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ABSTRACT 

Cell proliferation requires increased nutrient uptake and metabolic activities that 

drive macromolecular synthesis to support cell growth. While unicellular organisms 

proliferate when nutrients like glucose are available, this is not the case in metazoans. 

As glucose and other essential nutrients are readily available to cells in the context of a 

multicellular organism, these cells actively regulate the uptake and utilization of nutrients 

through elaborate signaling networks. In addition to increased nutrient uptake, 

proliferating cells must also reorganize their metabolic activities from primarily ATP 

producing to biosynthetic and ATP producing to support the doubling of cellular genomic 

and macromolecular content to produce two viable daughter cells. To accomplish this, 

metabolic reprogramming from oxidative metabolism in the mitochondria to aerobic 

glycolysis - the Warburg effect – occurs within the cell. Aerobic glycolysis, typically 

observed in rapidly proliferating tumor cells, drives synthesis of macromolecules such as 

lipids, protein and nucleic acids, by diverting metabolites from both glycolysis and the 

TCA cycle into biosynthetic pathways while maintaining ATP production. Growth factor 

signaling pathways orchestrate this metabolic reprogramming by directly influencing 

glucose uptake and activating transcriptional networks, such as Myc and HIF, to 

upregulate glycolytic flux. Thioredoxin interacting protein (TXNIP), a tumor suppressor 

and a direct and glucose-induced transcriptional target of MondoA, is a potent negative 

regulator of glucose uptake and glycolysis. Thus, TXNIP may inhibit cell growth and 

proliferation by restricting substrate availability for macromolecular synthesis. When 

quiescent cells are stimulated to proliferate TXNIP translation and MondoA-dependent 
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TXNIP transcription are acutely downregulated in response to growth factor signaling. 

Ectopic MondoA and TXNIP expression restricts glucose uptake and utilization resulting 

in restricted cell growth and proliferation. Thus downregulation of these activities might 

act in cooperation with activities such as Myc upregulation to drive metabolic 

reprogramming in response to proliferative signals. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

In metazoans, cell proliferation is required for normal organismal function. Its 

roles include, but are not limited to, embryogenesis, development, growth and 

maintenance of function of many adult tissues. Aberrant proliferation is a defining feature 

of tumorigenesis. Much of the work done over the past several decades to understand 

the mechanisms leading to and controlling cell proliferation has led to the identification 

and dissection of exquisitely regulated growth-factor signaling pathways and 

transcriptional networks that enable cells to enter and successfully traverse the cell 

cycle. Clearly, these are also the pathways that are corrupted and exploited during 

tumorigenesis.  

Proliferating cells are faced with major challenges. The onset of proliferation 

requires that a cell must ultimately divide into two identical daughter cells, indicating that 

it is not only necessary to completely duplicate its genome but it is also required to 

double its biomass prior to mitosis. This presents unique metabolic challenges to the cell 

as it must increase the synthesis of proteins, lipids and nucleic acids in response to 

proliferative signals. Resting or quiescent cells have significantly different metabolic 

needs than those of proliferating cells. Therefore, once stimulated to proliferate, these 

cells must reorganize their metabolic pathways such that both energy producing and 

biosynthetic pathways are enabled to allow sufficient cell growth. In addition to metabolic 

reprogramming, proliferating cells must also increase uptake of extracellular nutrients to 
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maintain flux through the metabolic pathways that drive cell growth. Rapidly proliferating 

cancer cells demonstrate increased uptake and utilization of glucose and glutamine and 

generate adenosine 5’-triphosphate (ATP) primarily by aerobic glycolysis. Work involving 

proliferating lymphocytes and hematopoietic stem cells suggests that this is not a feature 

unique to cancer cells but rather required by all proliferating cells. While the signals that 

stimulate cell proliferation are also involved in orchestrating metabolic reprogramming, 

little is known about the downstream effectors involved in this process. Elucidating the 

regulatory processes involved in metabolic reprogramming and ultimately cell growth is 

therefore important for a more comprehensive understanding of not only normal cell 

processes but for the pathogenesis of diseases such as cancer. 

1.2 The Warburg Paradox and Anabolic Metabolism 

In the 1920s, Otto Warburg observed that cancer cells metabolize glucose in a 

manner different from cells in normal tissues (1). In the presence of sufficient oxygen to 

support mitochondrial oxidative phosphorylation, tumor cells tended to catabolize 

glucose to lactate at high rates rather than oxidizing it as in normal cells (2). Warburg’s 

initial explanation for this was that tumors had defects in mitochondrial function or 

oxidative phosphorylation which resulted in a compensatory increase in glycolytic flux 

(2), but it is now clear that many tumors not only have normal mitochondria but their 

tricarboxylic acid (TCA) cycles and electron transport chains (ETC) are intact (3). 

Nonetheless, Warburg’s observations presented a paradox: Why would rapidly 

proliferating cells with such a great need for energy (ATP) utilize a wasteful and 

seemingly inefficient form of metabolism? While this paradox is still not completely 

resolved, studies in normal proliferating lymphocytes suggest that aerobic glycolysis, the 

Warburg effect, is not unique to tumors (section 1.3).  
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Cells require a constant supply of energy to maintain the biological processes 

that allow them to function and survive. The most fundamental source of cellular nutrition 

is glucose. In most metazoans, glucose metabolism dominates energy production. In 

mammalian cells, glucose enters the cell through one or many transmembrane hexose 

transporters belonging to the GLUT family (4). Once in the cytoplasm, glucose is 

phosphorylated by a hexokinase to glucose-6-phosphate (G6P) in the first step of 

glycolysis to prevent its diffusion out of the cell and allow further glycolytic catabolism 

(5).  Once committed to glycolysis after conversion by phosphofructokinase (PFK), the 

six-carbon sugar is further metabolized to two three-carbon pyruvate molecules which 

yield two ATP and NADH (nicotinamide adenine dinucleotide (NAD+), reduced) 

molecules per pyruvate in the process (5).  If oxygen is not limiting (aerobic metabolism) 

pyruvate enters the mitochondria and is converted to acetyl coenzyme A (CoA) where it 

enters the citric acid or TCA cycle (Figure 1.1) (5). Flux through the TCA cycle produces 

NADH and FADH2 (flavin adenine dinucleotide (FAD), reduced) which fuel maximal ATP 

production by oxidative phosphorylation (6). Up to 36 molecules of ATP can be 

generated from one molecule of glucose in this manner (6). If oxygen is limiting 

(anaerobic metabolism), pyruvate is further metabolized to lactate which is excreted from 

the cell, yielding a net two ATP molecules per glucose molecule (6). Tumors tend to 

have anaerobic microenvironments, and thus utilize anaerobic metabolism to derive 

energy for cellular function (6), so it is important to distinguish this from proliferative 

metabolism which is aerobic. It is clear that glucose metabolism by the TCA cycle seems 

to produce more energy and less waste in the form of lactate than glycolysis alone, so 

why would a proliferating cell under aerobic conditions utilize a seemingly wasteful and 

low-energy yielding process as its main form of metabolism? An answer to this question 

comes from an understanding of both the metabolic needs of a proliferating cell and the  
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Figure 1.1 Schematic of glycolysis (cytoplasm) and the TCA cycle (mitochondria). 
Generally depicted are: ATP production by the electron transport chain (ETC) in the 
mitochondrial matix, NAD+ generation by LDHA and site of glutaminolysis. Lactate is 
excreted from the cell by an MCT (monocarboxylate transporter). Also depicts branch 
points where pathway intermediates can participate in macromolecular synthesis. 
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metabolic demands of macromolecular biosynthesis. In short, aerobic glycolysis is a 

necessary component of anabolic metabolism.  

In addition to generating ATP by oxidative phosphorylation, glucose metabolism 

also provides cells with intermediates required for biosynthetic pathways (6-10).  G6P is 

shunted into the pentose phosphate pathway (PPP) to generate ribose sugars 

necessary for nucleotide biosynthesis as well as NADPH (7), citrate is exported from the 

mitochondria to generate fatty acids for lipids (9) and amino acids are derived from 

glycolytic and TCA cycle intermediates (9) (Figure 1.1). Additionally, pyruvate conversion 

to lactate by lactate dehydrogenase A (LDHA) produces NAD+ which is necessary for 

reductive biosynthesis as well as ATP production from glycolysis (9). While the ATP 

yield from glycolysis compared to the TCA cycle is low, the flux through glycolysis to 

generate lactate is considerably higher than through the TCA cycle (11). This can help to 

resolve the Warburg paradox, at least partially, in two ways. First, the energy needs of 

the proliferating cell can be met by ATP production from glycolysis provided both 

glycolytic flux and glucose uptake are increased. Second, if a high flux pathway, like 

glycolysis, is upstream of and feeds into a lower flux pathway, like one that utilizes 

pathway intermediates as biosynthetic precursors, flux through the downstream pathway 

can be maintained while lactate production prevails through glycolysis (11). Since the 

TCA cycle is a lower flux pathway, with pyruvate to acetyl CoA conversion being limiting 

(12), TCA cycle intermediates can be used as biosynthetic precursors rather than being 

metabolized completely by this cycle to drive oxidative phosphorylation, while ATP 

production is supported by the high glycolytic flux (9). Given that utilization of TCA cycle 

metabolites in biosynthetic pathways potentially “empties” (catapleurosis) the TCA cycle 

quickly, the cycle can ultimately be “refilled” (anapleurosis) by conversion of the amino 

acids glutamine and aspartate to TCA cycle intermediates (13). Conversion of the highly 

abundant glutamine to α-ketoglutarate (α-KG) provides citrate which fuels fatty acid 



7 
 

biosynthesis is also further catabolized by the the TCA cycle intermediates downstream 

(Figure 1.1) (13). This model suggests that proliferating cells are able to engage in the 

necessary biosynthetic reactions required for cell growth while at the same time 

excreting lactate and thus, provides at least some resolution to the Warburg paradox. 

1.3 Metabolic Reprogramming in Lymphocytes 

As outlined in the previous section, aerobic glycolysis drives anabolic synthesis 

of the macromolecules required to support the high rates of proliferation seen in cancer. 

The process of tumorigenesis appears to require metabolic reprogramming from 

oxidative metabolism to aerobic glyolysis (14), and it is becoming clearer that activation 

of many oncogenes, e.g., Myc and Ras, and loss of tumor suppressors, e.g. PTEN, p53 

and TXNIP, directly drive metabolic reprogramming (15-19). This suggests that the 

Warburg effect may contribute functionally to tumor cell growth rather than merely 

correlating with it. This would also indicate that aerobic glycolysis is a feature of normal 

proliferating cells, and in fact, this is the case.  

Much of the work leading to an understanding of the switch from oxidative 

metabolism to aerobic glycolysis during proliferation in normal diploid cells has been 

done in lymphocytes (20). T lymphocytes (T cells) are an ideal model for studying 

metabolic and signaling in cells transitioning into a proliferative state. In vivo, they leave 

the thymus and enter the peripheral circulation as small quiescent cells. In the absence 

of trophic signals, they remain quiescent but upon stimulation by cytokine and antigen 

signals, they become activated and initiate a program of rapid growth and proliferation 

(20). As peripheral T cells can be isolated and used in vitro, it is possible to study 

regulation of both quiescence and proliferation. 

In mammals, nutrients like glucose and glutamine are rarely limiting, and work 

from the Thompson laboratory and others has established that quiescent T cells actively 
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maintain quiescence by low-level signaling through cytokine and T cell receptors (TCR) 

(21). Essentially, glucose and other nutrients are taken up into the cells at a low rate 

(22). Glucose metabolism is divided evenly between lactate production through 

glycolysis and oxidative phoshorylation in the presence of low-level signals, primarily to 

maintain the quiescent state (23). In the complete absence of signals, glucose uptake is 

further decreased and the cells derive energy primarily from β-oxidation of fatty acids 

and lower level flux through the TCA cycle for survival (24). These data support a model 

whereby quiescent cells engage in oxidative metabolism for homeostasis and survival, 

suggesting that the flux of glucose through glycolysis is primarily utilized for pyruvate 

production to supply the TCA cycle with acetyl CoA (Figure 1.2). 

Upon stimulation by antigens, T cells initiate a program of rapid growth and 

proliferation (23). In contrast to quiescent cells, the metabolism of an activated T cell is 

characterized by increased excretion of lactate and dramatically increased uptake of 

glucose (25) (Figure 1.2). GLUT1 transcriptional upregulation and subsequent 

translocation of GLUT1 to the plasma membrane in response to Akt activation 

(discussed in section 1.4) directly drives the dramatic increase in glucose uptake 

following CD28 costimulation in vitro (25). Further, ligation of the TCR (CD3) with CD28 

results in increased glycolytic flux that is phosphatidylinositide 3-kinase (PI3K) 

dependent (discussed in section 1.4) (26). This increase in glucose uptake and 

utilization directly correlates with increases in lipid synthesis and more significantly cell 

growth. Essentially, activated T cells undergo metabolic reprogramming from oxidative 

metabolism to aerobic glycolysis upon activation in order to support the rapid growth 

required for a proliferative burst. In the absence of additional proliferative signals in vitro, 

e.g., the cytokine interleukin-3 (IL-3), T cells will not proliferate, making this an ideal 

system to study the signaling events regulating cell growth (25, 27). However, as T cells 

divide rapidly, as quickly as 6 hours, understanding the immediate and subsequently  
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Figure 1.2 Metabolic reprogramming in T cells. Quiescent cells take up glucose at a low 
rate which drives glycolysis at rates sufficient to generate ATP in the mitochondria via 
the TCA cycle for maintenance and survival. Fatty acids are oxidized in the mitochondria 
to provide additional substrates for TCA cycle function and energy production through 
oxidative phosphorylation. Upon cytokine and T cell receptor stimulation, T cells begin a 
program of rapid growth and proliferation. Akt-dependent GLUT1 mRNA upregulation 
and transporter translocation to the plasma membrane increases glucose uptake, and 
PI3K-dependent increase in glycolytic flux increases lactate excretion from the cell. The 
TCA cycle becomes “truncated” with metabolites being utilized for lipid synthesis. Amino 
acids, aspartate and glutamine “refill” the cycle via anapleurosis. ATP production is 
shifted from the mitochondrial matrix to the cytoplasm via glycolysis. Figure adapted 
from Fox, et al., (2005) Fuel feeds function: energy metabolism and the T-cell response. 
Nat Rev Immunol 5(11):844-52 
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temporal regulation of metabolic reprogramming in the growth phase (G1) of the cell 

cycle in response to proliferative signal becomes less tractable and as such, another 

system is explored in Chapter 2. 

The work briefly outlined in this section indicates that metabolic reprogramming is 

required in cells transitioning from a quiescent state to one of proliferation. As PI3K and 

Akt signaling are required for both the increase in glucose uptake and glycolytic flux, this 

suggests a broader role for metabolic reprogramming in other cell types that undergo 

proliferation. PI3K and Akt can act as transducers of extracellular signaling propagated 

through growth factor receptors. As such, signal transduction by growth factor receptors 

and the broader implications of this signaling on metabolism will be discussed in section 

1.4. 

1.4 Receptor Tyrosine Kinase Signaling 

As described in section 1.3, CD28 costimulation activates PI3K and Akt. While 

CD28 regulates growth in T cells by supporting metabolic reprogramming, another class 

of transmembrane signaling receptors, the receptor tyrosine kinases (RTKs) active in 

cell growth and proliferation, through their activation of PI3K and Ras, will be discussed 

in this section. The ErbB family member, epidermal growth factor receptor (EGFR) is 

one of the most studied members of the RTK superfamily, and as such, it serves as a 

model for discussing downstream signal transduction in this section. It is also important 

to note that the EGFR effector cascades that will be presented here are utilized by 

myriad signaling receptors (e.g., cytokine receptors and G protein coupled receptors 

[GPCRs]) and as such, signaling through the RTKs merely represents a model for the 

signaling paradigms outlined. 

EGFR, and other members of the RTK superfamily, are composed of an 

extracellular ligand-binding domain, a single transmembrane domain and intracellular 
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tyrosine kinase domain followed by a non-catalytic carboxy-terminal tail (28, 29). The 

receptor is activated upon ligand binding (EGF) leading to receptor dimerization and 

subsequent auto-phosphorylation by the catalytic tyrosine kinase domain (29). Once 

phosphorylated, the intracellular domain acts a docking site for Src homology 2 (SH2) 

domain containing proteins which brings them to the intracellular surface of the plasma 

membrane and potentiates binding, activation and catalysis of downstream effectors 

(29). Two major effector pathways that will be discussed below are the PI3K/Akt 

pathway and the Ras/MAPK (mitogen-activated protein kinase or Erk [extra-cellular 

signal regulated kinase]) pathway (Figure 1.3).  

