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ABSTRACT 
 
 
 

Skeletal muscle is among the few adult tissues with the capacity to  
 
regenerate after injury. This is due to the resident stem cells within the muscle, the 

satellite cells. In the absence of injury, these stem cells remain quiescent and reside 

within their niche beneath the basement membrane adjacent to the myofiber. Upon 

muscle injury, satellite cells are activated and will proliferate, self-renew, and 

differentiate into transiently amplifying myoblasts, which also self renew and give rise to 

differentiating myocytes. These myocytes will fuse to themselves and to the injured 

myofibers to repair muscle damage. While the cellular processes of muscle regeneration 

are understood, many questions remain. Despite similarities in their expression patterns 

and function, many characteristics are dissimilar between developmental myogenic 

precursors and satellite cells. Chapter 2 of this dissertation reviews what is known about 

the unique properties of these closely related cells, and Chapter 3 of this dissertation 

directly tests the requirement of satellite cells during muscle regeneration. In addition to 

the myogenic cells, many nonmuscle cells are involved in the process of muscle 

regeneration. Chapter 3 of this dissertation also shows that connective tissue fibroblasts 

prevent premature differentiation of satellite cells and are an important component of the 

satellite cell niche. One signaling pathway shown to regulate stem cells in other tissue 

contexts is the Wnt/β-catenin pathway. Multiple studies describe the role of Wnt/β-

catenin signaling in muscle regeneration; however, there is no consensus as to the 
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functional role of this signaling pathway in adult myogenesis. In Chapter 4 of this 

dissertation, the requirement for Wnt/β-catenin in the satellite cells and their progeny is 

tested in vivo. Surprisingly, despite evidence that the Wnt/β-catenin signaling pathway is 

active in myogenic cells during regeneration, satellite cells and their progeny do not 

require β-catenin. Chapter 4 also discusses our results that show that extension of Wnt/β-

catenin signaling prolongs the time myogenic cells spend in the myoblast phase of 

regeneration. This dissertation demonstrates the importance of the connective tissue 

fibroblasts and also critically tests the function of the Wnt/β-catenin signaling pathway in 

muscle regeneration.  
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CHAPTER 1 
 
 
 

INTRODUCTION 
 
 
 

Phases of myogenesis 
 

Myogenesis proceeds in successive, distinct, but overlapping phases (Biressi et 

al., 2007a; Stockdale, 1992). Each phase involves specification of myoblasts, which 

express the myogenic regulatory factors (MRFs) Myf5, MyoD, and/or Mrf4; 

differentiation of committed mononuclear myocytes, which express myogenin (MyoG); 

fusion of myocytes into multinucleate myofibers; and finally maturation of myofibers, 

including the expression of different myosin heavy chain (MyHC) isoforms giving 

myofibers different speeds of contraction.  During embryonic myogenesis [embryonic 

day (E)10.5-E12.5], embryonic myoblasts differentiate into primary myofibers to 

establish the initial pattern of axial and limb muscles.  In axial muscles, embryonic 

myogenesis includes both the formation of the primary myotome and muscle derived 

from the initial translocating dermomyotomal cells.  During fetal myogenesis (E14.5-

E17.5), fetal myoblasts give rise to secondary myofibers, resulting in muscle growth and 

fiber type maturation. Neonatal myogenesis occurs during postnatal growth [postnatal 

day (P)0-P21]. During this rapid postnatal growth, progenitors that lie beneath the basal 

lamina contribute to muscle growth, and the final MyHC composition is patterned. Adult 

myogenesis occurs after muscle injury and is mediated by satellite cells, the adult muscle 
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stem cell. In response to muscle injury, quiescent satellite cells become activated, 

proliferate, and differentiate into myoblasts that contribute to the regenerating myofibers, 

repairing muscle damage. The phases of myogenesis were initially recognized and 

classified based on the distinctive in vitro characteristics of embryonic, fetal, and adult 

myoblasts.  These classes of myoblasts differ in their appearance, media requirements, 

response to extrinsic signaling molecules, drug sensitivity, and morphology of the 

myofibers they generate (Biressi et al., 2007a; Stockdale, 1992). In vivo, the primary, 

secondary, and adult myofibers express different MyHCs and muscle enzymes (Gunning 

and Hardeman, 1991; Wigmore and Evans, 2002). More recently, microarray studies and 

genetic analyses of the Pax3/7 and Myf5/MyoD/Mrf4 families of transcription factors 

have revealed that different classes of myoblasts express different genes and have 

different genetic requirements for myogenic specification (Biressi et al., 2007b; Kassar-

Duchossoy et al., 2004; Kassar-Duchossoy et al., 2005; Relaix et al., 2006). Together 

these data strongly argue that embryonic, fetal, and adult myoblasts are distinct 

populations of myogenic cells. The differences between progenitors at these different 

phases of myogenesis will be discussed in depth in Chapter 2 of this dissertation. 

 
 

Satellite cells 
 

Satellite cells are the adult muscle progenitors responsible for muscle 

regeneration. These cells were identified and named due to their unusual location beneath 

the basal lamina just peripheral to the myofiber membrane (Mauro, 1961). Since their 

initial discovery 50 years ago several molecular markers for satellite cells have been 

identified. One of the most robust and specific markers is the paired box transcription 
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factor Pax7. Pax7 is expressed by myogenic progenitors during development (Relaix et 

al., 2004). At birth, progenitors located beneath the basal lamina also express Pax7. These 

Pax7+ cells contribute to postnatal muscle growth and become the satellite cells within 

the adult muscle. Pax7 is expressed in quiescent, activated, and proliferating satellite cells 

(Seale et al., 2000). Normally the satellite cells are quiescent; however, in response to 

muscle injury these cells become activated and begin to proliferate. A subset of these 

cells will go back to repopulate the niche, while others will continue to proliferate and 

differentiate into myoblasts, which express MRFs such as MyoD. The myoblasts give rise 

to MyoG+ myocytes that fuse to injured myofibers or to each other to repair muscle 

damage (as reviewed in(Hawke and Garry, 2001). Using transplantation experiments, 

several studies have shown that satellite cells are capable of regenerating muscle, and 

when single isolated satellite cells are transplanted into muscle they can to give rise to 

21,000 – 84,000 cells, which is the equivalent of 14-17 doublings (Collins et al., 2005; 

Sacco et al., 2008). Therefore, satellite cells are sufficient to regenerate muscle. Satellite 

cells have been the presumed mediator of muscle regeneration; however, recently it has 

been shown that other populations of cells such as mesangioblasts and PW1+/Pax7- 

interstitial cells also have the ability to contribute to muscle regeneration (Mitchell et al., 

2010; Sampaolesi et al., 2003). Despite the multitude of studies showing that satellite 

cells are sufficient to regenerate muscle, their necessity has never explicitly tested. In 

Chapter 3 of this dissertation, I will discuss my work showing that satellite cells are 

indispensible for muscle regeneration and are the muscle stem cell responsible for 

regeneration.  

 
 



 4 

Nonmyogenic cell types involved in muscle regeneration 
 

The complicated process of muscle regeneration involves the coordination of 

multiple cell types within the muscle tissue that respond to injury and regulate the 

myogenic cells as well as perform other functions necessary for efficient regeneration. 

For example, there are resident macrophages within the interstitium of the muscle. Upon 

injury, resident macrophages are activated and circulating monocytes are recruited from 

the blood to the site of injury to clear myofiber debris. During regeneration, macrophages 

also send signals to satellite cells directing cell migration, proliferation, and 

differentiation (as reviewed in(Tidball and Villalta, 2010). Another tissue within the 

muscle, the connective tissue, plays an important role in muscle structure and 

organization and is also a vital component of the regeneration process. In addition to 

transmitting the muscle contractile force to tendon and bone, the connective tissue 

surrounds and hierarchically organizes the muscle into single fibers, fascicles, and whole 

anatomical muscles. The connective tissue consists of both the extracellular matrix 

proteins such as collagens, laminins, and fibronectin as well as the connective tissue 

fibroblasts that secrete this matrix (Kuhl et al., 1982; Lipton, 1977). Following injury, 

there is a transient increase in extracellular matrix called fibrosis. This fibrosis prevents 

further injury to the muscle, creates a scaffold for the regenerating muscle, and provides a 

substrate for migration and cell-cell interactions between satellite cells themselves and 

with other cell populations (Grounds, 2008; Huard et al., 2002). Regulation of fibrosis is 

critical since overproduction or lack of resolution of this process is a common and 

detrimental feature of muscle diseases and/or deficient regeneration. Despite the clinical 

relevance of fibrosis, little is known about the connective tissue fibroblasts that secrete 
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this matrix. I explicitly test the functional requirement of connective tissue fibroblasts 

during muscle regeneration in Chapter 3 of this dissertation. 

The connective tissue fibroblasts of the limb originate from the lateral plate 

mesoderm and express Tcf4, a member of the TCF/LEF family of transcription factors 

(Kardon et al., 2003). During development, the Tcf4+ connective tissue fibroblasts are in 

close proximity to and regulate the maturation of muscle (Kardon et al., 2003; Mathew et 

al., 2011). In Chapter 3 of this dissertation I will discuss my work showing that Tcf4 is a 

specific marker for the connective tissue fibroblasts in the adult. I will also show that 

during regeneration the connective tissue fibroblasts prevent the premature differentiation 

of satellite cells to allow for accumulation of an adequate pool of progenitors to 

efficiently regenerate the muscle. 

 
 

Wnt signaling in myogenesis 
 

Wnt signaling is an important and conserved signaling pathway that is important 

for both development and regeneration in many systems. Wnt proteins are lipid modified, 

secreted ligands that bind to the Frizzled (Fz) and LRP5/6 transmembrane receptors to 

mediate signaling (as reviewed in(Clevers and Nusse, 2012). Wnt/β-catenin pathway 

signaling is regulated by the level of β-catenin protein in the cytoplasm. In the absence of 

Wnt ligand, β-catenin is phosphorylated and targeted for proteasomal degradation by the 

destruction complex. This complex consists of the core components GSK3β, APC, and 

Axin. The binding of Wnt ligand to the Fz/LRP co-receptors results in interactions 

between LRP, Dishevelled (Dsh), and members of the destruction complex, preventing 

the degradation of β-catenin. β-catenin accumulates in the cytoplasm and translocates to 
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the nucleus where it binds to TCF/LEF transcription factors and activates transcription of 

target genes. In addition to the Wnt/β-catenin pathway, Wnt ligands can also bind Fz 

receptors to activate the Planar Cell Polarity (PCP) pathway as well as the Wnt Ca2+ 

pathway (Veeman et al., 2003). Although some Wnt ligands, such as Wnt3a, are thought 

to exclusively activate the β-catenin dependent pathway, most Wnts ligands are more 

promiscuous and can activate multiple Wnt pathways in a context dependent manner 

(Chien et al., 2009). 

The different phases of myogenesis have different requirements for Wnt/β-catenin 

signaling. Wnt/β-catenin is required during axial myogenesis as dermomyotome 

formation is disrupted in Wnt1-/-; Wnt3-/- mice (Ikeya and Takada, 1998; Linker et al., 

2003). During limb development, β-catenin is required for delamination of myogenic 

progenitors from the dermomyotome and migration into the limb; however, once in the 

limb, embryonic progenitors do not require β-catenin for myoblast specification or 

myofiber differentiation. β-catenin does determine the number of fetal myogenic 

progenitors and the number and fiber type of differentiated myofibers (Hutcheson et al., 

2009). These results demonstrate that embryonic and fetal myogenesis in the limb are 

developmentally distinct and have different cell-autonomous requirements for β-catenin.  

Despite many studies examining Wnt/β-catenin signaling in muscle regeneration 

there is no clear consensus for the function of this pathway, and this is due to several 

experimental factors. Many studies use the immortalized C2C12 cell line (Bernardi et al., 

2011; Gavard et al., 2004; Goichberg et al., 2001; Han et al., 2011; Kim et al., 2008; 

Pansters et al., 2011; Tanaka et al., 2011), and although this cell line was originally 

derived from satellite cells, their expression profile is very similar to fetal myoblasts 
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(Biressi et al., 2007a). Many studies examine the expression pattern of Wnt pathway 

components in whole muscle, and while this is in vivo, it is not specific to the myogenic 

cells, as other cells within the muscle tissue are likely responding to Wnt/β-catenin 

signaling (Abiola et al., 2009; Armstrong and Esser, 2005; Aschenbach et al., 2006; 

Brack et al., 2008; Kim et al., 2006; Le Grand et al., 2009; Polesskaya et al., 2003). The 

best evidence supporting the role of Wnt/β-catenin signaling in muscle regeneration is 

also plagued by similar problems. The injection or electroporation of Wnt3a into 

regenerating muscle increases fibrosis and decreases fiber size (Brack et al., 2008; Le 

Grand et al., 2009); however, it is unknown whether these effects are specific to 

myogenic cells. Therefore, we decided to rigorously test the role of Wnt/β-catenin 

signaling in myogenic cells during muscle regeneration. In Chapter 4 of this dissertation, 

I will discuss our results that show Wnt/β-catenin signaling is active but not required for 

muscle regeneration, and that constitutively active β-catenin in satellite cells delays 

myoblast differentiation and extends the time required for muscles to regenerate.  

 In whole, this dissertation determines the requirement for both satellite cells and 

connective tissue fibroblasts during muscle regeneration. It also tests the necessity of 

Wnt/β-catenin signaling in satellite cells for stem cell function and muscle regeneration, 

and determines the consequence of continued β-catenin signaling during muscle 

regeneration. 
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Abstract
Muscle development, growth, and regeneration take place throughout verte-
brate life. In amniotes, myogenesis takes place in four successive, temporally
distinct, although overlapping phases. Understanding how embryonic, fetal,
neonatal, and adult muscle are formed from muscle progenitors and committed
myoblasts is an area of active research. In this review we examine recent
expression, genetic loss-of-function, and genetic lineage studies that have
been conducted in the mouse, with a particular focus on limb myogenesis. We
synthesize these studies to present a current model of how embryonic, fetal,
neonatal, and adult muscle are formed in the limb.
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1. Introduction

Muscle development, growth, and regeneration take place throughout
vertebrate life. In amniotes, myogenesis takes place in successive, temporally
distinct, although overlapping phases. Muscle produced during each of these
phases is morphologically and functionally different, fulfilling different needs
of the animal (reviewed in Biressi et al., 2007a; Stockdale, 1992). Of intense
interest is understanding how these different phases of muscle arise. Because
differentiated muscle is postmitotic, muscle is generated from myogenic
progenitors and committed myoblasts, which proliferate and differentiate
to form muscle. Therefore, research has focused on identifying myogenic
progenitors and myoblasts and their developmental origin, defining the
relationship between different progenitor populations and myoblasts, and
determining how these progenitors andmyoblasts give rise to different phases
of muscle. In this review, we will give an overview of recent expression,
genetic loss-of-function, and genetic lineage studies that have been con-
ducted in mouse, with particular focus on limb myogenesis, and synthesize
these studies to present a current model of how different populations of
progenitors and myoblasts give rise to muscle throughout vertebrate life.

2. Myogenesis Overview

In vertebrates, all axial and limb skeletal muscle derives from progeni-
tors originating in the somites (Emerson and Hauschka, 2004). These
progenitors arise from the dorsal portion of the somite, the dermomyotome.
The limb muscle originates from limb-level somites, and cells delaminate
from the ventrolateral lip of the dermomyotome and migrate into the limb,
by embryonic day (E) 10.5 (in forelimb, slightly later in hindlimb). Once in
the limb, these cells proliferate and give rise to two types of cells: muscle or
endothelial (Hutcheson et al., 2009; Kardon et al., 2002). Thus, the fate of
these progenitors only becomes decided once they are in the limb. Those
cells destined for a muscle fate then undergo the process of myogenesis.
During myogenesis, the progenitors become specified and determined as
myoblasts, which in turn differentiate into postmitotic mononuclear myo-
cytes, and these myocytes fuse to one another to form multinucleated
myofibers (Emerson and Hauschka, 2004).

Myogenic progenitors, myoblasts, myocytes, and myofibers critically
express either Pax or myogenic regulatory factor (MRF) transcription
factors. A multitude of studies have shown that progenitors in the somites
and in the limb express the paired domain transcription factors Pax3 and
Pax7 (reviewed in Buckingham, 2007). Subsequently, determined

2 Malea Murphy and Gabrielle Kardon



 15 

 
 
 
 
 
 
 

myoblasts, myocytes, and myofibers in the somite and in the limb express
members of the MRF family of bHLH transcription factors. The MRFs
consist of four proteins: Myf5, MyoD, Mrf4 (Myf6), and Myogenin. These
factors were originally identified by their in vitro ability to convert 10T1/
2 fibroblasts to a myogenic fate (Weintraub et al., 1991). Myf5, MyoD, and
Mrf4 are expressed in myoblasts (Biressi et al., 2007b; Kassar-Duchossoy
et al., 2005; Ontell et al., 1993a,b; Ott et al., 1991; Sassoon et al., 1989),
while Myogenin is expressed in myocytes (Ontell et al., 1993a,b; Sassoon
et al., 1989). In addition, MyoD, Mrf4, and Myogenin are all expressed in
the myonuclei of differentiated myofibers (Bober et al., 1991; Hinterberger
et al., 1991; Ontell et al., 1993a,b; Sassoon et al., 1989; Voytik et al., 1993).
Identification of these molecular markers of the different stages of myogenic
cells has been essential for reconstructing how myogenesis occurs.

In amniotes, there are four successive phases of myogenesis (Biressi et al.,
2007a; Stockdale, 1992). In the limb, embryonic myogenesis occurs
between E10.5 and E12.5 in mouse and establishes the basic muscle pattern.
Fetal (E14.5–P0; P, postnatal day) and neonatal (P0–P21) myogenesis are
critical for muscle growth and maturation. Adult myogenesis (after P21) is
necessary for postnatal growth and repair of damaged muscle. Each one of
these phases involves proliferation of progenitors, determination and com-
mitment of progenitors to myoblasts, differentiation of myocytes, and fusion
of myocytes into multinucleate myofibers. The progenitors in embryonic
and fetal muscle are mononuclear cells lying interstitial to the myofibers.
After birth, the neonatal and adult progenitors adopt a unique anatomical
position and lie in between the plasmalemma and basementmembrane of the
adult myofibers and thus are termed satellite cells (Mauro, 1961). During
embryonic myogenesis, embryonic myoblasts differentiate into primary
fibers, while during fetal myogenesis fetal myoblasts both fuse to primary
fibers and fuse to one another to make secondary myofibers. During fetal and
neonatal myogenesis, myofiber growth occurs by a rapid increase in myo-
nuclear number, while in the adult myofiber hypertrophy can occur in the
absence of myonuclear addition (White et al., 2010).

Embryonic, fetal, and adult myoblasts and myofibers are distinctive. The
different myoblast populations were initially identified based on their in vitro
characteristics. Embryonic, fetal, and adult myoblasts differ in culture in
their appearance, media requirements, response to extrinsic signaling mole-
cules, drug sensitivity, and morphology of myofibers they generate (sum-
marized in Table 1.1; Biressi et al., 2007a; Stockdale, 1992). Recent
microarray studies also demonstrate that embryonic and fetal myoblasts
differ substantially in their expression of transcription factors, cell surface
receptors, and extracellular matrix proteins (Biressi et al., 2007b). It pres-
ently is unclear whether neonatal myoblasts differ substantially from fetal
myoblasts. Differentiated primary, secondary, and adult myofibers also
differ, primarily in their expression of muscle contractile proteins, including

Origin of Vertebrate Limb Muscle 3
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isoforms of myosin heavy chain (MyHC), myosin light chain, troponin, and
tropomyosin, as well as metabolic enzymes (MyHC differences are sum-
marized in Table 1.1; Agbulut et al., 2003; Biressi et al., 2007b; Gunning
and Hardeman, 1991; Lu et al., 1999; Rubinstein and Kelly, 2004;
Schiaffino and Reggiani, 1996).

