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ABSTRACT 

 

 The climate of urban areas is influenced by the composition and configuration of 

different land cover types. Urban forests increase human comfort in urban areas by cooling 

the environment through evapotranspiration and shade. A tradeoff of urban forests in 

semiarid and arid climates is that they require large quantities of irrigation water to 

maintain. This study aimed to quantify the relationship between urban vegetation and land 

surface temperature (LST). Datasets derived from high-resolution lidar and National 

Agriculture Imagery Program (NAIP) orthoimagery were used in a random forest 

algorithm to classify urban vegetation, human-made and natural surfaces at a 1-meter scale, 

in the Salt Lake Valley of Utah. The resulting classification accuracy was 94%. LST was 

retrieved from an Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) scene captured on a hot, summer day. Percentages of each land cover class were 

calculated per ASTER pixel. These composition variables were compared to LST using 

Pearson’s correlation analysis and were also used to create a multiple linear regression 

model. Percent deciduous tree cover was the variable most strongly correlated with LST, 

with a correlation coefficient of -0.55. Irrigated low-stature vegetation was also negatively 

correlated with LST (-0.33). Residuals from the multiple linear regression model varied 

over space, and additional dates of ASTER imagery are needed to determine whether these 

second-order spatial patterns are persistent. 
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INTRODUCTION 

 

As of 2013, a large percentage (52%) of the world’s population now resides in 

urban areas (Population Reference Bureau, 2013). This percentage continues to increase 

as populations grow and people migrate from rural areas to seek employment. Human 

comfort in urban areas is often linked with ambient temperatures. As urban areas expand, 

existing vegetation is often replaced with human-made surfaces. This has important 

implications for air and surface temperatures within an urban environment.  

One consequence of urbanization is the urban heat island (UHI) effect. When 

natural vegetation is replaced with human-made surfaces, the area’s ability to moderate 

temperatures worsens. Human-made surfaces like asphalt are less reflective than natural 

surfaces, leading to increased absorption of solar radiation. Additionally, decreasing the 

amount of natural vegetation in an area leads to a decline in total evapotranspiration 

(Akbari, 2009). As a result, air and surface temperatures tend to be several degrees higher 

in urban areas than their surrounding areas (Huang et al., 2011). Studies related to the 

UHI are critical for a few reasons.  First, UHI increases demand for air conditioning 

during warmer months. This results in increased energy use. Second, UHI negatively 

impacts human health by increasing ground level ozone (Akbari et al., 1996). Third, UHI 

subjects a city’s inhabitants to a health hazard known as heat stress. Evidence from 

previous research suggests that more hospitalizations and emergency calls occur during 

heat waves (Kinney et al., 2001).
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Cities can mitigate the effects of UHI by maintaining an urban forest (Dimoudi & 

Nikolopoulou, 2003). Urban forests are known to have an “oasis” effect on a city’s 

climate during the warmer months (Dwyer et al., 1992; Nowak & Dwyer, 2007). Large 

amounts of solar radiation are absorbed by trees and green vegetation and used for 

evapotranspiration (Akbari, 2009). Evapotranspiration lowers nearby air temperatures by 

absorbing energy through the latent heat of vaporization (Grimmond & Oke, 1991). Tall 

vegetation like trees also cool the environment by providing shade, thus reducing the 

solar heating of nearby surfaces. When combined, these effects have the ability to reduce 

air temperatures by as much as 5 degrees Celsius (Akbari, 2009). Urban forests also 

benefit the environment by reducing energy use and decreasing air pollution (Akbari, 

2009; Dwyer et al., 1992). One tradeoff of maintaining an urban forest is that it requires a 

large quantity of water for irrigation purposes. This is an issue in semiarid climates where 

water resources are limited. 

 The goal of this research was to quantify the relationship between urban 

vegetation and land surface temperature (LST) in the Salt Lake Valley. This will be 

accomplished in two parts. Part one will involve classifying the valley into several land 

cover classes. Because of the size of the study area and characteristics of the input data, a 

random forest classifier will be used. Random forest processes high-dimensional datasets 

quickly and resists overfitting to the training data (Breiman, 2001; Rodriguez-Galiano et 

al., 2012). Therefore, the first research question answered by this thesis was how 

effective is random forest for classifying an urban area using orthoimagery and lidar 

data? This question was addressed by analyzing measures of accuracy related to using 

random forest such as variable importance, out-of-bag error, and a confusion matrix. Part 
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two involved quantifying the relationship between established urban vegetation classes 

and LST. Hence, the second research question was how is the cover of urban vegetation 

types in the Salt Lake Valley related to land surface temperature? This question was 

addressed by comparing land cover classes to LST, using Pearson’s correlation analysis 

and multiple linear regression.



 

BACKGROUND 

 

Urban Vegetation and LST 

Measuring the impact of urban vegetation on daytime LST using remotely sensed 

data has been the subject of numerous studies. The normalized difference vegetation 

index (NDVI) has been frequently used to quantify urban greenness (Buyantuyev & Wu, 

2010; Weng et al., 2003; Yuan & Bauer, 2007). Yuan and Bauer (2007) used NDVI and 

percent impervious surfaces from a linear spectral mixing model to analyze LST 

variations. They concluded that the relationship between NDVI and LST was nonlinear 

and strongly affected by season. They found that percent impervious surface had a very 

strong linear relationship with LST.  Weng et al. (2004) noted in their study that the 

relationship between NDVI and LST was very weak. They found NDVI to be a decent 

predictor, but alluded that it does not necessarily measure the amount of vegetation in an 

area. Finally, Yuan and Bauer (2007) concluded that NDVI is not a suitable predictor of 

LST on its own, but is useful for supplementing analyses with other variables. 

Other studies assessed additional methods of quantifying urban vegetation and 

have tested their ability to estimate LST. Weng et al. (2004) compared NDVI to 

vegetation fraction from a spectral mixture model in terms of each metric’s ability to 

indicate LST. Unmixed vegetation fraction showed a slightly stronger negative 

correlation with LST than NDVI at all spatial resolutions examined (30 meters to 960 

meters). Zhou et al. (2011) compared the use of land cover composition metrics and land
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cover configuration metrics to describe LST. Composition refers to the variety and 

relative abundance of land cover features in an area (Gustafson, 1998; Turner, 2005). 

Alternatively, configuration refers to the spatial arrangement or distribution of 

land cover features. Coarse vegetation (included trees and shrubs) and fine vegetation 

(included herbs and grasses) were among urban vegetation classes considered. 

Composition variables such as percent coarse vegetation, building, and paved surfaces 

were strongly correlated to LST. Inversely, percent fine vegetation, percent water, and 

percent soil were weakly correlated with LST. Areas composed of smaller percentages of 

coarse vegetation and fine vegetation had stronger positive relationships with LST. 

Incidentally, these areas also had larger percentages of building and paved surfaces. 

Areas composed of larger percentages of coarse vegetation and fine vegetation had 

stronger negative relationships with LST (Zhou et al. 2004).  

In regards to configuration of urban vegetation, the significance and effect of each 

metric varied by land cover class (Zhou et al. 2004). The authors found that decreases in 

LST generally corresponded to increases in edge density, shape complexity, and 

variability in coarse vegetation. This suggested that an evenly distributed pattern of 

coarse vegetation decreases LST more effectively than a clustered pattern. Overall, after 

testing five linear models, the authors concluded that composition was found to be a more 

important indicator of LST than configuration (Zhou et al. 2011). Connors et al. (2013) 

also evaluated the ability of several configuration metrics in predicting LST. Their study 

took place in Phoenix, Arizona, which has an arid climate. Three microscale 

environments were examined: mesic residential (above average irrigation), xeric 

residential (little to no irrigation), and industrial.  They found that the configuration 
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variables of edge complexity and patchiness affected LST in the industrial area. Results 

indicated that less complex shapes of grass and increases in patch density of impervious 

cover help cool the environment more efficiently. The big takeaway from their research 

was that landscape composition and configuration influence LST; however, these 

relationships are not consistent across every land use type.  Also they found that the 

impacts of the configuration variables are codependent and none of them stood out from 

each other (Connors et al. 2013). 

