may generate greater amounts of energy than consumed on such systems.  

Energy factors for these would theoretically be negative and could be used to offset the 

energy used in other portions of the water cycle.  Water systems that are adjacent to that 



   40               

 

 
 

4
0
 

of JVWCD take advantage of their hydropower facilities to sell energy back to the local 

power grid (Denos 2009, Devey 2009, Hogge 2009).   

Another reason the JVWCD range is low is that their energy usage by surface 

water facilities procure only a portion of their total surface water supply.  Each year 

JVWCD also purchases large volumes of water from yet other water wholesalers who 

pass their energetic costs along in the form of water pricing.  Without also doing 

extensive analysis of all interrelated water systems, it is difficult to arrive at a perfect 

estimate for imported surface water.  For the purposes of this study, these additional 

waters are included in the total surface water provided, which is then divided by the total 

energy used by JVWCD’s surface water facilities.  After a review of the hydropower 

generation upstream of JVWCD’s procurement, it is likely that the energy factor range 

would be reduced further, resulting in zero (as it is currently set) or negative values. 

 Conveyance infrastructure that provides water to the JVWCD region diverts 

snowpack runoff from the high Uinta Mountains to the east and spans hundreds of miles.  

Most of the conveyance energy costs are for simple telemetry, measurement and control 

devices such as SCADA systems, diversion gates, and debris screens.  The total energy 

required to operate this equipment is small when compared to the volumes of water 

conveyed by them. 

 

3.1.2 Energy for Source and Conveyance – Groundwater 

As stated above, groundwater comprises a smaller portion of the water delivered 

within the JVWCD system including member agencies – only 25% compared to the 

statewide average of 55% (JVWCD 2009, Utah Division of Water Resource 2005).  
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Some member agencies find that groundwater withdrawals are a better water source for 

their systems and rely on them almost entirely.  EPRI estimates that groundwater sources 

are generally more energy intensive than surface water sources by 30%, but this study 

finds that the difference in energy requirement for these sources within the JVWCD 

system is much higher – about seven times more so than the neutral or energy-producing 

surface water sources in Utah (EPRI 2002).  When compared to the CEC groundwater 

energy factor, JVWCD’s is slightly higher.  The NRDC’s report estimated groundwater 

depths for three different areas in California, ranging from 120 to 200 feet (Wolff 2004).  

The groundwater depths in the Salt Lake Valley are of a similar range, but wells are 

drilled to 400 feet or more (JVWCD 2009, U.S. Geological Survey 2009).  Variable 

water surface levels within aquifers may explain the higher energetic cost of pumping 

groundwater for the case study.  The proportions of surface water to groundwater 

deliveries vary with climatic conditions, such as surface water availability, precipitation 

received, and how hot and dry the summer tends to be for a given year.  Energy rates and 

groundwater availability (as well as aquifer yield safety) are assumed to also play a 

decision-making role for water managers as well, and these may become increasingly 

important in the future. 

There are some significant cost differences in groundwater withdrawals when 

comparing water wholesale entities to small retail entities.  These become even more 

pronounced when the wastewater segment, which is post-end-use and overseen by 

separate agencies, is removed.  For example, though groundwater is not JVWCD’s 

largest water source (only 9% of the total) it is by far its largest energy consumer per 

acre-foot.  Pumping of groundwater averages 26% of total energy expenditures during the 
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study period for JVWCD, the wholesale district.  Figure 8 contains a breakdown of each 

year’s percentage of groundwater versus the total supply, compared to the energy used by 

groundwater versus the total energy used from 2004–2008.  JVWCD’s member agencies, 

the smaller retailers in the system, rely more heavily on groundwater, and spend more of 

their energy budget to pump it.  On average member agencies relied on groundwater for 

28% of their water supply at an energetic cost of 57%.  This annual distribution is shown 

in Figure 9. 

 The difference in the two distributions of groundwater and energy versus the total 

water supply and total energy suggest that wholesale water entities may have 

groundwater pumping facilities that are less efficient and they are likely to feel the impact 

of drought and reduced surface water availability first.  Also, as the ratio of energy they 

 

 

Figure 8. Comparison of the percentage of groundwater supply to total supply and 

groundwater energy to total energy for JVWCD wholesale system. 
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Figure 9. Comparison of the percentage of groundwater supply to total supply and 

groundwater energy to total energy for member agencies. 

 

require per unit of groundwater (1:3) is higher than those of member agencies (1:2), any 

need to use groundwater to compensate for reduced surface water is likely to have greater 

impact on a wholesale entity in both energy and financial terms. 

 Other sources of water supply discussed in the CEC reports are not used or are 

much less common for JVWCD.  Desalination has not been considered as a source of 

water because of readily available and much less expensive surface and groundwater 

supplies.  Water reuse and recycling projects are being proposed in the region but have 

not yet become a significant supply option (Utah Division of Water Resources 2005c).  

Public perception of recycled water, concern for human health, environmental impacts, 

economics and legal hurdles are all factors with regard to its use.  CVWRF is the only 

agency within the JVWCD system that is recycling any water, and the energy required to 

do so is minimal.  However, as recycled water becomes a more valuable resource, the 
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initial costs of added distribution networks and pumping will increase its energy factor.  

The revised 2006 CEC report includes this added cost explicitly by adding it as a water 

cycle segment and giving it an energy factor value of 400 – 1,000 kWh/ac-ft. 