The finding that myogenesis occurs in successive phases and that embry-
onic, fetal, neonatal, and adult muscle are distinctive raises the question of
how these different types of muscle arise. Potentially, these muscle types
arise from different progenitors or alternatively from different myoblasts.
Another possibility is that the differences in muscle arise during the process
of differentiation of myoblasts into myocytes and myofibers. In addition,
there is the overlying question of whether differences arise because of
intrinsic changes in the myogenic cells or whether changes in the extrinsic
environment are regulating myogenic cells.

Five theoretical, simplistic models could explain how these different
types of muscle arise (Fig. 1.1). In these models, we have combined fetal
and neonatal muscle into one group. (While embryonic and adult muscle
are clearly distinct, the distinction between fetal and neonatal muscle is not
so clear. Other than birth of the animal, fetal and neonatal muscle appear not
to be discrete, but rather to be a gradually changing population of myogenic
cells). In the first theoretical model, three different progenitor populations
give rise to three distinct myoblast populations and these myoblasts, in turn,
give rise to the different types of muscle. In this model, all differences in
muscle could simply reflect initial intrinsic heterogeneities in the original
progenitor populations, and it will be critical to understand the mechanisms
that generate different types of progenitors. A second model is that all
muscle derives from a progenitor population that changes over time to
give rise to three different populations of myoblasts, and these different
myoblast populations give rise to different types of muscle. In this model,
the interesting question is understanding what intrinsic or extrinsic factors
regulate changes in the progenitor population. In the third model there is a
single invariant progenitor population which gives rise to three initially
similar myoblast populations. These myoblast populations change over time
such that they give rise to different muscle types. In this scenario, under-
standing the intrinsic or extrinsic factors that lead to differences in myoblasts
will be important. In the fourth model, there is a single invariant progenitor
population which gives rise to an initial myoblast population. This initial
myoblast population both gives rise to embryonic muscle and gives rise to a
successive series of myoblast populations. These gradually differing myo-
blasts then give rise to different types of muscle. Here, differences in muscle
arise entirely from differences in the myoblast populations, and so it will be
critical to ascertain the intrinsic and extrinsic factors altering the myoblasts.
In the final model, a single invariant progenitor population gives rise to a
single myoblast population. Subsequently, in the process of myoblast

Origin of Vertebrate Limb Muscle 5
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differentiation differences arise so that different muscle types are generated.
However, this final model is unlikely to be correct because, as described
above, it is well established that different myoblast populations are present
and identifiable. It should be noted that a common component of all of
these models is the assumption, currently made by most muscle researchers,
that progenitors give rise to myoblasts and that myoblasts give rise to
differentiated muscle and that this progression is irreversible. In all likeli-
hood, myogenesis is considerably more complex than these five models.
We present these models simply as a starting point to evaluate current data.

In this review, wewill discuss what is known about the Pax3/7 andMRF
family of transcription factors and how these data allow us to construct a
model of muscle development. We focus on Pax3 and 7 and the MRFs
because these bothmark differentmyogenic populations and are functionally
critical for myogenesis. We will limit our discussion to studies conducted in
mouse, largely because of the availability of genetic tools available to conduct
lineage, cell ablation, and conditional mutagenesis experiments (Hutcheson
and Kardon, 2009). In addition, we will concentrate on myogenesis in the
limb because all phase of myogenesis—embryonic, fetal/neonatal, and
adult—have been studied in the limb. For discussions of myogenic progeni-
tors in other model organisms, such as chick and zebrafish, and in the head
and trunk, we refer the reader to several excellent recent reviews
(Buckingham and Vincent, 2009; Kang and Krauss, 2010; Otto et al.,
2009; Relaix and Marcelle, 2009; Tajbakhsh, 2009)

3. Expression Analyses of Pax3/7 and MRF
Transcription Factors

Multiple expression studies have established that Pax3 and Pax7 label
muscle progenitors (summarized in Table 1.2). Both Pax3 and Pax7 are
initially expressed in the somites. Pax3 is first expressed (beginning at E8) in
the presomitic mesoderm as somites form, but is progressively restricted,
first to the dermomyotome and later to dorsomedial and ventrolateral
dermomyotomal lips (Bober et al., 1994; Goulding et al., 1994; Horst
et al., 2006; Schubert et al., 2001; Tajbakhsh and Buckingham, 2000).
Pax7 expression initiates later (beginning at E9) in the somites and is
expressed in the dermomyotome, with highest levels in the central region
of the dermomyotome (Horst et al., 2006; Jostes et al., 1990; Kassar-
Duchossoy et al., 2005; Relaix et al., 2004). In the limb, Pax3+ progenitors
are transiently present between E10.5 and E12.5 (Bober et al., 1994).
Although Pax3 is generally not expressed in association with muscle after
E12.5, some adult satellite cells have been reported to express Pax3
(Conboy and Rando, 2002; Relaix et al., 2006). Unlike Pax3 (and unlike

Origin of Vertebrate Limb Muscle 7
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in the chick), Pax7 is not expressed in progenitors in the limb until E11.5
and then continues to be expressed in fetal and neonatal muscle (Relaix
et al., 2004). In the adult, Pax7 labels all satellite cells (Seale et al., 2000).
Much of this analysis of Pax3 and Pax7 expression has been based on RNA
in situ hybridization and immunofluorescence. In addition, a variety of
reporter alleles (both “knock-ins” and transgenes) have been developed
to genetically mark Pax3þ and Pax7þ cells: Pax3IRESnLacZ, Pax3GFP,
Pax7LacZ, Pax7nGFP, Pax7nLacZ (Mansouri et al., 1996; Relaix et al., 2003,
2005; Sambasivan et al., 2009). These alleles have been extremely useful, as
they can increase the sensitivity of detection of Pax3þ and Pax7þ cells.
Nevertheless, these reporters should be used with care because, as has been
often noted, the stability of the of reporter does necessarily not match the
stability of the endogenous protein. For instance, the Pax3 protein is tightly
regulated by ubiquitination and proteasomal degradation (Boutet et al.,
2007), and it has been shown that the GFP from the Pax3GFP allele is
expressed similarly to Pax3, but perdures longer than the endogenous Pax3
protein (Relaix et al., 2004).

The MRFs are expressed in myoblasts, myocytes, and myofibers in differ-
ent phases of limbmyogenesis (summarized inTable 1.2).Myf5,MyoD,Mrf4,
and Myogenin are all first expressed in somitic cells (Bober et al., 1991; Ott
et al., 1991; Sassoon et al., 1989;Tajbakhsh andBuckingham, 2000).However,
somitic cells migrating into the limb do not initially express the MRFs
(Tajbakhsh and Buckingham, 1994). Myf5 and MyoD are the earliest MRFs
expressed in the developing limb. Myf5 is expressed at E10.5 in embryonic
myoblasts and continues to be expressed in fetal and adult myoblasts (Biressi
et al., 2007b; Cornelison and Wold, 1997; Kassar-Duchossoy et al., 2005;
Kuang et al., 2007; Ott et al., 1991). Myf5 is also expressed in many, but not all
adult quiescent satellite cells (Beauchamp et al., 2000; Cornelison and Wold,
1997; Kuang et al., 2007). Unlike the other MRFs, Myf5 expression is limited
to myoblasts (or adult progenitors), as it is downregulated in differentiated
myogenic cells. MyoD also begins to be expressed in the limb at E10.5 in
embryonicmyoblasts andmyofibers (Ontell et al., 1993a; Sassoon et al., 1989),
and subsequently is also expressed in fetal and adult myoblasts and myofibers
(Cornelison andWold, 1997; Hinterberger et al., 1991; Kanisicak et al., 2009;
Ontell et al., 1993b;Voytik et al., 1993;Yablonka-Reuveni andRivera, 1994).
Unlike Myf5, MyoD rarely appears to be expressed in quiescent satellite cells
(Cornelison andWold, 1997; Yablonka-Reuveni and Rivera, 1994; Zammit
et al., 2002). Myogenin is expressed in the limb by E11.5 (Ontell et al., 1993a;
Sassoon et al., 1989) and is primarily found in differentiated myocytes and
myofibers of embryonic, fetal, and adult muscle (Cornelison andWold, 1997;
Hinterberger et al., 1991; Ontell et al., 1993a,b; Sassoon et al., 1989; Voytik
et al., 1993; Yablonka-Reuveni andRivera, 1994).Mrf4 is the last MRF to be
expressed in the limb. It is first expressed in the limb at E13.5, with stronger
expression in fetal myofibers by E16.5, and continues to be expressed as the
predominant MRF in adult myofibers (Bober et al., 1991; Gayraud-Morel
et al., 2007; Haldar et al., 2008; Hinterberger et al., 1991; Voytik et al., 1993).

10 Malea Murphy and Gabrielle Kardon
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Similar to Pax3 and Pax7, expression analyses of the MRFs have been facili-
tated by the generation of reporter allelesMyf5nLacz,Myf5GFP-P, andMrf4nLacZ-P

(Kassar-Duchossoy et al., 2004; Tajbakhsh et al., 1996). These “knock-in”
alleles have allowed for increased sensitivity in tracking Myf5þ and Mrf4þ
cells. However, these alleles must be used with caution as Myf5 and Mrf4
are genetically linked, and the reporter constructs disrupt the expression of
the linked gene to varying degrees (Kassar-Duchossoy et al., 2004).

These expression studies are important both for establishing which myo-
genic populations are labeled by Pax3, Pax7, and MRF genes and also for
describing the temporal–spatial relationship between the expression of these
transcription factors and the cell populations they label. Most significantly,
these studies are critical for generating testable hypotheses about gene function
and cell lineage relationships. In terms of gene function, the expression of Pax3
and Pax7 in progenitors suggests that these genes are important for specifica-
tion or maintenance of progenitors. The expression of MyoD and Myf5 in
myoblasts suggests that these MRFs may be critical for myoblast determina-
tion. Finally, the expression of MyoD, Myogenin, and Mrf4 in myocytes or
myofibers suggests that these MRFs play a role in differentiation. Thus gene
expression studies strongly implicate Pax and MRF as playing roles in myo-
genesis and are a good starting point for designing appropriate functional
experiments. However, as will be described in the following section, gene
expression does not necessarily indicate critical gene function. For instance,
Pax7 is strongly expressed in adult satellite cells, but is not functionally
important for muscle regeneration by satellite cells (Lepper et al., 2009). In
terms of lineage, the finding that Pax3 is expressed before Pax7 in muscle
progenitors in the limb suggests that Pax3þ cells may give rise to Pax7þ cells.
In addition, the demonstration that MRFs are expressed after Pax3 also
suggests that Pax3þ cells give rise to MRFþ myoblasts. However, gene
expression data is not sufficient to allow us to reconstruct cell lineage. For
instance, because Pax3 is only transiently expressed in progenitors, but not in
myoblasts or differentiated myogenic cells, it is impossible to trace the fate of
these Pax3þ progenitors. Conversely, continuity of gene expression, for
example, the expression of MyoD in both myoblasts and myofibers, does not
necessarily indicate continuity of cell lineage because new cells may initiate
gene expression de novo while other cells may downregulate gene expression.

4. Functional Analysis of Pax3/7 and MRF
Transcription Factors

Mouse genetic loss-of-function studies not only demonstrate that
Pax3 is required for limb myogenesis, but also indicate that Pax3þ pro-
genitors are essential to generate all the myogenic cells in the limb
(Table 1.3). Pax3 function has been studied for over 50 years because of
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the availability of a naturally occurring functional null allele of Pax3, the
Splotch mutant (Auerbach, 1954; Epstein et al., 1993). In Pax3Sp Splotch
mutants (which generally die by E14.5), as well as other splotch mutants
such as Pax3SpD (which die at E18.5), no embryonic or fetal muscle forms in
the limb (Bober et al., 1994; Franz et al., 1993; Goulding et al., 1994; Vogan
et al., 1993). There is a complete lack of myoblasts, myocytes, and myofi-
bers, as indicated by the lack of expression of MRFs and muscle contractile
proteins. Functional Pax3 is required for multiple aspects of somite devel-
opment and limb myogenesis. In the somite, Pax3 regulates somite segmen-
tation and formation of the dorsomedial and ventrolateral dermomyotome
(Relaix et al., 2004; Schubert et al., 2001; Tajbakhsh and Buckingham,
2000). For limb myogenesis, Pax3 is required for maintenance of the
ventrolateral somitic precursors, delamination (via activation of Met expres-
sion) from the somite of limb myogenic progenitors, migration of progeni-
tors into the limb, and maintenance of progenitor proliferation (Relaix
et al., 2004). Interestingly, in the adult conditional deletion of Pax3 in
satellite cells revealed that, despite observed expression of Pax3 in satellite
cells of some muscles (Relaix et al., 2006), Pax3 is not required for muscle
regeneration (Lepper et al., 2009). Together these data show that Pax3 is
required for embryonic myogenesis in the limb, but is not subsequently
required in the adult. Whether Pax3 is required for fetal limb myogenesis
has not been explicitly tested. These functional data also elucidate the nature
of the progenitors which give rise to limb muscle. The complete absence of
muscle in the limb in Pax3mutants, in combination with the early transient
(E10.5–E12.5) expression of Pax3 in limb muscle progenitors, suggests that
these early Pax3þ progenitors (present up to E12.5) give rise to all embry-
onic and fetal myoblasts, myocytes, and myofibers in the limb. This suggests
that our theoretical Model 1, in which multiple distinct progenitors give rise
to different myoblasts and myofibers, is unlikely to be correct. Instead
Models 2–4 (or some variant of them), in which all muscle ultimately
derives from one initial progenitor population, are more likely representa-
tions of limb myogenesis.

Functional analysis of Pax7 has established that Pax7 regulates neonatal
progenitors and also reveals that there are at least two genetically distinct
populations of progenitors (Table 1.3). Analysis of Pax7 loss-of-function
alleles has been complicated. Although no muscle phenotypes were initially
recognized in null Pax7LacZ/LacZ (Mansouri et al., 1996), subsequent analysis
suggested that no satellite cells were specified in the absence of Pax7 (Seale
et al., 2000). Then a series of papers (Kuang et al., 2006; Oustanina et al.,
2004; Relaix et al., 2006) determined that, in fact, satellite cells were present
in Pax7 null mice. However, Pax7 was found to be critical for maintenance,
proliferation, and function of satellite cells. More recently, conditional
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deletion of Pax7 in satellite cells, via a tamoxifen-inducible Pax7CreERT2

allele and a Pax7fl allele, has surprisingly shown that Pax7 is not required
after P21 (the end of neonatal myogenesis) for effective muscle regeneration
(Lepper et al., 2009). However, consistent with the previous studies (Kuang
et al., 2006; Oustanina et al., 2004; Relaix et al., 2006), conditional deletion
of Pax7 between P0 and P21 did show a requirement for Pax7 in neonatal
satellite cells for proper proliferation and myogenic differentiation (Lepper
et al., 2009). Thus, this study demonstrates that Pax7 is dispensable in the
adult, but required in neonatal satellite cells for their maintenance, prolifer-
ation, and differentiation. Prior to birth, myogenesis appears not to require
Pax7, as gross muscle morphology is normal (Oustanina et al., 2004; Seale
et al., 2000). However, the reduced number of satellite cells just after birth
(Oustanina et al., 2004; Relaix et al., 2006) suggests that proliferation and/or
maintenance of fetal progenitors may be functionally dependent on Pax7. In
total, these functional studies reveal that there are at least two populations of
progenitors: Pax7-functionally dependent neonatal satellite cells and Pax7-
functionally independent adult satellite cells. Thus, a model of myogenesis
in which there is only one invariant progenitor population (as seen in
Models 3, 4, and 5) is unlikely to be correct.

Compound mutants ofMyf5,MyoD, andMrf4 demonstrate that embry-
onic and fetal myoblasts have different genetic requirements for their
determination (Table 1.3). Over the past 20 years, multiple loss-of-function
alleles of all four MRFs have been generated and allowed for detailed
characterization of their function. However, analysis of Myf5 and Mrf4
function has been complicated because these two genes are genetically
linked, and so many of the original Myf5 and Mrf4 loss-of-function alleles
also affected the expression of the neighboring gene (see discussion in
Kassar-Duchossoy et al., 2004; Olson et al., 1996). Single loss-of-function
mutants of Myf5 or Mrf4 (in which genetically linked Mrf4 and Myf5
expression remain intact) show no defects in embryonic or fetal limb
myogenesis (Kassar-Duchossoy et al., 2004; Zhang et al., 1995), and
MyoD mutants have only a minor phenotype, a 2–2.5 day delay in embry-
onic limb myogenesis (Kablar et al., 1997; Rudnicki et al., 1992). Com-
pound Myf5 and Mrf4 null mutants have normal embryonic and fetal limb
muscle (Braun and Arnold, 1995; Kassar-Duchossoy et al., 2004; Tajbakhsh
et al., 1997). Compound MyoD and Mrf4 mutants (in which Myf5 expres-
sion remains intact) have normal embryonic myoblasts and myofibers
(but with a 2 day delay in development, reflecting the MyoD null pheno-
type) and fetal myoblasts (although fetal myofibers are absent, see below;
Rawls et al., 1998). Compound Myf5 and MyoD loss-of-function mutants
(in whichMrf4 expression is intact) contain no fetal myoblasts or myofibers.
However, a few residual embryonic myofibers are present and therefore
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indicate the presence of some embryonic myoblasts (Kassar-Duchossoy
et al., 2004). In triple Myf5, MyoD, and Mrf4 loss-of-function mutants, no
embryonic or fetal myoblasts or myofibers are present (Kassar-Duchossoy
et al., 2004; Rudnicki et al., 1993). Together these genetic data indicate that
embryonic myoblasts require Myf5, MyoD, or Mrf4 for their determina-
tion, although these MRFs differ somewhat in their function. MyoD can
most efficiently determine embryonic myoblasts, as embryonic myogenesis
is normal in compoundMyf5 andMrf4mutants. While Myf5 can determine
embryonic myoblasts, the inability of Myf5 to act as a differentiation factor
leads to a delay in limb myogenesis in compound MyoD and Mrf4 mutants.
Mrf4 can only poorly substitute for Myf5 or MyoD as a determination
factor, and so in the absence of Myf5 and MyoD, limb embryonic myogen-
esis is only partially rescued by Mrf4. Unlike embryonic myoblasts, fetal
myoblasts require either Myf5 orMyoD for their determination, andMrf4 is
not able to rescue this function. These data argue that embryonic and fetal
myoblasts have different genetic requirements for their determination
and therefore concurs with previous culture data showing that embryonic
and fetal myoblasts are distinct. The presence of at least two classes of
myoblasts therefore excludes Model 5, in which one myoblast population
gives rise to different types of myofibers, and argues in favor of Models 1–4,
in which multiple myoblast populations are important for generating differ-
ent types of myofibers. It is likely that embryonic, fetal, and adult myoblasts
are distinct populations. However, the genetic requirements of adult
myoblasts has not been completely tested. Loss of either Myf5 or MyoD
leads to delayed or impaired muscle regeneration (Gayraud-Morel et al.,
2007; Megeney et al., 1996; White et al., 2000; Yablonka-Reuveni et al.,
1999). The role of Mrf4 in regeneration has not been explicitly tested,
although the lack of Mrf4 expression in adult myoblasts suggests Mrf4 may
not be required (Gayraud-Morel et al., 2007). To test whetherMyf5,MyoD,
or Mrf4 may be acting redundantly in the adult will require conditional
deletion of these MRFs in adult progenitors since compound mutants die
at birth.