Du et al. (2016) reopened the question of whether composition or configuration 

was more important in predicting LST. The authors used multilevel models to examine 

the problem in a nontypical manner. The premise of these models is that explanatory 

variables have multiple levels with lower level variables being nested into higher ones. 

The authors compared the ability to predict LST of an ordinary least squares regression 

model (a single-level model) versus that of three different multilevel models. The authors 

rationalized that land cover configuration provides context for composition, therefore it 

was used as a level two variable with composition as a level one variable. In their 

analysis, the multilevel model outperformed the ordinary least squares regression model 

by having more accurate results, smaller residuals, and less spatial autocorrelation (Du et 

al. 2016). Also they found that configuration metrics had stronger coefficients with LST 

than composition metrics, which directly contrasts with the findings of Zhou et al. (2011). 

Their reasons were that the multilevel approach accounted for autocorrelation, multiple 

levels in the analysis were used, and that their study took place in a more modern city 

with evenly distributed buildings separated by vegetation patches. They concluded that it 

may be more efficient for a city to optimize configuration of human-made and vegetated 
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surfaces in order to reduce LST. 

Previous studies also indicated that scale seems to be an important aspect of UHI. 

Weng et al. (2004) performed a fractal analysis on their vegetation fraction and LST data, 

and found that image texture increased with pixel aggregation from scales 30 meters to 

120 meters, then decreased afterwards. The largest correlations were observed at a spatial 

resolution of 120 meters, which happens to be the operational scale of most temperature 

variations. Zhou et al. (2011) also noted that their study was performed on individual 

patches of their study area (average area of the patches was 76,000 square meters) and 

that greater correlations likely existed at coarser scales (e.g., the entire study area). These 

findings suggest that the areal unit of measure has a direct correspondence with the 

radiative, thermal, and moisture properties of the surface that determine LST. According 

to Gluch et al. (2006), performing fine-scale studies on LST response to land cover is 

equally important as coarse-scale studies because radiative transfer can vary significantly 

over space due to the diversity of urban land cover types and their respective physical 

properties. 

 

Urban Land Cover Classification Using Random Forest 

In order to accurately compare urban land cover to LST, it is necessary to obtain a 

high-resolution land cover dataset by using a classifier of some kind. Due to its ability to 

use a large variety of predictor variables and minimal need for fine-tuning, random forest 

has proven to be a valuable classifier in land cover studies (Gislason et al., 2006; Pal, 

2005). In one such study, Gislason et al. (2006) used remotely sensed data and 

geographic data in a random forest to classify a mountainous area in Colorado. The 
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authors included Landsat Multispectral Scanner four-band imagery, elevation, slope, and 

aspect for use as predictors in the analysis. In their study, they compared the result of the 

random forest classification to several other classifiers, including classification and 

regression trees method, and bagging and boosting-based classifiers. Random forest 

proved more accurate than the basic CART implementation by 4.5%. In addition, it had 

comparable accuracies to the bagging and boosting classifiers, with much greater speeds. 

The authors noted that the advantage of using random forest is that it requires less human 

guidance than other methods. It also does not need to be tweaked, although one can add 

or remove input variables to adjust accuracy. The authors concluded that random forest 

was a very desirable method for classification using data from multiples sources. 

 Light detection and ranging (lidar) data have been used in random forest analyses 

in a few studies for the purpose of improving urban area classification. Chehata et al. 

(2009) used random forest to select predictors from lidar-derived datasets. Twenty-one 

predictors (height-based, echo-based, eigenvalue-based, local plane-based, and full-

waveform-based) derived from lidar data were reduced to six predictors using an iterative 

backward feature elimination technique. This is performed by repeatedly removing 

predictor variables with the least significance from the variable importance analysis and 

rerunning the classification until the lowest out-of-bag error is achieved. They concluded 

that each individual land cover class has its own combination of predictors with differing 

amounts of importance. 

Guan et al. (2012) completed a similar study in which they evaluated the 

performance of random forest for selecting predictors for an urban area classification 

using lidar data and orthoimagery. The authors began with 48 total predictors in their 
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random forest analysis and narrowed the set to 15 by also using the iterative backwards 

feature elimination technique.  The most important predictors were the normalized digital 

surface model, eigenvalue anisotropy, and intensity grey-level co-occurrence matrix 

measures. The authors concluded that random forest is a useful tool for selecting 

orthoimagery and lidar-based predictors for urban classification. They also concluded 

that using a large number of predictor variables in the random forest model does not 

necessarily lead to increased accuracy. 

Finally, Guo et al. (2011) discussed in greater detail the ability of random forest to 

classify an urban environment using both orthoimagery and lidar data. This study along 

with others concluded that height difference derived from lidar was the most important 

predictor for all classes because it allows off-ground objects to be distinguished from on-

ground objects (Chehata et al., 2009; Guan et al., 2012; Guo et al. 2011). The next most 

important predictors were the red band, blue band, amplitude of returns, and cross section 

of returns. Random forest classified impervious surfaces (i.e., “human-made ground and 

building classes) with minimal error. However, the algorithm had difficulties with 

distinguishing natural ground and human-made ground. It was purported by the authors 

that a lack of training data was to blame. However, an addition of a near-infrared band 

might have aided the analysis. After several runs using different predictor variables, it 

was determined that neither orthoimagery nor lidar are sufficient enough on their own to 

classify an urban landscape. Both are needed for an accurate urban land cover 

classification. 

This research presents a chance to test random forest’s ability to classify an urban 

landscape by incorporating orthoimagery and lidar data.  Landscape classification in 
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urban heat island studies is often performed using object-based classification (Connors et 

al., 2013; Du et al., 2016; Zhou et al., 2011). However, Weng et al. (2004) and Fu and 

Weng (2016) used decision tree classifiers like random forest in their analysis and 

obtained accurate results. This research also presents an opportunity to learn more about 

the relationship between urban land cover and LST in a semiarid environment. Gluch et 

al. (2006) previously performed an urban heat island study in the Salt Lake area by 

obtaining descriptive statistics about LST for each land cover class. This research seeks 

to expand upon that knowledge by implementing random forest and by using composition 

variables to model urban vegetation cover’s relationship with LST. 



 

METHODS 

 

Study Area 

This study took place in the Salt Lake Valley in Utah. The valley is a dry lakebed 

left by Lake Bonneville and its natural surfaces are composed of salt desert, wetlands, 

foothills, and agricultural lands (Gluch et al., 2006). Native vegetation is sparse and 

resistant to drought because of the valley’s low annual precipitation (30-38 cm). The 

valley is about 1,300 square kilometers in size and the average elevation is about 1,319 

meters. The valley is surrounded by the Great Salt Lake to the north, the Oquirrh 

Mountains to the west, and the Wasatch Mountains to the east. This area encompasses 

Salt Lake City and nearby cities such as Draper, Murray, West Jordan, and West Valley 

City. Interstate 15 runs north-south through the location and serves as a primary route of 

transportation. As of July 2015, the valley has an estimated total population of about 1.1 

million and is experiencing rapid urban and population expansion (Lowry Jr., 2009; U.S. 

Census Bureau, 2015). Extensive irrigation has made it possible for the valley to have a 

distinct and well-maintained urban forest that would otherwise not exist in a semiarid 

climate. This urban forest results in cooler daytime summer temperatures, at the cost of 

limited water resources for irrigation. The study boundary for this analysis is a result of 

the intersecting extents of the datasets described in the Data section and is approximately 

840 square kilometers in size. A map depicting the study boundary and its location in a 

larger geographic context is shown in Figure 1.



 
1

2  
Figure. 1. Map of Salt Lake Valley. Base map courtesy of ESRI. 
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Data 

In order to classify the study area, datasets that described and captured the 

differences between individual land cover classes were obtained. The predictor variables 

used in this study originated from high-resolution orthoimagery and lidar height data. 

Additional variables obtained include vegetation indices created from the orthoimagery 

and neighborhood rasters created from both the orthoimagery and lidar data. Each 

predictor variable is described in detail below. 