 

3.1.3 Energy for Water Treatment 

 JVWCD’s water treatment energy costs are much lower than the CEC’s estimated 

range – as they include extensive treatment of brackish and saline groundwater.  Utah’s 

snowmelt runoff has remarkably high water quality, and groundwater from deeper 

aquifers also requires very little treatment to meet drinking water standards.  In areas 

where groundwater is impaired, it is often blended with higher-quality water from other 

sources to meet regulation standards.  The JVWCD system has two water treatment 

plants, Jordan Valley Water Treatment Plant (JVWTP) and Southeast Regional Water 

Treatment Plant (SERWTP), with a combined design capacity of 200 MGD.  Actual 

flows through both plants averaged 68 MGD in the 2008/2009 fiscal year with a 

maximum flow of 166 MGD.  Retail water providers also have small-scale chlorination 

facilities to disinfect water within their systems, but these are usually tied to a distribution 

system feature such as a booster station or a groundwater well house.  This makes small-

scale treatment and disinfection energy costs difficult to determine. 

 

3.1.4 Energy for Distribution 

 The smaller distribution energy factor range for the case study is also a reflection 

of the efficiency of regional gravity-fed systems.  JVWCD’s distribution system is 

comprised of booster stations, metering vaults, pressure reduction valves and cathodic 
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protection (any facility contributing to conveyance of water through a distribution 

network).  Almost all facilities in this category are minimally energy intensive.  The main 

exceptions are booster stations that lift or pressurize water in the network.  The average 

dynamic lift of JVWCD’s booster stations, is almost 270 feet, with a cost of over 

$900,000 annually to operate (JVWCD 2009).  Using small micro-turbines in place of 

pressure reduction valves might be an attractive option for entities that have high 

distribution costs (Ramos 2007, Smith 2008). 

 

3.1.5 Energy for Wastewater Treatment 

 Wastewater treatment is the second most energy intensive phase of the water 

cycle presented by the case study.  It requires between 450 kWh/ac-ft and 875 kWh/ac-ft 

depending on the wastewater facility to which the effluent flows.  The energy factor 

presented for the case study is the average of these two facilities weighted by the 

proportion of agencies that send effluent to each.  Because they receive inflows from 

municipalities outside the case study, the inflows to the plants from case study agencies 

were estimated based on the water supplied to each member agency, multiplied by an 

indoor depletion rate of 20% (Division of Water Resources 2009).  The depletion is the 

amount of water used consumptively indoors during the end-use phase.  The remaining 

water received by collection systems is then conveyed to wastewater treatment plants. 

Both wastewater treatment plants in the case study are state-of-the-art facilities 

with advanced treatment and both are large enough to take advantage of the efficiencies 

present in economies of scale.  CVWRF has an additional energy recovery step in an 

anaerobic digestion process.  The resulting methane gas is mixed with natural gas to 
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power five engine generators at the plant.  This cuts back on utility costs at the site.  The 

second plant, SVWRF, has a lesser capacity and requires greater energy than its northern 

counterpart.  A bio-reactive aeration phase is the largest consumer of energy, followed by 

solids drying and disinfection.  SVWRF has an additional nitrification phase that is more 

energy intensive and does not have any cogeneration capabilities due to local ordinances 

(Hedges 2009). 

Personal communications with both plant managers indicated that increased water 

quality standards are at the forefront of their concerns.  They anticipated more stringent 

effluent treatment standards in the very near future and the necessity of updating plant 

infrastructure to meet them.  CVWRF indicated that they had additional space to install 

treatment facilities, but that it would be costly both energy-wise and financially – to 

remove added nutrients, phosphorus and micro-pollutants.  SVWRF already has the 

ability to treat for removal of some nutrients, but lacks significant additional space if new 

facility buildings are necessary. 

 

3.2 Results of Model Validation 

 The results of the validation step gave confidence that the model could be used to 

estimate the baseline energy of a water system whose current energy usage is unknown, 

but also highlighted portions of the model that need further refinement.  Some segments 

of the water cycle were predicted more accurately than others and additional parameters 

are needed to adjust for the size of the water system being modeled.  Additional 

instruction and clarification was needed by the agencies concerning the function of the 

model and its inputs.   
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To verify that the model could be used on systems similar to JVWCD (only the 

wholesale district), its own facility and water delivery data for 2008 was entered into the 

spreadsheet model.  The estimated value of 38.7 million kWh overestimated the system’s 

actual energy usage of 31.7 million kWh (18.1%).  The error is derived by dividing the 

mean estimated energy and the actual energy reported by the agency.  JVWCD’s error is 

relatively high because the mean incorporates the higher range values.  This is 

unfortunate in JVWCD’s case since their actual energy usage for their largest source – 

surface water – is near to zero.  Including the higher range of the surface water source 

adds approximately 10 million kWh to the high energy estimate, pulling the mean up as 

well.  Without the additional 10 million kWh the error of the JVWCD estimated mean 

falls to 5.7%.  Greater overall accuracy for baseline energy estimation could be achieved 

by incorporating a function into the model that allows the user to designate the water 

system as primarily gravity-fed and thereby eliminate the inclusion of the upper range. 

The individual member agency water system and delivery data for 2008 were also 

entered into the spreadsheet model.  The resulting estimates varied to a greater degree.  