Compound mutants of MyoD, Mrf4, and Myogenin reveal that embry-
onic and fetal myoblasts have different genetic requirements for their
differentiation (Table 1.3). Loss of Mrf4 results in no muscle phenotype in
the limbs, while loss of MyoD results in only a delay in embryonic limb
myogenesis (Kablar et al., 1997; Rudnicki et al., 1992; Zhang et al., 1995).
Formation of embryonic myofibers (MyHCembþ) is largely unaffected
with loss of Myogenin (although myosin levels appear lower and myofibers
are less organized); however, differentiation of fetal myofibers
(MyHCperiþ) is completely impaired (Hasty et al., 1993; Nabeshima
et al., 1993; Venuti et al., 1995). This lack of fetal muscle is due to a defect
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in differentiation in vivo; myoblasts are still present inMyogeninmutant limbs
and can differentiate in vitro (Nabeshima et al., 1993). A similar phenotype is
seen in compound Myogenin/MyoD, Myogenin/Mrf4, Myogenin/Myf5, and
Mrf4/MyoD null mutants. In all of these mutants, embryonic muscle differ-
entiates, but fetal muscle does not (Rawls et al., 1995, 1998; Valdez et al.,
2000). Also, myoblasts from these compound mutants are present and
in vitro can differentiate. In tripleMyogenin/Mrf4/MyoD animals, no embry-
onic or fetal myofibers differentiate and myoblasts from these animals
cannot differentiate in vitro (Valdez et al., 2000). Together these genetic
data argue that differentiation of embryonic myofibers requires Myogenin,
MyoD, or Mrf4. Myf5, which is not normally expressed in differentiating
myogenic cells, is not sufficient to support myofiber differentiation. The
genetic requirement of fetal myofiber differentiation is more stringent and
requires Myogenin and either Mrf4 or MyoD. Thus, the differentiation of
embryonic and fetal myofibers has different genetic requirements and argues
that the embryonic and fetal myoblasts (from which the myofibers derive)
are genetically different. Therefore, these data support Models 1–4, in
which different embryonic and fetal myoblast populations are important
for the generation of embryonic and fetal myofibers.

5. Cre-Mediated Lineage and Ablation Analyses
of PAX3, PAX7, and MRFþ Cells

Cre-mediated lineage analysis in mice has provided the most direct
method to test the lineage relationship of progenitors and myoblasts giving
rise to embryonic, fetal, neonatal, and adult muscle. These lineage studies
have been enabled by the development ofCre/loxP technology (Branda and
Dymecki, 2004; Hutcheson and Kardon, 2009). To genetically label and
manipulate different populations of muscle progenitors or myoblasts, Cre
lines have been created in which Cre is placed under the control of the
promoter/enhancers sequences of Pax3/7 or MRFs. Several strategies have
been used to create these Cre lines. For Pax3Cre, Myf5Cre, and MyoDCre

lines, Cre has been placed into the ATG of the endogenous locus (Engleka
et al., 2005; Kanisicak et al., 2009; Tallquist et al., 2000). For Pax7Cre,
Mrf4Cre, and another Myf5Cre line an IRESCre cassette was placed at the
transcriptional stop (Haldar et al., 2008; Keller et al., 2004).MyogeninCre was
created as a transgene, by placing Cre under the control of a 1.5 kb Myo-
genin promoter and a 1 kb MEF2C enhancer (Li et al., 2005). Recently,
tamoxifen-inducible Cre alleles have also been created, and these CreERT2
alleles allow for temporal control of labeling and manipulation because
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Cre-mediated recombination only occurs after the delivery of tamoxifen.
A tamoxifen-inducible Pax7CreERT2 allele has been created by placing a
CreERT2 cassette into the ATG of Pax7 (Lepper and Fan, 2010; Lepper
et al., 2009). For each of these alleles, the ability to label and manipulate the
appropriate cell requires that the Cre be faithfully expressed wherever
the endogenous gene is expressed. Placing the Cre or CreERT2 cassette at
the endogenous ATG is the most likely strategy for ensuring that Cre
expression recapitulates endogenous gene expression. However, these alleles
are all “knockin/knockout” alleles inwhich theCre disrupts expression of the
targeted genes. If there is any potential issue of haplo-insufficiency, such a
targeting strategy may be problematic. For the Pax3Cre, Myf5Cre, and
MyoDCre lines, haplo-insufficiency has not been found to be an issue. For
Cre alleles generated by targeted IRESCre to the stop or by transgenics, the
fidelity of the Cre needs to be carefully verified. The advantage of such Cre
lines, of course, is that the endogenous gene remains intact.

To follow the genetic lineage of the Pax3þ, Pax7þ, orMRFþ cells, these
Cre lines have been crossed to various Cre-responsive reporter mice. In the
reporter mice, reporters such as LacZ or YFP are placed under the control a
ubiquitous promoter. In the absence of Cre, these reporters are not expressed
because of the presence of a strong transcriptional stop cassette flanked by loxP
sites, while the presence of Cre causes recombination of the loxP sites and the
permanent expression of the reporter. Therefore, in mice containing both the
Cre and the reporter, cells expressing the Cre and their progeny permanently
express the reporter, thus allowing the fate of Pax3þ, Pax7þ, or MRFþ cells
to be followed. The number of cells genetically labeled in response to Cre can
be dramatically affected by the reporter lines used, and the utility of each
reporter must be verified for each tissue and age of animal being tested. The
R26RLacZ and R26RYFP reporters (Soriano, 1999; Srinivas et al., 2001) are
commonly used with good success in the embryo to label myogenic cells. In
the adult, the endogenous R26R locus may not be sufficient to drive high
levels of reporter expression, and so reporters such as R26RmTmG (Muzumdar
et al., 2007) or R26RNZG (Yamamoto et al., 2009) in which a CMV b-actin
promoter additionally drives reporter expression, may be necessary.

The Cre/loxP system can also be used to test the requirement of particular
cell populations for myogenesis, by crossing Cre lines with Cre-responsive
ablater lines (Hutcheson andKardon, 2009). In these ablater lines,Cre activates
the expression of cell-death-inducing toxins, such as diptheria toxin
(Brockschnieder et al., 2006; Wu et al., 2006). The lack of receptor for
diphteria toxin inmice and the expression of only the diptheria toxin fragment
A (DTA,which cannot be transferred to other cells without the diptheria toxin
fragment B) ensures that only cells expressing Cre, and therefore DTA,will be
cell-autonomously killed. Analogous to gene loss-of-function experiments,
cell ablation experiments enable the researcher to test the necessity of particular
genetically labeled progenitors and myoblasts for myogenesis.
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The expression and functional studies of Pax3 strongly suggested that
Pax3þ progenitors give rise to all embryonic, fetal, neonatal, and adult
muscle. Particularly because Pax3 is only transiently expressed in progenitors
in the early limb bud, tracing the lineage of Pax3þ progenitors required that
the cells be genetically labeled via Pax3Cre. These Pax3 lineage studies reveal
that Pax3þ cells entering the limb are initially bipotential and able to give rise
to both endothelial cells and muscle (Hutcheson et al., 2009; Table 1.4).
Moreover, Pax3þ cells give rise to all embryonic, fetal, and adult myoblasts
and myofibers (Engleka et al., 2005; Hutcheson et al., 2009; Schienda et al.,
2006). Thus, these early Pax3þ progenitors give rise to all limb muscle and
exclude Model 1 of limb myogenesis, in which multiple distinct progenitors
give rise to embryonic, fetal, neonatal, and adult myofibers. Of course, it is
formally possible that the Pax3þ cells migrating into the limb are a hetero-
geneous population in which subpopulations give rise to embryonic, fetal,
and adult myoblasts (and soModel 1 might be correct). However, to test this
possibility, early markers of these subpopulations would be required. The
necessity of Pax3þ progenitors is demonstrated by the lack of any embryonic
or fetal muscle when these cells are genetically ablated (Hutcheson et al.,
2009). Although not formally demonstrated (because of the P0 death of
Pax3Cre/þ;R26RDTA mice), it is likely that the Pax3þ progenitors are also
required for the formation of all adult limb muscle. In addition, these lineage
studies demonstrated that all Pax7þ progenitors in the embryo and Pax7þ
satellite cells in the adult are derived from the Pax3þ progenitors
(Hutcheson et al., 2009; Schienda et al., 2006). This finding thus supports
Model 2 of limb myogenesis, in which an initial progenitor population gives
rise to other progenitor populations.

Genetic lineage studies of Pax7þ progenitors have established that,
unlike Pax3þ progenitors, Pax7þ progenitors in the limb are restricted to
a myogenic fate (Hutcheson et al., 2009; Lepper and Fan, 2010). Consistent
with the later expression of Pax7 (beginning at E11.5), Pax7þ progenitors
do not give rise to embryonic muscle, but do give rise to all fetal and adult
myoblasts and myofibers in the limb (Hutcheson et al., 2009; Lepper and
Fan, 2010). Pax7þ cells labeled in the early limb (via tamoxifen delivery to
E11.5 Pax7CreERT2/þ;R26RLacZ/þ mice) also give rise to Pax7þ adult
satellite cells, although it is unclear whether these labeled cells directly
become satellite cells or whether their progeny give rise to satellite cells
(Lepper and Fan, 2010). The loss of fetal limb muscle when Pax7þ cells are
genetically ablated demonstrates that these Pax7þ progenitors are required
for fetal myogenesis in the limb (Hutcheson et al., 2009). The test of
whether Pax7þ progenitors are necessary for adult myogenesis awaits the
generation of Pax7CreERT2/þ;R26RDTA/þ mice, in which Pax7þ progeni-
tors are genetically ablated after birth.

Recent lineage analyses of Myf5þ and MyoDþ cells have unexpectedly
revealed that two populations ofmyoblasts may give rise tomuscle (Table 1.4).
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Analysis of Myf5 lineage, using two differentMyf5Cre lines, shows thatMyf5þ
cells are not restricted to a muscle fate, as cells in the axial skeleton and ribs are
derived fromMyf5þ cells (Gensch et al., 2008; Haldar et al., 2008). This likely
reflects early transient expression of Myf5 in the presomitic mesoderm. In
contrast, MyoDþ cells appear to be restricted to a muscle fate (Kanisicak et al.,
2009). Interestingly, analysis of the Myf5 lineage shows that Myf5þ cells give
rise to many, but not all embryonic, fetal, and adult myofibers (Gensch et al.,
2008;Haldar et al., 2008). The distribution ofMyf5-derivedmyofibers appears
to be stochastic, as epaxial and hypaxial, slow and fast, and different anatomical
muscles are randomly Myf5-derived. Unlike Myf5, analysis of MyoD lineage
reveals that MyoDþ cells give rise to all embryonic and adult myofibers (fetal
myofibers were not explicitly examined; Kanisicak et al., 2009). Consistent
with these lineage studies, ablation ofMyf5þ cells did not lead to any dramatic
defects in embryonic or fetal muscle (the Myf5CreERT2/þ;R26RDTA/þ mice
die at birth from rib defects), as presumablyMyf5- myoblasts compensated for
the loss ofMyf5þmyoblasts (Gensch et al., 2008;Haldar et al., 2008). Ablation
of the MyoD lineage has not yet been published, but based on the lineage
studies a complete loss of muscle would be expected. Together, these lineage
and ablation studies argue that there are at least two populations of myoblasts,
oneMyf5-dependent and oneMyf5-independent, thus excludingModel 5, in
which only one myoblast population generates all limb muscle. It is not yet
clear whether there may, in fact, be three populations of myoblasts:
Myf5þMyoD", Myf5þMyoDþ, and Myf5"MyoDþ. The finding that all
muscle is MyoD-derived would suggest that there are no myoblasts that are
Myf5þMyoD". However, because MyoD is strongly expressed in embry-
onic and fetal myofibers, the finding that all muscle is YFPþ in MyoDCre/þ;
R26RYFP/þ mice may simply reflect MyoD expression in all myofibers, and
not MyoD expression in all myoblasts. Another question yet to be resolved is
whether multiple myoblast populations are present during embryonic, fetal,
and neonatal myogenesis.

Analysis of the Myf5 and MyoD lineages has also revealed interesting
insights about adult satellite cells. The great majority of quiescent satellite
cells have been shown to be YFP labeled in Myf5Cre/þ;R26RYFP/þ mice
(Kuang et al., 2007). Given that most quiescent satellite cells express Myf5
(Beauchamp et al., 2000; Cornelison and Wold, 1997), it is likely that the
Myf5 lineage in satellite cells is simply reflecting active Myf5 transcription in
satellite cells. However, the finding that all quiescent satellite cells are YFP
labeled in MyoDCre/þ;R26RYFP/þ mice was quite surprising (Kanisicak
et al., 2009). Multiple studies have shown that quiescent satellite cells do
not express MyoD, although activated satellite cells do express MyoD
(Cornelison and Wold, 1997; Yablonka-Reuveni and Rivera, 1994).
Thus, the finding that quiescent satellite cells are YFPþ in MyoDCre/þ;
R26RYFP/þ mice suggests that all quiescent satellite cells are derived from
previously activated, MyoDþ satellite cells (as suggested by Zammit et al.,
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2004). Alternatively, all quiescent satellite cells may be derived from
MyoDþ myoblasts. To definitively test whether satellite cells indeed are
derived from MyoDþ myoblasts, MyoDCreERT2/þ;R26RYFP/þ mice will
need to be induced with tamoxifen in the embryo or fetus, before satellite
cells are present. It will also be interesting to test using Myf5CreERT2/þ;
R26RYFP/þ mice whether Myf5þ myoblasts in the embryo or fetus give
rise to satellite cells. Such a finding that MyoDþ or Myf5þ myoblasts give
rise to satellite cells would profoundly change current models of myogenesis
(excluding all five Models presented) because this would demonstrate that
myoblasts can return to a more progenitor-like state.

Lineage analysis using MyogeninCre and Mrf4Cre mice demonstrates that
by birth all myofibers have expressed both Myogenin and Mrf4 (Gensch
et al., 2008; Haldar et al., 2008; Li et al., 2005; Table 1.4). A closer
examination of the Myogenin lineage reveals that all embryonic and fetal
muscle has derived fromMyogeninþmyocyctes and/or myofibers (Gensch
et al., 2008; Li et al., 2005). It would be worthwhile to similarly determine to
what extent embryonic muscle has expressed Mrf4 since expression studies
have found Mrf4 to be expressed in at least some embryonic limb muscle
(Hinterberger et al., 1991). Consistent with the finding that all fetal muscle
has expressed Myogenin and Mrf4, ablation of Myogeninþ or Mrf4þ cells
leads to a complete loss of all muscle by birth (Gensch et al., 2008; Haldar
et al., 2008).

6. Molecular Signals Distinguishing Between
Different Phases of Myogenesis

Layered on top of these expression, functional, and lineage studies
concentrating on Pax3, Pax7, and MRFs are functional studies demonstrat-
ing that embryonic, fetal, and adult myogenic cells show differential sensi-
tivity to signaling molecules. Recent microarray studies demonstrated that
members of the Notch, FGF, and PDGF signaling pathways are differen-
tially expressed in embryonic versus fetal myoblasts (Biressi et al., 2007b).
In addition, fetal myoblasts show upregulation of components of the TGFb
and BMP signaling pathways compared to embryonic myoblasts (Biressi
et al., 2007b). Such findings are consistent with in vitro studies demonstrating
that embryonic myoblast differentiation is insensitive to treatment with
TGFb or BMP, while fetal myoblast differentiation is blocked in the
presence of TGFb or BMP (Biressi et al., 2007b; Cusella-De Angelis
et al., 1994). Interestingly, studies examining adult myogenesis also demon-
strate that BMP signaling is active in activated satellite cells and proliferating
myoblasts (Ono et al., 2010). Furthermore, inhibition of BMP signaling
results in an increase in differentiated myocytes at the expense of
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proliferating myoblasts in vitro and smaller diameter regenerating myofibers
in vivo (Ono et al., 2010). Therefore, in mouse TGFb and BMP signaling
appear to have no effect on embryonic myoblasts, whereas they inhibit
differentiation of both fetal and adult myoblasts. Thus, with respect to
TGFb and BMP signaling, fetal and adult myoblasts behave similarly. It is
interesting to note that in the chick limb BMP signaling has also been
shown to differentially regulate embryonic versus fetal and adult myogen-
esis, although BMP effects were different from those found in the mouse
(Wang et al., 2010).

The Wnt/b-catenin pathway also differentially regulates embryonic
versus fetal and adult myogenesis. The role of b-catenin in embryonic
and fetal myogenesis was tested by conditionally inactivating or activating
b-catenin in embryonic muscle via Pax3Cre or in fetal muscle via Pax7Cre

(Hutcheson et al., 2009). After myogenic cells enter the limb, embryonic
myogenic cells were found to be insensitive to perturbations in b-catenin.
However, during fetal myogenesis b-catenin critically determines the num-
ber of Pax7þ progenitors and the number and fiber type of myofibers.
b-catenin has also been found to positively regulate the number of Pax7þ
satellite cells in the adult (Otto et al., 2008; Perez-Ruiz et al., 2008; but see
Brack et al., 2008). Thus similar to the findings for TGFb and BMP
signaling, embryonic myogenesis is insensitive to b-catenin signaling,
while fetal and adult myogenesis is regulated by b-catenin.

These studies demonstrate that during embryonic myogenesis Pax3þ
progenitors are insensitive to TGFb, BMP, and Wnt/b-catenin signaling.
Yet during fetal and adult myogenesis, TGFb, BMP, and Wnt/b-catenin
signaling are important for positively regulating and maintaining the popu-
lation of Pax7þ progenitors. During development, postmitotic myofibers
must differentiate, while proliferating progenitors must be maintained for
growth. Therefore, in the same environment some progenitors must differ-
entiate, while others must continue to proliferate. It has been hypothesized
that embryonic, fetal, and adult progenitors and/or myoblasts are intrinsi-
cally different so that these cells will respond differently to similar environ-
mental signals (Biressi et al., 2007a,b). Thus, differential sensitivity to TGFb,
BMP, and Wnt/b-catenin signaling may be a molecular mechanism to
allow embryonic progenitors to differentiate, but maintain a fetal and
adult progenitor population.

The above examples demonstrate that embryonic, fetal, and adult myo-
genesis are differentially regulated by different signaling pathways. Until
recently, what signals regulate the transitions from embryonic to fetal,
neonatal, and adult myogenesis have been unknown. The expression of
Pax7 in progenitors demarcates progenitors as being fetal/neonatal/adult
progenitors, as opposed to Pax3þ embryonic progenitors. Now elegant
in vitro and in vivo studies demonstrate that that the transcription Nfix is
expressed in fetal and not embryonic myoblasts, and Pax7 directly binds and
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activates the expression Nfix (Messina et al., 2010). Moreover, Nfix is
critical for regulating the transition from embryonic to fetal myogenesis.
Nfix both represses genes highly expressed in embryonic muscle, such
as MyHCI, and activates the expression of fetal-specific genes, such as
a7-integrin, b-enolase, muscle creatine kinase, and muscle sarcomeric
proteins. Thus Nfix functions as an intrinsic transcriptional switch which
mediates the transition from embryonic to fetal myogenesis. Recent studies
have also demonstrated that extrinsic signals from the connective tissue
niche, within which muscle resides, are also important for regulating muscle
maturation (Mathew et al., 2011). The connective tissue promotes the
switch from the fetal to adult muscle by repressing developmental isoforms
of myosin and promoting formation of large, multinucleate myofibers.
Determining the full range of intrinsic and extrinsic factors that regulate
the transitions from embryonic to fetal, neonatal, and adult myogenesis will
be important areas for future research.