 

NAIP Orthoimagery 

The National Agricultural Imagery Program (NAIP) captured high-resolution 

aerial photography for the entire state of Utah during the summer of 2014. The 

orthorectified imagery has bands spanning four wavelengths (blue, green, red, and near-

infrared) and was captured at a spatial resolution of 1 meter. NAIP image bands represent 

contrast adjusted relative brightness values. This dataset was acquired from Utah’s 

Automated Geographic Reference Center (AGRC), the state’s resource for GIS datasets 

(Utah AGRC, 2015). Each of the four bands was used as a predictor variable. 

Vegetation indices were also created using the bands of the NAIP imagery. NDVI 

is one of the most widely used vegetation indices. The index is based on the premise that 

healthy vegetation canopies strongly absorb light in the red portion of the spectrum and 

strongly reflect light in the near-infrared portion of the spectrum (Rouse Jr et al., 1974; 

Weier & Herring, 2011). The formula for calculating NDVI is expressed as: 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

High values (0.6 to 0.9) indicate dense vegetation in the pixel, moderate values (0.2 to 
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0.5) indicate sparse or senescing vegetation, and low values (0.1 to -1.0) indicate soil, 

rock, snow, or human-made surfaces (Weier & Herring, 2011). The green-red vegetation 

index (GRVI) was selected to compliment NDVI (Motohka et al., 2010). This particular 

index is useful for distinguishing green vegetation, soils, water, and snow. The formula 

for calculating GRVI is expressed as: 

𝐺𝑅𝑉𝐼 =  
𝐺𝑅𝐸𝐸𝑁 − 𝑅𝐸𝐷

𝐺𝑅𝐸𝐸𝑁 + 𝑅𝐸𝐷
 

The major difference that GRVI has from NDVI is it utilizes the green band rather than 

the near infrared band. This allows it to recognize leaves in different stages of phenology, 

in contrast to measuring greenness (Motohka et al., 2010).  

 

Lidar 

Lidar is a valuable active remote sensing technique for obtaining georeferenced 

information about the shape and surface (including heights) of objects on the Earth at 

high spatial resolution (Schmid et al., 2008).  This technique uses laser light pulses 

collected by plane to create a densely packed point cloud. The location of each point in 

the cloud is obtained from onboard GPS (Gatziolis & Andersen, 2008). The heights of the 

points (also called returns) are determined by measuring the time delay between the 

emission of the pulse and return of the signal. In order to generate surface models, the 

point cloud is filtered by return number (e.g., first return, second return, bare earth) using 

outside software. Two advantages of lidar data are its high spatial resolution and ability 

to penetrate tree canopies.  

Lidar data used in this research were collected during fall 2013 and spring 2014 

by Quantum Spatial through partnerships developed by the Utah Geological Survey and 
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the AGRC (Utah AGRC, 2015). In this particular dataset, the point cloud was 

preprocessed and downloaded as first return and bare earth raster surfaces. In addition, a 

last return surface model was processed from the point cloud using the OpenTopography 

web application (OpenTopography, 2014). The initial spatial resolution of the data was 

0.5 meters, but the data were resampled to 1 meter using spatial averaging to match the 

spatial resolution of the NAIP dataset. 

 The original lidar datasets were not used as predictor variables because they were 

biased by the elevation gradient present within the valley. However, three normalized 

derivatives using those datasets were created for use in the model. First, a First Return-

Bare Earth Difference model (FBD), which highlights tall features and remove 

background topography, was created by subtracting the bare earth surface from the first 

return surface. This surface shows the difference between the highest point of an object 

and the ground beneath it. Taller objects have higher values and shorter objects have 

lower values. Second, a Last Return-Bare Earth Difference model (LBD), which 

highlights buildings, was created by subtracting the bare earth surface from the last return 

surface. Because lidar is unable to penetrate rooftops, last return values for buildings are 

situated higher than other objects. The difference values between the last return and bare 

earth surface for buildings are much larger than for other objects. Finally, a First Return-

Last Return Difference model (FLD) that distinguished tree types was created by 

subtracting the last return surface from the first return surface. Lidar is much less likely to 

penetrate through coniferous trees to the ground, than deciduous trees (especially during 

the fall and early spring). Therefore, the difference values between the first return and last 

return were greater for deciduous trees than coniferous trees.  
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Neighborhood Metrics 

Neighborhood range and standard deviation rasters for 3 meter by 3 meter 

windows were generated from each of the individual bands, vegetation metrices, and lidar 

derivatives. Focal range was selected to capture cells that had high amounts of variation 

in 3x3 windows. In this surface, the value of each middle cell in a 3x3 window is 

calculated using the range of the surrounding cells (highest value minus the lowest 

value). For example, a window that contained both a tall object and a ground-level object 

would have a higher range value in the FBD raster. A window with only tall objects or 

only ground-level objects would have lower range value. Focal standard deviation was 

also used to capture variation in a 3x3 neighborhood. In this surface, the value of each 

middle cell in a 3x3 window is calculated to the standard deviation of the surrounding 

cells. This dataset helped locate values that differed significantly from the mean, thereby 

identifying outliers. Neighborhood metrics for 5 meter by 5 meter windows were tested 

but did not improve classification accuracy as much as the 3x3 metrics, therefore they 

were not used. 

 

ASTER Land Surface Temperature 

A raster surface depicting LST was obtained from the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER). ASTER is an instrument within 

the Terra platform that measures thermal infrared radiance at a spatial resolution of 90 

meters. The processed image is show in Figure 2.  LST is described as the radiative skin 

temperature of the ground. LST is not the same air temperature. This product, also known 

as (AST_08), was calculated using the five thermal infrared bands between the 8 and 12 
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Figure. 2. ASTER Land Surface Temperature 



18 

wavelength (NASA LP DAAC, 2001). LST was measured in degrees Kelvin and is 

accurate within 1.5 degrees (Gillespie, 1998). The data were later converted to degrees 

Celsius. The ASTER image was captured on June 23rd, 2015. On this particular day, the 

mean air temperature was 25.5 degrees Celsius (about three degrees higher than average). 

Records indicated that it had not rained within the last 7 days, thus reducing the effect of 

evaporation on wet soil. The product clearly shows that the central business district of 

Salt Lake City, I-15 corridor, and barren areas are warmer than other areas on the map. 

The suburban areas south of downtown were slightly cooler. Areas close to the Jordan 

River and in the canyons of the Wasatch Mountains are much cooler. The advantage of 

using ASTER over similar products is that LST is retrieved from multiple thermal bands 

allowing for the separation of LST from emissivity (Gillespie, 1998).  

 

Training and Testing Data 

Training data for the classification were identified and collected with the 

assistance of both the NAIP and lidar datasets using both the ArcGIS and ENVI software. 

Python scripting was used to process the resulting training datasets. Seven land cover 

classes were selected for the study: Coniferous, Deciduous, Irrigated Low-Stature 

Vegetation (ILV), Non-Irrigated Low-Stature Vegetation/Soil (NLV/SOIL), Water, 

Impervious, and Building. They are described in further detail in Table 1. 

Ten randomly selected tiles, one to two from each arbitrarily delineated (e.g. commercial, 

industrial, old residential, and new residential) land use type in the Salt Lake Valley, 

were selected from the study area for training data collection. This stratification was 

performed to capture any microscale variation in LST relationships. From each tile, 10 
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Table 1. Descriptions of each land cover class of the study 

Class: Description: 

Coniferous Includes canopies of trees with dense, evergreen foliage (typically height >1 meter). 

Deciduous Includes canopies of trees that drop their leaves in the winter (typically height > 1 meter). 

Irrigated Low-Stature 
Vegetation (ILV) 

Includes any irrigated form of low-stature vegetation such as lawns, parks, golf courses, and 
green agricultural crops (typically height < 1 meter). 

Non-Irrigated Low-Stature 
Vegetation/Soil (NLV/SOIL) 

Includes nonirrigated forms of low stature vegetation such as dry grasses and also includes bare 
soil. NLV and soil were combined into one class because it was difficult to distinguish between 
the two using the data available. 