Signaling specificity and heterogeneity is achieved, in part, through EGFR 

heterodimerization with other ErbB family members (29, 30). The signals tranduced 

though EGFR ultimately lead to cell proliferation, differentiation or survival. Given its role 

cell fate determination, it is not surprising that activating mutations in EGFR, primarily in 

the regulation of its kinase activity, have been observed in many cancers (31). A unique 

feature of EGFR is, unlike other receptors, its kinase domain is not regulated by 

additional phosphorylations within an activation loop of the domain; instead, it is 

controlled by receptor conformational changes induced by ligand binding and possibly 

the carboxy-terminal tail (31). Thus mutations in the activation loop leading to 

constitutive activation of the kinase domain in the absence of ligand binding require less 

specificity than those in other receptors and. As such, activating mutations in EGFR 

appear to be more prevalent in cancers and much work has been done in developing 

small molecule inhibitors of its kinase activity (31). 

Once phosphorylated, EGFR can recruit many signal effectors depending on 

cellular context. PI3K, a member of the class I family of phosphoinositide kinases, is a 

heterodimeric kinase made up of a regulatory subunit (p85) and a catalytic subunit  
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Figure 1.3 Simple schematic of receptor tyrosine kinase (RTK) signaling highlighting 
general signal transduction through P13K and Ras networks. Ligand (e.g., EGF) binding 
to extracellular ligand-binding domain induces receptor dimerization and 
phosphorylation. With regard to signals transduced through PI3K, the regulatory domain 
of PI3K, p85, is recruited to the plasma membrane via RTK-p85 interactions. The 
catalytic domain, p110, phosphorylates PI(4,5)P2 (PIP2) residues in the plasma 
membrane to PI(3,4,5)P3 (PIP3), permitting Akt recruitment to the plasma where it is 
activated. PTEN dephosphorylates PIP3 in the plasma membrane, thus attenuating PI3K 
signal propagation. Ras activation can also activate PI3K as depicted. With regard to 
signal transduction through Ras, an adapter like Grb2 is recruited to the active RTK 
which binds the Ras-GEF Sos, thus catalyzing GDP to GTP exchange on Ras and 
activating it. Activated Ras binds to Raf, permitting its phosphorylation and activation. 
Raf phosphorylates MEK which subsequently phosphorylates MAPK, which then 
translocates to the nucleus, where it can phosphorylate and activate transcription factors 
such as the c-Myc proto-oncogene. Downstream signals from both PI3K and Ras lead to 
proliferation, differentiation, growth and survival as discussed in the text. 
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(p110) (32, 33). PI3K can be recruited directly to the receptor through p85 SH2 domain 

interactions or indirectly through other docking proteins like Grb2 or IRS-1 (33). Once  

recruited to the receptor and proximal to the plasma membrane, PI3K catalyzes the 

phosphorylation of phosphatidylinositide (4,5)-diphosphate (PI(4,5)P2) residues in the 

plasma membrane to PI(3,4,5)P3, which are potent signaling molecules (33). PI(3,4,5)P3 

can recruit cytosolic proteins containing pleckstrin homology (PH) domains, e.g. Akt, to 

the plasma membrane where they can be activated by other plasma membrane 

associated proteins and further transduce signals from the RTK (34). More specifically, 

once Akt is positioned at the plasma membrane, it is phosphorylated by its activating 

kinases, phosphoinositide dependent kinase 1 (PDK1) and mammalian target of 

rapamycin complex 2 (mTORC2) at threonine 308 and serine 473, respectively (34). 

Upon activation, Akt phosphorylates serines and threonines of other downstream 

effectors including, but far from limited to, mTORC1 and BAD, leading to cell growth, 

proliferation and survival (35, 36). Additionally, Akt1 activity is required for translocation 

of the insulin responsive glucose transporter, GLUT4 in response to activation of the 

insulin receptor (IR) (37). Finally, as discussed in section 1.3, Akt and PI3K activity are 

required for metabolic reprogramming in T cells.  

PI3K signaling is attenuated by a number of mechanisms, but one of the best 

characterized is by the tumor suppressor phosphatase and tensin homolog (PTEN). 

Briefly, activated PTEN catalyzes the dephosphorylation of PI(3,4,5)P3 to PI(4,5)P2, thus 

inhibiting signaling downstream of PI3K (38). Just as activating mutations in PI3K lead to 

growth and survival of many cancers, mutations rendering PTEN catalytically inactive 

are also observed (38). Interestingly, deletion of the tumor suppressor thioredoxin 

interacting protein (TXNIP) leads to inactivation of PTEN (19). It is thought that the 

reactive oxygen species (ROS) generating activities of TXNIP activate PTEN, resulting 
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potentially in growth arrest and reduced glycolysis (19). TXNIP will be discussed in 

greater detail in section 1.6. 

A second signaling cascade activated by RTKs is the Ras-MAPK pathway. Ras 

is a small membrane associated GTPase and its activity is regulated by the guanine 

exchange factor (GEF) son of sevenless (Sos) (39). Sos can be recruited to the plasma 

membrane and to Ras in number of ways upon RTK activation, however, a well 

characterized method involves docking to receptor bound Grb2 (39). Once activated, 

Ras can recruit a Raf protein (e.g., cRaf, Raf-1) leading to activation of its catalytic 

activity. Activated Raf phosphorylates the dual specificity kinase MEK (MAPK kinase) 

which subsequently phosphorylates MAPK (40).  Phosphorylated MAPK translocates to 

the nucleus where it phosphorylates transcription factors containing MAPK 

phosphorylation sites such as Elk-1, cMyc and PPARγ (41-44). For certain transcription 

factors MAPK phosphorylation serves as an activating event, thus integrating 

extracellular signals with transcriptional programs. Ras-MAPK signaling ultimately leads 

to cell fate decisions such as proliferation and differentiation (30). 

 As many pathways lead to MAPK activation, it is confounding how this common 

endpoint produces different cell fates. It is clearer now that both the intensity and 

duration of MAPK activation plays a role (30, 45). Within the context of EGFR, 

attenuation of the signal transduced by EGF to MAPK is accomplished by receptor 

downregulation through ubiquitination by cCbl, Ras-GAP inhibition of Raf activation, as 

well as direct inhibition of phosphorylated MAPK by MAPK phosphatase (46-48). Work 

from Appendix A done in the laboratory of Nadeem Moghal addresses a novel 

mechanism of EGFR downregulation by an inhibitory domain of Sos (49). Mutations in 

the Cdc25 domain of Sos lead to a multivulva phenotype in Caenorhabditis elegans 

similar to EGFR and Ras mediated hyperactivation of MAPK. Recapitulation of this 

Cdc25 mutation in human Sos results in sustained MAPK activation in the presence of 
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EGF and further, similar mutations in Cdc25 have been observed in developmental 

disorders attributable to increased, but not constitutive, Ras activation. While the Cdc25 

does not directly activate Ras, failure to inhibit EGFR kinase activity results in sustained 

Ras and MAPK activation downstream of EGF.  While many mechanisms can lead to 

aberrant Ras activation, activating mutations of Ras are observed in many cancers and 

the high rates of glycolysis observed can be directly attributed to Ras activation of cMyc 

and Hif1α, which will be discussed in section 1.5 (50-54). 

It is evident that both PI3K/Akt and Ras-MAPK signaling have critical roles in 

regulating cell growth and proliferation in response to extracellular signals. As discussed 

above, PI3K/Akt signaling also regulates glucose uptake and metabolism and is required 

for metabolic reprogramming in T cells. While Ras-MAPK signaling controls proliferation, 

it also directly regulates glycolysis through Myc and HIF-1α, suggesting that metabolic 

reprogramming is part of the proliferative program. Importantly, the effects on nutrient 

uptake and metabolism by both PI3K and Ras are rapid, occurring within a few hours of 

pathway activation, further underscoring that metabolic reprogramming is a necessary 

component of cell growth required for proliferation. We demonstrate in Chapter 2 that 

RTK signaling through Ras may also impact glucose uptake and glycolysis by regulating 

TXNIP, suggesting a new for role for Ras in metabolic reprogramming. 

1.5 Myc, HIF and Glycolysis 

A hallmark of most cancers is their enhanced proliferative capacity. As previously 

discussed, a metabolic component characterized by and contributing to this increased 

proliferation is the Warburg effect or aerobic glcyolysis, which drives and supports the 

macromolecular synthesis required for the cell growth necessary for proliferation. While 

growth factor signaling leads to increases in aerobic glycolysis discussed in section 1.4, 

a mechanism by which this is accomplished is through the direct activation of 



18 
 

transcriptional networks that directly upregulate the expression of genes involved in 

glycolysis.  The cMyc oncogene, a transcription factor belonging to basic helix-loop-helix 

leucine zipper (bHLHZip) family of transcription factors, is mutated in many cancers and 

drives high aerobic glycolysis and cell cycle progression through activation of its many 

transcriptional targets (55). During oxygen deprivation and other environmental stresses 

another transcription factor, the hypoxia-inducible factor, HIF, is stabilized and 

metabolism is redirected to glycolysis, principally for survival (56). Myc and HIF share 

multiple transcriptional targets and compete for control of metabolism in the anaerobic 

tumor microenvironment, however, there is evidence that these activities cooperate 

during proliferation in the presence of oxygen. As discussed in section 1.4, Ras 

activation regulates metabolism required for cell growth through Myc and HIF (53, 54). 

This section will therefore discuss the transcriptional regulation of metabolic 

reprogramming by Myc and HIF. 

Myc activates thousands of transcriptional targets through a complex network of 

protein-protein and protein-DNA interactions with other members of bHLHZIP family, 

Mad and Max (57). Myc:Max heterodimers bind to CACGTG or related E-box elements 

in the promoter regions of genes involved in metabolism, growth and proliferation and 

potently activate their transcription (57). In normal cells, Myc is induced by growth factor 

signaling, and it is constitutively expressed at high levels in many cancers. Myc drives 

cell cycle progression through its regulation of cyclins and cyclin-dependent kinases and 

is necessary for RNA polymerase I and III transcription of tRNA and rRNA, thus 

regulating protein synthesis (58-60).  It also activates the transcription of most the genes 

that regulate carbon utilization (61). Consistent with a role in aerobic glycolysis, Myc 

upregulates GLUT1, hexokinase and LDHA, thus supporting increased glucose uptake, 

glycolytic flux and lactate production (62). Interestingly, two paralogs of the Myc 
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superfamily, MondoA and ChREBP also transcriptionally regulate glucose uptake and 

glycolysis (63-65). These will be discussed further in section 1.7. 

In order to undergo macromolecular synthesis driven by aerobic glycolytic flux, 

the cell needs normal or enhanced mitochondrial function. Myc increases both 

mitochondrial biogenesis and function which consistent with its role in upregulating 

aerobic glycolysis.  As outlined in section 1.2, anapleurosis, or the refilling of the TCA 

cycle, is an integral component of utilizing TCA cycle intermediates for macromolecular 

synthesis. One mechanism by which anapleurosis occurs is glutaminolysis or the 

metabolism of glutamine to α-KG (13). Myc has been shown to increase glutaminolysis 

by several mechanisms. Myc directly upregulates the transcription of the glutamine 

transporters SCL38A5 and SCL1A5 (66). Additionally, Myc has been shown to increase 

glutaminase expression by increasing glutaminase mRNA directly (66) and 

transcriptionally repressing miR-23a/b transcription which de-represses glutaminase 

transcription (67). Thus, in addition to its contribution to increasing aerobic glycolysis, 

Myc contributes to metabolic reprogramming through its regulation of mitochondrial 

biogenesis and function and might increase anapleurosis by regulating glutaminolysis. 

Notably, MondoA transcriptional activity has been shown to be negatively regulated by 

glutaminolysis, and this will be addressed in section 1.7. Additionally, Myc also drives 

anabolic synthesis of fatty acids and nucleotides directly through transcription of genes 

utilized in these pathways, however; as they also require TCA cycle intermediates, this 

indicates that the role Myc plays in metabolic reprogramming is quite comprehensive.  

HIF belongs to the PER-ARNT-SIM (PAS) subfamily of the bHLHZIP family of 

transcription factors, and is active as heterodimer of HIF-α and HIF-β (also known as 

aryl hydrocarbon receptor nuclear translocator [ARNT]) subunits (62). HIF-β subunits are 

stably transcribed and translated, and while HIF-α subunits are as well, they are also 
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modified by prolyl hydroxylases in the presence of oxygen, permitting HIF-α association 

with and ubiquitination by the von Hippel-Lindau (VHL) tumor suppressor and 

subsequently degraded in a proteasome-dependent manner (56). Under anaerobic 

conditions, HIF-α subunits are stabilized following inactivation of the TCA cycle-

dependent prolyl hydroxylases and HIF heterodimers translocate to the nucleus to 

activate the transcription of many glycolytic targets. HIF also regulates genes involved in 

cell survival as well as those that inhibit macromolecular synthesis, consistent with 

decreased TCA cycle and oxidative function (68).  

While HIF is primarily considered to increase anaerobic glycolysis, there is also 

data suggesting that HIF functions to increase aerobic glycolysis in response to growth 

factor signaling during normoxia (69). PI3K and MAPK activation has been shown to 

increase HIF-1α translation (70-72). Knockdown of HIF-1α in hematopoietic stem cells 

(HSCs) cultured under normoxic conditions demonstrated decreased lactate production 

but converted pyruvate to lipids at a higher rate, correlating with increased growth and 

proliferation rates (69). These data suggest that HIF-1 is a key component of growth 

factor induced aerobic glycolysis in normoxia; however, HIF-1 also appears to repress 

lipid biosynthesis, which is likely compensated by Myc transcriptional targets (62). These 

data do however ascribe a function in metabolic regulation in normoxia by HIF-1 that is 

consistent with RTK signaling regulation of metabolic reprogramming. Clearly, 

transcriptional regulation of metabolic reprogramming is complex and a new aspect of 

this regulation by MondoA is described in Chapter 2.  

1.6 Thioredoxin Interacting Protein 

Thioredoxin interacting protein (TXNIP), also known as vitamin D up-regulated 

protein 1 (VDUP1) and thioredoxin binding-protein 2 (TBP2), was originally identified as 

a transcript induced by vitamin D3. Initially, TXNIP was thought to exert its function 
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exclusively by negatively regulating thioredoxin (Trx) through direct binding and inhibition 

of Trx reducing activity and by preventing Trx interaction with other binding partners (73-

75). It is evident now however that TXNIP interacts with multiple protein partners to exert 

its many functions (76, 77). TXNIP has subsequently been implicated in myriad cellular 

processes including proliferation, differentiation and diseases including metabolic 

syndrome (diabetes) and cancer (78, 79). Considered a tumor suppressor, TXNIP levels 

are reduced in tumors and its over-expression causes cell cycle arrest (80). TXNIP is 

required for quiescence and negatively regulates glucose uptake and glycolysis (81, 82). 

As such, TXNIP is an excellent and emerging candidate in the regulation of metabolic 

reprogramming. Notably, vitamin D3, which upregulates TXNIP expression, has also 

been shown to downregulate cMyc expression, suggesting that the two proteins might 

coordinately regulate growth and metabolic reprogramming (83). Germane to our lab, 

TXNIP is a direct and glucose dependent target of MondoA (section 1.7) (64, 84, 85). 

This section will therefore discuss the impact of TXNIP on cell metabolism and 

proliferation. 

TXNIP is a member of the α-arrestin family of proteins (86). Its expression is 

regulated by a variety of environmental stresses including serum starvation, heat shock, 

H2O2, irradiation, lactic acidosis and transforming growth factor-β (TGF-β), all of which 

negatively affect cell proliferation (75, 80, 87). Consistent with these stimuli, anti-

proliferative agents, e.g., histone deactylase (HDAC) inhibitors, 5-fluorouricil, 

dexamethasone, were shown to increase TXNIP expression in tumor cells suggesting 

that loss of TXNIP is essential for the proliferation of some cancers (84, 88, 89). 

Consistent with these findings, high TXNIP expression portends a positive outcome in 

breast and gastric cancers (77, 87, 90).  
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Some clues to how TXNIP might function to arrest cell growth and proliferation 

come from studies in HSCs wherein TXNIP expression was shown to be essential for 

maintaining quiescence (81). Similar to T cells (section 1.3), HSCs are maintained in a 

quiescent state in bone marrow until they are stimulated to proliferate and subsequently 

differentiate (81). In this study, TXNIP was downregulated during HSC activation and 

TXNIP-/- mice demonstrated decreased long-term HSC populations and the capacity to 

repopulate HSCs was lost. These effects were due to hyperactive cell cycling, Wnt 

signaling and failure to induce expression of the cyclin inhibitor p21 under stress 

conditions. These data suggest that while TXNIP is required for HSC quiescence, it also 

might drive cell cycle arrest by a p53 dependent mechanism (91). TXNIP has also been 

shown to increase p27Kip1 stability by binding to JAB1, which targets p27Kip1 for 

degradation (76). As p27Kip1 is necessary for quiescence, its stabilization by TXNIP might 

drive growth arrest. Thus TXNIP’s role as tumor suppressor may be linked to its role in 

maintaining quiescence. 