Most systems were within a margin of error of 10%, but varied up to 127.1% for one 

member agency.  This most inaccurate estimate for Draper City, Ut. was investigated and 

the city was found to employ four large booster stations – the likely cause of the model’s 

under-prediction.  The booster stations are used to lift large amounts of water up to an 

upscale community above Draper, called Suncrest, Ut.  The elevation difference between 

the two cities is approximately 1,200 feet.  This is a significant lift that contributes to 

Draper’s high distribution costs.  The other most erroneous estimate was for the City of 

South Jordan.  In this case, the model over-predicted energy usage by 92.8%.  South 
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Jordan purchases all of its water from Jordan Valley Water Conservancy District and 

therefore has no groundwater costs typical of other member agencies.  Their distribution 

network is primarily gravity-fed as well.  In this respect the results are similar to those of 

JVWCD’s, such that the incorporated high range of surface water and extra distribution 

costs pull the estimated mean for the City of South Jordan higher then it would be 

otherwise. 

The first of the geographically dispersed validation cities, Delta City delivered 

very few data points, indicating a simple water conveyance, treatment and wastewater 

treatment system.  The energy estimation model over-predicted energy requirement in all 

categories for this smaller system.  The range indicated by the model was 624,800 kWh 

to 1.1 million kWh and a mean of 842,300 kWh.  This was 34% higher than Delta’s 

actual energy requirement of 559,102 kWh.  Logan City’s water system delivery data 

were input into the model spreadsheet for an estimated range between 9.3 and 14.7 

million kWh.  The estimated mean was 12 million kWh, which was 10% greater than 

Logan City’s actual energy usage of 10.8 million kWh.   

Washington County Water Conservancy District (WCWCD) had by far the most 

complex water system, characterized by a myriad of water sources, treatment, wastewater 

treatment and water recycling.  The wide distribution of WCWCD’s water system is such 

that they are provided power by no fewer than four utilities.  Gathering energy data from 

so many sources underscores the difficulty of assessing energy costs from year to year on 

a larger water system.  The actual energy reported by WCWCD of 18.9 million kWh fell 

within the predicted range of 11.7 to 19.4 million kWh and deviated from the estimated 

mean value of 15.6 million kWh by 21%.  When reviewing the WCWCD estimates, the 
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category for recycled water was significantly under-estimated.  It was discovered that a 

new distribution system had been recently installed throughout the surrounding 

community to convey the recycled water back to a point of use at a higher elevation.  The 

energy factor applied to the volume of recycled water by the model was derived from the 

small amount of water recycled by CVWRF – a smaller value that does not incorporate 

any redistribution costs.  Based on the actual energy value reported for WCWCD for 

recycled water, it is estimated that the energy factor should have been closer to 500 

kWh/ac-ft, as opposed to the range of 10–50 kWh/ac-ft.  Despite this discrepancy, the 

system total is still within the estimated range of values.  When the estimate is adjusted to 

exclude the water recycling category, the error between the estimated mean and the actual 

energy usage falls to 14%.  Table 4 provides a summary of the low, high and mean 

estimate, the actual energy usage reported for the study year and the error of the mean 

 

Table 4. Summary of results of model validation step 

 

Water Agency

Low Estimate 

(kWh) 

High Estimate 

(kWh)

Mean Estimate 

(kWh)

Actual       

(kWh)
Error

Logan City 9,282,428        14,680,875      11,981,652      10,801,617      10%

Delta City 624,800           1,059,800        842,300           559,102           34%

Washington County WCD 11,725,146      19,450,195      15,587,671      18,880,158      -21%

Draper City 727,821           1,569,810        1,148,816        2,608,506        -127%

Granger-Hunter ID 9,508,120        15,033,800      12,270,960      11,605,661      5%

Herriman City 2,093,078        3,109,780        2,601,429        2,345,107        10%

Kearn ID 1,948,446        3,785,740        2,867,093        4,090,459        -43%

Midvale City 1,864,550        2,717,240        2,290,895        1,571,033        31%

City of South Jordan 2,195,397        4,735,170        3,465,284        249,602           93%

City of South Salt Lake 1,525,550        2,244,640        1,885,095        1,724,478        9%

Taylorsville-Bennion ID 8,398,000        11,685,440      10,041,720      9,950,343        1%

West Jordan City 5,114,278        8,951,780        7,033,029        6,306,638        10%

White City WID 2,949,100        3,898,720        3,423,910        3,775,330        -10%

Jordan Valley WCD 26,423,524      50,944,160      38,683,842      31,676,328      18%

Summarized Error 19.7%

Used to Develop the Model Model Applied to System
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 estimate.   

 Overall the energy estimation model performed moderately well at predicting 

energy requirement for medium to large sized water systems, with a cumulative error of 

19.7%.  The model tended to over-estimate energies for very small water systems and 

those that take significant advantage of gravity-fed conveyance.  Further refinement of 

the energy factors, with the possible inclusion of the number of connections and recycled 

water redistribution costs as model inputs, would likely improve results as well. 

 

3.3 Energy Impacts of Demand Reductions 

 To analyze how the case study would be affected by the alternate water supply 

scenarios discussed above, the inputs for JVWCD the wholesale district, (excluding 

member agencies and wastewater treatment), were entered for 2008 into the spreadsheet 

model as stated above.  The estimated values were checked against the actual energy 

consumption provided by the utility agency and were found to be well-matched with the 

lower range adhering more closely to the actual energy usage reported by JVWCD.  

Therefore, the lower range scenario results were selected for viewing.  The model 

automatically generated the results of each water supply and demand scenario in the form 

of a graph displaying future energy requirement. 