Impervious Includes sidewalks, roads, and freeways 

Building Includes the rooftops of various structures including homes, buildings, and storage units (e.g., 
water and gas) 

Water Water: Includes pools, ponds, streams, rivers, and lakes. 
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instances of each land cover type were digitized in ArcGIS. Coniferous and deciduous 

trees were pinpointed by loading the lidar derivatives as multiband images in ENVI. 

Conifer trees are usually more difficult to penetrate with lidar, and thus last returns tend 

to be at a higher height. As a result, coniferous canopies tended to have lower values in 

the FLD layer and higher FBD values compared to other nontree surfaces. Last returns in 

deciduous trees were usually at a lower height due to greater canopy penetration. Thus, 

deciduous canopies tended to have higher values on the LBD and higher FBD values 

compared to other nontree surfaces. Features that were both in shadow and not in shadow 

were collected in order to make the model more robust.  

In order to prepare the training polygons for use in the random forest, the NAIP 

imagery, lidar data, and additional indices for the particular site were stacked into a single 

composite image. Python scripting was used to organize the polygon data and extract the 

band values to each pixel within them. These data were imported into RStudio as a data 

frame for use in the random forest model. Using the same data from the training dataset 

to test the classification often leads to overestimates of classification accuracy. To 

account for this, an independent testing dataset was collected using 10 new tiles 

(Congalton, 1991). This testing dataset was used to generate a more unbiased accuracy 

estimate in the RStudio.  

 

Classification Using Random Forest 

Random forest is an ensemble learning technique in which a large number of 

decision trees are generated for regression or classification purposes. When using random 

forest for land cover classification, the algorithm uses a random subset (70%) of the 
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training data to create each tree in the model and uses the rest (30%) to test the model 

(Pal, 2005). Random selections of each predictor variable are used to split the nodes of 

each of the trees. Finally, the trees classify each pixel in the study area by voting for the 

most popular land cover class (Breiman, 2001).   

There are several advantages to using random forest over other statistical 

classification algorithms. Random forest is a nonparametric statistical technique, 

therefore the data in the model do not have to be assumed normal. Also, the algorithm 

can handle a large number of predictor variables. Finally, the classifier is highly resistant 

to overfitting due to each tree in the often very large forest being randomly generated 

(Gislason et al., 2006; Pal, 2005). Random forest was an excellent selection as a classifier 

for this study because there were many candidate predictor variables being considered. 

The variables used in the study are outlined in Table 2. Iterative backwards feature 

elimination technique was performed to achieve the optimal selection of predictor 

variables. Training and testing of the random forest model took place in RStudio.  

Out-of-bag (OOB) error was used as an initial test of the random forest model’s 

accuracy. OOB error is a generalization of error of the whole model obtained by 

averaging error rates of out-of-bag samples permuted through the trees. The closer the 

value is to zero, the more accurate the model. Typically, OOB error is stated to be an 

unbiased estimate of true prediction error though some studies have demonstrated that 

this is not always true (Mitchell, 2011).  

Variable importance is also used to assess a random forest model and is almost 

always reported when using this model. This statistic makes the model less of a black box 

by providing details about the contributions of each predictor variable to the model. It is
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Table 2. Predictor Variables 
 

Predictor: Source: 
Blue Band NAIP 
Green Band NAIP 
Red Band NAIP 
NIR Band NAIP 
NDVI NAIP 
GRVI NAIP 
FBD  Lidar 
LBD Lidar 
FLD Lidar 
Blue (Focal Std) NAIP 
Green (Focal Std) NAIP 
Red (Focal Std) NAIP 
NIR (Focal Std) NAIP 
NDVI (Focal Std) NAIP 
FBD (Focal Std) Lidar 
LBD (Focal Std) Lidar 
FLD (Focal Std) Lidar 
Blue (Focal Range) NAIP 
Green (Focal Range) NAIP 
Red (Focal Range) NAIP 
NIR (Focal Range) NAIP 
NDVI (Focal Range) NAIP 
FBD (Focal Range) Lidar 
LBD (Focal Range) Lidar 
FLD (Focal Range) Lidar 
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determined by fitting the random forest to the data, recording the OOB error for each data 

point, then averaging out that error for the entire forest. The importance of each variable 

is measured by permuting the values of that variable among the training data, then 

calculating the OOB error a second time. Finally, the importance score is calculated by 

averaging the difference in OOB error before and after the permutation over all of the 

trees and normalized by the standard deviation of the differences. Variables with higher 

scores are considered more important than variables with lower scores. This can be 

performed for the entire model or for individual land cover classes. This statistic helped 

decide which predictors to include in the final analysis, and revealed how different 

variables contribute to the discrimination of classes. 

Confusion matrices were also used to assess model accuracy. They are the most 

common way to represent classification accuracy of remotely sensed data. They are 

defined as a square array of numbers set out in rows and columns that express the number 

of sample units assigned to a particular category relative to the actual category as verified 

on the ground (Congalton, 1991). Overall accuracy is obtained by dividing the total 

correct (diagonals) by the total number of pixels in the matrix. Producer’s accuracy 

represents how well reference pixels of the ground cover type are classified. It is obtained 

by dividing the number of correctly classified pixels of each class by its respective 

column total. User’s accuracy represents the probability that a pixel classified into a 

given category actually represents that category on the ground. It is obtained by dividing 

the number of correctly classified pixels of each class by its respective row total 

(Congalton, 1991). When classifying with a random forest, a confusion matrix is 

automatically generated using the data from the training sample. To avoid potential bias, 
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a confusion matrix was created using the independent testing dataset. This table was used 

to identify the least accurately classified land cover classes. Additional training samples 

were collected for the least accurate classes to improve model training. 

 

Statistical Analyses 

Vegetation composition variables obtained from the random forest classification 

result were compared to LST. Because the resolution of the ASTER LST data (90 meter) 

was larger than that of the land cover (1 meter), the land cover data were overlaid with 

the LST data. Percentages of each land cover type were calculated within each ASTER 

pixel, resulting in the following urban vegetation variables: percent coniferous, 

deciduous, ILV, NLV/SOIL, all trees, and all urban vegetation. In addition, mean tree 

height for each ASTER pixel was calculated by isolating pixels classified as deciduous 

and coniferous using the LBD surface obtained from the lidar and compared to LST. 

Human-made composition variables were also compared to LST. These included percent 

impervious, building, and all human-made surfaces. 

Most common statistical analyses assume that data collected for the study are 

independent from one another. When working with spatial data, it is important to check 

for spatial autocorrelation. This common issue occurs when the outcome of two 

observations is related because of their distance.  Because landscape metrics are typically 

autocorrelated, variograms were generated for each of the composition variables (Du et 

al., 2016). An example variogram created from the ASTER LST image is shown in 

Figure 3. 
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Figure 3. Semivariogram created using the ASTER LST 
dataset 
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Variograms show variance in the data as it relates to distance between all pairs of 

samples in the population. The part of the variogram where the line levels out is known 

as the range; values in this portion are not spatially autocorrelated.  The sill is the value 

on the y-axis where the range begins. Using the variogram of the ASTER LST image (the 

dataset used to aggregated the composition variables), a distance to stratify sample points 

was selected. Because the data were very autocorrelated, the range value was unsuitable 

by which to stratify sample observations. Using a distance of 15,000 meters would not 

have yielded many observations in each sample. Therefore, in order to partially address 

the issue of spatial autocorrelation, a distance of 2,500 meters (the distance where 

variance begins to slightly flatten) was used to stratify the observations. As a result, 1,000 

random samples (each containing about 10% of the total observations) of the final dataset 

containing observations stratified by 2,500 meters were created. This was done by using 

the ArcGIS Create Random Points tool recursively in a Python script. An example of this 

sampling scheme is shown in Figure 4. New variograms were generated for a few of 

these samples to assess whether the stratification decreased the amount of 

autocorrelation. The amount of spatial autocorrelation in the new samples decreased to 

some extent. The statistical analyses that will be described in the coming sections were 

performed on each of the 1,000 samples. The final result of each analysis represents the 

median of those 1,000 runs.  