Another mechanism by which TXNIP negatively regulates proliferation is directly 

correlated with growth factor signal transduction. Data from TXNIP null MEFs implies 

that TXNIP activates PTEN by a REDOX-mediated mechanism and thus blocks signals 

transduced through PI3K (section 1.4) (19). As TXNIP inhibits Trx, it also inhibits Trx 

mediated NADPH-dependent disulfide reduction which oxidizes PTEN thus inactivating it 

(19). Since PTEN phosphatase activity dephosphorylates PI(3,4,5)P3 residues in the 

plasma membrane required for Akt activation, signals downstream of PI3K are thus 

blocked by active PTEN (section 1.4). TXNIP-/- mice were unable to switch from glucose 

utilization (aerobic glycolysis) to β-oxidation upon food deprivation. The mice become 

hypoglycemic and hypertriglyceridemic consistent with increased aerobic glycolysis and 

macromolecular synthesis. These data are consistent with a model whereby TXNIP is 

regulated by nutrient conditions to optimize fuel selection based on growth or survival 
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and suggests that TXNIP upregulation might also regulate inhibit cell growth by blocking 

aerobic glycolysis. 

TXNIP has also been shown to inhibit glucose uptake (64, 85). As TXNIP inhibits 

both glucose uptake and glycolysis, one way TXNIP might regulate cell growth is by 

restricting nutrient availability and utilization (82). TXNIP may affect cell nutrient 

utilization in several ways. Murine embryonic fibroblasts from TXNIP-/- mice have 

increased glucose uptake and lactate production compared to their wild type 

counterparts (19, 92). As discussed above, TXNIP deletion alone is sufficient to drive 

metabolic reprogramming toward aerobic glycolysis (19). Additionally, TXNIP 

destabilizes HIF1-α in normoxia (77). As HIF-1α activates the transcription of glycolytic 

genes (section 1.5), TXNIP may downregulate a transcriptional program that drives 

glycolysis (62). In combination with TXNIP regulation of PTEN, TXNIP may negatively 

regulate cell proliferation by controlling several of the core metabolic pathways required 

for cell growth. These observations provide the basis for examining TXNIP regulation in 

G0/G1 transition discussed in Chapter 2, where we demonstrate that TXNIP translational 

and transcriptional downregulation is required for metabolic reprogramming in fibroblasts 

re-entering the cell cycle from a quiescent state. 

1.7 MondoA 

MondoA is a bHLHZip transcription factor related to the Myc superfamily which 

bears superficial similarity to Myc, Max and Mxd (Mad) (Figure 1.4) (93, 94). MondoA 

dimerizes with another bHLHZip protein, Max-like protein (Mlx) and MondoA:Mlx dimers 

bind to and affect transcription from E-box related elements in the promoter regions of 

their target genes suggesting they might also regulate Myc:Max targets including those  

required for growth and metabolism (57). While MondoA:Mlx complexes appear to 

function in a manner similar to Myc:Max complexes, a distinguishing feature of  
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Figure 1.4 MondoA and ChREBP comprise a parallel Myc-like transcription network. 
MondoA activates transcription by dimerizing with Mlx. Generally, Myc activates 
transcription through dimerization with Max. Transcriptional repression occurs by Mlx 
and Max dimerization with Mxd (Mad) family members. Additionally, Mnt binds Max to 
repress Myc transcriptional targets. Transcriptional activation from both Myc and Mondo 
networks results in regulation of cell growth and metabolism discussed in the text. 
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MondoA:Mlx dimers is that they reside on the outer mitochondrial membrane and 

translocate to the nucleus to enable transcription in response to nutritional cues (63, 64, 

84, 85). Much of the work characterizing MondoA function has been done by our lab and 

this section reviews the role we have identified for MondoA in glucose sensing and the  

ensuing adaptive transcriptional programs the MondoA:Mlx complexes enable. 

Specifically, MondoA:Mlx complexes exert their transcriptional control on the processes 

of metabolism and nutrient availability directly through regulation of transcriptional 

targets like TXNIP (section 1.6). 

Structurally, MondoA bears superficial similarity to Myc (Figure 1.5). Its carboxy-

terminal region contains a bHLHZip domain, a dimerization domain and a transcriptional 

activation domain similar are to Myc (93). Where MondoA structure deviates significantly 

from Myc is in its amino-terminal Mondo Conserved Regions (MCRs) (93). MondoA 

possesses five MCRs which regulate nuclear accumulation of MondoA:Mlx heterodimers 

in response to glucose-6-phoshate (discussed below) (85). Additionally,  

the dimerization and cytoplasmic localization domain (DCD) in the carboxy-terminus, 

common to MondoA and the Mlx isoforms α, β and γ, is uniquely required for 

MondoA:Mlx cytoplasmic retention (93). Another member of the Mondo family, the 

carbohydrate response element binding protein, ChREBP (MondoB), shares structural 

and regulatory similarities and will be further addressed later in this section. 

Work form our lab has established that MondoA:Mlx complexes reside on the 

surface of the  outer mitochondrial matrix (OMM) and shuttle between the mitochondria 

and nucleus (63, 64). Additional work established that extracellular glucose 

concentrations and more specifically, the intracellular glucose metabolite G6P 

concentrations promote MondoA:Mlx nuclear translocation (64, 85). ChREBP:Mlx 

complexes function similarly, and while the PPP intermediate xylulose-5-phosphate 

(X5P) drives nuclear translocation, G6P has also been recently implicated (95, 96).  
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Figure 1.5 Structural similarities between MondoA, Mlx, Myc and Max. The unifying 
feature within all is the basic helix-loop-helix leucine zipper (bHLHZip) domain which is 
similar in all Myc superfamily members allowing DNA binding to CACGTG or related E-
box elements in the promoters of target genes. MondoA (and ChREBP) are 
approximately twice the size of Myc. MondoA and Mlx have dimerization and 
cytoplasmic localization domains (DCD) and Mondo family members have the regulatory 
Mondo Conserved Regions (MCRs) which are required for glucose regulated Mondo 
transcriptional activity. 
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Once in the nucleus, MondoA has been shown to activate genes involved in glycolysis 

including, hexokinase II (HKII), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 

(PFKFB3) and LDHA, however, it does not appear that these targets are glucose 

regulated MondoA targets (63). MondoA has been shown to be necessary for >75% of  

the transcriptional targets upregulated by glucose, suggesting that MondoA 

mitochondrial localization allows it to sense nutrient or bioenenergetic status and mount 

an adaptive transcriptional response (64). As such, we consider MondoA a glucose 

sensor and its nuclear accumulation, promoter binding and transcriptional activity at 

glucose regulated targets reflects cellular nutrient status (85). 

 As discussed in section 1.6, TXNIP is a direct and glucose regulated target of 

MondoA (64). MondoA binds directly to carbohydrate response elements (ChoRE) in the 

TXNIP promoter following elevations in G6P and MondoA knockout MEFs have no 

detectable TXNIP mRNA or protein expression (85).  MondoA and TXNIP expression 

restrict glucose uptake; MondoA and TXNIP null MEFs exhibit high rates of glucose 

uptake compared to their wild type counterparts, and expression of a constitutively active 

MondoA allele missing the MCRs and containing a nuclear localization signal 

(ΔN237NLSMondoA) severely restricts glucose uptake while dramatically increasing 

TXNIP expression (64). This suggests that MondoA might transcriptionally link glucose 

availability to glycolytic rate; high G6P concentrations would signal that glucose uptake 

and phosphorylation by HKII is in excess for the downstream enzymes in glycolysis and 

as such MondoA upregulation of targets like TXNIP decrease the uptake of glucose into 

cell until the G6P accumulation is resolved. This model proposes that MondoA and 

TXNIP are part of a negative feedback regulatory circuit for glucose metabolism, 

ultimately controlling glycolytic rate by restricting substrate availability.  TXNIP triggers 

apoptosis in pancreatic β-cells in response to hyperglycemia, suggesting that this 
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circuitry may simply allow the cell to respond to nutrient stress conditions (97). However, 

knockdown of MondoA in certain cell contexts increases cell growth and proliferation 

(84) and as seen in Chapter 2, ΔN237NLSMondoA restricts cells growth. While TXNIP 

has been shown to negatively regulate glycolysis, there is no direct evidence that 

MondoA, other than its transcriptional regulation of TXNIP, regulates glycolysis in this 

way. In fact, knockdown of MondoA in K562 cells was shown to reduce glycolytic flux 

(63). As discussed in Chapter 2, regulation of TXNIP translation, independent of its 

mRNA synthesis, plays an important role in its regulatory activities, and thus this 

paradox remains largely unresolved.  

We have established that MondoA transcriptional activity restricts glucose uptake 

in several cell lines through its transcriptional upregulation of TXNIP. Our current 

understanding of MondoA function suggests a key role in integrating and coordinating 

signals from another major circulating nutrient, glutamine. While cells grown on plastic in 

the presence of glucose alone demonstrate high levels of TXNIP expression and do not 

grow, the addition of glutamine, which is absolutely required for growth, reduces TXNIP 

expression and permits cell proliferation (84). Essentially, glutamine converts MondoA 

from a transcriptional activator of TXNIP into a potent HDAC-dependent transcriptional 

repressor. As the glutamine repression of TXNIP by MondoA can be blocked by 

inhibitors of glutaminolysis (e.g., aminoxyacetate (AOA)) or mimicked by α-KG analogs, 

this suggests that MondoA-dependent transcriptional activity might be downregulated in 

response to anapleurosis. This would indicate that MondoA activity is in opposition to 

aerobic glycolysis and cell growth. This suggests a model whereby MondoA monitors 

glucose and glutamine-dependent signals that converge at the mitrochondria, essentially 

making MondoA a TCA cycle sensor.  These data support a model where MondoA 
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negatively regulates cell growth by restricting substrate availability for aerobic glycolysis 

and as explored in Chapter 2, MondoA negatively regulates cell growth in this manner. 

While MondoA loss has been shown to increase glucose uptake and cell 

proliferation on plastic and soft agar, its paralog ChREBP has been shown to do quite 

the opposite. ChREBP loss slows cell proliferation and reduces glucose uptake and 

lactate production, suggesting that it can stimulate aerobic glycolysis and thus anabolic 

growth (65). As MondoA and ChREBP are most highly expressed in the postmitotic 

tissues skeletal muscle and liver, respectively (94, 98), this suggests that they regulate 

energy homeostasis in somatic tissues by opposing mechanisms. Further complicating 

the involvement of MondoA and ChREBP in aerobic glycolysis, the liver-type pyruvate 

kinase (pklr) promoter was shown to require co-occupancy by both Myc and ChREBP for 

appropriate transcriptional activation (99). This suggests that ChREBP and MondoA may 

cooperate with Myc to regulate the expression of other targets active in glycolysis. While 

the mechanistic details of the Mondo family involvement in the partitioning of carbon flux 

necessary for cell growth and proliferation are only just emerging, it is clear they play an 

important role. In Chapter 2 we show that MondoA transcriptional activity negatively 

regulates entry into the cell cycle by restricting glucose availability and glycolytic flux, 

suggesting that downregulation of this activity is necessary for cell growth. 

1.8 Summary 

The sections outlined in this introduction provide for a framework for 

understanding the importance and complexity of metabolic reprogramming. While the 

phenomenon of metabolic reprogramming has become more broadly accepted, the 

underlying mechanisms regulating it are poorly understood. It is clearer that extra- and 

intracellular signaling pathways and transcriptional networks are integrally involved in 

cell growth and proliferation, but how they actually coordinate metabolism is only now 
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emerging. Aerobic glycolysis, the Warburg effect, once predominantly considered to be 

the metabolism of cancer, is now considered the metabolism of proliferation (2, 9, 27). 

Data from T cells suggest that signaling effectors down-stream of RTKs likely regulate 

metabolic reprogramming in other cell types. In cancers with activating mutations in 

RTKs or their down-stream effectors, increased glucose uptake and utilization by aerobic 

glycolysis is attributed to the affected pathways. PI3K signaling increases glucose 

uptake by mobilizing the translocation of GLUTs and Ras-MAPK signaling directly 

upregulates cMyc and Hif1α, both of which directly upregulate the transcription of most 

of the gene products acting in glycolysis. It is evident that the factors known to regulate 

cell proliferation also regulate the associated metabolic changes necessary to drive and 

support cell growth.  

A further level of regulation of metabolic reprogramming has become apparent 

with the greater understanding of MondoA and TXNIP. The tumor suppressor TXNIP 

negatively regulates PI3K signaling, glucose uptake, glycolysis and proliferation and is 

therefore a likely candidate to participate in the regulation of metabolic reprogramming in 

proliferating cells. While the impact of TXNIP on glucose uptake and metabolism has not 

been shown to negatively affect proliferation directly, the necessity of macromolecular 

synthesis during cell growth suggests that this is likely. The transcription factor MondoA 

is required for TXNIP mRNA expression and negatively regulates glucose uptake, in 

part, through activating transcription of TXNIP. As such, MondoA is potentially involved 

the metabolic regulation of cell growth. The work presented in Chapter 2 provides 

evidence of roles for both MondoA and TXNIP in the regulation of metabolic 

reprogramming in cells transitioning from quiescence into the cell cycle and provides an 

initial mechanistic understanding of the regulation of MondoA and TXNIP during this 

transition. 

 



32 
 

1.9 References 

1. Warburg O, Wind F, & Negelein E (1927) The metabolism of tumors in the body. 
J Gen Physiol 8(6):519-530. 

2. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309-314. 

3. Garber K (2006) Energy deregulation: licensing tumors to grow. Science 
312(5777):1158-1159. 

4. Uldry M & Thorens B (2004) The SLC2 family of facilitated hexose and polyol 
transporters. Pflugers Arch 447(5):480-489. 

5. Pelicano H, Martin DS, Xu RH, & Huang P (2006) Glycolysis inhibition for 
anticancer treatment. Oncogene 25(34):4633-4646. 

6. Vander Heiden MG, Cantley LC, & Thompson CB (2009) Understanding the 
Warburg effect: the metabolic requirements of cell proliferation. Science 
324(5930):1029-1033. 

7. Gatenby RA & Gillies RJ (2004) Why do cancers have high aerobic glycolysis? 
Nat Rev Cancer 4(11):891-899. 

8. DeBerardinis RJ (2008) Is cancer a disease of abnormal cellular metabolism? 
New angles on an old idea. Genet Med 10(11):767-777. 

9. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, & Thompson CB (2008) The biology 
of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell 
Metab 7(1):11-20. 

10. Kroemer G & Pouyssegur J (2008) Tumor cell metabolism: cancer's Achilles' 
heel. Cancer Cell 13(6):472-482. 

11. Newsholme EA, Crabtree B, & Ardawi MS (1985) The role of high rates of 
glycolysis and glutamine utilization in rapidly dividing cells. Biosci Rep 5(5):393-
400. 

12. Curi R, Newsholme P, & Newsholme EA (1988) Metabolism of pyruvate by 
isolated rat mesenteric lymphocytes, lymphocyte mitochondria and isolated 
mouse macrophages. Biochem J 250(2):383-388. 

13. DeBerardinis RJ & Cheng T (2010) Q's next: the diverse functions of glutamine in 
metabolism, cell biology and cancer. Oncogene 29(3):313-324. 

14. Christofk HR, et al. (2008) The M2 splice isoform of pyruvate kinase is important 
for cancer metabolism and tumour growth. Nature 452(7184):230-233. 

15. Morrish F, Isern N, Sadilek M, Jeffrey M, & Hockenbery DM (2009) c-Myc 
activates multiple metabolic networks to generate substrates for cell-cycle entry. 
Oncogene 28(27):2485-2491. 



33 
 

16. Liu X, et al. (2010) Warburg effect revisited: an epigenetic link between glycolysis 
and gastric carcinogenesis. Oncogene 29(3):442-450. 

17. Blouin MJ, et al. (2010) Loss of function of PTEN alters the relationship between 
glucose concentration and cell proliferation, increases glycolysis, and sensitizes 
cells to 2-deoxyglucose. Cancer Lett 289(2):246-253. 

18. Feng Z & Levine AJ (2010) The regulation of energy metabolism and the IGF-
1/mTOR pathways by the p53 protein. Trends Cell Biol 20(7):427-434. 

19. Hui ST, et al. (2008) Txnip balances metabolic and growth signaling via PTEN 
disulfide reduction. Proc Natl Acad Sci U S A 105(10):3921-3926. 

20. Frauwirth KA & Thompson CB (2004) Regulation of T lymphocyte metabolism. J 
Immunol 172(8):4661-4665. 

21. Hua X & Thompson CB (2001) Quiescent T cells: actively maintaining inactivity. 
Nat Immunol 2(12):1097-1098. 

22. Tollefsbol TO & Cohen HJ (1985) Culture kinetics of glycolytic enzyme induction, 
glucose utilization, and thymidine incorporation of extended-exposure 
phytohemagglutinin-stimulated human lymphocytes. J Cell Physiol 122(1):98-
104. 

23. Hume DA, Radik JL, Ferber E, & Weidemann MJ (1978) Aerobic glycolysis and 
lymphocyte transformation. Biochem J 174(3):703-709. 