 The demand reduction scenario evaluates the effects of incremental reductions in 

the volume of water used by every segment of the water cycle.  It is predicted to lower 

the total energy requirement for each water cycle based on the per unit energy cost of an 

acre foot of water; however, this does not imply that all sources and treatments are 

reduced equally.  Source water volumes are reduced sequentially from the most marginal 
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source of water first.  For example, if a water agency uses a combination of surface 

water, groundwater and desalination to meet the demands of its population and it 

experiences a reduction in demand, the most expensive source of water – that of 

desalination – would be the first to be reduced.  The model evaluates what the most 

marginal source of water for the system is, and, with each percentage of demand 

reduction, calculates the energy saved.  Figure 10 shows the results for the JVWCD 

wholesale district when a 0%–35% reduction in demand is introduced as a future 

scenario.  The results show a significant amount of energy can be saved with a 10% 

reduction in demand, which would curtail the use of groundwater pumping – the most 

marginal and energetically expensive source of water.  Specifically, this would allow for 

an energy savings of 6.5 million kWh each year between the “Groundwater – Source 

 

Figure 10. Saved energy for JVWCD wholesale district with reductions in demand. 
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Conveyance,” “Distribution” and “Water Treatment” phases.  When demand is reduced 

beyond 10%, the energy used in the “Distribution” phase is saved even more, and there is 

a small savings in water treatment energy costs.  The State of Utah’s public use water 

conservation goal is to achieve a municipal and industrial per capita demand reduction 

from 2000 levels of 25% by 2050.  If this goal is met by the JVWCD using 2008 as a 

baseline year, it will save an estimated 8.9 million kWh per year.  If demand is reduced to 

35%, 10.3 million kWh would be saved annually.  Interestingly, as the lower range 

energy factor for surface water sources is “0”, any demand reduction applied to this 

category result in zero energy savings.  If the high range results are viewed, the energy 

savings from surface water importation appear on the graph.  Another water cycle 

segment, wastewater energy savings, is absent from the graph because the JVWCD 

wholesaler entity is the system being analyzed. 

It is likely that, were JVWCD to experience significant demand reductions, many 

decision factors would come into play as to what water sources would actually be 

reduced.  The legal ramifications of not putting a water right to “beneficial use” for a 

specified period of time would certainly influence water managers in exactly where to 

accommodate reductions.  However, evaluating the impacts of reducing the most 

energetically expensive source of water is still a useful exercise and reveals how much 

energy can theoretically be saved by reduced use. 

 

3.4 Energy Impacts of Agricultural Conversions 

 The agricultural or secondary system conversion of water to municipal and 

industrial uses assumes that currently untreated water will be treated to a culinary 
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standard, distributed, provided to end-users and re-treated.  JVWCD currently treats 

about 75% of its total supply and conveys 25% to agricultural customers – about 30,000 

ac-ft.  As this volume of untreated water is converted incrementally to its new use, it is 

multiplied by the energy factors from the “Water Treatment” and “Distribution” 

segments of the water cycle.  Additional wastewater effluent is multiplied by the user’s 

estimated depletion factor.  The resulting volume of water is multiplied by the system’s 

wastewater energy factor to arrive at an added energy cost.  Figure 11 shows the results 

within the estimation model for the JVWCD wholesale district, when all currently 

untreated water is converted to municipal and industrial uses.  The results portrayed in 

the figure show that there is a corresponding increase in energy required with conversion, 

 

 

Figure 11. Increase in energy requirement for JVWCD wholesale district with conversion 

of agricultural/secondary water to municipal and industrial uses. 
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totaling approximately 6.3 million kWh each year, when 100% of available untreated 

water is converted.  Most of the energy required for the transfer is due to increases of 

water volume in the “Distribution” water cycle phase.  However, one of the primary 

assumptions of the model is that conventional water treatment is sufficient to bring 

available agricultural or untreated water to culinary standard.  Upon review with 

JVWCD’s management, a clarification was made concerning the water quality of 

agricultural water in the Salt Lake Valley.  Water taken from some sources is indeed of a 

high enough quality to receive only conventional treatment, but any waters taken from 

Utah Lake has a much higher dissolved solids content and possibly algae.  JVWCD 

managers clarified that to convert agricultural water to culinary uses for this particular 

location, additional energy-intensive reverse osmosis treatment would be required 

(Forsyth 2010). 

 

3.5 Energy Impacts of Reduced Surface Water Availability 

 The final scenario modeled by the energy estimation tool is that of the impact of 

reduced surface water availability, as may occur during periods of drought, sedimentation 

of surface storage reservoirs and climate change.  The assumption made by the model is 

that any reduction in available surface supply from that reported by the user in the model 

would be compensated for with an increase in groundwater withdrawals.  However, the 

amount of groundwater increase is not linear with regard to such reductions for the 

JVWCD system.  This is apparent when historic surface water and groundwater 

withdrawals are compared.  There is significant variation in groundwater withdrawal with 

above or below average surface water availability – so much so that other contributing 
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variables were investigated to help define their relationship to groundwater withdrawal.  