7. Current Model of Myogenesis

From these expression, functional, and lineage studies, a current
model of myogenesis in the limb emerges that is a variant of our theoretical
Models 2 and 4 (Fig. 1.2). Embryonic, fetal, neonatal, and adult muscle
derive from three related, but distinct populations of progenitors. From the
somite, Pax3þ progenitors migrate into the limb and are bipotential, giving
rise to either endothelial cells or muscle. Myogenic Pax3þ cells require
Pax3 function for their delamination from the somites, migration, and
maintenance. Pax3þ cells give rise to and are required for embryonic
myogenesis. In addition, Pax3þ cells give rise to Pax7þ progenitors. In
turn, these Pax3-derived, Pax7þ progenitors give rise to and are required
for fetal myogenesis. These Pax7þ progenitors also appear to give rise to
neonatal muscle, but whether the fetal and neonatal progenitors are exactly
the same population is unclear. Unlike fetal Pax7þ progenitors, neonatal
Pax7þ progenitors may reside underneath the basal lamina of myofibers,
similar to satellite cells. Also, while it has been shown that neonatal Pax7þ
cells require Pax7 for their maintenance and proper function, it has not been
explicitly tested whether fetal Pax7þ cells require Pax7. Adult muscle
derives from Pax7þ progenitors, satellite cells, which reside under the
myofiber basal lamina. Unlike Pax7þ neonatal progenitors, Pax7þ satellite
cells do not require Pax7 for their maintenance and function. Also, the great
majority of quiescent Pax7þ satellite cells express Myf5. Pax7þ satellite
cells are likely to directly derive from fetal or neonatal Pax7þ progenitors.
However, the finding that all quiescent Pax7þ satellite cells have expressed
MyoD in their lineage suggests that satellite cells may derive indirectly from
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Pax7þ fetal or neonatal myogenic progenitors via MyoDþ (or potentially
Myf5þ) myoblasts (gray arrows in Fig. 1.2). Also, some Pax7þ satellite cells
may derive from adult myoblasts, generated by activated Pax7þ satellite
cells. Both scenarios would suggest that the progression from progenitor to
myoblasts may not be irreversible, and myoblasts may give rise to Pax7þ
progenitors.

There are multiple distinct populations of myoblasts that give rise to
embryonic, fetal/neonatal, and adult muscle. Embryonic myoblasts are
distinct from fetal/neonatal myoblasts. Embryonic limb myoblasts require
either MyoD, Myf5, or Mrf4 for their determination, while fetal myoblasts
require either MyoD or Myf5 (Mrf4 cannot support fetal myoblasts). Adult
myoblast function is regulated by Myf5 and MyoD, but whether Myf5 and
MyoD are required has not been formally tested. Within embryonic and
fetal myoblasts there appear to be at least two subpopulations, Myf5-inde-
pendent and Myf5-dependent. Differentiation of embryonic and fetal
myoblasts into differentiated myocytes and myofibers is differentially regu-
lated by MRFs and signaling. Embryonic myoblasts require either MyoD,
Myogenin, or Mrf4 for their differentiation, while fetal myoblasts require
Myogenin and Mrf4 or MyoD. Also, while embryonic myogenesis is
insensitive to TGFb, BMP, and b-catenin signaling, fetal myogenesis is
regulated by these signaling pathways. The expression of Nfix within fetal
myoblasts is critical for their differentiation into fetal myofibers. Once
differentiated, embryonic, fetal/neonatal, and adult myofibers express dif-
ferent combinations of MRFs, muscle contractile proteins (including
MyHC isoforms), and metabolic enzymes.

From this model, it is clear that amniote myogenesis is complex. Multi-
ple related, although distinct progenitor and myoblast populations give rise
to embryonic, fetal, neonatal, and adult muscle. In the future, it will be
important to resolve the relationships between myogenic progenitors and
myoblasts and definitively answer whether myoblasts ever give rise to
progenitors. Also, the extrinsic cell populations and molecular signals dif-
ferentially regulating the different phases of myogenesis are largely
unknown. Finally, a critical question is the identification of the intrinsic
and extrinsic factors that maintain the populations of myogenic progenitors,
particularly in the embryo and fetus where progenitors reside alongside
actively differentiating myogenic cells.
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SATELLITE CELLS, CONNECTIVE TISSUE FIBROBLASTS AND THEIR 
 

 INTERACTIONS ARE CRUCIAL FOR MUSCLE REGENERATION 
 
 
 

Reprint of: Murphy, M.M., Lawson, J.A., Mathew, S.J., Hutcheson, D.A., and Kardon, G. 
(2011). Satellite cells, connective tissue fibroblasts and their interactions are crucial for 
muscle regeneration. Development 138, 3625-3637. 
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SUMMARY
Muscle regeneration requires the coordinated interaction of multiple cell types. Satellite cells have been implicated as the primary
stem cell responsible for regenerating muscle, yet the necessity of these cells for regeneration has not been tested. Connective
tissue fibroblasts also are likely to play a role in regeneration, as connective tissue fibrosis is a hallmark of regenerating muscle.
However, the lack of molecular markers for these fibroblasts has precluded an investigation of their role. Using Tcf4, a newly
identified fibroblast marker, and Pax7, a satellite cell marker, we found that after injury satellite cells and fibroblasts rapidly
proliferate in close proximity to one another. To test the role of satellite cells and fibroblasts in muscle regeneration in vivo, we
created Pax7CreERT2 and Tcf4CreERT2 mice and crossed these to R26RDTA mice to genetically ablate satellite cells and fibroblasts.
Ablation of satellite cells resulted in a complete loss of regenerated muscle, as well as misregulation of fibroblasts and a dramatic
increase in connective tissue. Ablation of fibroblasts altered the dynamics of satellite cells, leading to premature satellite cell
differentiation, depletion of the early pool of satellite cells, and smaller regenerated myofibers. Thus, we provide direct, genetic
evidence that satellite cells are required for muscle regeneration and also identify resident fibroblasts as a novel and vital
component of the niche regulating satellite cell expansion during regeneration. Furthermore, we demonstrate that reciprocal
interactions between fibroblasts and satellite cells contribute significantly to efficient, effective muscle regeneration.

KEY WORDS: Muscle regeneration, Satellite cells, Connective tissue, Fibrosis, Tcf4, Tcf7L2, Pax7, Mouse

Satellite cells, connective tissue fibroblasts and their
interactions are crucial for muscle regeneration
Malea M. Murphy1, Jennifer A. Lawson1, Sam J. Mathew1, David A. Hutcheson2 and Gabrielle Kardon1,*
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MATERIALS AND METHODS
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$/';5';5'F$&)",-#$)6'I)-2"&#-+1'$/'D-##$<&-:6'F;9>'3E8' .[!,6'&(+'G.W7(6
E>T89>E6' "O-$#0-")0":' ()%' (UDP' 3Z57' .[!,6' !$<#"' G.W7(6' P7Z>K6
U-.!(:6'(#'A",,'(#'WYJ6'J;WYS!6'=0/>'3#""'(@$2":5

Cell culture
Y$&'!1$/-@"&'*&"*(&(+-$)#6'=P#'A"&"'%-."#+"%'A-+B'>88'I[!,'F$,,(.")(#"
G' 3L$&+B-).+$):' /$&' \8' !-)<+"#' (+' 9KeF6' A(#B"%' -)' JOU6' /-H"%' /$&' Z
!-)<+"#'-)'>c'JYP6'A(#B"%'-)'JOU'()%'!$<)+"%'$)+$'#,-%"#'@"/$&"'@"-).
*&$0"##"%'/$&'-!!<)$/,<$&"#0")0"5'Y-2"'%(1#'*$#+T-)b<&1'3%*-:'A-+B'O(F,76
DF='/-@&$@,(#+#'A"&"' -#$,(+"%' /&$!'=P#'@1'%-."#+-$)'A-+B'7888'I[!,
F$,,(.")(#"'G'/$&'`8'!-)<+"#'(+'9KeF5'F",,#'A"&"'/-,+"&"%6'#*<)'(+'7Z88'&*!
3E7ZM'!:' /$&'78'!-)<+"#'()%'*,(+"%' 37Z6888'0",,#[0!7:'$)'`T0!'*,(#+-0
%-#B"#'0$)+(-)-).'.",(+-)T0$(+"%'0$2"&#,-*#' /$&'7'B$<&#'(+'9KeF' -)'YE7
Q(!#'A-+B'E8c'YOU5'F",,#'-)'+B"'#<*"&)(+()+'A"&"'%-#0(&%"%'()%'7>T>M
B$<&#',(+"&'(%B"&")+'0",,#'A"&"'B(&2"#+"%5

Semi-quantitative PCR
Y$&'#"!-T]<()+-+(+-2"'JFS6'/-@&$@,(#+#'A"&"'-#$,(+"%'@1'*&"T*,(+-).'0",,#
/&$!',-!@'!<#0,"#'$/')"$)(+(,'A-,%T+1*"'!-0"'()%'!1$@,(#+#'-#$,(+"%'@1
/,<$&"#0")0"T(0+-2(+"%'0",,'#$&+-).'3YPFU:'$/'1",,$A'/,<$&"#0")+'*&$+"-)
3nYJ:? 0",,#'/&$!',-!@'!<#0,"#'$/')"$)(+(, !"#$%&'B4C)+6)=0!B4 !-0"'(#
%"#0&-@"%'@1'D(+B"A'"+'(,5'3D(+B"A'"+'(,56'78EE:5'=$+(,'SdP'A(#'"H+&(0+"%
<#-).'+B"'=-##<"V1#"&'GG'()%'o-(.")'Sd"(#1'V-*-%'=-##<"'D-)-'4-+'()%
&"2"&#"'+&()#0&-@"%'A-+B'G)2-+&$.")'U<*"&#0&-*+'GGG5'X]<(,'(!$<)+#'$/'SdP
A"&"' (!*,-/-"%' @1' 9>' 010,"#' $/' JFS' <#-).' *&-!"&#' /$&' ?"8DE 3Z!T
WFPFFPFFPPF=WF==PWFT9!C' Z!TWFFW=P==FP==W=FP=PFFT
9!:6'*9:; 3Z!TWWPWWPWPPWPPF=FWWPPPPT9!C'Z!TPWW=PWWW'T
WF=FW=FPWW=T9!:'()%'%276"F 3Z!TPFPPP=WFFF==WF=WF=PFT
9!C'Z!TP=FWFFFPFPP=WFFFPWPPT9!:5

Quantification and statistics
=B"')<!@"&'$/'J(HK?6'D1$;? $&'=0/>? )<0,"-'A(#'%"+"&!-)"%'<#-).'+B"
G!(."a'P)(,1_"'J(&+-0,"#'/<)0+-$)5'F$T,(@",-).'$/'J(HK6'D1$;'$&'=0/>
A-+B' *B$#*B$B-#+$)"TQ9' 3JQQ9:' $&' X%I'A(#' %"+"&!-)"%' @1' (%%-+-2"
-!(."'$2"&,(1'-)'G!(."a5'Y$&'D1QF"!@'3"!@&1$)-0'!1$#-)'B"(21'0B(-):
$&'D1QF+$+(,'3+$+(,'!1$#-)'B"(21'0B(-):6'+B"'+$+(,')<!@"&'$/'D1QF"!@?

$&'D1QF+$+(,? *-H",#'A(#'0$<)+"%5'Y$&']<()+-/-0(+-$)'$/'DF='"H+&(0",,<,(&
!(+&-H6'U-&-<#'S"%? (&"('A(#']<()+-/-"%'@1'#","0+-).'&"%'*-H",#'-)'P%$@"
JB$+$#B$*6'%","+-).'(,,')$)T&"%'*-H",#6'0$)2"&+-).'+B"'&"#<,+-).'-!(."'+$'(
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!"#$%&'"($)*'$#+',-.#/"#)'0*+1 2"3*45'.5"#)'/6*'7($)*8'9#$4&:*';$%/",4*5
<.#,/"-#='>-%'*$,6'?$%"$!4*@',-.#/5'-<'/A-'/-'/6%**'5*,/"-#5'$,%-55'/6*'*#/"%*
B9'A*%*'$?*%$)*+'<-%'/6%**'/-'<"?*'"#+"?"+.$45'-<'*$,6')*#-/&2*'2*%'/"(*
2-"#/'$#+'$#$4&:*+'.5"#)'C/.+*#/D5'/A-E/$"4*+'!E/*5/=

RESULTS
Tcf4 is highly expressed in MCT fibroblasts during
adult muscle regeneration
F.%"#)' +*?*4-2(*#/' $#+' "#' /6*' $+.4/@' <"!%-!4$5/5' "#' /6*' GHB
*#+-(&5".(@'2*%"(&5".('$#+'*2"(&5".('5/%-#)4&'*32%*55'B,<I
JG$/6*A' */' $4=@' KLMMN=' B-' +*/*%("#*' A6*/6*%' B,<I1 GHB
<"!%-!4$5/5'$%*'2%*5*#/'+.%"#)'(.5,4*'%*)*#*%$/"-#'"#'/6*'$+.4/@'A*
*3$("#*+'/6*'/"!"$4"5'$#/*%"-%'JB9N'(.5,4*'-<'A"4+E/&2*'(",*'<"?*
+$&5'2-5/' "#O.%&' J+2"N'!&'P$H4K='P$H4K ,$.5*5'(&-<"!*%'6&2*%E
,-#/%$,/"-#' $#+' +*$/6@' !./' +-*5' #-/' $<<*,/' /6*' 5.%%-.#+"#)
(-#-#.,4*$%'2-2.4$/"-#5@'5.,6'$5'/6*'5$/*44"/*',*445'$#+'<"!%-!4$5/5
JH$4+A*44'*/'$4=@'MQQLR'S$#5*#'*/'$4=@'MQTIN='7#'B95'$/'U'+2"@'/6*%*
"5' $#' $!.#+$#,*'-<'C"%".5'0*+1 GHB'5.%%-.#+"#)' %*)*#*%$/"#)
(&-<"!*%5'J>")='MPN='V"/6"#'/6*5*'GHB'%*)"-#5'$#+'-./5"+*'/6*
4$("#"#1 %*)*#*%$/"#)'(&-<"!*%5@',*445'5/%-#)4&'*32%*55"#)'B,<I
A*%*'+*/*,/*+'!&'"((.#-<4.-%*5,*#,*'J>")='M9@HN='P*,$.5*'B,<I1

,*445'+-'#-/',-E4$!*4'A"/6';$3W@'G&-F'-%'>IXTL'J>")='MY@>N@'/6*&
$%*' .#4"Z*4&' /-' !*' (&-)*#",' 2%-)*#"/-%5@' (&-!4$5/5' -%
($,%-26$)*5='>.%/6*%(-%*@'($#&'-<'/6*5*'B,<I1 ,*445',-E4$!*4'A"/6
;F[>0! J24$/*4*/E+*%"?*+')%-A/6'<$,/-%'%*,*2/-%'$426$N@'$'%*,*2/-%
*32%*55*+'-#'GHB'<"!%-!4$5/5'J>")='MFN'J8-*'*/'$4=@'KLMLR'\45-#
$#+'C-%"$#-@'KLLQR']*:.("'*/'$4=@'KLMLN=
V*',6$%$,/*%":*+'B,<I1 ,*445'<.%/6*%'!&'"5-4$/"#)'$#+')%-A"#)

GHB' <"!%-!4$5/5' "#' ,.4/.%*='GHB' <"!%-!4$5/5' A*%*' "5-4$/*+' !&
24$/"#)',*445'<%*564&'+"55-,"$/*+'<%-('$+.4/'B95'J$/'U'+2"'!&'P$H4KN
-#'24$5/",',.4/.%*'+"56*5='9</*%'/A-'6-.%5@'(&-)*#",',*445@'A6",6
+-'#-/'%*$+"4&'$+6*%*'/-'24$5/",'J0",64*%'$#+' $̂<<*@'MQWLN@'A*%*
+"5,$%+*+'$#+'$+6*%*#/',*445'A*%*'A$56*+'$#+')%-A#'<-%'KIEIT
6-.%5='B6*'$+6*%*#/',*445'A*%*'6")64&'*#%",6*+'A"/6'<"!%-!4$5/5
J"+*#/"<"$!4*'(-%26-4-)",$44&'!&'/6*"%'25*.+-2-+"$'$#+'4$%)*@'%-.#+
#.,4*"N@'$#+'/6*5*'<"!%-!4$5/5'A*%*'B,<I1 J>")='M[@SN='7#'$++"/"-#@
B,<I1 <"!%-!4$5/5' A*%*' ;F[>0!1 $#+' !CG91 J$426$' 5(--/6
(.5,4*'$,/"#@'$#-/6*%'($%Z*%'-<'<"!%-!4$5/5N'JB-($5*Z'*/'$4=@'KLLKN
J>")=' M[@SN=' GHB' <"!%-!4$5/5' 6$?*' !**#' 56-A#' 2%*?"-.54&' /-
5&#/6*5":*'6")6'4*?*45'-<'YHG'$#+'/-'.#"_.*4&'5&#/6*5":*',-44$)*#
`7@'A6*%*$5'(&-)*#",',*445'+-'#-/'5&#/6*5":*'/6"5',-44$)*#'Ja-.'*/
$4=@'KLLTN='V*'<-.#+'!&'5*("E_.$#/"/$/"?*';H0'/6$/'<"!%-!4$5/5@
"5-4$/*+' ?"$' 2%*E24$/"#)@' *32%*55'B,<I' $#+' ,-44$)*#'`7'A6*%*$5
(&-!4$5/5@' "5-4$/*+' !&' >9HC' -<' ^>;1 ,*445' <%-(
"#$%&'()*+,-.,/0")* (",*'J"#'A6",6'(&-)*#",'2%*,.%5-%5'$#+'/6*"%
+*5,*#+*#/5'$%*'4$!*4*+N'JS./,6*5-#'*/'$4=@'KLLQN'+-'#-/'J>")='M7N=
7#' 5.(($%&@' A*' 56-A' /6$/' +.%"#)' (.5,4*' %*)*#*%$/"-#' GHB
<"!%-!4$5/5'*32%*55'B,<I@'$#+'/6$/'B,<I1 ,*445'$%*'#*"/6*%'(&-)*#",
,*445'#-%'($,%-26$)*5=

Pax7+ satellite cells and Tcf4+ fibroblasts rapidly
expand in close proximity to one another after
muscle injury
B-'$55*55'/6*'2-/*#/"$4'%-4*'-<'5$/*44"/*',*445'$#+'GHB'<"!%-!4$5/5
+.%"#)'(.5,4*'%*)*#*%$/"-#@'A*',6$%$,/*%":*+'/6*'/*(2-%$4E52$/"$4
%*4$/"-#56"2' !*/A**#';$3W1 5$/*44"/*' ,*445' $#+'B,<I1 <"!%-!4$5/5
+.%"#)'#-%($4'%*)*#*%$/"-#'$</*%'P$H4K "#O.%&'"#'A"4+E/&2*'(",*=
C"("4$%'/-'/6*'<"#+"#)5'-<'-/6*%5'J+D94!"5'*/'$4=@'MQTTN@'A*'-!5*%?*+
/6$/'%*)*#*%$/"#)'(&-<"!*%5'!*)"#'/-'*32%*55'/6*'+*?*4-2(*#/$4
(&-5"#'6*$?&',6$"#' "5-<-%('G&SH*(!'$/'b'+2"@' *32%*55'2*$Z
4*?*45'$/'U'+2"@'$#+'!&'MI'+2"'/6*'($/.%*@'%*)*#*%$/*+'(&-<"!*%5'#-
4-#)*%'*32%*55'G&SH*(!@'!./'-#4&'($/.%*'G&SH7X77'"5-<-%(5

J>")='K9E[@HHR'+$/$'#-/'56-A#N='9#'"#,%*$5*'"#'GHB'YHG'"5'$45-
,6$%$,/*%"5/",' -<' (.5,4*' %*)*#*%$/"-#' JS.$%+' */' $4=@' KLLKN=' P&
_.$#/"<&"#)'/6*'$(-.#/'-<'C"%".5'0*+1 GHB'JF.!-A"/:'$#+'C*A%&@
KLLWN@'A*'<-.#+'/6$/'GHB'"#,%*$5*5'/-'2*$Z'4*?*45'$/'b'+2"@' "#
,4-5*'2%-3"("/&'/-'/6*'%*)*#*%$/"#)'(&-<"!*%5@'$#+'/6*#')%$+.$44&
%*5-4?*5' /-' #*$%E#-%($4' $(-.#/5' !&' KM' +2"' J>")=' K ÈPP@>>N=
H-#,*#/%$/*+' "#' /6*' %*)"-#' -<' %*)*#*%$/"#)' (&-<"!*%5@' ;$3W1