Pearson’s correlation analysis was performed in order to analyze urban 

vegetation’s composition relationship with LST in the Salt Lake Valley.  Correlation 

analysis is a technique for quantifying the strength of the relationship between two 

continuous variables. First, scatterplots of each variable were produced to examine if
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Figure 4. Map depicting the stratified sampling scheme. There are 1,000 
subsamples (three shown). Each symbol is from a different random subsample. 
Each observation within its subsample is at least 2,500 meters apart from all 
other observations. Each symbol represents the center of one ASTER pixel. All 
observations are from the same master dataset. 
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there is a linear relationship with LST. Next, correlation coefficient values or R values 

were produced for variables that exhibited a linear relationship with LST. R values range 

between 1 and -1. If the value is positive, then both variables increase together. If the 

value is negative, one variable increases as the other variable decreases. Values closer to 

1 or -1 indicate a strong relationship and values closer to zero indicate a weak or 

nonexistent relationship. The significance of each R value was tested through the 

calculation of p values. A value above 0.05 indicates the results are not significant, values 

between 0.01 and 0.05 are significant, and values less than 0.01 are highly significant. 

Plotting, correlation testing, and significance testing were performed in RStudio. 

Before creating a linear model with multiple predictor variables, it is important to 

ensure the variables are not multicollinear. Multicollinearity is when independent 

variables are correlated with other independent variables in the model. Calculating 

variance inflation factors (VIF) allows one to learn how collinear their variables are 

(O’Brien, 2007). Once calculated, interpretation is simple: the higher the value is, the 

more collinear the variable is. A stepwise VIF test was used to find any multicollinear 

variables and remove them if necessary. This version of VIF is more robust because it 

recursively calculates VIF values for each variable, removes collinear variables if 

necessary, then recalculates VIF values until the optimal set of variables is achieved. This 

test was performed in R. 

In order to further quantify the relationship between the land cover composition 

variables and LST, a multiple linear regression analysis was performed. This analysis 

revealed how much variation in the dependent variable could be explained by the 

independent variables. It also revealed which independent variables (should the others 
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remain constant) have the largest impact on the dependent variable.  One such model was 

constructed in RStudio using percentages of each land cover class as the independent 

variables and LST as the dependent variable. The model was analyzed by interpreting its 

coefficients.



 

 

RESULTS 

 

Random Forest Classification 

A random forest model was created in RStudio using Breiman and Cutler’s 

randomForest package and was used to classify the study area. A total of 172,960 sample 

points were collected using the sampling technique described in the training data section 

and were used to train the model. Each point had a digital number at the specific location 

for each predictor variable for use as the predictor and land cover classification for use as 

the response.  A total of 501 trees were generated when creating the model. This amount 

was selected because a large number of predictor variables (27) was included in the 

model. After charting the amount of OOB error for each run, it was clear that error had 

stabilized. The model took about 10.5 minutes to generate in RStudio. 

 Approximately 840 square kilometers of the Salt Lake Valley were classified in 

the analysis. An example of the classified study area is shown in Figure 5. Approximately 

29.4% of the study area was classified as NLV/SOIL. Twenty-seven percent was 

classified as impervious, 20.1% was classified as deciduous, 13.3% was classified as 

buildings, and 8% was classified as ILV. Only 1.3% was classified as coniferous trees, 

0.4% was classified as water, and 0.2% remained unclassified.  

The importance of each variable was assessed using mean decrease in model 

accuracy metric, which is generated by the random forest algorithm. By far the two most 

important predictor variables were GRVI standard deviation (78.55) and NDVI (77.1).
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Figure 5. Example of classification result. Downtown SLC is to the west. The 
University of Utah is to the east. Liberty Park is to the southwest. 
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GRVI standard deviation was instrumental because it helped distinguish trees (coniferous 

and deciduous) from all other land cover types. Trees typically had higher values in this 

dataset than all other land cover types due to variability in index values within tree 

canopies. NDVI was also a very important predictor variable because it helped 

distinguish densely vegetated, sparsely vegetated surfaces, and nonvegetated surfaces 

from each other. The most important lidar variable (FLD) was only the sixth most 

important variable over all. FLD was important for distinguishing coniferous and 

deciduous trees, because coniferous trees tended to have higher values in this dataset due 

to lower penetration of the canopy. The two least important variables were the red 

standard (19.84) deviation and red range (17.42). Variable importance for each predictor 

is shown in Figure 6. Multiple tests without the least important variables were performed. 

However, model accuracy did not see significant improvements. Thus, no variables were 

removed from the model using iterative backwards feature elimination. 

 The OOB Error of the model was 1.88. This meant the model had an overall 

classification accuracy of about 98.2% from tests using the out-of-bag samples of the 

training data. The resulting kappa value was also 0.98. The internally generated 

confusion matrix is shown in the Appendix. Because internal accuracy tests are known to 

have some bias, a more representative accuracy test was performed using the independent 

testing dataset described earlier. The confusion matrix from the independent test is shown 

in Table 3. In this test, overall accuracy of the model was 94% with a kappa value of 

0.92. The building class had the highest producer’s accuracy (98.2%) of all the classes. 

This was due to buildings having distinct spectral and height characteristics. Rarely, 

buildings were misclassified as impervious surfaces. However, it was usually easy to
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Figure 6. Variable importance of land cover predictors by mean decrease in 
permutation accuracy. 
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Table 3: Confusion matrix generated using independent testing dataset. 

          

 Reference Data     

Class CONIF DECID ILV IMPER BUILDING NLV/SOIL WATER TOTAL UA(%) 

CONIF 5113 43 0 0 22 0 1 5179 98.7 

DECID 559 5193 147 10 8 3 0 5920 87.7 

ILV 46 211 4972 5 0 10 3 5247 94.8 

IMPER 21 32 63 12357 242 285 1116 14116 87.5 

BUILDING 102 8 0 308 17955 69 27 18469 97.2 

NLV/SOIL 0 24 166 405 44 10260 11 10910 94 

WATER 0 0 25 5 7 0 3661 3698 99 

TOTAL 5841 5511 5373 13090 18278 10627 4819 63539 - 

PA(%) 87.5 94.2 92.5 94.4 98.2 96.5 76 - - 

Overall Accuracy = 94%        
Kappa Coefficient = 0.92        
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discriminate these classes because they had vastly differing heights. NLV/SOIL had the 

next highest producer’s accuracy (96.5%). This class also had distinct spectral and height 

characteristics. NLV/SOIL typically had low NDVI and GRVI values because pixels of 

this class did not contain dense, green vegetation. Also, pixels of this class were almost 

always ground-level. Sometimes NLV/SOIL was mistaken for impervious surfaces, 

likely because some soils were greyish in color and appeared to resemble concrete. 

The two classes with the lowest producer’s accuracies were coniferous trees and 

water. The model had some trouble distinguishing coniferous trees from deciduous trees, 

resulting in a producer’s accuracy for coniferous trees of 87.5%. Pixels where there were 

dense populations of deciduous trees overlapping each other were sometimes classified as 

coniferous trees. In addition, the model had trouble classifying the less dense outer edges 

of the canopy of coniferous trees. An interesting thing to note is that there were far fewer 

coniferous trees in the study area than most other classes. Because of this, the margin for 

error in classification was much smaller. Water had by far the lowest producer’s accuracy 

at 76%. This was due to a large amount of water pixels being mistaken for dark, 

impervious surfaces because they have similar spectral and height characteristics. Water 

also happened to be the least present class in the reference data.  

 Water also had the highest user’s accuracy (99%) of all the classes despite having 

the lowest producer’s accuracy. This is likely due to it being the least common land cover 

class that was predicted by the classification. It is also possible that the testing samples 

for the water class mostly consisted of easy-to-classify examples of water and hence, the 

model had no difficulties. Coniferous trees had the second highest user’s accuracy 

(98.7%), despite having the second lowest producer’s accuracy. Like water, the testing 
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samples selected for coniferous trees likely consisted of clear easy-to-classify (e.g., 

coniferous trees isolated in open areas) examples of coniferous trees.  