24. Vander Heiden MG, et al. (2001) Growth factors can influence cell growth and 
survival through effects on glucose metabolism. Mol Cell Biol 21(17):5899-5912. 

25. Frauwirth KA, et al. (2002) The CD28 signaling pathway regulates glucose 
metabolism. Immunity 16(6):769-777. 

26. Wieman HL, Wofford JA, & Rathmell JC (2007) Cytokine stimulation promotes 
glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity 
and trafficking. Mol Biol Cell 18(4):1437-1446. 

27. Fox CJ, Hammerman PS, & Thompson CB (2005) Fuel feeds function: energy 
metabolism and the T-cell response. Nat Rev Immunol 5(11):844-852. 

28. Lemmon MA & Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. 
Cell 141(7):1117-1134. 

29. Linggi B & Carpenter G (2006) ErbB receptors: new insights on mechanisms and 
biology. Trends Cell Biol 16(12):649-656. 

30. Tan PB & Kim SK (1999) Signaling specificity: the RTK/RAS/MAP kinase 
pathway in metazoans. Trends Genet 15(4):145-149. 



34 
 

31. Pines G, Kostler WJ, & Yarden Y (2010) Oncogenic mutant forms of EGFR: 
lessons in signal transduction and targets for cancer therapy. FEBS Lett 
584(12):2699-2706. 

32. Engelman JA, Luo J, & Cantley LC (2006) The evolution of phosphatidylinositol 
3-kinases as regulators of growth and metabolism. Nat Rev Genet 7(8):606-619. 

33. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 
296(5573):1655-1657. 

34. Manning BD & Cantley LC (2007) AKT/PKB signaling: navigating downstream. 
Cell 129(7):1261-1274. 

35. Huang J & Manning BD (2009) A complex interplay between Akt, TSC2 and the 
two mTOR complexes. Biochem Soc Trans 37(Pt 1):217-222. 

36. Clerkin JS, Naughton R, Quiney C, & Cotter TG (2008) Mechanisms of ROS 
modulated cell survival during carcinogenesis. Cancer Lett 266(1):30-36. 

37. He A, Liu X, Liu L, Chang Y, & Fang F (2007) How many signals impinge on 
GLUT4 activation by insulin? Cell Signal 19(1):1-7. 

38. Yuan TL & Cantley LC (2008) PI3K pathway alterations in cancer: variations on a 
theme. Oncogene 27(41):5497-5510. 

39. Nimnual A & Bar-Sagi D (2002) The two hats of SOS. Sci STKE 2002(145):pe36. 

40. Hancock JF (2003) Ras proteins: different signals from different locations. Nat 
Rev Mol Cell Biol 4(5):373-384. 

41. Gille H, et al. (1995) ERK phosphorylation potentiates Elk-1-mediated ternary 
complex formation and transactivation. EMBO J 14(5):951-962. 

42. Chuang CF & Ng SY (1994) Functional divergence of the MAP kinase pathway. 
ERK1 and ERK2 activate specific transcription factors. FEBS Lett 346(2-3):229-
234. 

43. Miglarese MR, Richardson AF, Aziz N, & Bender TP (1996) Differential regulation 
of c-Myb-induced transcription activation by a phosphorylation site in the 
negative regulatory domain. J Biol Chem 271(37):22697-22705. 

44. Burns KA & Vanden Heuvel JP (2007) Modulation of PPAR activity via 
phosphorylation. Biochim Biophys Acta 1771(8):952-960. 

45. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient 
versus sustained extracellular signal-regulated kinase activation. Cell 80(2):179-
185. 

46. Jongeward GD, Clandinin TR, & Sternberg PW (1995) sli-1, a negative regulator 
of let-23-mediated signaling in C. elegans. Genetics 139(4):1553-1566. 



35 
 

47. Hajnal A, Whitfield CW, & Kim SK (1997) Inhibition of Caenorhabditis elegans 
vulval induction by gap-1 and by let-23 receptor tyrosine kinase. Genes Dev 
11(20):2715-2728. 

48. Guan KL (1994) The mitogen activated protein kinase signal transduction 
pathway: from the cell surface to the nucleus. Cell Signal 6(6):581-589. 

49. Modzelewska K, et al. (2007) An activating mutation in sos-1 identifies its Dbl 
domain as a critical inhibitor of the epidermal growth factor receptor pathway 
during Caenorhabditis elegans vulval development. Mol Cell Biol 27(10):3695-
3707. 

50. Dang CV & Semenza GL (1999) Oncogenic alterations of metabolism. Trends 
Biochem Sci 24(2):68-72. 

51. Racker E, Resnick RJ, & Feldman R (1985) Glycolysis and 
methylaminoisobutyrate uptake in rat-1 cells transfected with ras or myc 
oncogenes. Proc Natl Acad Sci U S A 82(11):3535-3538. 

52. Ramanathan A, Wang C, & Schreiber SL (2005) Perturbational profiling of a cell-
line model of tumorigenesis by using metabolic measurements. Proc Natl Acad 
Sci U S A 102(17):5992-5997. 

53. Chen C, Pore N, Behrooz A, Ismail-Beigi F, & Maity A (2001) Regulation of glut1 
mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J 
Biol Chem 276(12):9519-9525. 

54. Sears R, Leone G, DeGregori J, & Nevins JR (1999) Ras enhances Myc protein 
stability. Mol Cell 3(2):169-179. 

55. Adhikary S & Eilers M (2005) Transcriptional regulation and transformation by 
Myc proteins. Nat Rev Mol Cell Biol 6(8):635-645. 

56. Wiesener MS, et al. (2003) Widespread hypoxia-inducible expression of HIF-
2alpha in distinct cell populations of different organs. FASEB J 17(2):271-273. 

57. Meyer N & Penn LZ (2008) Reflecting on 25 years with MYC. Nat Rev Cancer 
8(12):976-990. 

58. White RJ (2008) RNA polymerases I and III, non-coding RNAs and cancer. 
Trends Genet 24(12):622-629. 

59. Amati B, Alevizopoulos K, & Vlach J (1998) Myc and the cell cycle. Front Biosci 
3:d250-268. 

60. Schmidt EV (1999) The role of c-myc in cellular growth control. Oncogene 
18(19):2988-2996. 

61. Kim JW, et al. (2004) Evaluation of myc E-box phylogenetic footprints in 
glycolytic genes by chromatin immunoprecipitation assays. Mol Cell Biol 
24(13):5923-5936. 



36 
 

62. Gordan JD, Thompson CB, & Simon MC (2007) HIF and c-Myc: sibling rivals for 
control of cancer cell metabolism and proliferation. Cancer Cell 12(2):108-113. 

63. Sans CL, Satterwhite DJ, Stoltzman CA, Breen KT, & Ayer DE (2006) MondoA-
Mlx heterodimers are candidate sensors of cellular energy status: mitochondrial 
localization and direct regulation of glycolysis. Mol Cell Biol 26(13):4863-4871. 

64. Stoltzman CA, et al. (2008) Glucose sensing by MondoA:Mlx complexes: a role 
for hexokinases and direct regulation of thioredoxin-interacting protein 
expression. Proc Natl Acad Sci U S A 105(19):6912-6917. 

65. Tong X, Zhao F, Mancuso A, Gruber JJ, & Thompson CB (2009) The glucose-
responsive transcription factor ChREBP contributes to glucose-dependent 
anabolic synthesis and cell proliferation. Proc Natl Acad Sci U S A 
106(51):21660-21665. 

66. Wise DR, et al. (2008) Myc regulates a transcriptional program that stimulates 
mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad 
Sci U S A 105(48):18782-18787. 

67. Gao P, et al. (2009) c-Myc suppression of miR-23a/b enhances mitochondrial 
glutaminase expression and glutamine metabolism. Nature 458(7239):762-765. 

68. Hu CJ, Wang LY, Chodosh LA, Keith B, & Simon MC (2003) Differential roles of 
hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene 
regulation. Mol Cell Biol 23(24):9361-9374. 

69. Lum JJ, et al. (2007) The transcription factor HIF-1alpha plays a critical role in 
the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. 
Genes Dev 21(9):1037-1049. 

70. Zhong H, et al. (2000) Modulation of hypoxia-inducible factor 1alpha expression 
by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP 
pathway in human prostate cancer cells: implications for tumor angiogenesis and 
therapeutics. Cancer Res 60(6):1541-1545. 

71. Laughner E, Taghavi P, Chiles K, Mahon PC, & Semenza GL (2001) HER2 (neu) 
signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) 
synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth 
factor expression. Mol Cell Biol 21(12):3995-4004. 

72. Kasuno K, et al. (2004) Nitric oxide induces hypoxia-inducible factor 1 activation 
that is dependent on MAPK and phosphatidylinositol 3-kinase signaling. J Biol 
Chem 279(4):2550-2558. 

73. Kim SY, Suh HW, Chung JW, Yoon SR, & Choi I (2007) Diverse functions of 
VDUP1 in cell proliferation, differentiation, and diseases. Cell Mol Immunol 
4(5):345-351. 



37 
 

74. Nishiyama A, et al. (1999) Identification of thioredoxin-binding protein-2/vitamin 
D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and 
expression. J Biol Chem 274(31):21645-21650. 

75. Junn E, et al. (2000) Vitamin D3 up-regulated protein 1 mediates oxidative stress 
via suppressing the thioredoxin function. J Immunol 164(12):6287-6295. 

76. Jeon JH, et al. (2005) Tumor suppressor VDUP1 increases p27(kip1) stability by 
inhibiting JAB1. Cancer Res 65(11):4485-4489. 

77. Shin D, et al. (2008) VDUP1 mediates nuclear export of HIF1alpha via CRM1-
dependent pathway. Biochim Biophys Acta 1783(5):838-848. 

78. Parikh H, et al. (2007) TXNIP regulates peripheral glucose metabolism in 
humans. PLoS Med 4(5):e158. 

79. Nishinaka Y, et al. (2004) Loss of thioredoxin-binding protein-2/vitamin D3 up-
regulated protein 1 in human T-cell leukemia virus type I-dependent T-cell 
transformation: implications for adult T-cell leukemia leukemogenesis. Cancer 
Res 64(4):1287-1292. 

80. Han SH, et al. (2003) VDUP1 upregulated by TGF-beta1 and 1,25-
dihydorxyvitamin D3 inhibits tumor cell growth by blocking cell-cycle progression. 
Oncogene 22(26):4035-4046. 

81. Jeong M, et al. (2009) Thioredoxin-interacting protein regulates hematopoietic 
stem cell quiescence and mobilization under stress conditions. J Immunol 
183(4):2495-2505. 

82. Patwari P, et al. (2009) Thioredoxin-independent regulation of metabolism by the 
alpha-arrestin proteins. J Biol Chem 284(37):24996-25003. 

83. Rohan JN & Weigel NL (2009) 1Alpha,25-dihydroxyvitamin D3 reduces c-Myc 
expression, inhibiting proliferation and causing G1 accumulation in C4-2 prostate 
cancer cells. Endocrinology 150(5):2046-2054. 

84. Kaadige MR, Looper RE, Kamalanaadhan S, & Ayer DE (2009) Glutamine-
dependent anapleurosis dictates glucose uptake and cell growth by regulating 
MondoA transcriptional activity. Proc Natl Acad Sci U S A 106(35):14878-14883. 

85. Peterson CW, Stoltzman CA, Sighinolfi MP, Han KS, & Ayer DE (2010) Glucose 
controls nuclear accumulation, promoter binding, and transcriptional activity of 
the MondoA-Mlx heterodimer. Mol Cell Biol 30(12):2887-2895. 

86. Alvarez CE (2008) On the origins of arrestin and rhodopsin. BMC Evol Biol 
8:222. 

87. Chen JL-Y, et al. (2010) Lactic acidosis triggers starvation response with 
paradoxical induction of TXNIP through MondoA. PloS Genetics In Press. 



38 
 

88. Butler LM, et al. (2002) The histone deacetylase inhibitor SAHA arrests cancer 
cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates 
thioredoxin. Proc Natl Acad Sci U S A 99(18):11700-11705. 

89. Deroo BJ, Hewitt SC, Peddada SD, & Korach KS (2004) Estradiol regulates the 
thioredoxin antioxidant system in the mouse uterus. Endocrinology 145(12):5485-
5492. 

90. Cadenas C, et al. (2010) Role of thioredoxin reductase 1 and thioredoxin 
interacting protein in prognosis of breast cancer. Breast Cancer Res 12(3):R44. 

91. Jung YS, Qian Y, & Chen X (2010) Examination of the expanding pathways for 
the regulation of p21 expression and activity. Cell Signal 22(7):1003-1012. 

92. Chutkow WA, Patwari P, Yoshioka J, & Lee RT (2008) Thioredoxin-interacting 
protein (Txnip) is a critical regulator of hepatic glucose production. J Biol Chem 
283(4):2397-2406. 

93. Billin AN & Ayer DE (2006) The Mlx network: evidence for a parallel Max-like 
transcriptional network that regulates energy metabolism. Curr Top Microbiol 
Immunol 302:255-278. 

94. Billin AN, Eilers AL, Coulter KL, Logan JS, & Ayer DE (2000) MondoA, a novel 
basic helix-loop-helix-leucine zipper transcriptional activator that constitutes a 
positive branch of a max-like network. Mol Cell Biol 20(23):8845-8854. 

95. Li MV, et al. (2010) Glucose-6-phosphate mediates activation of the 
carbohydrate responsive binding protein (ChREBP). Biochem Biophys Res 
Commun 395(3):395-400. 

96. Uyeda K & Repa JJ (2006) Carbohydrate response element binding protein, 
ChREBP, a transcription factor coupling hepatic glucose utilization and lipid 
synthesis. Cell Metab 4(2):107-110. 

97. Minn AH, Hafele C, & Shalev A (2005) Thioredoxin-interacting protein is 
stimulated by glucose through a carbohydrate response element and induces 
beta-cell apoptosis. Endocrinology 146(5):2397-2405. 

98. Yamashita H, et al. (2001) A glucose-responsive transcription factor that 
regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci U S A 
98(16):9116-9121. 

99. Zhang P, et al. (2010) c-Myc is required for the CHREBP-dependent activation of 
glucose-responsive genes. Mol Endocrinol 24(6):1274-1286. 

 
 



 

 

CHAPTER 2 

TRANSCRIPTIONAL AND TRANSLATIONAL  

DOWNREGULATION OF THIOREDOXIN  

INTERACTING PROTEIN DRIVES  

METABOLIC REPROGRAMMING  

DURING G1 

Chapter 2 is a manuscript currently under review by Genes & Cancer. Marc G. 

Elgort, John M. O’Shea, Yike Jiang and Donald E. Ayer are the authors on this 

manuscript. John M. O’Shea isolated T lymphocytes from murine spleens and performed 

the western blot and glucose uptake assay for Figure 2.1A and 2.1B. Yike Jiang 

performed the BrdU incorporation assays in wild type and TXNIP null MEFs for Figure 

2.1C.  

 

 

 

 

 

 

 

 

 

 



40 

 

 

2.1 Abstract 

Growth factor signaling drives increased glucose uptake and glycolysis - the 

Warburg effect - that supports macromolecular synthesis necessary for cell growth and 

proliferation. Thioredoxin interacting protein (TXNIP), a direct and glucose-induced 

transcriptional target of MondoA, is a potent negative regulator of glucose uptake and 

utilization. Thus, TXNIP may inhibit cell growth by restricting substrate availability for 

macromolecular synthesis.  To determine TXNIP’s contribution to metabolic 

reprogramming, we examined MondoA and TXNIP as cells exit quiescence and enter 

G1. Serum stimulation of quiescent immortal diploid fibroblasts resulted in an acute 

upregulation of glucose uptake and glycolysis coinciding with downregulation of TXNIP 

expression. Ectopic expression of either MondoA or TXNIP restricted cell growth by 

blocking glucose uptake. Mechanistically, Ras-MAPK and PI3K/Akt signaling inhibit 

TXNIP translation and MondoA-dependent TXNIP transcription, respectively. We 

propose that the coordinated down regulation of MondoA transcriptional activity at the 

TXNIP promoter and inhibition of TXNIP translation are key components of metabolic 

reprogramming required for cells to exit quiescence. 

2.2 Introduction 

In metazoans, cell proliferation is required for normal organismal function as well 

as tumorigenesis. Cell proliferation requires increased aerobic glycolysis – the Warburg 

effect – for de novo synthesis of fatty acids, nucleic acids, proteins and energy required 

to increase biomass during the growth phase (G1) of the cell cycle (1-4). Consistent with 

an increase in anabolic metabolism, extracellular nutrients such as glucose and amino 

acids are taken up at higher rates by growing cells to support the increased flux through 

the biosynthetic pathways that utilize them (5-7). Certain cell populations exist in a 

relatively metabolically inactive or quiescent state. Quiescent cells exhibit low flux of 
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glucose through glycolysis and primarily utilize β-oxidation of fatty acids and the 

tricarboxylic acid cycle (TCA) for survival (8, 9). However, when quiescent cells are 

stimulated to proliferate they increase flux through glycolysis while maintaining TCA 

activity through anapleurosis (2, 10). This reorganization of cellular metabolic programs 

is required to support biosynthetic processes necessary for cell growth and proliferation. 