5$/*44"/*' ,*445' %$2"+4&' 2%-4"<*%$/*+'A"/6"#' M' +2"' J>")=' K[[N' $#+
*32$#+*+'<%-('KU',*445X((K $/'M'+2"'/-'MTL';$3W1 ,*445X((K !&'U
+2"' J>")=' KSEc@FFN=' C$/*44"/*' ,*445' *"/6*%' +"<<*%*#/"$/*' "#/-
(&-!4$5/5'$#+'(&-<"!*%5'JA6",6'+-A#%*).4$/*';$3WN'-%'%*/.%#'/-
_."*5,*#,*' $5' ;$3W1 5$/*44"/*' ,*445' 4&"#)' .#+*%' /6*' !$5*(*#/
(*(!%$#*'-<'(&-<"!*%5'JC*$4*'*/'$4=@'KLLLN='P&'KT'+2"@'/6*'#.(!*%
-<' _."*5,*#/';$3W1 5$/*44"/*' ,*445' %*/.%#*+' /-' #-%($4@' .#"#O.%*+
4*?*45'J>")='KFFR'+$/$'#-/'56-A#N='V*'$45-'<-.#+'/6$/'b'+2"'B,<I1

<"!%-!4$5/5'%$2"+4&'2%-4"<*%$/*'J>")='KSSN'$#+'"#,%*$5*'<%-('MdU
,*445X((K $/'M'+2"'/-'2*$Z'4*?*45'-<'dUL'B,<I1,*445X((K $/'U'+2"
J>")='K\E]@YYN='B6*5*'B,<I1 <"!%-!4$5/5'A*%*'"#',4-5*'2%-3"("/&'/-
5$/*44"/*',*445'$#+'%*)*#*%$/"#)'(&-<"!*%5'$#+'4$&'A"/6"#'/6*'C"%".5
0*+1 GHB'J>")='KF@e@0@^N='H-#,-("/$#/'A"/6' /6*'+*,%*$5*' "#
GHB@' /6*' #.(!*%' -<' B,<I1 <"!%-!4$5/5' +*,%*$5*+' /-' #-%($4@
.#"#O.%*+'4*?*45'!&'KT'+2"'J>")='K]@YYR'+$/$'#-/'56-A#N='B6.5@'A*
56-A' <-%' /6*' <"%5/' /"(*' /6$/' +.%"#)' (.5,4*' %*)*#*%$/"-#' GHB
<"!%-!4$5/5'%$2"+4&'*32$#+'"#'%*)"-#5'-<'%*)*#*%$/"#)'(&-<"!*%5'$#+
GHB' <"!%-5"5@' $#+' "#' ,4-5*' $55-,"$/"-#'A"/6' 5$/*44"/*' ,*445='B6*
,4-5*'/*(2-%$4'$#+'52$/"$4'%*4$/"-#56"2'!*/A**#'5$/*44"/*',*445'$#+
GHB'<"!%-!4$5/5'5.))*5/5'/6$/'"#/*%$,/"-#5'!*/A**#'/6*5*'/A-',*44
/&2*5'(")6/'!*'"(2-%/$#/'<-%'%*)*#*%$/"-#=

3627RESEARCH ARTICLECell interactions in muscle regeneration

Fig. 1. Tcf4 is highly expressed in muscle connective tissue (MCT)
fibroblasts during muscle regeneration. (A-C) Tcf4+ cells at 5 dpi
(BaCl2) are interstitial to regenerating laminin+ myofibers within Sirius
Red+ MCT. A and B show adjacent sections. (D-F) In muscle at 5 dpi,
some Tcf4+ cells are PDGFR!+ (D, arrows), and all are Pax7– and MyoD–

(E) and F4/80– (F). (G,H) MCT fibroblasts isolated from TAs at 5 dpi are
Tcf4+, PDGFR!+ (G) and !SMA+ (H). (I) Semi-quantitative PCR shows
that neonatal MCT fibroblasts, but not myoblasts, express Tcf4 and
Col6a3. Scale bars: in B, 50 m for A,B; in C, 12.5 m; in F, 25 m for
D-F; in H, 10 m for G,H.
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3628

Pax7CreERT2 mice allow for efficient manipulation
of satellite cells
!"#$%&%'()*++,#-*&(./+*'%#0*'%++('%#)%++0#(&#'1%#*2/+'3#4%#)5%*'%2
'*-"6(7%&8(&2/)(9+%# !"#$%&'()*+ -()%# 9,# 1"-"+"$"/0
5%)"-9(&*'("&:#;&#'1%0%#-()%3#*&#,&'-%&'()*+ )*00%''%#<=%(+#%'
*+:3# >??@A# (0# (&0%5'%2# B/0'# *7'%5# '1%# %&2"$%&"/0# '%5-(&*'("&
)"2"&3# -*(&'*(&(&$# '1%# C!D!E# *&2# '1%# %&2"$%&"/0# ."+,<FA
0%G/%&)%# <=($:# CFA:# !"# '%0'# '1%# %77()(%&),# "7# H5%8-%2(*'%2
5%)"-9(&*'("&#(&#I*6@J 0*'%++('%#)%++03#4%#)5"00%2#!"#$%&'()*+ '"
)+.)/"013# )+.)23!3# )+.)4*45 "5# !6/&+"7/"01 5%."5'%5# -()%3
41()1#%6.5%00# 8$*+*)'"0(2*0%3#),'".+*0-()#K=I3#"5#-%-95*&%8
9"/&2#L=I#(&#5%0."&0%#'"#H5%#<M*+2*5#%'#*+:3#NOOPQ#R/S/-2*5
%'#*+:3#NOO@Q#T"5(*&"3#>???Q#T5(&(U*0#%'#*+:3#NOO>A:#;&#'1%#*90%&)%
"7#'*-"6(7%&3#&"#!"#$%&'()*+89:)+.)&';6&<'&89 -()%#%U%5#%6.5%00%2
*&,# "7# '1%# 5%."5'%50:# V%# '%0'%2# 41%'1%53# (&# '1%# .5%0%&)%# "7
'*-"6(7%&3#!"#$%&'()*+ -()%#$%&%'()*++,#+*9%+%2#I*6@J )%++0#9,
1*5U%0'(&$#/&(&B/5%2#!F0#75"-#*2/+'#!"#$%&'()*+89:)+.)4*4589

-()%#"&%#2*,#*7'%5#'15%%#2*(+,#'*-"6(7%&#2"0%0:#;&#!F#0%)'("&03
&%*5+,#*++#I*6@J 0*'%++('%#)%++0#+,(&$#/&2%5#'1%#+*-(&(&J 9*0%-%&'
-%-95*&%#"7#-,"7(9%50#4%5%#L=IJ <=($:#C=8;A:#;&#*22('("&3#&"

"'1%5# )%++0# <%:$:# -,"&/)+%(# "5# (&'%50'('(*+# )%++03# 0/)1# *0
7(95"9+*0'0A#"'1%5#'1*&#0/9+*-(&*5#I*6@J )%++03#4%5%#L=IJ <=($:
CW3X8YA:# !"# G/*&'(7,# '1%# %77()(%&),# "7# H5%8-%2(*'%2
5%)"-9(&*'("&# (&# 0*'%++('%# )%++03#4%# (0"+*'%2# 0(&$+%#-,"7(9%50
75"-#/&(&B/5%2#!F0#"7#!"#$%&'()*+89:)+.)23!89 -()%3#"&%#2*,
*7'%5#7(U%#2*(+,#'*-"6(7%&#2"0%0:#Y(&%',87(U%#.%5)%&'#"7#*++#I*6@J

0*'%++('%#)%++0#4%5%#K=IJ <7 @Z[A:#;&#*22('("&3#4%#U%5(7(%2#'1*'
K=IJ )%++0#"&#'1%#-,"7(9%50#4%5%#0*'%++('%#)%++03#*0#K=IJ )%++0
4%5%#)"8+*9%+%2#4('1#T,&2%)*&[#*&2#H\C[3#'4"#"'1%5#0*'%++('%
)%++#-*5]%50#<=($:#CH3\A#<^%*/)1*-.#%'#*+:3#NOOOQ#H"5&%+(0"&#%'
*+:3# NOO>A:# V%# *+0"# )"&7(5-%2# '1*'# I*6@J )%++0# $(U%# 5(0%# '"
5%$%&%5*'%2# -/0)+%# 9,# (&B/5(&$# !F0# 75"-
!"#$%&'()*+89:!6/&+"7/"0189 -()%#<4('1#7(U%#'*-"6(7%&#2"0%0A#*&2
'1%&# 0'*(&(&$# >[# 2.(#!F0# 7"5# 8$*+*)'"0(2*0%# (&# 0%)'("&# "5# (&
41"+%#-"/&'#<=($:#C_#*&2#=($:#`^A:#F0#%6.%)'%23#*++#5%$%&%5*'%2
-,"7(9%50#4%5%# 8$*+*)'"0(2*0%J:
!"#$%&'()*+ -()%#4%5%#2%0($&%2#'"#.5%0%5U%#%&2"$%&"/0#I*6@

%6.5%00("&# *&2# 7/&)'("&:# !"# '%0'# 41%'1%5# I*6@# %6.5%00("&# *&2
7/&)'("&#4%5%#(&'*)'3#4%#$%&%5*'%2#!"#$%&'()*+8%&'()*+:)+.)23!89

-()%:# K=IJ H\C[J 0*'%++('%# )%++0# 4%5%# .5%0%&'# "&# -,"7(9%50
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Fig. 2. After BaCl2 injury, Pax7+ satellite cells and Tcf4+ fibroblasts expand rapidly in close proximity to one another and regenerating
myofibers. (A-G,CC) MyHCemb+ regenerating myofibers. (H-N,DD,GG) Pax7+ satellite cells. (O-U,EE,HH) Tcf4+ muscle connective tissue (MCT)
fibroblasts. (V-BB,FF) Sirius Red+ MCT. Arrows in I, P and Q label a few of the PHH3+ Pax7+ or PHH3+Tcf4+ cells. (II) Tibialis anterior (TA) cross-
sectional area measured on Sirius Red-stained sections 30-40 m from TA origin. At each time point, adjacent sections are shown. Scale bar:
100 m for A-BB. For all graphs, mean ± s.e.m. are plotted.
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Fig. 3. Pax7CreERT2 mice efficiently label satellite cells. (A) Pax7CreERT2 targeting strategy. (B-D) In myofibers isolated from uninjured tibialis
anterior muscles (TAs) from Pax7CreERT2/+;R26RYFP/+ mice one day after five daily tamoxifen doses, 95% of Pax7+ satellite cells are YFP+ (B) and YFP+

cells are Syndecan4+ (C) and CD34+ (D). (E) In fibers isolated from uninjured TAs from Pax7CreERT2/CreERT2;R26RYFP/+ mice one day after five tamoxifen
doses, normal numbers of CD34+ satellite cells are present. (F-O) In cryosections of uninjured TAs from Pax7CreERT2/+;R26RmTmG/+ mice one day after
three tamoxifen doses, nearly all Pax7+ cells are GFP+ (F-I), lie within laminin+ myofiber basement membrane (K-N), and are Tcf4– (J). Tomato in Cre-
myofibers was quenched by antigen retrieval. Arrows indicate Pax7+ satellite cells. (O) At 14 dpi, all regenerating myofibers are -galactosidase+ in
Pax7CreERT2/+;Polr2anlacZ/+. Scale bars: in B, 20 m; in E, 10 m for C-E; in M, 25 m for F-H,K-M; in J, 12.5 m; in N, 6.25 m for I,N; in O, 50 m.
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Fig. 4. Ablation of Pax7+ satellite cells leads to complete loss of muscle regeneration. (A-I) At 5 dpi, 91% of Pax7+ cells are ablated (A-C),
resulting in fewer MyHCemb+ regenerating myofibers (D-F) and Tcf4+ fibroblasts (G-I) in Pax7CreERT2/+;R26RDTA/+ mice. (J-R) At 28 dpi, tibialis anterior
(TA) cross-sectional area (L,O,R) and MyHCemb+ regenerated myofibers (J-L) are reduced, whereas the proportion of Sirius Red+ MCT (M-O), and
the density of Tcf4+ fibroblasts (P-R) is increased in Pax7CreERT2/+;R26RDTA/+ mice. Insets in J and K show residual, incompletely injured myofibers with
peripheral nuclei in Pax7CreERT2/+;R26RDTA/+ mice compared with regenerated myofibers with centralized nuclei in Pax7+/+;R26RDTA/+. (S-Z) At 28 dpi,
{BaCl2 or cardiotoxin (CTX)], injured TAs are completely fibrotic or edemic in Pax7CreERT2/+;R26RDTA/+ mice, in whole mount (S,T,W,X) and Sirius Red-
stained cross-sections (U,V,Y,Z). (AA-DD) Ablation of satellite cells prior to CTX injury leads to loss of regenerated muscle. In all tamoxifen/injury
strategy schema, gray bars represent one day and black bars one week, tamoxifen (TMX) administration is indicated by blue arrowheads and BaCl2
or CTX application is indicated by red arrows. Whole mount images have been flipped so the injured limb (R) is on the right. TA weights include
attached extensor digitorum longus (EDL). Scale bars: in Q, 100 m for A,B,D,E,G,H,J,K,M,N,P,Q; in DD, 500 m for U,V,Y,Z,CC,DD. For all graphs,
mean ± s.e.m. are plotted. D
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Fig. 5. Tcf4CreERT2 mice label muscle connective tissue (MCT) fibroblasts. (A) Tcf4CreERT2 targeting strategy. (B) At 14 dpi, several myofibers in
uninjured tibialis anterior muscles (TAs) and all myofibers in injured TAs of Pax7CreERT2/+;R26RlacZ/+ mice are -galactosidase+, but in TAs of
Tcf4CreERT2/+;R26RlacZ/+ mice no myofibers are -galactosidase+. (C-K) In cryosections of TAs at 5 dpi (BaCl2) from Tcf4CreERT2/+;R26RmTmG/+ mice (five
tamoxifen doses), Tcf4+ fibroblasts are GFP+ (F-K), lie in between laminin+ regenerating myofibers (F-H) and are not F4/80+ (I-K). (L-N) MCT
fibroblasts isolated from TAs at 5 dpi (BaCl2) from Tcf4CreERT2/+;R26RmTmG/+ mice (five tamoxifen doses) are GFP+ (L-N), Tcf4+ (L), !SMA+ (M) and
PDGFR!+ (N). (O) In preparations of all mononuclear cells from the same Tcf4CreERT2/+;R26RmTmG/+ mice as shown in L-N, GFP+ cells are Pax7– and
MyoD–. Scale bars: in K, 25 m for C-K; in O, 10 m for L-O.
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Fig. 6. During muscle regeneration, ablation of Tcf4+ fibroblasts leads to premature satellite cell differentiation and smaller
regenerated myofibers. (A-L) At 3 dpi, Tcf4+ cells are reduced (J-L), with no change in Pax7+ cells (A-C), but with an increase in MyoD+

progenitors/myoblasts (D-F) and MyHCemb+ regenerating myofibers (G-I) in Tcf4CreERT2/+;R26RDTA/+ mice. (M-X) At 5 dpi, 42% of Tcf4+ cells were
calculated to be ablated (V-X), resulting in fewer Pax7+ cells (M-O), MyoD+ progenitors/myoblasts (P-R) and MyHCemb+ regenerating myofibers (S-
U) in Tcf4CreERT2/+;R26RDTA/+ mice. (Y-KK) At 28 dpi, despite Tcf4+ fibroblast ablation (HH-JJ), Pax7+ cells recover (Y-AA), muscle largely regenerates
(BB-GG), but diameter of myofibers is reduced (BB,CC,EE,FF,KK) in Tcf4CreERT2/+;R26RDTA/+ versus Tcf4+/+;R26RDTA/+ mice. (LL-PP) By 56 dpi,
regenerated muscle is recovered in Tcf4CreERT2/+;R26RDTA/+ mice. Scale bars: in OO,100 m for all photomicrographs. For all graphs, mean ± s.e.m.
are plotted. D
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Fig. 7. Model of the role of Pax7+ satellite
cells and Tcf4+ muscle connective tissue
(MCT) fibroblasts and their interactions
during muscle regeneration. 
(A-C) Summary of cells and their interactions
after injury during normal regeneration (A),
with ablation of satellite cells (B) and with
partial ablation of MCT fibroblasts (C). (A)
During normal regeneration, satellite cells and
fibroblasts rapidly proliferate. Satellite cells are
absolutely required for normal regeneration of
myofibers. Reciprocal interactions between
satellite cells and fibroblasts are also important
for regeneration. (B) With ablation of satellite
cells, no regeneration of myofibers occurs and
muscle is largely replaced by MCT and
fibroblasts. (C) Partial ablation of fibroblasts
leads to premature differentiation of satellite
cells and results in smaller muscles with smaller
myofibers at 28 dpi, when muscle regeneration
is normally complete.
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Figure S1: Pax7CreERT2/+;R26RDTA/+ mice efficiently ablate satellite cells and result in long-term loss of 

regenerated myofibers. (A-D) In injured TA muscle from mice 5 dpi (BaCl2 injury) Syndecan4+ satellite 

cells are present in Pax7+/+;R26RDTA/+ mice, but no Syndecan4+ cells are present in Pax7CreERT2/+;R26RDTA/+ 

mice (both genotypes with 5 tamoxifen doses; see schematic of strategy, each grey bar represents one day 

and each black bar represents one week). (E-H) Ablation of Pax7+ satellite cells prior to injury, via 5 

tamoxifen doses prior to injury, leads to a complete loss of regenerated myofibers 28dpi (cardiotoxin 

injury) in Pax7CreERT2/+;R26RDTA/+ mice, as shown in whole mount (F) and  Sirius Red stained cross-sections 

through TAs (H), while muscle regeneration is complete in Pax7+/+;R26RDTA/+ mice (E, G). (I-L) Ablation 

of Pax7+ satellite cells  in Pax7CreERT2/+;R26RDTA/+ mice (still results in a complete loss of regenerated 

myofibers 56dpi (cardiotoxin injury), as shown in whole mount (I-J) and Sirius Red stained cross-sections 

through TAs (K-L). D scale bar = 50um, A-D; L scale bar = 500um G-H, K-L. 
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Supplemental Table: Antibodies used in study 
 

Antibody Type Source Product 
Number 

Working 
Concentration 

Na Citrate 
Antigen 
Retrieval 
(sections) 

Secondary and 
Amplification 
used in section 

Secondary 
used in 
culture 

Pax7 Mouse 
IgG1 DSHB PAX7 2.4µg/ml no 

biotin goat anti-
mouse IgG1, 
ABC, TSA 

Alexa 594 
goat anti- 

mouse IgG1 

Syndecan 
4 

Chick 
polyclonal 

gift DD 
Cornelison  1:1500 no 

Dylight 488 
donkey anti-

chick 

Cy3 donkey 
anti-chick 

CD34 Rat IgG2a EBioscience 14-0341 10µg/ml no  Cy3 goat anti-
rat 

MyoD Mouse 
IgG1 

Santa Cruz 
Biotechnology 

Sc-32758 
(5.8A) 

4µg/ml 
 no 

biotin goat anti-
mouse IgG1, 
ABC, TSA 

Alexa 594 
goat anti-

mouse IgG1 

MyHC 
embryonic 

Mouse 
IgG1 DSHB F1.652 3µg/ml 

 yes 
biotin goat anti-

mouse IgG1, 
ABC, TSA 

 

MyHCI Mouse 
IgG1 Sigma M8421 

(NOQ7.5.4D) 
1.5µg/ml 

 yes 
biotin goat anti-

mouse IgG1, 
ABC, TSA 

 

MyHC 
Peri+II 

Mouse 
IgG1 Sigma M4276 

(MY-32) 10µg/ml works with 
or without 

biotin goat anti-
mouse IgG1, 
ABC, TSA 

 

Laminin Rabbit 
polyclonal Sigma L-9393 2.5µg/ml  yes 

 

biotin goat anti-
rabbit and 

streptavidin conj. 
Dylight 488 or 

Cy2 

 

Tcf4 Mouse 
IgG2a Millipore 

05-511 
(Clone 6H5-

3) 

10µg/ml  
 yes 

biotin goat anti-
mouse IgG2a, 

ABC, TSA 
 

Tcf4 Rabbit 
monoclonal Cell Signaling 2569 

(C48H11) 
0.7µg/ml 

 yes 

biotin goat anti- 
rabbit, ABC, 

TSA OR 
streptavidin conj. 