Correlation, linear regression and an analysis of variance (ANOVA) for statistical 

significance were performed on groundwater withdrawal data with regard to surface 

water supply, annual precipitation, and annual net evapotranspiration (ETnet), spanning 

2001 – 2008.  No single variable was found to exhibit a high degree of correlation or 

statistical significance, but the results suggested that ETnet and surface water availability 

combined may be strong predictors for groundwater withdrawal.  To further evaluate this 

relationship, the historic surface water supply and groundwater withdrawals were 

normalized by annual ETnet for each year, and the resulting dataset analyzed for 

correlation and statistical significance.  This relationship, normalized by ETnet, was found 

to exhibit a strong positive correlation with an R-squared value of 0.7478.  The ANOVA 

also found this relationship to be statistically significant, with a P-value (the probability 

that the null hypothesis is true) of 0.0014.  The equation of the linear regression line was 

then used to formulate the relationship used in the scenario module between surface 

water reductions, ETnet, and the resulting groundwater withdrawals.  Tables of the 

statistical analysis of surface water supply, ETnet and groundwater variables are included 

in the Appendix. 

 Within the energy estimation model, after the user has specified a surface water 

source and groundwater source volume (if any), a graphic representation for low and high 

range water systems is displayed.  Figure 12 is a graph of the resulting estimated increase 

in energy requirement from the additional compensatory groundwater pumping for 

JVWCD, the wholesale district.  The figure shows an estimated increase in energy for 

both the low and high range with incremental reductions in available surface water.  A  
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Figure 12. Additional energy requirement for JVWCD the wholesale district with 

decreasing surface water availability. 

 

20% reduction in surface water is estimated to result in a 3.3 million kWh per year 

increase in energy consumption, whilst 35% amounts to approximately 5.8 million 

additional kilowatt hours per year for the low range system. 
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CHAPTER 4 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 The water devoted to energy production and the energy used for water-related 

services are directly linked.  There are many emerging concerns about how much energy 

will be required to provide water to growing populations, especially in arid climates and 

regions of water shortage.  Much research is ongoing that addresses these issues on a 

broad jurisdictional (national and statewide) scale, the results of which may be too 

generalized for the needs of individual water systems and local planners.  Conversely, 

there are many studies that detail individual components of a water system  that 

contribute to its overall energy requirement – especially in the realm of life cycle 

assessment (LCA).  To fill the gap between these two research efforts, a midlevel, 

systemwide methodology for quickly estimating energy requirement and its response to 

alternate water supply and demand scenarios was developed.  The methodology 

employed found that energy requirement could be estimated more accurately by 

disaggregating the water supply and consumption cycle into subgroups, based on key 

characteristics of the system.  For each subcategory, an energy cost per unit volume of 

water, called an energy factor, was calculated using case study utility data.  The energy 

factors derived from case study utility data were comparable to those found in prior 

research efforts, when differences in climate and geography were accounted for.   



   58               

 

 
 

5
8
 

Using the energy factors as a framework for analysis, the developed model 

estimated the energy saved or additional energy consumed when alternate water supply 

and demand scenarios were envisioned.  The first scenario modeled was that of a 

reduction in demand.  The model estimated how much energy would be saved within 

each phase of the water cycle when such reductions take place – 8.9 million kWh or a 

28% reduction of current energy usage.  The second scenario modeled that of an 

agricultural/secondary water system conversion to municipal and industrial uses.  It 

estimated how much additional energy would be required to incorporate this new source 

of water into the public water system.  This was estimated to be 6.3 million kWh and a 

20% increase of current energy requirement.  The third scenario modeled the additional 

energy required to compensate for reduced surface water availability with compensatory 

increases in groundwater withdrawals.  The model estimated that with a reduction of 35% 

in available surface water supply, an 18% increase in energy was necessary.  When 

applied to JVWCD, its member agencies and three geographically dispersed water 

systems initially lacking extant energy data, the model estimated their energy 

requirements with a cumulative margin of error of 19.7%.  With further refinement of 

energy factors and the addition of some additional model parameters, it is likely that 

modeling error will be reduced significantly.   

Once the model is adjusted, it can be used by water planners and water system 

managers in many ways.  First and foremost it can simply increase energy awareness 

among water agency decision-makers.  Most of the agencies approached for this study 

had not considered what their energy requirement might be.  Many were surprised by 

how much energy they used to operate their facilities when their data were entered into 
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the model, or when they received their utility data.  In this fashion the model can be used 

as a year-to-year assessment tool when actual utility data are entered, to verify that the 

system is functioning optimally (or at least nominally).  A spike or dip in energy usage by 

a given category or facility could indicate a system error or a decrease in energy 

efficiency, which would in turn reveal components in need of additional maintenance.  If 

similar water systems are using the model to summarize their baseline energy, the results 

can be compared to discover what treatment technologies are most energy efficient or 

which pumping schedule or setting is optimal for that type of system or region. 

The model can also be used as a policy planning tool.  For example, if energy 

efficiency is of concern for a municipality, it may be more effective to fund water 

efficiency programs to achieve energy efficiency goals depending on how much energy is 

used for water-related services.  The integration of the two efficiency programs may be 

able to achieve gains that the individual programs cannot.  Using the model to discover 

how much energy is devoted to water-related services and how much energy can be saved 

through demand reduction would help allocate funding dollars to one program or another.  

It can be used to identify strategic breakpoints in energy savings, such as the 10% 

reduction in demand eliminating the need to use the most marginal source of water for 

the case study.   