Similarly, transformed cells also reprogram their metabolism to aerobic glycolysis to 

support their increased proliferation (11, 12). While signals that stimulate cell 

proliferation have been shown to orchestrate this metabolic reprogramming, little is 

known about the downstream effectors involved in this process (4). 

Originally identified as a transcript induced by vitamin D3, thioredoxin interacting 

protein (TXNIP) has been subsequently implicated in myriad cellular processes including 

proliferation, differentiation as well as disease (13-16). Considered a tumor suppressor, 

TXNIP levels are reduced in tumors and its over-expression causes cell cycle arrest (13, 

17, 18). Consistent with these findings, high TXNIP expression portends a positive 

outcome in breast and gastric cancers (19-21). Some clues to how TXNIP might function 

to arrest cell growth come from studies in stem cells and those involving p27Kip1; TXNIP 

expression is essential for maintaining hematopoietic stem cell (HSC) quiescence (22) 

and TXNIP stabilizes p27Kip1 which is necessary for quiescence (23). Thus TXNIP’s 

function as a tumor suppressor may be linked to its role in maintaining quiescence. 

TXNIP negatively regulates glucose uptake and glycolysis, thus one way TXNIP 

may regulate cell growth is by restricting nutrient availability and utilization (24, 25). 

TXNIP may affect cell nutrient utilization in several ways.  For example, murine 

embryonic fibroblasts (MEFs) from TXNIP-/- mice have increased glucose uptake and 

lactate production compared to their wild type counterparts. Thus deletion of TXNIP 

alone is sufficient to drive metabolic reprogramming toward aerobic glycolysis (24). 
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Furthermore, TXNIP destabilizes the hypoxia induced transcription factor, Hif1α, under 

normoxic growth conditions (21). HIF1α activates the transcription of most glycolytic 

target genes, thus TXNIP may downregulate a transcriptional program that drives 

glycolysis (26-28). Finally, TXNIP loss inactivates the PTEN lipid phosphatase by a 

REDOX-sensitive mechanism (29). PTEN negatively regulates glucose transporters and 

uptake by indirectly regulating the kinase activity of phosphoinositide 3-kinase (PI3K) 

(30, 31). Thus TXNIP may negatively regulate cell proliferation by controlling several of 

the core metabolic pathways required for cell proliferation.  

Our lab is interested in how cells sense and respond transcriptionally to nutrients 

through the MondoA transcription factor. MondoA is a member of the basic helix-loop-

helix leucine zipper (bHLHZIP) family of transcription factors and has superficial 

similarity to the Myc/Max/Mad family of transcriptional regulators (32-34). MondoA 

heterodimerizes with another bHLHZIP family member, Mlx, and MondoA:Mlx 

complexes are required for >75% of glucose-induced transcription in an epithelial cancer 

cell line model (35).  Uniquely, MondoA:Mlx complexes reside at the outer mitochondrial 

membrane and translocate to the nucleus in response to elevated intracellular glucose-

6-phosphate (G6P) concentrations, where they activate transcription of targets including 

TXNIP (35).  Such a mechanism facilitates exchange of information about the 

bioenergetic state of the cell between the mitochondria and the nucleus. Thus, MondoA 

is a glucose sensor and its nuclear accumulation, promoter binding and transcriptional 

activity at glucose regulated targets reflects cellular nutrient status (36). MondoA binds 

directly to carbohydrate response elements (ChoRE) in the TXNIP promoter following 

elevations in G6P and MondoA knockout MEFs have no detectable TXNIP mRNA or 

protein expression (35, 36). Thus, TXNIP expression is entirely dependent on MondoA, 

suggesting a similarly pleiotropic role for MondoA in nutrient sensing and utilization. 
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Our current understanding of MondoA function suggests a key role in integrating 

and in coordinating signals from the two major circulating nutrients, glucose and 

glutamine.  For glucose, we have established that MondoA transcriptional activity 

restricts glucose uptake in several cell lines, in part, through its transcriptional 

upregulation of TXNIP. Knockdown or knockout of MondoA increases glucose uptake in 

epithelial cells and ectopic TXNIP expression partially reverses this upregulation (35). 

Consistent with MondoA’s negative regulation of glucose uptake, MondoA knockdown 

cells exhibit increased growth on plastic and in soft agar (37).  Remarkably, glutamine 

converts MondoA from a glucose-dependent transcriptional activator of TXNIP to a 

potent histone deacetylase-dependent transcriptional repressor of TXNIP. Consistent 

with this molecular mechanism, glutamine-dependent repression of TXNIP by MondoA 

increases glucose uptake and proliferation (34, 37, 38). The glutamine effect on TXNIP 

expression requires glutamine metabolism per se and can be mimicked by TCA 

anapleurosis, suggesting that MondoA monitors glucose and glutamine-dependent 

signals that converge at the mitochondria. 

MondoA has a paralog called the Carbohydrate Response Element Binding 

Protein (ChREBP), also known as MondoB.  MondoA and ChREBP are most highly 

expressed in the post-mitotic tissues skeletal muscle and liver, respectively, suggesting 

they primarily regulate energy homeostasis in somatic tissues (33, 39). However, our 

studies and a recent report implicating ChREBP in anabolic synthesis and cell 

proliferation, suggest an important additional role for the Mondo family in regulating 

proliferative growth (40).  Here, we investigate how TXNIP translation and MondoA-

dependent TXNIP transcription are coordinately regulated to drive metabolic 

reprogramming as cells transition from quiescence into the growth phase of the cell 

cycle.  
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2.3 Results 

2.3.1 TXNIP downregulation correlates with  

metabolic reprogramming and cell growth 

Initially, to investigate whether TXNIP might be involved in metabolic 

reprogramming, we determined its levels in quiescent and activated T-lymphocytes. T-

lymphocytes undergo a well characterized metabolic reprogramming following activation 

(4, 5, 7). Specifically, quiescent T-lymphocytes rely primarily on mitochondrial respiration 

for energy production, but following stimulation they dramatically increase glucose 

uptake and aerobic glycolysis (4, 7). As expected from these previous reports, glucose 

uptake was modestly increased in primary murine T-lymphocytes stimulated with α-

CD3/α-CD28 for 4 hours; however, after 24 hours of activation, glucose uptake 

increased >5 fold over quiescent cells (Figure 2.1A).  Consistent with TXNIP’s negative 

regulation of glucose uptake, its levels decreased following 4 hours of activation and 

were undetectable after 24 hours (Figure 2.1B and data not shown).  Thus, TXNIP 

downregulation correlates with metabolic reprogramming in activated T-lymphocytes. 

To determine the necessity of TXNIP expression for cellular quiescence in other 

cell contexts, we utilized TXNIP-null murine embryonic fibroblasts (MEFs) (25, 41) and 

assessed growth arrest in the absence of serum. Compared to wild-type MEFs, TXNIP-

null MEFs failed to arrest in response to 48 hours of serum deprivation, indicating that 

TXNIP is required for growth arrest in the absence of proliferative signals (Figure 2.1C). 

Taken together, our data from T-lymphocytes and TXNIP-null MEFs suggest that TXNIP 

downregulation may drive glucose repartitioning from oxidative metabolism to aerobic 

glycolysis as cells exit quiescence. 

Since TXNIP is required for cellular quiescence, we determined whether TXNIP 

was downregulated in early G1. For this study, we sought a tractable and well-
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characterized system; normal diploid human BJ fibroblasts immortalized with human 

telomerase reverse transcriptase (BJ hTERT) (42). These cells can be synchronized in 

G0 by serum withdrawal and stimulated by serum readdition to enter the cell cycle. 

Following 72 hours of serum starvation, quiescence in the BJ hTERTs was validated by 

stabilization of p27Kip1 and accumulation of cells with 2N DNA content (43, 44). Following 

the readdition of serum, G1/S progression was validated by p27Kip1 loss by 4 hours, 

stabilization of cyclin A by 20 hours and DNA synthesis at 22 hours (Figure 2.1D and 

data not shown). TXNIP was upregulated in quiescent BJ hTERTs (Figure 2.1D), 

consistent with a role for TXNIP in β-oxidation of fatty acids (29). Within 4 hours of 

serum addition to quiescent BJ hTERTs, TXNIP loss was observed, suggesting that 

TXNIP downregulation was required for G0 exit and G1 entry. TXNIP protein returned by 

12 hours post serum readdition, prior to the stabilization of cyclin A. TXNIP mRNA was 

also examined and like TXNIP protein downregulation, its mRNA was reduced >10 fold 

by 4 hours post serum addition (Figure 2.1E). Message increased by 12 hours and 

subsequently reached stable levels by 20 hours following serum addition. From these 

data, we conclude that TXNIP message and protein are coordinately downregulated as 

cells transition from G0 into early G1. 

To determine whether metabolic reprogramming occurred in BJ hTERTs and 

correlated with TXNIP downregulation, glucose uptake and glycolytic flux were assayed. 

Glucose uptake nearly doubled within the first hour of serum readdition and reached 

maximal levels by 8-12 hours of G1 progression (Figure 2.1F). As with glucose uptake, 

BJ hTERTs exhibited a >2-fold increase in glycolytic flux within 1 hour of serum 

readdition, which increased to >3-fold by 4 hours and subsequently plateaued by 8 

hours (Figure 2.1G). Preliminary metabolomic studies revealed other indicators of 

increased glycolysis and no changes were observed in metabolites of TCA (not shown).  
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Figure 2.1 TXNIP downregulation correlates with metabolic reprogramming and 
cell growth (A) Increased glucose uptake in primary murine T-lymphocytes after 4 and 
24 hours stimulation with α-CD3/α-CD28 (mean ± SD of duplicate biological samples) 
coincides with (B) TXNIP downregulation determined by western blotting.  (C) BrdU 
incorporation was determined in immortalized wild-type and TXNIP-null MEFs growing 
asynchronously in complete media or serum-starved for 48 hours. Data are presented as 
percent of total BrdU incorporation relative to BrdU incorporation in asynchronous cells 
(mean ± SD of triplicate experiments). TXNIP expression and metabolic parameters 
were characterized during the G0/G1 transition in BJ hTERTs (D-F).  (D) Expression of 
the indicated proteins was determined by western blotting. Serum withdrawal for 72 
hours “Q” was sufficient to synchronize cells in G0 (p27Kip1 stabilization) and cyclin A 
stabilization at 20 hours post serum addition preceded S-phase at 22 hours (determined 
by BrdU labeling, not shown) (asynchronous cells, “A”). (E) Expression of TXNIP mRNA 
determined by RT-qPCR. Data are presented as fold change relative to expression in 
asynchronous cells “A” normalized to RPL19 mRNA (mean ± SD of triplicate samples). 
(F) Glucose uptake was determined in quiescent cells (G0) and at the time points 
indicated following serum addition (G1) (mean ± SD of triplicate biological samples). (G) 
Glycolytic flux was determined in G0 and at the time points indicated (G1) (mean ± SD of 
triplicate biological samples).  
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Taken together, TXNIP downregulation in early G1 mirrors the increase in glucose 

uptake and aerobic glycolysis. 

2.3.2 Ectopic TXNIP expression restricts glucose uptake, 

glycolysis and blocks G1 progression 

To assess whether TXNIP downregulation in early G1 was necessary for 

increased glucose uptake and ultilization, and consequently cell growth, TXNIP was 

ectopically expressed in BJ hTERTs (Figure 2.2A). Following serum addition, ectopic 

TXNIP-mCherry expression blocked the elevated glucose uptake and glycolytic flux 

observed in control cells (Figure 2.2B and C). Ultimately, failure to completely 

downregulate TXNIP in early G1 resulted in a decrease in the number of cells that 

progressed to S-phase (Figure 2.2D). Unlike endogenous TXNIP, TXNIP-mCherry 

persisted in early G1 which demonstrated that ectopic TXNIP protein levels could be 

maintained even though there was downregulation. Because the TXNIP-mCherry fusion 

only encodes the TXNIP open reading frame, it is likely that the stability of endogenous 

TXNIP is regulated by its coding sequence rather than by non-coding regions in its 

mRNA (Figure 2.2A) (see below). Interestingly, TXNIP-mCherry reduced endogenous 

TXNIP protein indicating that cells must tightly regulate TXNIP levels.  From these data, 

we conclude that TXNIP over-expression can block metabolic reprogramming in early G1 

suggesting that TXNIP downregulation is necessary for cell growth. 

2.3.3 Dominant-active MondoA blocks G1 progression 

We have previously demonstrated that TXNIP expression is strictly dependent on 

MondoA and glucose in a number of different cell types (35-37); paradoxically, both 

glucose and MondoA are replete in early G1, but TXNIP protein and message are 

completely absent (Figure 2.1D and E and 2.2A). To further understand the regulation of  
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Figure 2.2 Ectopic TXNIP expression restricts glucose uptake, glycolysis and 
blocks G1 progression (A) Expression of the indicated proteins in BJ hTERTs under 
indicated growth conditions determined by western blotting. (B) Glucose uptake was 
determined in control and TXNIP-mCherry infected BJ hTERTs in G0 and following 8 hrs 
serum treatment. Data are presented as fold change relative to G0 (mean ± SD. *, P < 
0.05, paired student’s t-test, n=3). (C) Glycolytic flux was measured for conditions as in 
(B). Each data point represents triplicate assay points from duplicate biological samples 
from 3 independent experiments (*, P <0.05, paired student’s t-test, n=3). (D) BrdU 
labeling of control or TXNIP-mCherry infected BJ hTERTs in G0 and following 24 hour 
serum treatment (G1/S). Data are presented as percent BrdU labeling relative to total 
cells counted. (mean ± SD. **, P < 0.02, paired student’s t-test, n=3). 
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TXNIP expression by serum, we first established that its expression was MondoA-

dependent in BJ hTERTs. Consistent with our published data, TXNIP levels were 

dramatically reduced in MondoA knockdown BJ hTERTs compared to control cells 

(Figure 2.3A), confirming that TXNIP expression is MondoA-dependent in this cell 

system. 

To determine whether MondoA played a role in metabolic reprogramming in early 

G1 and consequently G1 progression, we ectopically expressed a constitutively active 

allele of MondoA, ΔN237NLSMondoA in BJ hTERTs (45). ΔN237NLSMondoA drove 

high TXNIP expression in both asynchronous and quiescent cells and importantly, 

partially blocked downregulation of TXNIP in early G1 (Figure 2.3B). Additionally, 

ΔN237NLSMondoA expression in early G1 resulted in a significant decrease in glucose 

uptake (Figure 2.3C). Most importantly, ΔN237NLSMondoA drove a significant decrease 

in the number of cells that reached S-phase (Figure 2.3E). Furthermore, Hif1α 

stabilization drives aerobic glycolysis (46) and, consistent with metabolic 

reprogramming, HIF1α was stabilized in early G1 of control BJ hTERTs. Notably, 

ΔN237NLSMondoA expression resulted in loss of normoxic Hif1α expression in early G1 

(Figure 2.3B). Surprisingly, ΔN237NLSMondoA did not decrease glycolytic flux like 

TXNIP-mCherry and we attribute this disparity to constitutive activation or repression of 

other MondoA transcriptional targets (Figure 2.3D). We conclude that constitutive 

ectopic MondoA activity is sufficient to block cell growth, presumably by preventing 

TXNIP downregulation. These data suggest an important role for MondoA in regulating 

metabolic reprogramming in early G1. 
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Figure 2.3 Dominant-active MondoA blocks G1 progression (A) Determination of 
MondoA, TXNIP and β-tubulin expression in control and MondoA knockdown BJ 
hTERTs by western blotting. (B) Expression of TXNIP, MondoA, ΔN237NLSMondoA, 
Hif1α and β-tubulin in BJ hTERTs under indicated growth conditions determined by 
western blotting. (C) Glucose uptake was determined in control and ΔN237NLSMondoA 
expressing BJ hTERTs in G0 and following 8 hrs serum treatment. Data are presented 
as fold change relative to G0 (mean ± SD. *, P < 0.05, paired student’s t-test, n=4). (D) 
Glycolytic flux was measured for conditions as in (C). Each data point represents 
triplicate assay points from duplicate biological samples from 3 independent experiments 
(mean ± SD). (E) BrdU labeling of control or ΔN237NLSMondoA expressing BJ hTERTs 
in G0 and following 24 hour serum treatment (G1/S). Data are presented as percent BrdU 
labeling relative to total cells counted. (mean ± SD. **, P < 0.02, paired student’s t-test, 
n=3). 
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2.3.4 MondoA-dependent TXNIP transcription  

is acutely inhibited by serum 

TXNIP expression was downregulated in early G1 (Figure 2.1D and E) and 

ΔN237NLSMondoA partially blocked TXNIP downregulation in response to serum 

(Figure 2.3B). To determine whether TXNIP transcription was shut off by serum addition, 

we determined the half-life of TXNIP mRNA. We treated quiescent BJ hTERTs with the 

transcription inhibitor actinomycin D (Figure 2.4A). In G0 cells, actinomycin D treatment 

revealed that TXNIP mRNA was quite stable, with an apparent half-life of ~150 minutes. 