Dylight 488 

biotin goat 
anti-rabbit, 
streptavidin 
conj. Cy3 

PDGFR! Goat 
polyclonal R&D Systems AF1062 5µg/ml no Dylight 594 

donkey anti-goat  

!SMA Mouse 
IgG2a Sigma A 2547 

(Clone 1A4) 5.2µg/ml no Alexa 488 goat 
anti-mouse IgG1  

F4/80 Rat IgG2a eBioscience 14-4801 2µg/ml no Dylight 594 goat 
anti-rat  

GFP Chick 
polyclonal Aves Labs GFP-1020 20µg/ml 

 no 
Dylight 488 
donkey anti-

chick 

goat anti-
chick Cy2 

Phospho-
histone H3 

Rabbit 
polyclonal Millipore 06-570 5µg/ml yes 

biotin goat anti-
rabbit and 

streptavidin conj. 
Cy3 
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CHAPTER 4 
 
 
 

WNT/β-CATENIN SIGNALING IS ACTIVE, BUT NOT REQUIRED FOR  
 

 STEM CELL FUNCTION DURING MUSCLE REGENERATION 
 
 
 

Abstract 
 

Wnt/β-catenin signaling is a critical regulator of adult stem cells in multiple  
 
tissues. Active Wnt/β-catenin signaling is clearly required for proliferation of intestinal, 

stomach, and hair follicle stem cells, although its role in adult hematopoietic stem cells is 

more controversial. A multitude of studies have implicated Wnt/β-catenin as an important 

regulator of the adult muscle stem cells, known as satellite cells, during muscle 

regeneration. In addition, we have previously demonstrated that β-catenin is required for 

fetal myogenesis. However, in vivo genetic studies manipulating signaling specifically 

within satellite cells during regeneration are lacking. Our analysis of satellite cells, 

transit-amplifying myoblasts, differentiating myocytes, and regenerated myofibers during 

regeneration reveals that Wnt/β-catenin signaling is transiently active, predominantly in 

myoblasts, 1-3 days postinjury. However, conditional genetic deletion of β-catenin within 

satellite cells and their derivatives demonstrates that β-catenin is not required for satellite 

cells to activate, proliferate, regenerate muscle, or return to their niche, even after 

multiple rounds of injury. Instead, down-regulation of transiently activated β-catenin is 

important for promoting an efficient regenerative response. Thus, despite clear activation 
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of Wnt/β-catenin signaling within myogenic cells, β-catenin is not required for adult 

muscle regeneration. Hence, muscle progenitors are differentially sensitive to Wnt 

signaling; while fetal progenitors require β-catenin, adult satellite cells do not. 

 
 

Introduction 
 

Skeletal muscle has extraordinary regenerative ability despite being post mitotic.  
 
This capacity for regeneration is due to the satellite cells, the resident muscle stem cells. 

Satellite cells are so named because of their unique niche adjacent to the myofiber 

membrane beneath the basal lamina. Satellite cells have the classical attributes of adult 

stem cells: they reside in a well-defined niche, give rise to transiently amplifying 

myoblasts, and self-renew. Additionally we, and others, have shown that muscle 

regeneration after injury is entirely dependent upon the satellite cells (Lepper et al., 2011; 

Murphy et al., 2011; Sambasivan et al., 2011). Thus deciphering the molecular signals 

that regulate satellite cell activation, differentiation, and self-renewal is critical for 

understanding muscle regeneration. 

How satellite cells regenerate muscle is well-characterized at a cellular level 

(reviewed in (Shi and Garry, 2006; Tedesco et al., 2010). All satellite cells express the 

transcription factor Pax7 and under normal conditions quiescently reside within their 

niche. In response to muscle injury, they become activated, leave the niche, proliferate, 

and express the myogenic regulatory factor MyoD. A subset of satellite cells return to the 

niche to self-renew. The MyoD+ cells are a transiently amplifying population of cells 

called myoblasts. Myoblasts differentiate into postmitotic myocytes, that express the 

myogenic regulatory factor myogenin (MyoG), and these myocytes in turn fuse to injured 
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myofibers to repair the damage. Regenerating myofibers express the developmental 

isoform of skeletal muscle MyHC MyHCembryonic (MyHCemb). The slow (MyHCI) 

and fast (MyHCII) isoforms of MyHC replace MyHCemb as the myofibers mature. 

Regenerated myofibers can be identified by their centrally localized nuclei for several 

months after injury. Although the cellular processes involved in muscle regeneration are 

well characterized, the molecular control of these processes is less elucidated. 

In the search to identify molecular regulators of satellite cell-mediated muscle 

regeneration, many studies have focused on signaling pathways involved in muscle 

development as well as regulation of other tissue-specific stem cells. One obvious 

candidate is the Wnt/β-catenin signaling pathway. Wnts are secreted ligands involved in 

cell-cell signaling in many developmental and adult contexts (Clevers and Nusse, 2012). 

In the absence of Wnt ligand, β-catenin is phosphorylated by the APC/Axin destruction 

complex and degraded. When Wnt proteins bind to the Fz/LRP receptors, β-catenin is no 

longer degraded, it accumulates and translocates to the nucleus where it activates 

transcription of target genes.   

Wnt/β-catenin is essential for myogenesis within the somite as well as within fetal 

limb muscle development (Hutcheson et al., 2009). Additionally, the Wnt/β-catenin 

signaling pathway is essential for the regulation of stem cells such as intestinal and hair 

follicle stem cells (reviewed in Schuijers and Clevers, 2012).  Therefore many studies 

have examined the role of Wnt/β-catenin in muscle regeneration (recently reviewed in 

Tsivitse, 2010; von Maltzahn et al., 2012). Much work has gone into determining the 

expression pattern of Wnt pathway components in adult myogenesis in vitro and in vivo 

(Abiola et al., 2009; Armstrong and Esser, 2005; Aschenbach et al., 2006; Bernardi et al., 
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2011; Brack et al., 2008; Brack et al., 2009; Goichberg et al., 2001; Han et al., 2011; Kim 

et al., 2008; Kramerova et al., 2006; Le Grand et al., 2009; Nastasi et al., 2004; Otto et 

al., 2008; Polesskaya et al., 2003; Tanaka et al., 2011; Zhao and Hoffman, 2004). 

Nevertheless, it is unclear in which cells and when Wnt/β-catenin signaling is important 

in vivo during muscle regeneration. Also, surprisingly the cell-autonomous role of β-

catenin within satellite cells and their derivatives has not been explicitly tested. 

In this study we determined when during muscle regeneration and in which 

myogenic cells Wnt/β-catenin signaling is active. Then using genetic conditional loss and 

gain of function studies in mouse, we specifically tested the cell autonomous functional 

role of β-catenin in satellite cells and their derivatives during muscle regeneration. We 

find that Wnt/β-catenin signaling is transiently active in myoblasts during the early stages 

of muscle regeneration. However, despite activation of signaling, β-catenin is not 

functionally required within satellite cells or their derivatives for muscle regeneration. 

Instead, early down-regulation of β-catenin signaling in myoblasts and myocytes is 

important for efficient muscle regeneration. 

 
 

Results 
 

Wnt/β-catenin signaling is transiently active 
 

in myogenic cells after injury 
 

There is ample evidence that Wnt/β-catenin signaling is active within muscle 

tissue during regeneration, as pathway components that change their phosphorylation 

state, intracellular localization, or levels are expressed in regenerating muscle in vivo and 

in myogenic cell culture (Armstrong and Esser, 2005; Aschenbach et al., 2006; 
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Goichberg et al., 2001; Kim et al., 2006; Otto et al., 2008; Polesskaya et al., 2003). 

Additionally, expression of downstream transcriptional targets and Wnt/β-catenin 

reporter activity increase in regenerating muscle (Bernardi et al., 2011; Brack et al., 2008; 

Naito et al., 2012; Tanaka et al., 2011). However, the reception of Wnt/β-catenin 

signaling has not been explicitly quantified specifically within the myogenic lineage in 

vivo at different times after injury. We wanted to determine whether Wnt/β-catenin 

signaling is active within the myogenic cells in vivo and whether reception of signal 

changes over time after injury. To do this we utilized the TCF/Lef:H2B-GFPTg reporter, 

which has 6 TCF/Lef DNA binding sites before a minimal promoter to drive expression 

of H2B-GFP (Ferrer-Vaquer et al., 2010). In these mice, cells that are responding to 

Wnt/β-catenin signaling express nuclear-localized GFP. To determine the percent of 

myogenic cells responding to Wnt/β-catenin signaling, we performed FACS analysis as 

previously published (Joe et al., 2010); CD31-CD45-Sca1-α-7integrin+ cells were 

identified as myogenic cells and include activated satellite cells, myoblasts, and 

potentially myocytes. Mononuclear cells were isolated from TAs, either uninjured or 

injured with BaCl2, of TCF/Lef:H2B-GFPTg mice and the percentage of GFP+ myogenic 

cells were determined by FACS analysis. In uninjured muscle only 1.9% of myogenic 

cells are GFP+, and so few cells are responding to Wnt/β-catenin signaling (Fig. 4.1A). 

However, at 1 dpi 32.7% of the myogenic cells are GFP+ (Fig. 4.1B), but by 3 dpi the 

percentage of GFP+ myogenic cells decreased to 8.5% (Fig. 4.1C). To determine which 

myogenic cells are responding to Wnt/β-catenin, we analyzed sections of TAs from 

TCF/Lef:H2B-GFPTg/+ mice at different days post injury. Immunofluorescence of 

Laminin and GFP of uninjured muscle show that GFP+ cells lie within the interstitial  
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Fig. 4.1 Wnt/β-catenin is transiently active in myogenic cells after injury. (A-C) 
FACS analysis of TCF/Lef:H2B-GFPTg  GFP+, α-7integrin+, CD31-, and CD45- 
myogenic cells at 0, 1, and 3 dpi. (D) Uninjured muscle stained with Laminin and GFP. 
(E,F) Pax7+ satellite cells and GFP at 1 and 5 dpi. (H,I) MyoD+ myoblasts and GFP at 1 
and 5 dpi. Arrows indicate double labeling. Genomic PCR of sorted GFP+ and Tom+ 
cells. Scale bar = 120µm 
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space as well as underneath the basal lamina (Fig. 4.1D). The GFP+ cells beneath the 

basal lamina are myonuclei because immunofluorescent labeling of GFP and Pax7 in 

uninjured muscle does not show colabeling (data not shown). At 1 dpi 

immunofluorescence of Pax7, MyoD, and GFP revealed that Pax7+ cells did not express 

GFP; however, a subset of the MyoD+ cells are GFP+ (arrowheads Fig. 4.1H,E). We did 

not see any labeling of MyoG+ cells at 1 dpi (data not shown). Because we do not see 

colabeling of Pax7 and GFP, this suggests that the MyoD+ cells that express GFP are 

myoblasts that have already down regulated Pax7 and will differentiate. At 5 dpi no 

Pax7+, MyoD+, or MyoG+ cells were colabeled with GFP (Fig. 4.1F,I and data not 

shown). This, in conjunction with the FACS analysis at 3 dpi, suggests that the window 

for myogenic cells to respond to Wnt/β-catenin signaling has passed by 5 dpi. These 

results show that Wnt/β-catenin signaling is active in myogenic cells during regeneration, 

but occurs only during an early and transient period and is most prominent in MyoD+ 

myoblasts. 

 
 

β-catenin not required for satellite cells to 
 

regenerate muscle or to return to niche 
 

Our analysis of the TCF/Lef:H2b-GFP reporter finds that Wnt/β-catenin signaling 

is active within the myogenic cells during muscle regeneration. The precise role of 

Wnt/β-catenin signaling has been unclear, as there is conflicting evidence supporting 

roles in proliferation as well as differentiation of satellite cells during regeneration (Brack 

et al., 2008; Otto et al., 2008). However, none of these previous studies tested in vivo the 

cell autonomous role of β-catenin in satellite cells during muscle regeneration. Therefore, 
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to test this we conditionally deleted β-catenin specifically in satellite cells and analyzed 

the effects on muscle regeneration.  

To genetically delete β-catenin in satellite cells, we used Pax7CreERT2/+; β-

cateninΔ/fl2-6; R26RmTmG/+ mice. We have previously shown that Pax7CreERT2 mice, after 

delivery of tamoxifen (TMX), specifically and efficiently (94% recombination) label 

satellite cells (Murphy et al., 2011). The β-catenin loss of function allele, β-cateninfl2-6, 

creates a functional null following Cre mediated deletion of exons 2 through 6 (Brault et 

al., 2001). The fate of recombined cells was tracked via the R26RmTmG reporter, which 

ubiquitously expresses membrane bound Tomato (mTomato) until Cre mediated 

recombination excises the mTomato, resulting in expression of membrane bound GFP 

(mGFP) (Muzumdar et al., 2007). To ensure that complete deletion of β-catenin required 

only one recombination event, we analyzed Pax7CreERT2/+; β-cateninΔ/fl2-6; R26RmTmG/+ 

mice, and to control for any possible heterozygous phenotype they were compared to 

Pax7CreERT2/+; β-cateninΔ/+; R26RmTmG/+ mice. Satellite cells are the only cells that express 

Pax7 in uninjured muscle (Murphy et al., 2011).  Therefore, by delivering TMX before 

injury, in control Pax7CreERT2/+; β-cateninΔ/+; R26RmTmG/+ mice all satellite cells and their 

progeny will express mGFP and be heterozygous for β-catenin, while in mutant 

Pax7CreERT2/+; β-cateninΔ/fl2-6; R26RmTmG/+ mice all satellite cells and their progeny 

express mGFP and should be null for β-catenin. To confirm that expression of mGFP 

faithfully reflected recombination in the β-catenin locus, we isolated, via FACS, GFP+ 

and Tomato+ cells from muscle tissue of Pax7CreERT2/+; β-cateninΔ/+; R26RmTmG/+ and 

Pax7CreERT2/+; β-cateninΔ/fl2-6; R26RmTmG/+ mice given 5 doses of TMX, injured with 

BaCl2, and harvested 5 (dpi). We then performed genomic PCR to identify wild type 
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(WT), β-catenin fl2-6, and β-cateninΔ2-6 alleles. As expected, we found that from 

Pax7CreERT2/+;β-cateninΔ/+;R26RmTmG/+ mice (n=2) GFP+ and Tomato+ cells were positive 

for both the WT and β-cateninfl2-6 alleles (Fig. 4.1G). In contrast, from Pax7CreERT2/+; β-

cateninΔ/fl2-6; R26RmTmG/+ mice (n=3) Tomato+ cells contained both the fl2-6 and Δ2-6 

alleles, whereas the GFP+ cells contained only the Δ2-6 allele  (Fig. 4.1G). Therefore, 

after TMX delivery to Pax7CreERT2/+; β-cateninΔ/fl2-6; R26RmTmG/+ mice, mGFP expression 

reflects a complete loss of β-catenin in Pax7+ satellite cell derived myogenic cells. 

Having established that delivery of TMX to Pax7CreERT2/+; β-cateninΔ/fl2-6; 

R26RmTmG/+ mice results in deletion of β-catenin in satellite cells, we tested whether 

satellite cells require β-catenin to regenerate muscle after injury. After 5 consecutive 

daily doses of TMX, we injured muscle by injecting BaCl2 into the right tibialis anterior 

(TA) muscle, and the left TA served as an uninjured control. BaCl2 injury induces a 

stereotyped pattern of muscle regeneration, with the peak of satellite cells and myofiber 

regeneration occurring 5 dpi and regeneration complete by 28 dpi (Murphy et al., 2011). 

Thus we harvested muscle from Pax7CreERT2/+; β-cateninΔ/fl2-6; R26RmTmG/+ mice and 

Pax7CreERT2/+; β-cateninΔ/+; R26RmTmG/+ littermate controls at 5 and 28 dpi to assess the 

consequence of deletion of β-catenin in satellite cells at both the peak of muscle 

regeneration and when regeneration should be complete. At 5 dpi, comparison of 

Pax7CreERT2/+; β-cateninΔ/fl2-6; R26RmTmG/+ and Pax7CreERT2/+; β-cateninΔ/+; R26RmTmG/+  

mice reveals that there is no difference in the number or proliferation (as shown by co-

labeling with Pax7 and Phosphohistone H3) of Pax7+ satellite cells (Fig. 4.2B). Satellite 

cells give rise to MyoD+ cells, which include activated Pax7+MyoD+ satellite cells and  
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Pax7- MyoD+ myoblasts, that proliferate and differentiate into muscle, and the peak 

number of MyoD+ cells after BaCl2 injury occurs at 3 dpi (Murphy et al., 2011, and 

unpublished results).  Comparison of mutant and control mice at 3 dpi shows that loss of 

β-catenin did not affect either the number or proliferation of MyoD+ cells (Fig. 4.2O). 

Regenerating myofibers transiently express MyHCembryonic (MyHCemb), an immature 

form of MyHC that is replaced by slow and fast isoforms as the nascent muscle fibers 

mature. We found no difference in the amount of MyHCemb expression between the 

Pax7CreERT2/+; β-cateninΔ/fl2-6; R26RmTmG/+ and Pax7CreERT2/+; β-cateninΔ/+; R26RmTmG/+ 

mice, indicating that the number of regenerating myofibers at 5dpi did not differ with loss 

of β-catenin (Fig. 4.2C). In addition, the number and cross sectional area of fibers, as well 

as the total cross sectional area of the muscle, did not differ at 5 dpi (Fig. 4.2E). At 28 

dpi, there continues to be no difference in the total cross sectional area of the muscle, 

although there is a slight shift in the distribution of individual fiber size towards larger 

fibers (Fig. 4.2K). Overall, our results indicate that loss of β-catenin in the satellite cells 

does not impair muscle regeneration. 

The Pax7CreERT2/+ Cre driver is very efficient (94% recombination), however just a 

few transplanted satellite cells have the capacity to generate 25,000 new myonuclei 

(Collins et al., 2005). To determine whether a few, nonrecombined escapers retaining one 

allele of β-catenin could outcompete β-catenin null satellite cells, we examined the 

contribution of the β-catenin null satellite cells to the regenerating muscle. We compared 

the amount of GFP expression between Pax7CreERT2/+; β-cateninΔ/fl2-6; R26RmTmG/+ and 

Pax7CreERT2/+; β-cateninΔ/+; R26RmTmG/+ mice as a representation of the contribution of the 

recombined satellite cells to the muscle and saw no difference at either 5 or 28 dpi (Fig.  
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Fig. 4.2 β-catenin is not required for satellite cells to regenerate muscle or return to 
their niche (A-F) At 5 dpi there is no difference between mutant and wild type in the 
amount of GFP expression (A), Number of Pax7+ Satellite cells or their proliferation 
(B,F), Regenerating fibers (C) or MyHCslow expression (D) Or any difference in muscle 
of fiber size (E). (G-K) At 28 dpi there is no difference between mutant and wild type in 
above parameters as well as MyHCIIb (J) (L-N)Even after 3 rounds of injury and 
regeneration there is no difference in Satellite cell contribution of number. (O)At 3 dpi 
the myoblasts are not affected. Yellow denotes significance scale bar = 100µm 
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4.2A, G, 4.3A). Therefore, loss of β-catenin does not affect the ability of satellite cells to 

contribute to regenerated muscle.  