 The two classes with the smallest user’s accuracy were deciduous trees and 

impervious surfaces. Both of these classes were similar because the model tended to 

overclassify them. For example, deciduous trees were occasionally predicted where 

coniferous trees, the class with the most similar spectral and height characteristics, were 

supposed to be. Impervious surfaces were occasionally predicted where NLV/SOIL and 

buildings were supposed to be. Sometimes low-lying buildings were mistaken for 

impervious surfaces. Additionally, grey soils were also sometimes mistaken for concrete. 

 

Pearson’s Correlation Analysis 

 The percentages of each land cover type within each ASTER pixel were obtained 

and recorded in a table along with the pixel’s LST value. Maps depicting percentage of 

urban vegetation and human-made land cover are shown in Figures 7 and 8. In both 

maps, it is apparent that there are a large percentage of human-made surfaces near 

downtown SLC and western SLC and the I-15 corridor. Most of the residential areas are 

composed of a mix of both urban vegetation and human-made surfaces. The areas on the 

western edge of the valley are mostly composed of NLV/SOIL. The areas on the eastern 

edge as you approach the Wasatch Mountains become more and more vegetated. Any 

ASTER pixel that contained more than 2.5% “no data” values was excluded from the 

analysis. In total, only 0.4% of the data was removed. Using the percentages of each land 

cover type as the independent variable and LST as the dependent variable, 
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Figure 7. Percentage urban vegetation (includes Deciduous, ILV, and Coniferous) per 
ASTER pixel in the study area. 
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Figure 8. Percentage human-made (includes Building and Impervious) per ASTER 
pixel in the study area. 
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scatterplots were generated and Pearson’s correlation analysis was performed. The 

scatterplots are shown in Figure 9. In the plots for percent deciduous, ILV, tree, and 

urban vegetation, there are clear negative trends in LST. There are clear, slight positive 

trends in LST for the following variables: percent NLV/SOIL, impervious, building, and 

human-made. The p values for all correlation coefficients were all less than 0.01, 

indicating that the results were highly significant.  

Percent deciduous had the strongest negative correlation with LST of the 

individual percentage variables, with a coefficient of -0.55. Percent ILV had the next 

strongest negative correlation with LST with a coefficient of -0.33. Percent coniferous 

had a weak correlation with LST with a coefficient of -0.16. Mean tree height did not 

have a correlation with LST. It had a coefficient of -0.02. The variable that had the 

strongest positive correlation with LST was percent impervious with a coefficient of 0.26. 

Percent NLV/SOIL had the next strongest positive correlation with a coefficient of 0.24. 

Finally, percentage building had a weak positive correlation with LST with a coefficient 

of 0.16. Table 4 shows the correlation coefficient of each land cover class when 

compared with LST. 

Several of the variables that logically fit together were combined into three new 

independent variables (percent urban vegetation, tree, and human-made). Percent urban 

vegetation (includes percent deciduous, coniferous, and ILV) had a strong negative 

correlation with LST with a coefficient of -0.63. Percent tree (includes percent deciduous 

and coniferous) had a moderate negative relationship with LST with a coefficient of -

0.54. It is worth mentioning that deciduous trees comprise about 94% of tree cover in the 

study area.
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Figure 9. Scatterplots of each variable used to predict LST. 
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Figure 9. Continued.  
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Table 4. Pearson’s correlation analysis results  
 
Variable Coefficient 
% All Urban Vegetation -0.63 
% Deciduous -0.55 
% Tree -0.54 
% ILV -0.33 
% Coniferous -0.16 
% Water -0.09 
Mean Tree Height -0.02 
% Building 0.16 
% NLV/Soil 0.24 
% Impervious 0.26 
% Human-Made 0.27 
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Percent human-made (includes percentage impervious and building) had a weak positive 

correlation with LST with a coefficient of 0.27. 

 

Multiple Linear Regression 

The stepwise VIF test revealed that percentage NLV/SOIL was a redundant or 

multicollinear variable, thus it was excluded from the model. The median residual value 

(0.46) was close to 0 and the first and third quartile were close in value (-1.9 and 2.4, 

respectively), indicating the data were normally distributed.  The R2 of the model was 

0.56, indicating that about 56% of the variation in LST can be explained by the predictor 

variables listed above. The intercept of the model was 48.397. According to the model, if 

the percentage of all land cover classes was equal in the study area, the temperature 

would be 48.4 degrees Celsius. Only two of the coefficients for the predictor variables 

were significant. Percentage deciduous had the strongest negative effect with a 

coefficient of  -0.180 followed by percentage ILV with a coefficient of -0.111. From the 

model, we can infer that; for every 1% increase in deciduous tree land cover, LST 

decreases by 0.18 degrees Celsius if the other variables remain constant. Also, for every 

1% increase in ILV land cover, LST decreases by 0.11 degrees Celsius if the other 

variables remain constant.  The p value for the F test, 1.77 E-15, indicates that the model 

containing the above predictor variables is more useful in predicting LST than a model 

that does not take them into account. Coefficients of the multiple linear regression model 

are shown in Table 5.
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 Table 5.  Coefficients of the multiple linear regression 
       

Intercept % Coniferous % Deciduous % ILV % Imper % Building % Water 

48.397** 0.242 -0.180** -0.111** 0.002 0.060 -0.200 
     
R2 = 0.56     
Adj. R2 = 0.53     
       

* Coefficient is significant at the 0.05 level (two-tailed).  
** Coefficient is significant at the 0.01 level (two-tailed). 
 



 

 

DISCUSSION 

 

Random Forest Classification Effectiveness 

The research aimed to uncover the effectiveness of random forest for classifying 

an urban area using orthoimagery and lidar data. The results of this study agreed with 

other studies that random forest is an accurate classifier for urban environments (Chehata 

et al., 2009; Guan et al., 2012; Guo et al. 2011). Overall, random forest effectively and 

efficiently classified the Salt Lake Valley at a 1-meter spatial scale using the datasets 

available. The classification worked extremely well in the valley area. Individual features 

on the map were easily distinguishable. It was not as useful in the mountainous regions in 

the outskirts of the study area, because the dark canyons of the mountain were mistaken 

for water. This was acceptable because these areas were not the focus of the study. These 

regions were not common in the dataset so accuracy did not suffer much because of them. 

In this study, 27 total predictor variables were used to train the random forest 

model. Typically when using random forest, one performs iterative backward feature 

selection to achieve the optimal set of predictors. A threshold at which variables should 

be removed from the model does not exist. In the literature, Guan et al. (2012) removed 

all variables with less than 20% mean decrease in accuracy. In this study, it was not 

necessary to remove any variables. The best method for determining which predictor 

variables to remove is to recreate the model minus those variables with low importance. 

If accuracy improves, keep them out of the final model build. Because subsequent runs of
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 the model did not yield substantially better results, none of the variables were removed. 

The model had an OOB error of 1.88 and an overall classification accuracy of 94 

percent, which are impressive considering the scale and study area size. All of the land 

cover types of the study were classified well, some better than others. Random forest 

distinguished urban vegetation types very well. Errors of omission for both deciduous 

trees (0.058) and ILV (0.075) were very low. It was unexpected that GRVI standard 

deviation was the most important variable. The most likely reason for this was because 

this variable allowed the model to distinguish both tree classes (coniferous and 

deciduous) from all other land cover classes, most importantly ILV.  Analysis of the 

GRVI standard deviation raster revealed that both tree types had high amounts of 

variability due to the effects of intercanopy shadowing. Other land cover features like 

ILV, impervious surfaces, and buildings typically had very low variability. Normally, the 

lidar rasters were relied on to make the distinction between ILV and the tree types. This 

layer made it possible to distinguish these land cover classes using a derivative of the 

orthoimagery. As expected, NDVI was a very important variable because it allowed for 

the model to distinguish between densely vegetated, sparsely vegetated, and nonvegetated 

surfaces. The lidar was then used to help discriminate between what was on and off the 

ground. The high importance of GRVI and NDVI suggests that these variables do 

complement one another and should be used in tandem as predictor variables. 