Similarly, in early G1 TXNIP mRNA had an apparent half-life of ~90 minutes. The slopes 

of the exponential portions of each decay curve were similar, indicating that the decay of 

mRNA following serum addition was comparable to its decay following transcriptional 

inhibition. These data support a model where serum addition shuts off TXNIP 

transcription acutely.  

TXNIP mRNA can be upregulated by the histone deacetylase (HDAC) inhibitors 

TSA and SAHA (37, 47, 48). To determine whether TXNIP transcriptional 

downregulation in response to serum was a function of transcriptional repression, we 

treated quiescent and early G1 cells with TSA. Consistent with published reports, TXNIP 

mRNA increased by ~50% in quiescent BJ hTERTs suggesting that TXNIP message 

levels here were modulated by an HDAC-dependent mechanism. However, in early G1 

TSA did not increase TXNIP message, indicating that TXNIP transcriptional 

downregulation by serum did not occur by an active HDAC-dependent repression 

mechanism (Figure 2.4B).  

Given that MondoA is absolutely required for TXNIP transcription (Figure 2.3A) 

(35, 36), one mechanism of TXNIP mRNA downregulation may be that MondoA leaves 

the TXNIP promoter in response to serum. To investigate this, we determined MondoA 



54 

 

 

occupancy on the TXNIP promoter using chromatin immunoprecipitation (ChIP). In 

quiescent BJ hTERTs, MondoA occupied the carbohydrate response element (ChoRE)  

upstream of the TXNIP transcriptional start site (35, 49). Within 2 hours after serum 

addition, a time point where TXNIP transcription had ceased but mRNA persisted, 

MondoA occupancy was reduced at the ChoRE (Figure 2.4C). From these data, we 

conclude that MondoA leaves the TXNIP promoter as a rapid response to serum 

addition resulting in a shutdown of TXNIP transcription and decay of existing message.  

MondoA-dependent TXNIP transcription can be upregulated by 2-deoxy-β-D-

glucose (2DOG) (35). Given that TXNIP expression was absent in early G1, we sought to 

determine whether this was reversible and establish the duration of transcriptional 

inhibition by serum. Quiescent and early G1 BJ hTERTs were treated with 2DOG for 3 

hours prior to the time points indicated in Figure 2.5. 2DOG increased both TXNIP 

protein and mRNA in quiescent cells; however, in serum treated cells neither TXNIP 

protein nor mRNA could be upregulated by 2DOG until 8 hours following serum addition 

(Figure 2.5A and B).  Together these data indicate that during this window in early G1, 

MondoA, while expressed, is refractory to stimuli - TSA and 2DOG - known to increase 

its activity at the TXNIP promoter during other phases of the cell cycle.  

2.3.5 TXNIP translation is acutely inhibited by serum in early G1 

Following serum readdition, TXNIP protein was downregulated prior to its mRNA. 

TXNIP protein decreased to undetectable levels within 1 hour of serum readdition 

(Figure 2.2A and  2.3B) whereas TXNIP mRNA  persisted for >2 hours (Figure 2.4A), 

suggesting that in addition to downregulation of TXNIP transcription, serum must also 

downregulate TXNIP protein more directly. To address this possibility, we examined the 

kinetics of TXNIP downregulation in response to serum. TXNIP protein was acutely  
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Figure 2.4 MondoA-dependent TXNIP transcription is acutely inhibited by serum 
(A) Determination of TXNIP mRNA at the indicated times in G0 in the presence of 5 
μg/ml actinomycin D (●) or in the presence of serum (G1) without actinomycin D (■) at 
the indicated time points by RT-qPCR. Data are presented as TXNIP message 
abundance relative to mRNA in G0 (mean ± SD of triplicates from duplicate biological 
samples). Curve fitting in GraphPad Prism (plateau followed by one phase decay) 
revealed slopes for the exponential portion of each curve (y=2.1139e-0.006x, ● and 
y=1.8702e-0.013x, ■) which suggest comparable rates of decay. (B) TXNIP mRNA levels 
were determined by RT-qPCR after TSA treatment (100 ng/ml, 5 hours) (mean ± SD of 
triplicate assay points of biological duplicates). (C) ChIP was used to determine MondoA 
occupancy at the TXNIP promoter in BJ hTERTs under the indicated growth conditions. 
The data are presented as mean ± SD of three biological replicates (*, P < 0.05, 
student’s t-test, n=3). 
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Figure 2.5 TXNIP expression is refractory to upregulation in early G1 TXNIP, 
MondoA and β-tubulin expression was determined by western blotting (A) and RT-qPCR 
(B) following 2DOG treatment. 20 mM 2DOG was added to cells three hours prior to the 
time points indicated. Data in (A) are that of a representative experiment. Data in (B) are 
presented as fold change relative to expression in untreated quiescent cells normalized 
to RPL19 mRNA (mean ± SD of triplicate samples).  
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downregulated in early G1 BJ hTERTs, and its levels were undetectable within ~10-15 

minutes (Figure 2.6A and 2.7B). To assess whether the rapid decrease in TXNIP protein 

levels was due to inhibition of translation or increased degradation, we determined the 

apparent half-life of TXNIP in quiescent cells in the presence of the translation inhibitor 

cycloheximide. Strikingly, cycloheximide treatment revealed that TXNIP protein was 

labile, having an apparent half-life of ~10-15 minutes (Figure 2.6B and 2.7B). Given that 

TXNIP has the same half-life in G0 and G1, we conclude that the primary effect of serum 

is a blockade of TXNIP synthesis. Consistent with this, the proteasome inhibitors MG132 

and lactacystin, which have been shown to stabilize TXNIP in other cell contexts (50, 

51), did not increase TXNIP protein in early G1 (not shown). Our data demonstrates that 

both TXNIP transcription and translation are immediately shut off by the addition of 

serum. Given the stability of TXNIP mRNA in the absence of active transcription (Figure 

2.4A), inhibition of translation is sufficient to eliminate TXNIP in earliest stages of G1. 

2.3.6 Acute growth factor signaling downregulates  

TXNIP expression 

The immediate nature of TXNIP downregulation suggested a role for active 

signaling by serum components. We examined the kinetics of TXNIP regulation in 

response to serum withdrawal and addition to determine whether the state of quiescence 

per se or dynamic signaling by serum withdrawal and subsequent readdition regulated 

TXNIP expression. TXNIP protein increased within 1 hour of serum removal, reached 

maximal levels by 4 hours post serum withdrawal and these elevated levels persisted 

out to 48 hours (Figure 2.7A). At all time points following serum removal, TXNIP protein 

levels dramatically decreased following 1 hour of serum readdition. The rapid regulation 

of TXNIP protein levels by serum suggests that a growth factor-regulated mechanism 

acutely targets TXNIP translation. To confirm that TXNIP downregulation was an  
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Figure 2.6 TXNIP translation is acutely inhibited by serum in early G1 TXNIP, 
MondoA and β-tubulin levels in BJ hTERTs were determined following treatment of 
quiescent cells with 10% serum (A) or 50 μg/ml cycloheximide (B) for the time points 
indicated by western blotting. 
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immediate-early response to serum, we treated quiescent BJ hTERTs with both serum 

and cycloheximide, and found that TXNIP protein was still downregulated, indicating that 

new protein synthesis was not required for inhibition of TXNIP translation (Figure 2.7B).  

This is consistent with downregulation of TXNIP being an immediate-early consequence 

of signaling activated by serum components. 

To investigate which serum components contributed to TXNIP downregulation, 

we treated quiescent BJ hTERTs for 30 minutes or 4 hours with serum, epidermal 

growth factor (EGF) or platelet derived growth factor (PDGF) (Figure 2.7C). After 30 

minutes, all treatments downregulated TXNIP protein, but not TXNIP mRNA, suggesting 

that signaling through the receptor tyrosine kinases (RTK) EGFR and PDGFR inhibited 

TXNIP protein expression.  After 4 hours of treatment, TXNIP protein returned to steady 

state levels in EGF-treated cells and was partially restored in PDGF-treated cells. As 

before (Figure 2.1D), TXNIP protein levels were not detectable following a 4 hour serum 

treatment. After 4 hours, EGF or PDGF treatment had no effect, or only modestly 

downregulated TXNIP message, respectively (Figure 2.7D). By contrast, TXNIP 

message remained low following 4 hours of serum treatment. Taken together, these data 

suggest that serum contains components capable of down-regulating both TXNIP 

transcription and translation, whereas isolated EGF- and PDGF- derived signals 

primarily inhibit TXNIP translation. 

As both EGFR and PDGFR signal through PI3K and Ras (52), we next 

determined which pathway was necessary for downregulation of TXNIP translation. 

Inhibition of PI3K with wortmannin did not fully restore TXNIP protein following 30 minute 

treatments with EGF, PDGF or serum. By contrast, inhibition of MEK, a Ras effector 

upstream of MAPK, with u0126 restored TXNIP protein levels following 30 minute 

treatments with EGF, PDGF or serum. Thus the Ras-MAPK arm of the EGFR, PDGFR  
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Figure 2.7 Acute growth factor signaling downregulates TXNIP expression (A), (B) 
and (C) TXNIP, MondoA and β-tubulin levels were determined in BJ hTERTs by western 
blotting under the conditions indicated. In (C), 10 mM u0126 or 100 nM wortmannin were 
added where indicated and phospho-MAPK and phospho-Akt levels were also 
determined. (D) TXNIP mRNA levels were determined by RT-qPCR following 4 hours 
treatment under conditions indicated. Data are presented as fold change relative to 
expression in G0 normalized to RPL19 mRNA (mean ± SD of triplicate samples of 
biological duplicates).  
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and serum signaling pathways can drive inhibition of TXNIP translation (Figure 2.7C). 

After 4 hours of serum treatment, when TXNIP message is absent, u0126 did not restore 

TXNIP mRNA or protein, suggesting that Ras-MAPK signaling activated by serum did 

not regulate TXNIP transcription.  By contrast, wortmannin restored TXNIP message in 

PDGF-treated cells but had no effect on serum-treated BJ hTERTs.  Thus PI3K signaling 

downstream of PDGFR must partially block TXNIP transcription, which is consistent with 

one previous report (53). Further, the lack of effect of wortmannin on serum-dependent 

downregulation of TXNIP transcription suggests that other signaling pathways must 

regulate TXNIP transcription downstream of PI3K or in parallel with PI3K signaling.  

2.3.7 Acute Ras-MAPK activation downregulates  

TXNIP translation 

We next wished to determine whether Ras-MAPK signaling was sufficient to 

inhibit TXNIP translation. To simplify these experiments, they were conducted in the 

absence of serum to eliminate other signaling inputs. Since constitutive Ras activity in 

BJ hTERTs causes senescence (54, 55), we expressed a regulatable allele of activated 

oncogenic Ras.  This allele expresses RasG12V as a fusion to the estrogen receptor (ER) 

ligand-binding domain that is stabilized and therefore activated by binding 4-

hydroxytamoxifen (4OHT) (56, 57). RasG12V:ER stabilization with increasing 

concentrations of 4OHT resulted in dose-dependent MAPK phosphorylation which 

coincided with TXNIP downregulation when compared to control cells (Figure 2.8). From 

these data we conclude that Ras-MAPK signaling actively inhibits TXNIP translation, 

which is consistent with the immediate-early kinetics of TXNIP translational 

downregulation.  
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Figure 2.8 Acute Ras-MAPK activation downregulates TXNIP translation TXNIP, 
MondoA, phospho-MAPK  and β-tubulin levels were determined in BJ hTERTs infected 
with pBABE-puro-ER (vector) and pBABE-puro-ER:RasG12V (RasG12V) by western 
blotting. Quiescent cells (G0) were treated with 10% serum or increasing concentrations 
(64.5 nM, 645 nM and 6.45 μM) of 4-hydroxytamoxifen (4OHT) as indicated for 4 hours. 
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2.4 Discussion 

As cells exit quiescence and enter the cell cycle, metabolic reprogramming in 

early G1 drives biosynthesis of macromolecules necessary for cell growth prior to 

proliferation. Our data extend the current understanding of metabolic reprogramming by 

demonstrating the coordinated downregulation of TXNIP translation and MondoA-

dependent TXNIP transcription as serum-starved cells exit quiescence and enter early 

G1. Further, we directly link TXNIP downregulation to the signaling pathways commonly 

associated with metabolic reprogramming and growth, Ras-MAPK and PI3K/Akt (58-60).  

Because, constitutive MondoA or TXNIP expression blocks metabolic reprogramming in 

early G1, we suggest that TXNIP downregulation not only correlates with metabolic 

reprogramming, but is a required event for cells to enter a productive cell cycle from 

quiescence. Finally, given the prevalence activating mutations in RTKs and their 

downstream effectors in cancer (52, 61, 62), we suggest that dysregulated TXNIP 

expression may be a relatively common driver contributing to the Warburg effect in 

tumorigenesis.  

TXNIP has emerged as an interesting candidate in the regulation of cell growth 

and metabolism.  Currently, literature suggests that TXNIP loss in early G1 may drive 

metabolic reprogramming by one of several mechanisms or by a combination of these 

mechanisms.  For example, T-lymphocytes upregulate GLUT-1 following stimulation in 

order to increase glucose consumption to support growth (2, 4), correlating with the 

downregulation of TXNIP we observed. Thus, it is possible that TXNIP regulates, directly 

or indirectly the expression level of the glucose transporters. Supporting a direct 

regulatory mechanism are findings demonstrating that TXNIP localizes to the nucleus 

and can interact with transcriptional corepressors (13, 63). A second possibility is that 

TXNIP loss leads to the stabilization of the HIF1α transcription factor that regulates the 
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expression of most glycolytic target genes. Finally, TXNIP loss leads to inactivation of 

PTEN (29) and the consequent activation of PI3K and its well-characterized functions in 

controlling both metabolic reprogramming and proliferation (64).  As cells exit 

quiescence they must reorganize the machinery that directly regulates the transition into 

G1, e.g. cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors.  Our 

data suggests that reprogramming cellular metabolism in early G1 is similarly complex 

and suggests a central role for TXNIP in orchestrating these growth-supporting 

metabolic changes.  TXNIP also modulates levels of the cyclin-dependent kinase 

inhibitor p27Kip1 (23), implying a function for TXNIP in linking cell cycle regulation directly 

to cellular metabolism.  

Activation of many oncogenes can drive aerobic glycolysis and in many cases 

their regulation of metabolic reprogramming appears direct, implying that the Warburg 

effect contributes functionally to cancer cell growth rather than merely correlating with 

cancer cell growth (60, 65, 66).  Interestingly, tumor cell models with activating Ras 

mutations have increased glucose uptake and glycolytic flux associated with the 

constitutive activation of Ras-MAPK signaling (67, 68). This effect of active Ras has 

been classically ascribed to its activation of cMyc and HIF1α (58, 69, 70).  However, we 

demonstrate here a direct contribution of Ras-MAPK signaling to metabolic 

reprogramming via its acute inhibition of TXNIP translation in early G1. This suggests 

that Ras-MAPK activation might regulate metabolic reprogramming by coordinating the 

activities of Myc/HIF1α and TXNIP.  Myc and HIF1α regulate the transcription of genes 

encoding glycolytic and other biosynthetic targets (71, 72). Thus one simple model for 

how Ras-MAPK may coordinate metabolic reprogramming is that TXNIP downregulation 

allows uptake of glucose and potentially other “building blocks” required for cell growth 

and Myc/HIF1α upregulation controls flux of these nutrients into biosynthetic pathways.  
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As Myc-overexpressing cells can be addicted to glucose and/or glutamine (73-76), 

coordinating nutrient availability with nutrient utilization is clearly required for cellular 

homeostasis. 

Recently, ChREBP (MondoB) was shown to be necessary for metabolic 

reprogramming in colorectal cancer cells and hepatoblastoma cells (40). For example, 

ChREBP knockdown cells shut down aerobic glycolysis, anabolic pathways and have 

reduced proliferation rates. Previously, we have shown that MondoA restricts glucose 

uptake (35) thus MondoA may act in opposition to ChREBP.  In BJ hTERT cells 

ΔN237NLSMondoA upregulates TXNIP transcription and reduces glucose uptake as 

expected; however, ΔN237NLSMondoA does not inhibit glycolysis. By contrast TXNIP 

overexpression restricts both glucose uptake and glycolysis.  Therefore, in addition to 

TXNIP, there must be other transcriptional targets of ΔN237NLSMondoA that oppose the 

negative activity of TXNIP on glycolysis. Identifying the direct MondoA-dependent 

transcriptome will likely provide insight into this important issue. 