Our results demonstrate that loss of β-catenin does not affect satellite cell 

activation, proliferation, or differentiation during muscle regeneration. Another important 

function of stem cells is the ability to self-renew and return to their niche. To determine 

whether loss of β-catenin inhibits self-renewal of satellite cells during regeneration, we 

compared the number of Pax7+ satellite cells between Pax7CreERT2/+; β-cateninΔ/fl2-6; 

R26RmTmG/+ and Pax7CreERT2/+; β-cateninΔ/+; R26RmTmG/+ mice at 28 dpi. However, neither 

the number nor location of satellite cells within their niche beneath the Laminin+ basal 

lamina of the muscle differed  (Fig. 4.2H), indicating that β-catenin is not required for 

satellite cell self-renewal.  

Potentially, the function of β-catenin in satellite cells may only be uncovered after 

multiple rounds of regeneration. To test this possibility, after TMX induced inactivation 

of β catenin in satellite cells, we successively injured the TA muscle and allowed it to 

regenerate three times (see strategy in Fig. 4.2L-N). Even after repeated rounds of 

regeneration, we detected no difference between Pax7CreERT2/+; β-cateninΔ/fl2-6; 

R26RmTmG/+ and Pax7CreERT2/+; β-cateninΔ/+; R26RmTmG/+ mice in either the amount of 

GFP expression or the number of Pax7+ satellite cells within the niche (Fig. 4.2L,M). We 

did observe with loss of β-catenin a shift in the fiber size distribution toward larger fibers 

(as we saw at 28dpi, after a single injury) and more fibers, but no significant change in 

the fiber density or overall muscle size (Fig. 4.2N). Therefore, loss of β-catenin in 

satellite cells somewhat altered the size and number of regenerated fibers, but overall did 

not affect muscle regeneration or satellite cell self-renewal. β-catenin also has been 
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implicated in the determination of fiber type. During fetal myogenesis, β-catenin 

positively regulates the differentiation of MyHCI+ slow myofibers, as shown by 

conditional loss and gain of β-catenin in Pax7+ progenitors (Hutcheson et al., 2009). 

Additionally, it has been shown in satellite cell derived C2C12 cells that expression of 

MyHCIIb is directly regulated by β-catenin binding, via Tcf/Lef, to the MyHCIIb 

promoter (Shanely et al., 2009). We tested in vivo whether β-catenin is required cell 

autonomously for determination of fiber type during muscle regeneration. Examination of 

Pax7CreERT2/+; β-cateninΔ/fl26; R26RmTmG/+ and Pax7CreERT2/+; β-cateninΔ/+; R26RmTmG/+ 

mice at 5 and 28 dpi showed no difference in the expression of either MyHCI or 

MyHCIIb (Fig. 4.2D,I). Therefore, in vivo determination of slow MyHCI+ and fast 

MyHCIIb+ myofibers after regeneration does not require β-catenin. 

In summary, deletion of β-catenin in the satellite cell population did not affect 

their ability to contribute to muscle regeneration or return to their niche. Even after 

multiple injuries, β-catenin is not required for satellite cell activation, proliferation, 

differentiation, or self-renewal. 

 
 

Activation of β-catenin in satellite cells alters kinetics of myoblast 
 

differentiation, resulting in prolonged regeneration 
 

Our genetic experiments clearly demonstrate that β-catenin is not required in 

satellite cells or their derivatives for muscle regeneration. However, our analysis of the 

TCF/Lef:H2BGFPTg/+ reporter showed that Wnt/β-catenin signaling is transiently active 

in myogenic cells during muscle regeneration (Fig. 4.1B,C). Together these experiments 

suggest that while activation of Wnt/β-catenin signaling is not required, once activated,  
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Fig.4.3 β-catenin loss or gain in satellite cells does not affect contribution to muscle 
For all images contralateral control shown to left and cross sections through entire TA 
and EDL and whole mount images of reinjury (D) Loss of β catenin (A) 28 dpi, (B) Gain 
of function (C,D) Reinjury Scale bar = 100µm 
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prompt down-regulation of Wnt/β-catenin signaling may be necessary for proper muscle 

regeneration. To test this, we constitutively activated β-catenin in satellite cells and their 

derivatives and assayed for its affect on muscle regeneration. 

To constitutively activate β-catenin in satellite cells and their derivatives, we used 

Pax7CreERT2/+; β-cateninfl3/+; R26RmTmG/+ mice. In the β-cateninfl3 allele, the presence of 

Cre results in the deletion of exon 3 and the formation of a stabilized, constitutively 

active form of β-catenin (Harada et al., 1999). To activate β-catenin in the satellite cells, 

we again used Pax7CreERT2 Cre, and to track recombination we used the R26RmTmG 

reporter (Murphy et al., 2011; Muzumdar et al., 2007). In Pax7CreERT2/+; β-cateninfl3/+; 

R26RmTmG/+ mice, after delivery of TMX, the satellite cells will express stabilized, 

activated β-catenin and mGFP. We again confirmed that expression of mGFP reflects 

recombination in the β-catenin locus by isolating, via FACS, GFP+ and Tomato+ cells 

from muscle tissue of Pax7CreERT2/+; β-cateninfl3/+; R26RmTmG/+ and Pax7CreERT2/+; β-

catenin+/+; R26RmTmG/+ mice given 5 doses of TMX, injured with BaCl2, and harvested 5 

dpi. We then performed genomic PCR to identify WT and β-cateninfl3 alleles. As 

expected in Pax7CreERT2/+; β-catenin+/+; R26RmTmG/+ mice, both GFP+ and Tomato+ cells 

were positive only for the WT allele (Fig. 4.1G). In Pax7CreERT2/+; β-cateninfl3/+; 

R26RmTmG/+ mice (n=2), Tomato+ cells express both the β-cateninfl3 and WT alleles, 

whereas GFP+ cells express only the WT allele because the primer binding sites for the 

β-cateninfl3 allele had been deleted by recombination (Fig. 4.1G). Therefore, after TMX 

delivery to Pax7CreERT2/+; β-cateninfl3/+; R26RmTmG/+ mice mGFP expression reflects 

recombination of exon 3 and constitutive activation of β-catenin in Pax7+ satellite cells 

and their derivatives. 
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Constitutive activation of β-catenin in fetal myogenic progenitors during 

development results in an increase in the number of Pax7+ cells at birth (Hutcheson et al., 

2009). In addition, activated Pax7+ satellite cells express nuclear β-catenin in vitro (Otto 

et al., 2008). Therefore, we tested whether constitutive activation of β-catenin in satellite 

cells would affect satellite cell number or proliferation after injury. We delivered 5 daily 

doses of TMX and injured the right TA by injecting BaCl2, leaving the left TA as the 

uninjured control. TAs were harvested at 5 dpi, when the number of Pax7+ cells and 

regenerating myofibers peaks, and at 28 and 60 dpi when regeneration is ordinarily 

complete. Comparison of Pax7CreERT2/+; β-cateninfl3/+; R26RmTmG/+ mice to Pax7CreERT2/+; 

β-catenin+/+; R26RmTmG/+ littermate controls showed that there was no difference in the 

number or proliferation of Pax7+ satellite cells (Fig. 4.4B,H). There continued to be no 

difference in the number of satellite cells at 28 dpi (Fig. 4.4J), although at 60 dpi there 

was a slight, but not significant, decrease in the number of satellite cells in Pax7CreERT2/+; 

β-cateninfl3/+; R26RmTmG/+ as compared to Pax7CreERT2/+; β-catenin+/+; R26RmTmG/+ mice 

(p=0.09, Fig. 4.4Q). Overall, we found that constitutive activation of β-catenin in the 

satellite cells does not significantly alter the number or proliferation of Pax7+ satellite 

cells during muscle regeneration or their return to the niche. 

Previous studies have suggested that activation of Wnt/β-catenin signaling, by 

addition of Wnt3a, during muscle regeneration leads to premature differentiation, 

resulting in a decrease in fiber size, but increase in number of fibers (Brack et al., 2008; 

Le Grand et al., 2009). We tested whether constitutive activation of β-catenin specifically 

in the satellite cells would disrupt the normal progression of myogenesis during 

regeneration. Upon muscle injury, satellite cells proliferate, give rise to MyoD+ cells 
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(which include activated satellite cells and myoblasts) that proliferate and differentiate 

into myogenin+ (MyoG+) myocytes, which in turn fuse and differentiate into myofibers 

that transiently express MyHCemb. Normally, the number of MyoD+ cells peaks at 

approximately 140 MyoD+ cells/mm2 at 3dpi, declines to 35 at 5 dpi, and no MyoD+ 

cells are present at 28 dpi (Fig. 4.2O, 4.4C, Murphy et al., 2011, and data not shown). At 

5 dpi there was a 79% increase in the number of MyoD+ cells in Pax7CreERT2/+; β-

cateninfl3/+; R26RmTmG/+ compared with control Pax7CreERT2/+; β-catenin+/+; R26RmTmG/+ 

mice (75 versus 42 MyoD+ cells/mm2, p=0.023), although there was no difference in 

proliferation of these cells (Fig. 4.4C,H). There was no difference in either the number or 

proliferation of MyoG+ myocytes (Fig. 4.4D,H), but there was a decrease in MyHCemb 

expression (although not significant, p=0.102, Fig. 4.4E) and 44% fewer myofibers (356 

versus 636 myofibers/mm2, p=0.033, Fig. 4.4G). The increased number of MyoD+ cells, 

without an increase in proliferation of Pax7+ or MyoD+ cells, suggests that continued β-

catenin signaling extends the time that myogenic cells remain as Pax7+MyoD+ activated 

satellite cells or Pax7- MyoD+ myoblasts, and consequently results in fewer regenerated 

myofibers at 5dpi.  The lack of difference in the number of MyoG+ myocytes may be due 

to the high variance in these data. It may also reflect an inflection point, in which in 

Pax7CreERT2/+; β-cateninfl3/+; R26RmTmG/+ mice the number of MyoG+ cells are increasing, 

but in the Pax7CreERT2/+; β-catenin+/+; R26RmTmG/+ mice they are decreasing as they 

differentiate and fuse into myofibers.  

To test if continued activation of β-catenin signaling would block myofiber 

differentiation, we examined TAs at 28 dpi when regeneration is normally complete. No 

MyoD was expressed in either Pax7CreERT2/+; β-cateninfl3/+; R26RmTmG/+ or Pax7CreERT2/+; 
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β-catenin+/+; R26RmTmG/+ mice (data not shown), and so the MyoD+ cells present at 5 dpi 

do not remain in an undifferentiated state. At 28 dpi in control Pax7CreERT2/+; β-

catenin+/+; R26RmTmG/+ mice there are normally few MyoG+ myocytes, but in 

Pax7CreERT2/+; β-cateninfl3/+; R26RmTmG/+ mice there is a 6.8-fold increase in number of 

MyoG+ cells (21.8 versus 3.2 MyoG+ cells/mm2, p=0.0082, Fig. 4.4K). There was also a 

3.2 fold increase in MyHCemb expression (17.6% versus 5.4% MyHCemb/mm2, 

p=0.009, Fig. 4.4L). The total number of fibers is unchanged, but there is a shift in the 

distribution of fiber sizes to more small fibers and fewer large fibers (Fig. 4.4O). The 

TAs of Pax7CreERT2/+; β-cateninfl3/+; R26RmTmG/+ mice also have a larger total cross 

sectional area (6.6 versus 5.7 mm2, p=0.052), and this increase is partly due to an increase 

in Sirius Red+ muscle connective tissue (12% versus 9.7% Sirius Red+/ mm2, p=0.087) 

(Fig. 4.4O,N).  In total, these data show that at 28 dpi, when muscle regeneration is 

normally complete, constitutive activation of β-catenin leads to a prolonged regenerative 

response (continued presence of MyoG+ myocytes and MyHCemb+ regenerating 

myofibers, and smaller regenerated myofibers) and an increase in connective tissue 

fibrosis. We examined the TAs even later, at 60 dpi, to test whether constitutive 

activation of β-catenin had long term effects on muscle regeneration. At 60 dpi there are 

more MyoG+ myocytes in Pax7CreERT2/+; β-cateninfl3/+; R26RmTmG/+ compared to 

Pax7CreERT2/+; βcatenin+/+; R26RmTmG/+ mice (3.3 versus 1.2 MyoG+ cells/mm2, p=0.056) 

(Fig. 4.4R), although there is no expression of MyHCemb in either genotype (data not 

shown). Neither the number of myofibers nor the total muscle cross sectional area differs, 

but there is still a shift in fiber distribution toward smaller fibers (Fig. 4.4T). Therefore, 

continued activation of β-catenin at 5dpi results in an extension of the myoblast phase, 
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leading to fewer regenerated myofibers. Subsequently, 28dpi is an extension of the 

myocyte phase, and consequently, regenerated myofibers are smaller and muscle 

regeneration continues well past the normal time required for muscle regeneration. 

Potentially, constitutive activation of β-catenin could prevent myogenic cells from 

regenerating muscle, and the apparent extension of the regenerative response could result 

from a small population of nonrecombined “escaper” cells regenerating muscle at a 

delayed rate. To test this, we compared GFP expression (which reflects expression of the 

β-cateninfl3 allele) in Pax7CreERT2/+; β-cateninfl3/+; R26RmTmG/+ and Pax7CreERT2/+; β-

catenin+/+; R26RmTmG/+ mice. At 5 dpi, there is less GFP expression in Pax7CreERT2/+; β-

cateninfl3/+; R26RmTmG/+ mice, but this likely reflects the decrease in regenerated fibers 

(Fig. 4.4A,G). However, at 28 and 60 dpi, there is no difference in GFP expression 

between the Pax7CreERT2/+; β-cateninfl3/+; R26RmTmG/+ and Pax7CreERT2/+; β-catenin+/+; 

R26RmTmG/+ mice (Fig. 4.3B, 4.4I,P). While constitutive activation of β-catenin prolongs 

the regenerative response, ultimately expression of constitutive β-catenin does not 

prevent myogenic cells from regenerating muscle. 

Our previous studies found that constitutive activation of β-catenin in fetal 

myogenic progenitors converts all myofibers to slow, MyHCI+ myofibers (Hutcheson et 

al., 2009). We tested whether constitutive activation of β-catenin in satellite cells would 

have a similar effect on regenerated myofibers. We compared the amount of MyHCI 

expression between Pax7CreERT2/+; β-cateninfl3/+; R26RmTmG/+ and Pax7CreERT2/+; β-

catenin+/+; R26RmTmG/+ mice at 5 dpi and found a 4-fold increase in MyHCI expression 

(2.3 versus 0.57 MyHCI+/mm2, p=0.0004 Fig. 4.4F). At 28 and 60dpi, TAs from 

Pax7CreERT2/+; β-cateninfl3/+; R26RmTmG/+ mice continue to have a 3 to 4 fold increase in  
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Fig. 4.4 Constitutive activation of β-catenin in satellite cells alters the kinetics of 
myoblast differentiation, resulting in a prolonged regenerative response 
Prolonged myoblast phase at 5dpi(A-H) as sown by continued MyoD expression 
resulting in smaller fibers (G) This leads to extended regeneration at 28dpi (I-O) but it 
has mostly resolved by 60dpi (P-T) There are no structural defects when in mutants (U) 
Yellow denotes significance (S) Scale bar = 100µm, (U) scale bar = 25µm 
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MyHCI expression (1.2% versus 0.30% at 28dpi, p=0.02, and 0.43% versus 0.12% at 

60dpi, p=0.089, Fig. 4.4 M,S).  Interestingly, while only small percent of the total area is 

MyHCI+ in the Pax7CreERT2/+; β-cateninfl3/+; R26RmTmG/+ mice at 28 and 60 dpi, 80 to 

90% of the total area is GFP+ (Fig. 4.4 I,P). Therefore, β-catenin positively regulates the 

expression of MyHCI, but unlike during fetal myogenesis, β-catenin is not sufficient to 

convert all myofibers to a slow, MyHCI+ fiber type. 

β-catenin is also a member of the adherens junction complex and localizes to the 

membrane of muscle fibers (Nastasi et al., 2004). Mutations in Calpain3 result in an 

accumulation of β-catenin at the myofiber membrane, causing limb girdle muscular 

dystrophy type 2A in humans (Kramerova et al., 2006). The mouse model of Calpain3 

mutations shows disrupted sarcomere structure and a defect in myoblasts fusion. Thus 

potentially constitutive activation of β-catenin might cause structural defects in the 

muscle. We isolated myofibers from Pax7CreERT2/+; β-cateninfl3/+; R26RmTmG/+ and 

Pax7CreERT2/+; β-catenin+/+; R26RmTmG/+ mice 6 weeks after injury and analyzed 

regenerated GFP+ fibers for sarcomere structure and did not observe any defects (n=3 

mutant mice and 3 control mice, Fig. 4.4U). Hence, we find activated β-catenin does not 

result in myofiber structural defects. 

In summary, constitutive activation of β-catenin in the satellite cells and their 

derivatives affects the timing of the regenerative response to muscle injury. Neither the 

number nor proliferation of satellite cells was altered, but MyoD+ cells, MyoG+ 

myocytes, MyHCemb+ regenerating myofibers are present for an extended period. This 

extension in the regenerative response consequently results in a shift toward smaller 

myofibers. β-catenin also positively regulates MyHCI expression, but is not sufficient to 
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convert myofibers to a slow fiber type. While constitutive activation of β-catenin did alter 

the kinetics of muscle regeneration, it did not prevent satellite cells from giving rise to 

regenerated muscle, nor did it disrupt sarcomere structure. 

 
 

Discussion 
 

Wnt/β-catenin signaling is transiently active 
 

early in regenerating myogenic cells 
 

We have shown by Tcf/Lef:H2BGFPTg reporter activity that Wnt/β-catenin  
 
signaling is activated immediately following injury (1 dpi) in myogenic cells. However, 

this activation is transient, as reporter expression is reduced by 3 to 5 dpi. Also, Wnt/β-

catenin signaling does not appear to be active in Pax7+ satellite cells, but is most 

prominent in MyoD+ myoblasts. Many studies have investigated the expression of 

Wnt/β-catenin signaling components during muscle regeneration and have seen evidence 

for active signaling during muscle regeneration (Abiola et al., 2009; Armstrong and 

Esser, 2005; Aschenbach et al., 2006; Bernardi et al., 2011; Brack et al., 2008; Brack et 

al., 2009; Goichberg et al., 2001; Han et al., 2011; Le Grand et al., 2009; Otto et al., 

2008; Polesskaya et al., 2003; Tanaka et al., 2011). These studies strongly support that  

Wnt/β-catenin signaling is active during muscle regeneration (Model Fig. 4.5B). 

However the strategies used were not specific for Wnt/β-catenin signaling within the 

myogenic population; did not measure signaling over time; or they were performed in-

vitro. In addition to expression analysis, other studies have used the TOPgal Wnt/β-

catenin reporter activity to demonstrate active signaling in vivo 2 and 5 dpi after muscle 

injury, but assessment of activity specifically within the myogenic cells over time was not  
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Fig. 4.5 Model of Wnt/β-catenin in muscle regeneration (A)β-catenin loss does not 
affect satellite cell lineage. (C) Constitutive activation of β-catenin expands myogenesis 
(B) Wnt/β-catenin signaling is active transiently during the first few days of regeneration.  
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performed in vivo (Brack et al., 2008; Naito et al., 2012). Our in vivo analysis of Wnt/β-

catenin signaling specifically within the myogenic cells demonstrates that signaling is 

primarily active in myoblasts, not satellite cells, and is only transiently active during the 

first days of the regenerative process. 