Even with having lidar available, ILV was most often misclassified as deciduous 

trees. The reason for this was that the model seemed to classify pixels of ILV that were in 

shadows as deciduous trees. ILV in shadow appears similar spectrally to the darker 

canopy of deciduous trees. Also, deciduous trees were commonly misclassified as 
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coniferous trees. This is likely due to instances where tall deciduous tree canopies would 

overlap with shorter ones within a pixel. This resulted in last return values being higher, 

thus making the difference between first return and last return smaller. This is important 

because FLD values for coniferous trees were typically low. Coniferous trees were the 

least accurately predicted vegetation type (0.875) although error was still very low. The 

higher than average omission error is evident when the trees are viewed on the map. The 

model tended to locate and classify the inner canopy of coniferous trees very well but 

often classified the outer edges of their canopies as deciduous. This is likely due to there 

being fewer returns on the edge of canopies in the lidar data. NDVI, FBD range, and 

LBD were all instrumental in classifying this land cover class. NLV/SOIL was classified 

very accurately. NDVI and GRVI had very high importance ratings for this class and it 

allowed for this type to easily be distinguished from other ground-level types such as ILV 

and impervious surfaces. 

 Probably the greatest flaw of this classification was the fact that it likely 

overclassified deciduous trees in places where there are shadows. Initially, there were 

concerns on tuning the model to classify areas inside shadowy areas. Collecting 

additional training polygons of each land cover class in these areas improved the model’s 

ability to classify those areas for certain land cover classes. After tuning the training data, 

impervious and NLV/SOIL pixels that were inside shadow were able to be more 

accurately classified. As mentioned earlier in the paragraph, ILV pixels that were in 

shadow were often misclassified as deciduous. Deciduous trees having the second lowest 

user’s error supports that this class was overclassified. 

Human-made land cover types were classified even more accurately. Buildings 
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were classified with extremely high producer’s (0.982) and user’s accuracy (0.972). The 

lidar surface models were instrumental in distinguishing this class with the impervious 

surface class. Impervious surfaces had a high producer’s accuracy (0.944) but a slightly 

lower user’s accuracy (0.875). Impervious surfaces were occasionally classified where 

water should have been. This was typical of shallow, dark bodies of water. Impervious 

surfaces were also misclassified as NLV/SOIL due to some soil types having a greyish 

coloring. They were also misclassified as buildings due to the model having issues with 

overpasses. Overpasses have similar spectral characteristics of impervious surfaces yet 

they are elevated from the ground, therefore the model classifies them as building. 

Attempts to train the model to recognize these overpasses did not yield the desired 

results. 

Random forest was a highly suitable algorithm for classifying the Salt Lake 

Valley urban area. Overall accuracy was very high and all land cover types were 

classified very well. Incorporating a large amount of variables into the model was simple 

and the ability to interpret their importance was very beneficial to the analysis. Studies 

that did not have the near-infrared band available seemed to have trouble classifying 

certain features (Chehata et al., 2009; Guan et al., 2012; Guo et al. 2011). The addition of 

lidar and the near infrared band from the orthoimagery greatly facilitated the model’s 

ability to have more levels of classification of this urban landscape. Lidar helped 

distinguish objects with differing vertical profiles and the near-infrared band helped 

distinguish vegetation from nonvegetation. Using the two together, it was possible to 

easily distinguish the vegetation classes and human-made classes. It was also possible to 

distinguish coniferous trees from deciduous trees. As evidenced by the fact that the model 
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was able to accurately predict to tiles not included in the training dataset, random forest 

did not overfit the data. Given the size and scale of the datasets involved, the model 

generated fairly quickly. It would be intriguing to compare the ability of random forest to 

classify this study area to that of other classification algorithms. 

 

Urban Vegetation’s Relationship With LST 

This research also aimed to reveal relationships between urban vegetation types 

and LST in the Salt Lake Valley. Percentages of each land cover type were compared 

with LST of each ASTER pixel in the study area. The results of Pearson’s Correlation 

Analysis heavily supported prior findings about urban vegetation’s relationship with LST 

(Chen et al., 2006; Gluch et al., 2006; Weng et al., 2004;Yuan & Bauer, 2007; Zhou et 

al., 2011). As expected, percent deciduous had a moderate negative correlation (-0.55) 

with LST.  Percent ILV also had a significant negative correlation (-0.33) with LST. This 

indicates that increasing the amount of deciduous trees and ILV like lawns, parks, and 

green agriculture in an area was associated with a cooling effect on the surrounding 

environment. Unexpectedly, percent coniferous had a weak negative correlation (-0.16) 

with LST. Studies of transpiration rates between the two tree types suggest that conifers 

and deciduous trees transpire at similar rates during the summer (Smith & Hinckley, 

1995). The results of this study did not support that. Poor correlations between the 

abundance of the coniferous tree class and LST were likely due to there being only a 

small area of coniferous trees (1.3% of the study area) compared to deciduous trees, 

which were approximately one-fifth of the study area.  

Percent tree (coniferous and deciduous) had a comparable correlation coefficient 
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with LST (-0.54) to other studies.  For example, Zhou et al. (2011) reported a similar 

value for a correlation coefficient (-0.47) between percent woody vegetation (includes 

trees and shrubs) and LST. Weng et al. (2004) also reported strong negative correlations 

across multiple scales for their percent tree variable equivalent. Finally, percent urban 

vegetation had a strong negative correlation (-0.63) with LST. This directly supports that 

idea that transpiring vegetation such as trees and lawns helps cool the environment in the 

Salt Lake Valley (Quattrochi & Ridd, 1998).  Mean tree height did not have a significant 

correlation (-0.02) with LST. The results of this study seem to indicate that an urban 

forest’s ability to cool the environment hinges more on tree cover than the average height 

of the trees within it.  

The results of the multiple linear regression further supported that the Salt Lake 

Valley’s urban vegetation helps cool the environment during the summer. Although the 

only two coefficients that were significant were percent deciduous and percent ILV, 

evidence that they impacted LST was strong.  The coefficients for the two variables were 

-0.18 and -0.11, respectively. Assuming that the composition of the other variables 

remains the same, LST would decrease by approximately 1 degree Celsius for every 5% 

increase of deciduous trees land cover type. LST would decrease about half of that 

amount for every 5% increase in ILV. Zhou et al. (2011) also created a multiple linear 

regression model using composition variables. The results of their model also suggested 

that percent woody vegetation and percent fine vegetation played a large role in cooling 

the environment.  

Results of this study also seem to support that urban vegetation types have a 

greater cooling effect on the environment than nonirrigated vegetation. NLV/SOIL had a 
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weak positive correlation (0.24) with LST. Previous research in the study area has 

indicated that dry grasses and soils (the most common land cover type classified in the 

Salt Lake Valley) are associated with relatively warmer temperatures (Quattrochi & Ridd, 

1998). Quattrochi and Ridd (1998) attribute this to underlying soils being so dry that 

there is little cooling due to evaporation or transpiration. In order to make any real 

conclusions on how percentage NLV affects temperature, NLV and soil would need to be 

classified separately to isolate each individual land cover class’ relationship with LST. 

It was unexpected that percent impervious surface and building had a weak 

positive correlation (0.24 and 0.16, respectively) with LST. This contrasts with the results 

of Zhou et al. (2011) who found that similar classes, percent pave and building, had 

correlation coefficients of 0.55 and 0.57, respectively. However, Zhou et al. (2011) 

studied LST in Baltimore, where urban forests are much closer to the native vegetation 

cover and impervious surface and buildings represent greatly reduced evapotranspiration. 

In Salt Lake City, impervious surface and buildings represent a smaller departure from 

the native vegetation, so percent impervious surface and building cover may be less 

strongly correlated with LST.  

 

Use of Multiple Linear Regression Model 

Assessment of the coefficients of the multiple linear regression model reveals that 

this model was an adequate method for predicting LST, with room for improvement. 