TXNIP expression is restored later in G1 coinciding with a plateau in glucose 

uptake and utilization at about 12 hours following serum addition presumably when the 

biosynthetic needs of the cell are met. There may be two functional consequences to 

TXNIP upregulation later in G1. First, TXNIP can bind to and inhibit thioredoxin resulting 

in increased intracellular reactive oxygen species (ROS) (77). ROS are required for G1 

progression and S-phase entry (78). Thus restoring TXNIP activity later in G1 may 

contribute to increased ROS and subsequently G1 progression and S-phase entry.  

Second, the restriction point (R) is defined as a point in G1 where the cell assesses 

nutrient availability and can either arrest in order to survive under suboptimal growth 

conditions or proliferate when conditions are favorable (79). Thus it is possible that 

TXNIP upregulation occurs at a point that defines R in later G1, after which the 
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commitment to undergo DNA replication and cell division no longer falls under nutrient 

control.  

We show that TXNIP transcription is downregulated in early G1 when MondoA 

leaves the TXNIP promoter. Additionally, wortmannin partially blocks TXNIP mRNA 

downregulation in early G1 following PDGF but not serum addition. Thus there must be 

additional pathways within serum that bypass PI3K and regulate MondoA activation of 

the TXNIP promoter. It still remains to be determined how serum acutely and negatively 

regulates MondoA activity at the TXNIP promoter. ChREBP localization and activity are 

regulated by phosphorylation of key residues encompassing its DNA binding domain and 

nuclear localization sequence (80); however, these residues are not well conserved in 

MondoA. We cannot formally rule out the possibility that MondoA‘s activation of TXNIP 

transcription is directly modulated by post-translational modification in response to 

serum, yet the opposing roles for MondoA and ChREBP discussed above do not favor a 

unifying mechanism.  A second interesting mechanistic possibility involves our recent 

demonstration that MondoA occupancy and activity at the TXNIP promoter is increased 

as intracellular pH drops (20).  Previous studies have established that growth factor 

stimulation leads to a rapid – after approximately 2 minutes - increase in intracellular pH 

and this pH increase is required for cell division (81, 82).  These findings support a 

model where intracellular alkalinization following growth factor stimulation drives 

MondoA off the TXNIP promoter accounting for the rapid transcriptional shut down of 

MondoA-dependent transcription of TXNIP we observed in response to serum.  

The mechanism by which acute Ras signaling inhibits TXNIP translation is not 

completely understood. TXNIP-mCherry is destabilized by serum yet only has the coding 

sequence of the TXNIP message, eliminating translational regulation via its 5’ or 3’ 

UTRs as a possibility.  MicroRNAs (miRNAs) typically inhibit translation by interacting 



68 

 

 

with the 3’ UTR, yet there are examples of miRNAs targeting coding sequences (83, 84). 

Thus, we cannot completely rule out the involvement of miRNAs in regulating TXNIP 

translation.  Furthermore, the rapid kinetics of TXNIP downregulation suggests a more 

direct mechanism that does not involve de novo RNA synthesis.  With these caveats, it 

seems most likely that Ras-MAPK signaling targets preexisting components of the 

translational initiation machinery or, potentially, translating ribosomes. There are multiple 

examples of signaling cascades impinging directly on the translational initiation 

machinery supporting the former mechanism (85-87). 

Our results establish the necessity of TXNIP downregulation for cells to escape 

quiescence and enter G1.  The fact that both TXNIP translation and TXNIP transcription 

are both inhibited by serum further underscores this point.  Our data indicate that TXNIP 

transcription and translation are likely inhibited as acute immediate-early responses to 

serum addition.  While activated simultaneously, each repression mechanism persists 

for a different length of time.  EGF only effects translational inhibition of TXNIP. TXNIP 

protein returns normal levels after 4 hours of EGF treatment, defining the window of 

translational inhibition.  The transient nature of TXNIP translational inhibition likely 

reflects the well-characterized transient signaling through the Ras-MAPK pathway (88, 

89).  By contrast, TXNIP transcription is shut off for a much longer time, not being 

inducible until 8-12 hours following serum addition. Thus, inhibition of TXNIP 

transcription reinforces the inhibition of TXNIP translation early in G1.  At 8-12 hours 

following serum addition, the translational inhibition mechanism is no longer in force and 

TXNIP protein levels appear to be primarily under the control of MondoA-dependent 

activation of TXNIP transcription.  We have examined TXNIP regulation in subsequent 

G1 phases of the cell cycle and find that TXNIP transcriptional and translational inhibition 

are restricted to the first G1 phase following the release from quiescence (data not 
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shown).  This finding is reminiscent of the peak of cMyc mRNA and protein observed 

only in the first G1 following serum stimulation of quiescent cells (90, 91).  We speculate 

that the restricted regulation of TXNIP and cMyc to the first G1 after serum addition 

reflects increased metabolic requirements for cells to exit G0 and that these metabolic 

demands must be relaxed during ensuing G1 phases. 

The switch to aerobic glycolysis supplies energy and biomolecules to support the 

high division rates of many cancer cells.  Our work establishes an important role for 

TXNIP downregulation in metabolic reprogramming as cells exit quiescence and enter 

the first G1 phase of the cell cycle. While not studied here broadly, we show that TXNIP 

is rapidly upregulated by serum withdrawal which may serve to downregulate nutrient 

uptake and utilization in response to reduced signaling from growth factors. Such a 

model implies that rapid metabolic reprogramming may also be an early event involved 

in establishing quiescence. Our work provides new insights into how growth factor 

signaling impacts transcriptional and translational regulation of TXNIP, and likely other 

targets, leading to cell growth and yields insights into how TXNIP dysregulation may 

contribute to tumorigenesis. As TXNIP is an attractive therapeutic target in cancer 

treatment (92), our work provides insight into the rational targeting of its upregulation 

through activation of MondoA. 

2.5 Materials and Methods 

2.5.1 Cell Culture and Conditions 

BJ hTERTs (42) were maintained at 37°C in 5% CO2 in Dulbecco modified Eagle 

medium (DMEM, HyClone) supplemented with 10% bovine calf serum (BCS, HyClone) 

and penicillin/streptomycin (pen/strep). For serum starvation (quiescence), cells were 

washed with PBS and incubated in DMEM containing 0.1% bovine serum albumin (BSA) 

and pen/strep for 72 hours. Serum starvation media was replaced with growth media to 
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release cells into the cell cycle for times indicated. For growth factor stimulation, 10 

ng/ml EGF (Sigma-Aldrich) or 5 ng/ml PDGF (Sigma-Aldrich) were added to serum 

starvation media for times indicated. For MEK and PI3K inhibition, serum-starved cells 

were pretreated for 30 minutes with 10 μM u0126 (Cell Signaling Technology) or 100 nM 

wortmannin (Cell Signaling Technology), respectively, and were then treated with serum 

or growth factors in the presence of the inhibitors for times indicated. For mRNA and 

protein stability studies, cells were treated with 5 μg/ml actinomycin D (Sigma-Aldrich) or 

50 μg/ml cycloheximide (Sigma-Aldrich), respectively under conditions and for times 

indicated. For HDAC studies, cells were treated with 100 ng/ml trichostatin A (TSA, 

BIOMOL) for 5 hours prior to mRNA isolation. Primary quiescent T-lymphocytes were 

isolated from murine spleen and purified via negative selection using the EasySep 

Mouse T Cell Enrichment Kit (STEMCELL Technologies) and cultured in RPMI 1640 

(Cellgro) supplemented with 10% fetal bovine serum (FBS, Hyclone). Isolated T-

lymphocytes were activated using Dynabeads Mouse T-Activator CD3⁄CD28 for cell 

expansion and activation (Invitrogen) for the indicated times. Wild-type and TXNIP-null 

MEFs (41) were immortalized by a 3T3 protocol (93) and maintained at 37°C in 5% CO2 

in DMEM supplemented with 10% FBS and pen/strep. For serum starvation, cells were 

washed with PBS and incubated with DMEM supplemented with 0.5% FBS and 

pen/strep for 48 hours. Cells were stimulated to enter the cell cycle by replacing serum 

starvation media with growth media for times indicated. 

2.5.2 Western Blotting 

Whole cell lysates were prepared in ice-cold RIPA (150 mM NaCl, 10 mM Tris-Cl 

[pH 7.4], 0.1% SDS, 1.0% triton X100, 1.0% Na-deoxycholate, 5 mM EDTA) containing 

protease and phosphatase inhibitors.  Protein concentrations were determined by 
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Bradford Protein Assay (Bio-Rad). Following SDS-PAGE, proteins were transferred to 

PVDF membranes (PerkinElmer) and subsequently blocked in 5% nonfat dry milk-TBST 

(50 mM Tris-Cl [pH 8.0], 150 mM NaCl, 0.05% Tween 20) and probed with anti-MondoA 

(Stoltzman, et al., 2008, 1:500), anti-VDUP1(TXNIP) (MBL International, 1:1000); anti-

tubulin (Sigma, 1:10000); anti-cyclin A, anti-p27 and anti-H-Ras (Santa Cruz); anti-Hif1α 

(BD Biosciences,1:1000); anti-phospho-p44/42 MAPK (T202/Y204), anti-p44/42 MAPK, 

anti-phospho-Akt (S473) and anti-Akt (Cell Signaling Technology) at 1:500 or 1:1000 or 

as otherwise indicated. The blots were developed using ECL Plus (Amersham). 

2.5.3 Glucose Uptake Assays 

BJ hTERTs were plated at 50,000 cells/well in 6-well dishes and treated as 

indicated. 106 quiescent or activated T-lymphocytes were used for assays at time points 

indicated. For all conditions, cells were washed with Krebs-Ringer-Phosphate-Hepes 

(KRPH, 5 mM Na-phosphate [pH 7.4], 20 mM Hepes [pH 7.4-7.9], 1 mM MgSO4, 1 mM 

CaCl2, 136 mM NaCl, 4.7 mM KCl) buffer and then incubated for 15 minutes in 1 ml 

KRPH containing 1 mM 2-deoxy-β-D-glucose (2DOG, Sigma-Aldrich) and 1 μCi 2-deoxy-

D-[1,2-3H(N)]-glucose (specific activity, 5-10 Ci/mmole; PerkinElmer) at 37°C/5% CO2. 

Glucose uptake was terminated by removing the incubation solution and washing cells 

with ice cold KRPH. Cells were solubilized with 0.1% SDS over night at room 

temperature prior to scintillation counting to determine radiolabel incorporation. Assay 

results were normalized to cell number where indicated as described (35). All 

experiments were represented by three biological replicates and all data shown 

represent the results from at least three experiments. 

 

 



72 

 

 

2.5.4 Glycolytic Flux Assays 

BJ hTERTs were plated at 50,000 cells/well in 6-well dishes and treated as 

indicated. For glycolysis assay, media was removed from cells and replaced with 0.5 ml 

media containing 10 μCi D-[5-3H(N)]-glucose (specific activity 10-20 Ci/mmole, 

PerkinElmer) for 1 hour at 37°C/5% CO2. The assay was terminated by addition of 0.5 ml 

2N HCl. Triplicate 100 μl aliquots were transferred to capless 0.2 ml tubes and placed in 

sealed scintillation vials containing 0.5 ml H2O for 48 hours at room temperature to allow 

for diffusion and equilibration of 3H2O. The 0.2 ml tubes were subsequently transferred to 

new scintillation vials and both diffused (3H2O) and unutilized D-[5-3H(N)]-glucose were 

determined by scintillation counting. Controls for 3H2O diffusion included 3H2O standard 

and D-[5-3H(N)]-glucose only. Data were analyzed by comparing diffused samples 

(reduced to 3H2O by glycolysis) to undiffused samples and determining pmol glucose 

utilized per hour per cell as described (7, 35). Each experiment represents two biological 

replicates and all data shown represent the results from at least three experiments. 

2.5.5 Viruses and Infections 

Lentiviral pCDH-mCherry and pCDH-TXNIP-mCherry were a gift from W. 

Chutkow (25). pEIZ-Green was a gift from B. Welm. pEIZ-Green-ΔN237NLSMondoA 

was constructed by cloning ΔN237NLSMondoA as an XhoI/end-filled fragment from 

LXSH-ΔN237NLSMondoA (45) into the SmaI site of pEIZ-Green. Retroviral LMP vectors 

(Open Biosystems) containing nonsilencing (NS) and MondoA specific shRNA (M2) 

sequences were as described (35). Retroviral construct pBABE-puro-ER:RasG12V was a 

gift from C. Counter (56) and pBABE-puro was as described (94). Stable cell lines 

containing nonsilencing shRNA, MondoA shRNA, pBABE-puro and ER:RasG12V were 

made by infecting BJ hTERTs with retrovirus generated from each construct in HEK293T 
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cells (95) and subsequent selection in 2 μg/ml puromycin. For experiments utilizing BJ 

hTERT:pBABE-puro and BJ hTERT:pBABE-puro-ER:RasG12V, cells were plated and 

serum starved as above and subsequently treated with vehicle (0.1% ethanol) or 

indicated concentrations of 4-hydroxytamoxifen  for 4 hours in starvation media prior to 

analysis.  Transient infections with pCDH-mCherry, pCDH-TXNIP-mCherry, pEIZ-Green 

and pEIZ-Green-ΔN237NLSMondoA were performed with lentivirus generated from each 

construct in HEK 293T as described (96). Briefly, BJ hTERTs were infected over night 

with lentivirus from each construct and allowed to recover from infection for 24 hours. 

Asynchronous cells were subsequently serum starved for 72 hours and then released 

into G1 by serum addition. Relative infection efficiency for each experiment was 

determined by mCherry fluorescence (pCDH) or GFP fluorescence (pEIZ). 

2.5.6 BrdU Labeling and Immunofluorescence 

BJ hTERTs or MEFs were plated at subconfluent density on cover slips and 

treated as indicated. For MEFs, cells were incubated for 24 hours in media containing 10 

μM 5-bromo-2’-deoxyuridine (BrdU, Roche) prior to analysis for all conditions tested. For 

BJ hTERTs, G1 cells, following 22 hours in media supplemented with serum, were 

incubated in media containing 10 μM BrdU for 4 hours and quiescent cells received 10 

μM BrdU in media lacking serum for 4 hours. Following BrdU labeling, cells were 

washed with PBS then fixed in ice-cold methanol for 10 minutes and DNA was 

denatured with 2N HCl for 1 hour at 37°C. Cover slips were subsequently neutralized by 

20 minute incubation in 0.1M sodium borate pH 8.5 and subsequently washed with PBS. 

Cover slips were blocked in PBS containing 0.1 % BSA, then incubated with 1 μg/ml 

anti-fluorescein-BrdU (Roche) for 1 hour and subsequently washed with PBS. Following 

10 minute incubation with 1 μg/ml DAPI (Sigma-Aldrich), cover slips were washed and 



74 

 

 

mounted using Prolong Gold (Invitrogen). Total cell number was determined by counting 

nuclei (DAPI) and BrdU incorporation by counting fluorescein labeled cells. For each 

experiment 200-500 total cells per cover slip were counted and three cover slips per 

condition were evaluated. Each data point shown represents the average of three 

independent experiments. 

2.5.7 Chromatin Immunoprecipitation (ChIP) 

1.8 x 106 BJ hTERTs on 15 cm dishes (3 dishes per point) for all conditions 

indicated were washed with PBS and fixed/cross-linked for 10 minutes with 1% 

formaldehyde. Cross-linking was stopped with 0.125M glycine for 10 minutes and cells 

were washed with PBS and harvested by scraping and incubation in cell lysis buffer (10 

mM Tris-Cl [pH 7.4], 10 mM NaCl, 3 mM MgCl2, 0.5% NP40). After washing, cell pellets 

were sonicated at 4°C in 0.5 ml nuclear lysis buffer (50 mM Tris-Cl [pH 8.0], 10mM 

EDTA, 5 mM EGTA, 1% SDS) for 20 rounds of 25 second cycles (0.9 sec on/0.1 sec off) 

on a Misonix Ultrasonic Processor, setting 3 (Misonix Incorporated).  The extent of 

chromatin shearing was determined by reversing the cross-links on an aliquot and 

examination by agarose gel electrophoresis. Sonicated lysates were per-cleared by 

incubation with Dynabeads (Sheep anti-rabbit M-280, Invitrogen) at 4°C in ChIP dilution 

buffer (20 mM Tris [pH 8.0], 2 mM EDTA, 150 mM NaCl, 1% Triton X-100, 2 mg/ml BSA, 

100 μg/ml ssDNA) and immunoprecipitated over night with 2 μg anti-MondoA  or 2 μg 

normal rabbit IgG (Santa Cruz) at 4°C. Beads were isolated by magnetic separation and 

washed once with wash I (20 mM Tris-Cl [pH 8.0], 2 mM EDTA, 1% Triton X-100, 150 

mM NaCl, 1 mM PMSF) then twice with wash II (wash I with 0.1 % SDS, 500 mM NaCl) 

and finally once with wash III (20 mM Tris-Cl [pH 8.0], 1mM EDTA, 250 mM LiCl, 0.5% 

NP40, 0.5% sodium deoxycholate). Beads were resuspended in 50 μl 10 mM Tris-Cl [pH 

8.0], 1 mM EDTA (TE) and incubated with 200 ng/ml RNase A (Qiagen) for 20 minutes 
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at 37°C. Proteinase K and SDS were added to final concentrations of 200 μg/ml and 0.5 

%, respectively, and beads were incubated at 55°C for 3 hours. Subsequently, 

immunoprecipitations were incubated over night at 65°C to reverse cross links. Samples 

were phenol-chloroform extracted and further processed by the Qiaquick PCR 

Purification Kit (Qiagen) prior to qPCR. For experiments shown, specific  MondoA DNA 

binding was determined by normalizing to IgG controls and MondoA enrichment at the 

TXNIP locus was determined at all conditions by normalizing qPCR to the MondoA off-

target loci PFKFB3 or Bcl2 (35, 36) (primer sequences available upon request). DNA 

quantities were determined from standard curves for all primer sets. Data represented 

are from 3 independent experiments. 