The model can be used as a general planning tool.  It can assess future energy 

needed with additional facilities or water development for growing populations or with 

demand reductions.  It can assess energy required to treat water as it is converted to new 

uses.  New capital improvement projects, such as a new storage reservoir, groundwater 

pumping facilities or a treatment plant, can be entered into a water system’s baseline 
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energy estimate to find the energy cost of such additions.  The model can be used as an 

adaptive management tool.  Alterations in the availability of surface water or 

groundwater in the future may have significant impacts on hydropower energy 

generation, the financial well-being of water agencies and extended or indirect climate 

impacts.  It can help managers plan for these kinds of changes and adjust the operation of 

their systems to maximize efficiency and minimize externalities.  And finally, the model 

can help water planners on a large-scale.  For example, extrapolating the JVWCD energy 

factors to a statewide scale, similar to the study conducted by the California Energy 

Commission in 2005, reveals that Utah’s water-related energy usage is much lower than 

California’s estimate of 19.2%.  When using the most recent estimates from the U.S. 

Geological Survey to estimate surface water withdrawals, groundwater withdrawals and 

public water supply, Utah uses approximately 4.3%–6.4% of its total energy budget on 

providing water to its citizens, as presented in Table 5.  To further refine the percentage, 

the model could be sent to water agencies within a given state.  Managers and operators 

would enter model inputs to the best of their knowledge and then return it to a central 

state agency for compilation.  This would be an alternative method to discovering what 

portion of a state’s energy budget is devoted to water-related services “outside the retail 

meter.” 

Each scenario posed by the study results in either a decrease or increase in energy 

necessary for the case study water system to function nominally.  Depending on the size 

and sophistication of the system modeled, these impacts could range from a few thousand 

to millions of kilowatt hours.   
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Table 5. Water-related service energy usage in Utah 

 

 

 

Collectively, the alternate water supply and demand scenarios modeled have far-

reaching financial and environmental repercussions.  The increase in energy required to 

convey, treat and re-treat water posed by the latter two scenarios for the case study would 

result in greater utility cost (approximately $600,000 at an estimated industrial rate of 

$0.05 per kilowatt hour), additional water infrastructure and capital improvement 

projects.  The financial impacts on water agencies of increases or decreases of energy 

MGD Ac-ft/yr

Energy Factor 

(kWh/ac-ft) Energy (kWh/yr)

Energy 

(GWh/year)

Source & Conveyance

Surface Water/Springs
1

4,160   4,659,200   100                465,920,000         466             

Groundwater
1

955      1,069,600   950                1,016,120,000      1,016          

Recycled Water
2

8          8,512          10                  85,120                  0                 

Water Treatment
3

607      679,840      50                  33,992,000           34               

Water Distributed
4

4,348   4,869,480   220                1,071,285,600      1,071          

End-Use
5 

7,420,921,872      7,421          

Wastewater Treatment
6

486      543,872      850                462,291,200         462             

Total Water-Related Energy Use in Utah 10,470,615,792    10,471        

Million BTU Energy (kWh) GWh

Total Energy Consumption in Utah
7,8

826,500,000  242,247,150,000  242,247      

Total Energy Consumption, excluding transportation
9

561,000,000  164,429,100,000  164,429      

% of Utah Energy Budget devoted to Water-Related Services 4.3%

% of Utah Energy Budget devoted to Water-Related Services, exluding transportation 6.4%

1
 Source: U.S. Geological Survey (2009).  "Estimated Use of Water in the United States in 2005:

   Table 1. Total water withdrawals by source and State, 2005." 
2
 Source: Utah Division of Water Resources (2005c).  "Water Reuse in Utah."

3
 Source: U.S. Geological Survey (2009). "Estimated Use of Water in the United States in 2005:

   Table 2. Public-supply water withdrawals, 2005."
4
 Estimate of the percentage of total withdrawals that enter a distribution system - 85%.

5
 Source: CEC 2005 Water-Energy Report.  Estimate 73% of water service energy-use is "Within the Retail Meter".

6
 Estimated indoor depletion of treated water/public water supply of 20%.

7
 Source: Utah Geological Survey (2009). "Energy Consumption and Expenditures in Utah, 1960 - 2008."

8
 1 Million BTU = 293.1 kWh

9
 Source: Utah Geological Survey (2009). "Energy Consumption in Utah by End Use (Trillion Btu), 1960 - 2008."
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usage can be estimated using current energy rates, but – with the possibility of carbon 

taxation, limitation and an increased emphasis on environmental concerns – it is likely to 

become unpredictably more expensive in the future.   

From an environmental perspective, the case study system relies on utilities that 

derive their energy primarily from coal-fired thermoelectric power plants.  Increases in 

energy usage would have a commensurate increase in GHG emissions and other harmful 

particulates into the atmosphere, which may in turn exacerbate surface water availability.  

Major increases in energy requirements would likely necessitate the installation of new 

power generating facilities.  Also, the long-term environmental impacts of increases in 

groundwater withdrawals to compensate for reduced surface water availability are as yet 

unknown.  Groundwater mining is already occurring periodically within the Salt Lake 

Valley – the amount withdrawn sometimes exceeds recharge.  Other regions near the case 

study system that rely heavily on groundwater withdrawals, are experiencing stress to the 

point of land subsidence (Utah Division of Water Resources 2005b).  The above serves to 

emphasize the importance of incorporating energy-related data into the decision-making 

process while reviewing existing or new water development options. 

Items for future research include a further refinement and disaggregation of water 

cycle phases and investigation of methods for incorporating the end-use phase.  

Regionalizing the energy factors according to climate, geographic characteristics and/or 

groundwater surface elevations would improve the predictive accuracy of the model.  