Figure 10 shows the spatial distribution of the residuals of the multiple linear regression 

when predicting LST for the entire study area. Although the spread of the residuals 

appears to be high in the legend, Figure 11 shows the actual distribution of the residuals 
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Figure 10. Mapped residuals of the multiple linear regression LST prediction. 
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Figure 11. Histogram of residuals of the multiple linear regression LST prediction. 
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in a histogram. Almost all of the residuals are between -10 and 10 degrees Celsius. Areas 

that were predicted accurately are dispersed throughout the study area. In the northern 

half of the valley, the model tended to predict areas to be slightly cooler than they 

actually were for that specific ASTER image. At the southern end of the valley, 

temperatures were predicted to be far warmer. There appear to be some local phenomena 

where residuals are highest. For example, areas on the map that were largely composed of 

the NLV/SOIL class were predicted much cooler than they should have been. The 

southern portion of the map contained a large percentage of ILV in the form of crops. 

One possible reason why residuals were high around this area was because half of crops 

were classified as NLV/SOIL rather than ILV because the crops were sparse or recently 

harvested.  It is also possible that air temperature in that area could be lower due to air 

flow from Utah Valley to the south. Analysis of additional ASTER scenes would help 

reveal whether these residuals are consistent through time. 

The multiple linear regression model had an R2 of 0.56, meaning a little more than 

half the variation in the data was explained using the variables provided. Evidently, there 

are many more variables that need to be explored in order to provide a more accurate 

prediction of LST. Examples of these variables might include configuration metrics used 

in other studies (Connors et al., 2013; Du et al., 2016; Zhou et al., 2011). These variables 

examine the landscape from an alternative perspective. Examples of these include patch 

density, edge density, shape index, and fractal dimension.  The mentioned studies also 

seem to indicate that scale plays a large role in determining which variables are more 

valuable in predicting LST. Land cover configuration and scale should be researched to 

uncover more information of urban vegetation’s ability to cool the environment.
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Limitations 

This study had its limitations. First, the Salt Lake Valley was classified using only 

one algorithm. It would be interesting to learn how well other algorithms such as support 

vector machines or object-based classification would classify an urban area using the 

provided datasets. This study did not deeply explore each individual variable’s interaction 

with other individual variables. For example, LST in a pixel may significantly change if 

30% of it is deciduous and the remaining makeup is 70% impervious surface or 70% 

building. The multiple linear regression model does not quantify these relationships. 

Other statistical models that account for these relationships may be able to predict LST 

using land cover composition variables more accurately.   

The analysis was performed using one ASTER LST image. There may have been 

hourly, daily, monthly variations in LST that will go unaccounted for. Human-made 

features are known to appear hotter than surrounding areas at night time because of the 

urban heat island effect (Buyantuyev & Wu, 2010). Also, the landscape changes 

throughout the year. For example, deciduous trees drop their leaves in the fall, resulting 

in far less evapotranspiration. Thus, it is impossible to generalize the findings of this 

study for the entire year. It would be useful to repeat the study for different times of the 

year. Finally, urban vegetation’s relationship with LST was only examined at the 90-

meter scale. It would be useful to look at this relationship at coarser levels to potentially 

uncover any variation in regards to scale.  

Finally, there was still strong spatial autocorrelation in the variables even after 

stratifying the observations. There was an obvious temperature trend from the northwest 

portion of the study area to the southeast as shown in both Figures 2 and 10. An 
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interesting future study would be to break the study area into smaller scale areas or 

neighborhoods and perform the analysis on each smaller unit as performed by Connors et 

al. (2013). Possible neighborhood types would include commercial, industrial, old 

residential, new residential, and other types. Not only would this help in accounting for 

spatial autocorrelation, but it would reveal if urban vegetation cover impacts LST the 

same way, in all types of neighborhoods. 

Future studies could also address spatial autocorrelation by using a spatial 

filtering technique before creating the multiple linear regression model. Spatial filtering is 

performed by separating the spatial effects of a variable from its total effects (Getis & 

Griffith, 2002). The Getis Filtering approach is one such technique (Getis, 1990). It is 

performed by finding the distance within which areal units are spatially dependent 

(identified using either the Gi spatial statistic or a variogram) and examining each 

observation to discover its contribution to the spatial dependence in the dataset. 

Observations that contribute the most are filtered out into a separate dataset. In Getis and 

Griffith’s (2002) demonstration of the technique, they found that adding the 

nonautocorrelated variables as predictors in their regression model caused the Adjusted 

R2 to remain high (0.75). In addition, the spread of the residuals decreased and all of the 

coefficients became highly significant (Getis & Griffith, 2002). The Griffith 

Eigenfunction Decomposition Approach would also be a suitable spatial filtering 

technique for this study (Griffith, 2000). In this procedure, carefully selected eigenvectors 

for each variable are used to identify orthogonal patterns in the data. The eigenvectors act 

as surrogates for missing data when used in regression analyses. In Getis and Griffin’s 

(2002) demonstration of the technique, they found that including eigenvectors as 
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predictors in their model increased the Adjusted R2 value from 0.61 to 0.80 (Getis & 

Griffith, 2002). Eigenvectors have seen little use as predictor variables in similar urban 

heat island studies and would greatly enhance a regression model’s ability to predict LST.   



 
 

 

CONCLUSIONS 

 

Urban vegetation plays an important role in providing comfort to humans in 

semiarid environments. This vegetation absorbs solar radiation, cools the environment 

through transpiration, and also provides shade. The Salt Lake Valley is situated in a 

semiarid region and relies on its urban vegetation to comfort its inhabitants during the 

warmer, summer months. Salt Lake City places a high importance on its urban forestry. 

In 2007, the mayor of Salt Lake City announced an initiative to plant one million trees in 

the county by 2017. The Salt Lake Urban Forestry program (www.slcgov.com/forestry) 

has made it their goal to facilitate a healthy and sustainable environment by protecting, 

maintaining, and planting trees.  Smaller organizations like TreeUtah (treeutah.org) also 

make it their mission to educate people on the environmental and social benefits that trees 

provide as well as plant new trees. The results of this study could potentially be useful in 

urban planning. The land cover map generated by random forest could help identify areas 

in the Salt Lake Valley where urban vegetation is less abundant (Figure 7). Organizations 

would be able to plant trees or provide other forms of urban vegetation in those areas to 

help moderate temperatures and beautify these areas. 

Nearly one-third of the study area was classified by random forest as some form 

of urban vegetation. Because urban vegetation in a semiarid climate requires a lot of 

irrigated water to keep it healthy, some may question whether or not it is worth devoting 

valuable water resources to it. The results of this study indicate that increasing
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 percentages of urban vegetation types in this study area do lead to cooler daytime 

summer temperatures. Results also indicate that irrigated vegetation is more strongly 

correlated with temperature than native vegetation of the study area, and that tree cover is 

associated with a larger decrease in LST than ILV cover. Typically, human-made features 

such as buildings are strongly associated with higher LST. That relationship was not as 

strong in this study area. Since the multiple linear regression model only explained 

approximately half of the variation in LST, it is recommended that further research 

include land cover configuration variables. Knowledge of those variables would further 

explain and validate the benefits of the Salt Lake Valley’s urban forest.



 

 

APPENDIX 

 

Table 6: Confusion matrix generated internally using OOB sample. 
          
 Reference Data           
Class CONIF DECID ILV IMPER BUILDING  NLV/SOIL WATER TOTAL UA(%)  
CONIF 5518 666 32 17 62 5 0 6300 0.876 
DECID 279 9147 189 16 19 18 3 9671 0.946 
ILV 12 156 23892 56 5 6 0 24127 0.99 
IMPER 3 25 10 24404 292 381 4 25119 0.972 
BUILDING  19 14 1 248 47358 58 9 47707 0.993 
NLV/SOIL 5 14 11 461 38 41366 1 41896 0.987 
WATER 0 1 0 107 4 6 18022 18140 0.993 
TOTAL 5836 10023 24135 25309 47778 41840 18039 172960 - 
PA(%) 0.946 0.913 0.99 0.964 0.991 0.989 0.999 - - 
Overall Accuracy = 98%        
Kappa Coefficient = 0.98        
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