2.5.8 Reverse Transcription Quantitative PCR (RT-qPCR) 

For expression analysis, total RNA was extracted from cells using RNeasy Mini 

Kit (Qiagen) and cDNA was generated from 250-500 ng RNA using Superscript III RT 

system (oligo dT, Invitrogen). cDNAs were mixed with TXNIP or RPL19 primers 

(sequences available upon request) and IQ SYBR Green Supermix (Bio-Rad) and qPCR 

reactions were performed on the iCycler (Bio-Rad) as follows: one cycle of 95°C for 2.5 

min.; 40 cycles of 95°C for 30 sec., 55°C for 30 sec., one cycle of 72°C for 35 sec.; 72°C 

for 2.5 min.; 77 cycles 72°C-95°C for 10 sec. at each temperature. Relative mRNA 

quantities were determined from standard curves for each primer set and TXNIP mRNA 

quantities were normalized to RPL19 expression. For each experiment, triplicate 

reactions were run from a minimum of two biological replicates.  
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CHAPTER 3 

SUMMARY 

Proliferating cells are required not only to replicate their genomes during each 

passage through the cell cycle, but additionally they must duplicate all macromolecular 

components prior to mitosis and cytokinesis. This presents proliferating cells with 

significant metabolic challenges as they must increase nutrient uptake and metabolic 

activity to accommodate increases in biosynthetic activities. To accomplish this, the 

metabolism of proliferating cells is significantly different from that of nonproliferating 

cells. Proliferating cells engage in aerobic glycolysis which drives cytoplasmic ATP 

production and diverts metabolites from glycolysis and the TCA cycle to biosynthetic 

reactions including protein, lipid and nucleotide biosynthesis (1, 2). Non-proliferating 

cells primarily engage in glycolysis, but principally to generate pyruvate which feeds the 

TCA cycle in the mitochondria where the majority of ATP synthesis occurs by oxidative 

phosphorylation (3).  

As outlined in Chapter 1, quiescent cells can be stimulated to proliferate and a 

component of entry into the cell cycle is metabolic reprogramming from oxidative 

metabolism to aerobic glycolysis (2). Growth factor signaling pathways drive increased 

glucose uptake as well as uptake of other nutrients required for cell growth (4, 5). 

Additionally, these pathways upregulate transcriptional programs that increase glycolytic 

flux and nutrient uptake (6-10).  PI3K/Akt and Ras-MAPK signaling downstream of 

growth factor receptors directly drive metabolic reprogramming by increasing GLUT 

trafficking and activating Myc and HIF which directly increase the transcription of 
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glycolytic targets. Additionally, Myc directly drives mitochondrial biogenesis and 

glutaminolysis necessary for utilization of TCA cycle intermediates for biosynthetic 

reactions. Clearly, regulation of metabolic reprogramming is a highly complex and 

orchestrated process, not unlike the cell cycle itself. 

Chapter 2 introduces two new regulators of metabolic reprogramming, the 

transcription factor MondoA and the tumor suppressor TXNIP. Data from TXNIP-/- mice 

suggests that TXNIP downregulation supports growth and proliferation as well as 

increasing aerobic glycolysis and nutrient uptake (11, 12). MondoA directly regulates 

TXNIP transcription and restricts glucose uptake, in part, through TXNIP protein (13). 

Additionally, MondoA knockdown drives increased proliferation and glucose uptake in 

certain cellular contexts and MondoA-/- have no detectable TXNIP expression and high 

rates of glucose uptake (14, 15). Taken together, these data suggest that MondoA and 

TXNIP might regulate cell growth and proliferation through their negative regulation of 

glucose availability and glycolysis. Thus, MondoA and TXNIP regulation in cells 

transitioning from quiescence (G0) into the growth phase (G1) of the cell cycle is 

examined in Chapter 2. 

As TXNIP activity is required for cellular quiescence (16, 17), it is no surprise that 

it is highly upregulated in BJ hTERT cells quiesced by serum starvation. TXNIP protein 

and mRNA are both acutely downregulated by the readdition of serum which releases 

cells into G1. Concomitant with TXNIP downregulation is the upregulation of glucose 

uptake and glycolysis which are hallmarks of metabolic reprogramming from oxidative 

phosphorylation in G0 to aerobic glycolysis in G1. As cells progress through G1, both 

glucose uptake and glycolysis plateau, presumably as the cells metabolic needs have 

been met, and TXNIP transcription and translation are upregulated. We show that 

ectopic expression of TXNIP in early G1 restricts glucose uptake, glycolysis and S-phase 

entry, suggesting that downregulation of TXNIP is necessary for metabolic 
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reprogramming and cell growth (Figure 3.1). We ultimately show that TXNIP 

transcription and translation are inhibited by Ras-MAPK and PI3K/Akt signaling 

downstream of EGF and PDGF receptor signals. 

While MondoA appears to be ubiquitously present throughout G0 and G1, its 

transcriptional activity at the TXNIP promoter as well as another arrestin protein, 

ARRDC4 (18) is highly regulated. We show that TXNIP transcription is downregulated 

when MondoA leaves the TXNIP promoter, likely concomitantly, with serum addition to 

quiescent BJ hTERTs. Expression of a constitutively active allele of MondoA, 

ΔN237NLSMondoA, in early G1 restricts glucose uptake and S-phase entry but not 

glycolysis. As MondoA has been shown to upregulate the glycolytic genes HKII, PKFB3 

and LDHA (19), it is likely that constitutive activation of these targets, and likely other yet 

characterized targets, is in direct opposition to TXNIP downregulation of glycolysis and 

the net effect is no change in glycolytic rate. PDGF stimulation of BJ hTERTs modestly 

downregulated MondoA-dependent TXNIP transcription through a PI3K dependent 

mechanism; however, inhibition of PI3K was not sufficient to restore TXNIP mRNA in 

serum-treated cells. This suggests that signaling pathways parallel to PI3K must also 

regulate MondoA-dependent TXNIP transcription. Preliminary studies with 

lysophosphatidic acid (LPA) which signals through multiple networks including PI3K and 

Ras (20), demonstrate that TXNIP mRNA is downregulated by one or more of these 

pathways (Figure 3.2). Not surprisingly, the phorbol ester, phorbol-12-myristate-13-

acetate (PMA), which is a potent tumor promoter that activates Raf directly through 

protein kinase C (PKC) (21), also downregulates MondoA-dependent TXNIP 

transcription and this is not reversed with PI3K inhibition by wortmannin (Figure 3.2). 

Clearly, regulation of MondoA-dependent TXNIP transcription by growth factor signaling 

is complex and remains an open question. 

 



87 
 

 

 

 

Figure 3.1 MondoA and TXNIP regulation during the G0/G1 transition. During 
quiescence, MondoA and TXNIP activities are regulated by glucose and the absence of 
extracellular signaling. MondoA-dependent TXNIP transcription and TXNIP translation 
are robust, thus restricting glucose uptake and glycolysis and preventing cell growth. 
Upon serum or growth factor addition, MondoA leaves the TXNIP promoter preventing 
TXNIP transcription and TXNIP translation is inhibited by a Ras-MAPK dependent 
mechanism. Growth factor signaling increases glucose uptake and glycolysis, in part, by 
downregulation of MondoA transcriptional activity and TXNIP. As MondoA and TXNIP 
are no longer regulated by glucose, high glucose uptake and glycolytic flux drives growth 
and cell proliferation. 
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Figure 3.2 Lysophosphatidic acid (LPA) and phorbol-12-myristate-13-acetate (PMA) 
downregulate TXNIP mRNA. RT-qPCR reactions on mRNA isolated 4 hours after serum, 
PDGF, LPA, PMA and EGF addition to quiescent BJ hTERT cells. Serum maximally 
downregulates TXNIP mRNA and this is not reversible by u0126 (MEK), wortmannin 
(PI3K) or PKC inhibition. PDGF modestly downregulates TXNIP mRNA and this is 
reversible by wortmannin treatment suggesting PI3K signaling downregulates TXNIP 
mRNA upon PDGF stimulation. LPA downregulation of TXNIP mRNA is not reversible by 
PI3K inhibition suggesting a parallel pathway is involved, however, the complexity of 
LPA signaling limits study of this. PMA potently downregulates TXNIP mRNA as well, 
and only PKC inhibition reverses this, consistent with PMA activating PKC. EGF has no 
effect on TXNIP mRNA. Serum, EGF and PDGF regulation of TXNIP transcription are 
discussed in Chapter 2. 
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Two important mechanistic questions arise from the work in Chapter 2. First, we 

have shown that TXNIP is highly regulated by both MondoA and glucose (13), however, 

in early G1, MondoA and glucose are replete and yet there is no TXNIP transcription or 

translation. As we show MondoA leaves the TXNIP promoter upon serum re-addition, 

one likely explanation is that MondoA is modified, for example by phosphorylation, and 

its nuclear entry is restricted or it is alternatively localized. ChREBP subcellular 

localization and transcriptional activity have been shown to be regulated by 

phosphorylation of key residues encompassing its DNA binding domain and nuclear 

localization sequence (22); however, these residues are not conserved in MondoA. 

Additionally, preliminary immunofluorescence experiments examining MondoA 

subcellular localization in response to serum and PDGF, in the presence and absence of 

wortmannin, reveal no significant changes in MondoA localization and more importantly, 

cytoplasmic-nuclear shuttling does not appear to change. While we cannot formally rule 

out post-translational modification of MondoA, a more tractable model explaining how 

MondoA leaves the TXNIP promoter comes from recent work showing that lactic 

acidosis increases TXNIP transcription by increasing MondoA occupancy at the TXNIP 

promoter (23). As growth factor stimulation acutely increases intracellular pH (24, 25) it 

is certainly possible that as pH decreases from lactic acidosis increase MondoA 

occupancy on the TXNIP promoter, pH increases resulting from RTK signaling could 

reduce MondoA occupancy accounting for the acute downregulation of TXNIP mRNA. 

However, to fully gain an understanding of how serum might regulate MondoA activity, 

we must also understand how MondoA is regulated at other target promoters. While HKII 

and LDHA are directly regulated by MondoA (19), this activity does not appear to be 

glucose regulated. As such, we are currently trying to acquire more glucose and 

constitutive MondoA targets by chromatin immunoprecipitation sequencing (ChIP Seq) 
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(26, 27). Still, regulation of MondoA-dependent TXNIP transcription in G1 remains an 

open question. 

An alternative mechanism for downregulation of MondoA promoter occupancy at 

TXNIP comes from the observation that Mnt (figure 1.4) can dimerize with Mlx (28). 

Mnt:Max heterodimers occupy Myc transcriptional targets regulating growth and 

proliferation during quiescence and subsequently repress their transcription (29). Upon 

growth factor stimulation, Myc is upregulated and Myc:Max heterodimers dominate 

occupancy of Myc transcriptional targets (29). The Myc:Max heterodimers form at the 

expense of Mnt:Max complexes, yet Mnt expression is transiently stable (29). It is 

therefore conceivable that Mnt:Mlx heterodimers form during this period at the expense 

of MondoA:Mlx complexes, either reducing the number of MondoA:Mlx heterodimers 

available to activate MondoA targets like TXNIP or simply, Mnt:Mlx complexes displace 

MondoA at targets like TXNIP and repress their transcription. Certainly, looking at Mnt 

occupancy at the TXNIP promoter would resolve this issue, however, given the potential 

cooperativity of Myc superfamily members (30), a more comprehensive strategy would 

be to examine Myc, Mnt, MondoA and ChREBP occupancy at multiple targets during the 

G0/G1 transition by ChIP Seq. 

The second important mechanistic question raised in Chapter 2 is how TXNIP 

translation is downregulated by growth factor signaling in early G1. We demonstrate that 

TXNIP translation is acutely downregulated by MAPK activation directly downstream of 

Ras activation (Figure 2.8). TXNIP-mCherry is clearly regulated by serum (Figure 2.2A) 

suggesting that TXNIP is likely downregulated at the level of translation or by its coding 

sequence, as TXNIP-mCherry contains only the open reading frame of TXNIP (18). If 

eiF2α, shown to regulate the translation of other stress induced proteins, like ATF4, is 

responsible for TXNIP translation in G0, its MAPK induced dephosphorylation upon 

serum addition would explain the acute downregulation in G1 (31-34). However, the 
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mechanism of phosphorylated eiFα-mediated translation elongation relies on it scanning 

the 5’ untranslated region (UTR) of its targets for alternate open reading frames (33-35). 

TXNIP contains a minimal 5’ UTR with no alternate translation start sites and TXNIP-

mCherry does not contain the TXNIP 5’ UTR; thus, this it is unlikely that TXNIP 

translation is regulated in this way. Alternatively, there are other examples of signaling 

cascades directly impinging on the translation machinery supporting a mechanism 

inhibiting TXNIP translation at this level (32, 36). Alternatively, there is recent evidence 

supporting TXNIP downregulation by microRNA (miRNA) (37), and while we suggest in 

Chapter 2 that the kinetics of TXNIP downregulation in response to serum are 

incompatible with new transcription, we cannot formally rule this out as a potential 

mechanism. 

The data presented in Chapter 2 establishes the necessity of TXNIP 

downregulation for cells to enter the cell cycle from a quiescent state. The fact that both 

TXNIP transcription and translation are downregulated further underscores this point. 

Our data indicate that TXNIP transcription and translation are inhibited as acute 

immediate-early responses to growth factor signaling. However, each mechanism 

persists for different durations (Figure 2.5). This suggests a mechanism where TXNIP 

translation is inhibited for a time necessary to allow sufficient mRNA decay and 

subsequently transcriptional inhibition reinforces TXNIP downregulation.  This appears 

to be the case as EGF stimulation only downregulates TXNIP translation and not mRNA, 

and TXNIP expression is restored early (Figure 2.7). While growth factor signaling has 

been shown to regulate metabolic reprogramming (1, 2, 38) mechanistically, however, it 

is not clear how this is accomplished directly. It is clear from this work that MondoA and 

TXNIP represent important downstream effectors. 

The switch to aerobic glycolysis supplies both energy and macromolecules to 

support cell proliferation and as such understanding how this is accomplished at a 
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mechanistic level is important in understanding the pathogenesis of disease involving 

proliferation, namely cancer. Data in Chapter 2 identify the necessity of downregulation 

of TXNIP translation and MondoA-dependent TXNIP transcription for metabolic 

reprogramming and growth, however, it still remains unclear how these proteins 

negatively regulate glucose uptake and glycolysis. This work provides further insight into 

the regulation of metabolic reprogramming presented in Chapter 1 and lays the ground 

work for additional studies in the regulation of cell growth and metabolism by MondoA 

and TXNIP. 
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APPENDIX A 

AN ACTIVATING MUTATION IN SOS-1 IDENTIFIES ITS DBL  

DOMAIN AS A CRITICAL INHIBITOR OF THE EPIDERMAL  

GROWTH FACTOR RECEPTOR PATHWAY DURING  

CAENORHABDITIS ELEGANS 

 VULVAL DEVELOPMENT 

Appendix A is a manuscript published in Molecular and Cellular Biology in May, 

2007. It is reprinted here with permission from the publisher and the authors. Briefly, it 

describes an activating mutation in the Ras-GEF Sos that results in sustained MAPK 

activation in the presence of EGFR signaling. This work was done in the laboratory of 

Nadeem Moghal. Katarzyna Modzelewska and Marc G. Elgort are co-first authors on the 

manuscript and contributed equally to the research along with the writing of the 

discussion under the guidance of Nadeem Moghal. Marc G. Elgort recapitulated the 

Cdc25 mutations in human Sos and performed the experiments shown in Figure 4 of the 

published manuscript. 
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APPENDIX B 

COORDINATION OF GLUCOSE AND GLUTAMINE UTILIZATION  

BY AN EXPANDED MYC NETWORK 

Appendix B is a perspective/mini review published in Transcription in August 

2010 (Transcription 2010; 1:36-40). It is reprinted here with permission from the 

publisher and the authors. It primarily discusses subjects addressed in Chapter 1, but 

further expands the discourse on Myc regulation of glucose and glutamine metabolism in 

cancer. Marc G. Elgort contributed sections discussing Myc regulation of glycolytic 

targets and glutaminolysis. 
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