More data are needed concerning the energy requirement of individual water system 

components, and what characteristics of the components predict energy usage.  This 

could be facilitated by formulating a process whereby water system managers can easily 
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relay their system components and actual energy totals to a database maintained for such 

an effort.  A GIS-based database that is continuously refined, and where the most 

accurate energy factors are made available to model users, would be optimal.  

Incorporation of the interrelated nature of water agency water sales would also allow for 

better prediction of the regional impacts of the scenarios included in the model.  It would 

enable the inclusion of upstream energy producers that take advantage of hydropower or 

energy efficient, gravity-fed systems. 

Currently, one module of the model results is based on a relationship that 

incorporates ETnet as a predictive variable.  This limits the model’s use to areas that are 

similar in climate or at least experience similar ETnet values from year to year.  This 

makes the model less accurate for areas that have very different climate patterns.  

Historic relationships between surface water and groundwater use, and how they relate to 

local variables, should be established before modeling dissimilar locations.  Caution 

should be used when modeling any water system, as the model uses JVWCD as a 

framework for its assumptions.  These may or may not yield valid results for very 

dissimilar systems.   

Another assumption of the model, when run with the alternate water supply and 

demand scenarios, is that groundwater supply is available for pumping and within safe 

yields of the aquifer.  Incorporating availability and overall groundwater health into the 

model would provide an increasingly complex analysis tool, as it would most certainly 

play an important role for decision-makers with some of the scenarios posed in the study.  

Incorporation of these modifications would increase understanding of how much energy 

plays a vital role in water supply, both now and for growing populations. 



   

 

 

APPENDIX 

 

METHODS AND RESULTS INFORMATION 

  



   65               

 

 
 

6
5
 

Table 6. Energy factors for JVWCD and member agencies 

 

 

N Average STDV Low Range High Range

JVWCD

WATER - SURFACE WATER 235        55.7          45.1          10.6            100.8          

WATER - GROUNDWATER 205        968.1        413.9        554.2          1,382.0       

WATER - TREATED 25          42.3          2.4            40.0            44.7            

WATER - DISTRIBUTED 185        113.1        8.9            104.2          122.0          

TOTAL 650        

Bluffdale City

WATER - SURFACE WATER -         -            -            -              -              

WATER - GROUNDWATER -         -            -            -              -              

WATER - TREATED -         -            -            -              -              

WATER - DISTRIBUTED -         -            -            -              -              

TOTAL -         

Draper City

WATER - SURFACE WATER -         -            -            -              -              

WATER - GROUNDWATER -         -            -            -              -              

WATER - TREATED -         -            -            -              -              

WATER - DISTRIBUTED 35          483.9        56.8          427.1          540.7          

TOTAL 35          

Granger-Hunter Improvement District

WATER - SURFACE WATER -         -            -            -              -              

WATER - GROUNDWATER 45          955.5        109.6        846.0          1,065.1       

WATER - TREATED -         -            -            -              -              

WATER - DISTRIBUTED 175        169.2        17.9          151.3          187.1          

TOTAL 220        

Herriman City

WATER - SURFACE WATER -         -            -            -              -              

WATER - GROUNDWATER 35          778.1        192.1        586.0          970.1          

WATER - TREATED 5            4.9            4.9            0.1              9.8              

WATER - DISTRIBUTED 45          46.1          89.3          (43.2)           135.4          

TOTAL 85          

Kearns Water Improvement District

WATER - SURFACE WATER -         -            -            -              -              

WATER - GROUNDWATER 60          1,261.8     90.6          1,171.3       1,352.4       

WATER - TREATED -         -            -            -              -              

WATER - DISTRIBUTED 60          311.6        9.1            302.5          320.7          

TOTAL 120        
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Table 6. (cont.) 

 

 

N Average STDV Low Range High Range

JVWCD

WATER - SURFACE WATER 235        55.7          45.1          10.6            100.8          

WATER - GROUNDWATER 205        968.1        413.9        554.2          1,382.0       

WATER - TREATED 25          42.3          2.4            40.0            44.7            

WATER - DISTRIBUTED 185        113.1        8.9            104.2          122.0          

TOTAL 650        

Bluffdale City

WATER - SURFACE WATER -         -            -            -              -              

WATER - GROUNDWATER -         -            -            -              -              

WATER - TREATED -         -            -            -              -              

WATER - DISTRIBUTED -         -            -            -              -              

TOTAL -         

Draper City

WATER - SURFACE WATER -         -            -            -              -              

WATER - GROUNDWATER -         -            -            -              -              

WATER - TREATED -         -            -            -              -              

WATER - DISTRIBUTED 35          483.9        56.8          427.1          540.7          

TOTAL 35          

Granger-Hunter Improvement District

WATER - SURFACE WATER -         -            -            -              -              

WATER - GROUNDWATER 45          955.5        109.6        846.0          1,065.1       

WATER - TREATED -         -            -            -              -              

WATER - DISTRIBUTED 175        169.2        17.9          151.3          187.1          

TOTAL 220        

Herriman City

WATER - SURFACE WATER -         -            -            -              -              

WATER - GROUNDWATER 35          778.1        192.1        586.0          970.1          

WATER - TREATED 5            4.9            4.9            0.1              9.8              

WATER - DISTRIBUTED 45          46.1          89.3          (43.2)           135.4          

TOTAL 85          

Kearns Water Improvement District

WATER - SURFACE WATER -         -            -            -              -              

WATER - GROUNDWATER 60          1,261.8     90.6          1,171.3       1,352.4       

WATER - TREATED -         -            -            -              -              

WATER - DISTRIBUTED 60          311.6        9.1            302.5          320.7          

TOTAL 120        

Midvale City

WATER - SURFACE WATER -         -            -            -              -              

WATER - GROUNDWATER 15          487.7        41.2          446.5          528.9          

WATER - TREATED -         -            -            -              -              

WATER - DISTRIBUTED 15          91.6          46.5          45.1            138.2          

TOTAL 30          

South Jordan City

WATER - SURFACE WATER -         -            -            -              -              

WATER - GROUNDWATER -         -            -            -              -              

WATER - TREATED -         -            -            -              -              

WATER - DISTRIBUTED 85          14.0          2.7            11.2            16.7            

TOTAL 85          

South Salt Lake Culinary Water

WATER - SURFACE WATER -         -            -            -              -              

WATER - GROUNDWATER -         347.7        118.5        229.2          466.2          

WATER - TREATED -         -            -            -              -              

WATER - DISTRIBUTED 85          325.7        85.3          240.4          411.0          

TOTAL 85          

Taylorsville Bennion Water Improvement District

WATER - SURFACE WATER -         -            -            -              -              

WATER - GROUNDWATER 85          874.0        24.3          849.8          898.3          

WATER - TREATED -         -            -            -              -              

WATER - DISTRIBUTED 35          130.9        8.8            122.2          139.7          

TOTAL 120        

West Jordan City

WATER - SURFACE WATER -         -            -            -              -              

WATER - GROUNDWATER 25          885.6        33.2          852.3          918.8          

WATER - TREATED -         -            -            -              -              

WATER - DISTRIBUTED 120        157.3        37.0          120.3          194.3          

TOTAL 145        

White City Water Improvement District

WATER - SURFACE WATER -         -            -            -              -              

WATER - GROUNDWATER 25          798.5        124.1        674.4          922.7          

WATER - TREATED -         -            -            -              -              

WATER - DISTRIBUTED 120        136.9        49.0          88.0            185.9          

TOTAL 145        
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Table 7. Energy factors for wastewater treatment facilities 

 

 

 

Table 8. Composite energy factors for all water agencies 

 

 

WWTP

 EF       

(kWh/ac-ft) 

CVWRF 450                  

CVWRF Recycled Water 10                    

SVWRF 875                  

Wastewater Treatment

WWTP 

Used

 WWTP EF 

(kWh/ac-ft)

Bluffdale City SVWRF 875

Draper City SVWRF 875

Granger-Hunter ID CVWRF 450

Herriman City CVWRF 450

Kearns WID CVWRF 450

Midvale City SVWRF 875

South Jordan SVWRF 875

South Salt Lake CW CVWRF 450

Taylorsville-Bennion WID CVWRF 450

West Jordan SVWRF 875

White City WID CVWRF 450

MEAN 643.2

STDV 221.9

ALL AGENCIES n = Average STDV Low Range High Range

WATER - SURFACE WATER 235          55.7              45.1        -            100

WATER - GROUNDWATER 495          817.5            127.5      700 950

WATER - RECYCLED 1             10.0              -          -            -            

WATER - TREATED 30           42.3              2.4          40 50

WATER - DISTRIBUTED 960          180.0            37.4        140 220

WASTEWATER TREATMENT 2             643.2            221.9      400           850           
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Figure 13.  Graphic display of energy factors for JVWCD and member agencies 
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Table 9. Statistical analysis results of surface water, ETnet and groundwater withdrawals 

 

 

 

 

  

Year

Surface Water 

Supply (ac-ft)

Groundwater 

Withdrawals (ac-ft)

Etnet 

(in.)

Surface Water 

Norm. (ac-ft/in)

Groundwater 

Norm. (ac-ft/in)

2001 97,359                 21,217                      28.24   3,448                     751                        

2002 89,162                 20,002                      27.47   3,246                     728                        

2003 93,357                 14,540                      25.97   3,595                     560                        

2004 85,879                 14,139                      24.18   3,552                     585                        

2005 102,446               6,989                        23.63   4,335                     296                        

2006 107,956               7,816                        24.31   4,441                     322                        

2007 106,777               9,186                        28.28   3,776                     325                        

2008 102,129               8,773                        26.07   3,917                     337                        

Mean 3,789                  488                     

Variance 177972.534 36536.991

Skew 0.565 0.381

Stdev 421.868 191.147

Low 3,367                  297                     

High 4,211                  679                     

General Statistics

Correlation R-value -0.864730006

Pearson -0.864730006

Significance (α) = 0.05 0.1 0.05 0.02 0.01

Degrees of Freedom = 6 0.622 0.707 0.789 0.834

*Summary: 0.865 > 0.707 

Correlation Statistics
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Table 9. (cont.) 

 

 

  

Regression Statistics

Multiple R 0.864730006

R Square 0.747757984

Adjusted R Square 0.705717648

Standard Error 103.692775

Observations 8

ANOVA

df SS MS F Significance F

Regression 1 191246 191245.7858 17.7866795 0.005577121

Residual 6 64513 10752.19159

Total 7 255759

* Correlation is statistically significant

Coefficients SE t Stat P-value

Intercept 1972.24788 353.88 5.573278398 0.001415302

Surface Water - (ac-ft/in) -0.39180541 0.0929 -4.217425696 0.005577121
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Figure 14. Normalized groundwater withdrawals vs. surface water supply 
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