 
 

β-catenin is not required in satellite cells to 
 

regenerate muscle or return to niche 
 

Despite evidence from this and a multitude of previous studies showing that 

Wnt/β-catenin signaling is active during muscle regeneration, we discovered that β-

catenin is not required within the satellite cell lineage for regeneration. Deletion of β-

catenin within the satellite cells and their progeny does not affect activation, proliferation, 

differentiation, or fusion to repair damaged myofibers (Model Fig. 4.5A). β-catenin 

deficient satellite cells were also able to return to their niche, as well as reactivate and 

regenerate muscle even after multiple rounds of injury. These results are surprising 

because previous in vitro studies suggest that loss of Wnt/β-catenin signaling would 

result in several phenotypes, including less myofiber differentiation (Brack et al., 2008; 

Brack et al., 2009; Descamps et al., 2008; Kim et al., 2008) more differentiation (Gavard 

et al., 2004; Tanaka et al., 2011), or decreased proliferation of satellite cells (Otto et al., 

2008). Additionally, in vivo data suggests that loss of β-catenin would result in smaller 

muscle fibers (Armstrong et al., 2006; Brack et al., 2008; Brack et al., 2009). The fact 

that our results differ from previous work presumably reflects differences in experimental 

design, as experiments that are not specific to the myogenic lineage would also affect 

other cell types responding to Wnt/β-catenin signaling during muscle regeneration. 
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Interestingly, when β-catenin is deleted within the muscle fibers during development 

using HSACreTg mice there were no defects in muscle size, organization, or structural 

integrity, although β-catenin is required within the muscle for proper neuromuscular 

junction formation (Li et al., 2008). Similarly, we did not observe any obvious defects in 

regeneration when β-catenin was deleted in adult myofibers using TMX inducible 

HSACreERT2 mice (data not shown) (Schuler et al., 2005).  

 
 

Activation of β-catenin in satellite cells alters kinetics of myoblast 
 

differentiation, resulting in prolonged regeneration 
 

We have shown that β-catenin is not required in the myogenic cells for muscle 

regeneration, however there is active Wnt/β-catenin signaling within these cells. Wnt/β-

catenin signaling is only transiently active within the myogenic cells during regeneration; 

therefore, constitutive activation of β-catenin in satellite cells extends the time window of 

myogenic cells responding to Wnt signal. When β-catenin is constitutively active in the 

satellite cells, we saw no direct effect upon the satellite cells themselves in number, 

proliferation, or ability to return to the niche. Therefore the satellite cells themselves are 

insensitive to manipulations of β-catenin. This is in contrast to work by others showing 

that activation of Wnt/β-catenin signaling by exposure to Wnt3a, adenoviral-β-catenin, or 

compliment C1q either increased or decreased proliferation of satellite cells (Brack et al., 

2007; Kim et al., 2006; Naito et al., 2012; Otto et al., 2008). However, in the myoblast 

progeny of those satellite cells we see that at 5 dpi there is an extension of the myoblast 

phase at the expense of myofiber formation. The extension of the myoblast phase is not 

indefinite as by 28 dpi there are no more MyoD+ cells, but the initial extension of the 
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myoblast phase results in a successive extension of the myocyte phase. There is also 

continued expression of MyHCembryonic because these myocytes are still fusing to form 

new muscle. We interpret these results as an extension and not just a delay because the 

size of the whole muscle is increased despite the shift in fiber size distribution toward 

smaller fibers at 28 dpi (Fig. 4.5C). By 60 dpi, regeneration is mainly complete, so 

constitutive activation of β-catenin does not prevent differentiation but does greatly 

extend the time the muscle is in a state of regeneration. We also see that at 60 dpi the 

fiber size distribution is still shifted toward smaller fibers. Smaller fiber size was 

observed in other studies in which Wnt/β-catenin signaling was experimentally activated 

during muscle regeneration in vivo (Brack et al., 2008; Le Grand et al., 2009). However 

the authors determined that this was due to premature differentiation as they delivered 

single doses of Wnt3a, which based on our results, might have a very different effect 

compared to constitutive activation of β-catenin. Several studies have exogenously 

activated Wnt/β-catenin signaling either by delivery of Wnt3a or LiCl to myogenic cells 

in vitro and proposed that Wnt/β-catenin promotes differentiation and fusion (Abiola et 

al., 2009; Bernardi et al., 2011; Brack et al., 2008; Pansters et al., 2011) as well as 

prevents differentiation (Gavard et al., 2004; Tanaka et al., 2011). Our conclusions are 

based upon analysis of the different phases of myogenesis over an extended period of 

time of continued activation of β-catenin specifically in the myogenic lineage. In vitro 

experiments are not easily amenable to all phases of regeneration, and in vivo non-genetic 

activation of the pathway also affects other populations of cells within the muscle tissue 

sensitive to Wnt/β-catenin signaling.  
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Activation of β-catenin in myogenic lineage extends MRFs  
 

expression and does not disrupt muscle structure 
 

Our results show that constitutive activation of β-catenin results in an expansion 

of MyoD expression. Interestingly, there is evidence in vitro that MyoD and β-catenin 

will directly bind to enhance MyoD transcriptional activity during myogenic 

differentiation (Kim et al., 2008). It is possible that the time extension of β-catenin 

availability extends the time MyoD has enhanced transcriptional activity, in turn 

extending the myoblast phase of regeneration.  

Constitutive activation of β-catenin also results in continued expression of MyoG. 

β-catenin is also an integral member of the adherens junction complex, and MyoG 

expression has been shown to be downstream of adherens junction formation in vitro 

(Gavard et al., 2004; Goichberg et al., 2001). However, there is evidence that excess 

accumulation of β-catenin at the myofiber membrane disrupts the structural integrity of 

muscle. Mutations in Calpain3 result in limb girdle muscular dystrophy type 2A, as 

Calpain3 functions to regulate the amount of m-cadherin and β-catenin localized to the 

membrane (Kramerova et al., 2006). Additionally, loss of the muscle specific E3-ligase 

Ozz, which targets membrane β-catenin for degradation, results in an accumulation of β-

catenin at the membrane that disrupts the sarcomere structure (Nastasi et al., 2004). 

Constitutive activation of β-catenin in the satellite cells could result in an accumulation of 

β-catenin at the membrane of regenerated fibers disrupting sarcomere structure; however 

we observed no disruption in the sarcomere structure in regenerated fibers. In line with 

this, other studies that activated β-catenin in either the myogenic lineage or the myofibers 
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themselves during development found no disruption in muscle structure (Liu et al., 2012; 

Wu et al., 2012). 

 
 

Adult and fetal myogenic progenitors have 
 

different sensitivity to Wnt/β-catenin 
 
 

Previously, our lab established that during development β-catenin is required for 

fetal myogenesis. Loss of β-catenin in the fetal myogenic progenitors results in fewer 

myofibers and less MyHCI expression. Constitutive activation of β-catenin results in 

disorganized myofibers, increased number of Pax7+ progenitors, and increased MyHCI 

expression (Hutcheson et al., 2009). Our results clearly show a fundamental difference 

between myogenic progenitors in the fetus and the adult in their sensitivity to Wnt/β-

catenin signaling. Although required in the fetus, β-catenin is not required in the adult for 

either myofiber number or MyHCI expression. Activation of β-catenin does not affect 

satellite cell numbers or myofiber organization in the adult, but does result in an increase 

in MyHCI expression. It is not clear whether β-catenin regulation of MyHCI is direct or 

the increase in MyHCI is a reflection of more immature myofibers, as all myofibers 

express MyHCI during development (Schiaffino and Reggiani, 1996). We have shown 

using similar genetic tools and methods of analysis that adult stem cells do not always 

behave similarly to their developmental counterparts. 

 
 

Satellite cells are analogous to hematopoietic stem cells 
 
There are striking similarities between satellite cells and hematopoietic stem cells 

(HSCs) in relation to Wnt/β-catenin signaling. Wnt/β-catenin signaling is generally 
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thought to provide instructional cues to HSCs (as reviewed in(Rossi et al., 2012). Like 

myogenic progenitors, HSCs require β-catenin during development. If β-catenin is 

deleted from the aorta-gonad-mesonephros, HSCs do not differentiate from the 

endothelial precursors (Ruiz-Herguido et al., 2012). However, in the adult β-catenin is 

dispensable for HSC function (Cobas et al., 2004). Therefore, like myogenic progenitors 

hematopoietic progenitors in the embryo and the adult differ in their requirement for 

Wnt/β-catenin signaling. Interestingly, when β-catenin is constitutively activated in the 

adult HSCs, terminal differentiation into all of the hematopoietic lineages is blocked 

(Kirstetter et al., 2006; Scheller et al., 2006). In adult myogenesis, constitutively activated 

β-catenin prolongs differentiation but does not prevent it, but the similarities between 

HSCs and satellite cells are evident. In summary, β-catenin is active but not required with 

in the satellite cells during muscle regeneration; however, continuous β-catenin signaling 

prolongs the regenerative response. 

 
 

Methods 
 
Mice 

 
All mouse lines used were previously published. We reported the generation of 

the Pax7CreERT2 Cre driver previously and they are available from The Jackson Laboratory 

as stock number 017763 (Murphy et al., 2011). The reporters used were the R26RmTmG 

(Muzumdar et al., 2007) and Tcf/Lef1-H2B/eGFPTg (Ferrer-Vaquer et al., 2010). 

Conditional alleles included β-catenin loss of function, β-cateninΔ/fl2-6  (Brault et al., 

2001), and constitutive gain of function, β-cateninfl3/+ (Harada et al., 1999). For all 

experiments, mice were bred onto a C57/Bl6J background and were 6 to 8 weeks old. 
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Muscle injury and tamoxifen delivery 
 

Injury was induced by injecting 25ul of 1.2% BaCl2 in normal saline into the right 

tibialis anterior (TA) muscle. Left TA served as the uninjured control.  Each dose of 

tamoxifen was 10mg in corn oil delivered via gavage. 

 
 
Immunofluorescence, histology, and microscopy 
 

For section immunofluorescence, flash-frozen muscles were immediately 

sectioned at 10um. Slides designated for GFP staining were immediately fixed in 20% 

paraformaldehyde (PFA) at 4oC overnight. For all other staining, sections were fixed 5 

min. in 4% PFA. Sections were washed in PBS and then if needed (see Table 4.1), 

subjected to antigen retrieval, consisting of heating slides in citrate buffer (1.8mM citric 

acid, 8.2 mM sodium citrate in H20) in a 2100 PickCell Retriever, and quenched for 5 

min. in 3% H2O2. Tissue sections were blocked 30-60 min. in 5% serum or 0.5% TNB 

blocking reagent (PerkinElmer) in PBS, incubated overnight at 4oC in 1o antibody, 

washed in PBS, incubated 2 hr. at room temperature in 2o antibody, washed in PBS, when  

needed (see Table 4.1) incubated 3 hr. in Vector ABC, washed in PBS and labeled 10 

min with PerkinElmer TSA Fluorescein or TSA Cy3. Slides were then washed in PBS, 

post fixed 5 min. in 4% PFA and mounted with Fluoromount-G (SouthernBiotech) with 

2mg/ml Hoechst. Antibodies are listed in Table 4.1.  For Sirius Red staining, flash frozen 

sections were fixed 1 hr. at 56oC in Bouin’s fixative, washed in water, stained 1 hr. in 

Master*Tech Picro Sirius Red, washed in 0.5% acetic acid, dehydrated, equilibrated with 

xylene, and mounted in Permount (Kiernan, 1990). Sirius Red sections were imaged in 
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bright-field on a Zeiss Axioplan2 microscope. Immunofluorescent sections were imaged 

on a Nikon AR1 confocal microscope. Each confocal image is a composite of maximum 

projections, derived from stacks of optical sections. 

 
 
Fiber preparations 
 

42 dpi TAs were digested with 400U/ml Collagenase I (Worthington) 50 min. 

37oC, washed in PBS, fixed 5 min. in 4% PFA, washed in PBS, and mounted onto slides, 

and processed for immunofluorescence. 

 
 
Quantification and statistics 
 

The number of Pax7+, MyoD+, or MyoG+ nuclei was determined using Image J 

Analyze Particles function.  Co-labeling of Pax7, MyoD, or MyoG with PHH3 was 

determined by additive image overlay in ImageJ. For GFP, MyHCemb, MyHCslow, or 

MyHCIIb the total number of positive pixels was counted. For quantification of ECM, 

Sirius Red+ area was quantified by selecting red pixels in Adobe Photoshop, deleting all 

non-red pixels, converting resulting image to a binary image and counting Red+ pixels 

using Image J Analyze Particles function. For each variable, counts of two sections 

across the entire TA were averaged for three to six individuals of each genotype per time 

point and analyzed using a Student’s two-tailed T test. On all bar charts, mean +/- 1 SEM 

shown. Fiber distribution was determined using a program to be described in a later 

paper. 

 
 
Genomic and semiquantitative PCR and FACS 
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For genomic PCR, GFP+ and Tomato+ cells from were isolated from both left 

and right TAs at 5dpi from Pax7CreERT2/+; R26RmTmG/+; β-catenin+/+, fl3/+, Δ/+, and Δ/fl2-6 

mice. Muscles were stripped of tendons and placed in 3ml Hamm’s F12 with 60ul of 

DNAseI (Roche). Tissue was manually minced using forceps, and then digested with the 

addition of 1000 U/ml Collagenase I (Worthington) for 30 min. at 37°C, triturated and 

incubated an additional 30 min. Then cells were passed through 70-mm and 40-mm 

filters, washed with an additional 7ml of F12, and then spun at 1500 rpm (1258 g) for 15 

min. Pelleted cells were then resuspended in FACS buffer (1% BSA; 1%PBS) and sorted 

based on high GFP and low Tomato expression (GFP+) or high tomato and low GFP 

expression (Tomato+) on a FACS AriaII (BD Biosciences). After collection, cells were 

spun down again for 15 min. 1500rpm, and DNA was isolated by HOT SHOT and the 

PCR genotyping was performed as previously published in (Brault et al., 2001; Harada et 

al., 1999). For semiquantitative PCR, myogenic cells were isolated similar to methods 

described above. After resuspension, cells were incubated the following antibodies for 1 

hr. (CD31-eFluor450; CD45-eFluor450; Scal-PE-Cy7; α7integrin-APC; see Table 4.1 for 

concentrations) similar to methods described previously by Yi et al., 2011. Cells were 

washed with 15ml FACS buffer, spun at 1500 rpm for 15 min., and re-suspended for 

FACS sorting. Total RNA was extracted using Qiagen RNeasy Mini and Micro kit, 

depending on the number of cells collected. cDNA was reverse transcribed using 

Invitrogen Superscript III. Equal amounts of RNA were amplified by 34 cycles of PCR 

using primers for GAPDH (5’-gcaccaccaactgcttagc-3’; 5’-gccgtattcattgtcatacc-3’), and 

Axin2 (5’-aagagaagcgacccagtcaa-3’; 5’ ctgcgatgcatctctctctg-3’). 
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Table 4.1 
 Antibodies used in study 

 

Antibody Type Source Product 
Number 

Working 
Conc. 

Antigen 
Retrieval 

Secondary 
and 

Amplification 

Pax7 Mouse 
IgG1 DSHB PAX7 2.4µg/ml yes 

biotin conj. 
mouse IgG1 
secondary, 
ABC, TSA 

MyoD Mouse 
IgG1 

Santa Cruz 
Biotechnology 

Sc-32758 
(5.8A) 4µg/ml yes 

biotin conj. 
mouse IgG1 
secondary, 
ABC, TSA 

MyoG Mouse 
IgG1 

Santa Cruz 
Biotechnology  

Sc-12732 
(F5D) 4µg/ml yes 

biotin conj. 
mouse IgG1 
secondary, 
ABC, TSA 

MyHC 
embryonic 

Mouse 
IgG1 DSHB F1.652 3µg/ml 

 yes 

biotin conj. 
mouse IgG1 
secondary, 
ABC, TSA 

MyHC 
Slow 

Mouse 
IgG1 Sigma M8421 

(NOQ7.5.4D) 
1.5µg/ml 

 yes 

biotin conj. 
mouse IgG1 
secondary, 
ABC, TSA 

MyHCIIb Mouse 
IgG1 DSHB BF-F3 12.6µg/ml yes 

biotin conj. 
mouse IgG1 
secondary, 
ABC, TSA 

Laminin Rabbit 
polyclonal Sigma L-9393 2.5µg/ml  yes 

 

biotin conj. 
rabbit 

secondary and 
streptavidin 

Dylight 488 or 
594 

GFP Chick 
polyclonal Aves Labs GFP-1020 20µg/ml no Dylight 488 

goat anti chick 

Phospho-
histone 

H3 

Rabbit 
Polyclonal Millipore 06-570 5µg/ml yes 

biotin conj. 
rabbit 

secondary and 
streptavidin 

Dylight 488 or 
594 

α7 
integrin – 

649 
RatIgG2b Ablab 

(CANANDA) Clone R2F2 0.5µg/ml n/a n/a  

Sca1 – 
PECy7 RatIgG2a eBioscience 25-5981 0.05µg/ml n/a n/a 

CD31 – 
eFluor450 

RatIgG2a 
 eBioscience 48-0311 

 1.0µg/ml n/a n/a 

CD45 – 
eFluor450 

RatIgG2b 
 eBioscience 48-0451 

 2.0µg/ml n/a n/a 
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CHAPTER 5 
 
 
 

CONCLUSIONS AND FUTURE DIRECTIONS 
 
 
 

 Myogenesis requires the coordinated interactions of several cell types and 

multiple signaling pathways. During muscle regeneration in the adult, myogenic 

progenitor cells must produce an adequate number of cells, differentiate, and incorporate 

themselves into the muscle pattern established during development. These processes are 

intrinsically linked and require both temporal and spatial regulation. The focus of this 

dissertation is to determine the role of two cell populations, satellite cells and connective 

tissue fibroblasts, as well as the Wnt/β-catenin signaling pathway during muscle 

regeneration. 

 Previous characterization of connective tissue fibroblasts during muscle 

regeneration had been limited by the lack of molecular markers. Recently, our lab 

discovered the first molecular marker of connective tissue fibroblasts. Tcf4 (Tcf7L2), a 

member of the Tcf/Lef family of transcription factors and the most downstream effector 

of the Wnt/β-catenin signaling pathway, is specifically expressed in muscle connective 

tissue fibroblasts (Kardon et al., 2003) Tcf4 labels a population of cells in the lateral plate 

mesoderm that form a pre-pattern of muscle prior to, and independent of, the migration of 

myogenic cells into the limb during development. Subsequently, we have shown that 

Tcf4+ cells within the lateral plate mesoderm give rise to the connective tissue fibroblasts 
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present within the limb at birth, and that Tcf4 is continually expressed by the connective 

tissue fibroblasts in adult muscle (Mathew et al., 2011). Evidence suggests that these cells 

are playing a role in muscle regeneration (Cornelison, 2008; Huard et al., 2002; Joe et al., 

2010; Mann et al., 2011; Serrano et al., 2011), and we chose to investigate the spatial and 

temporal expression pattern of the Tcf4+ connective tissue fibroblasts in relation to 

satellite cells, myofiber regeneration, and fibrosis during muscle regeneration. We 

discovered that Tcf4+ connective tissue fibroblasts greatly expand during muscle 

regeneration. This increase occurs at the same time and in the same area as satellite cells, 

myofiber regeneration, and fibrosis. This dramatic increase in the number of cells during 

a critical window suggests a functional role for these cells during muscle regeneration. In 

order to genetically manipulate the connective tissue fibroblasts in the adult and avoid 

any developmental defects, our lab, in collaboration with the Cappechi lab, created a 

TMX inducible allele of Tcf4. Tcf4CreERT2 specifically labels the connective tissue 

fibroblasts in muscle; however, at about 40% recombination, the efficiency is relatively 

low. To determine the role of the connective tissue fibroblasts, we crossed the Tcf4CreERT2 

mice to the R26RDTA mice, which expresses diphtheria toxin-α after Cre mediated 

recombination, resulting in cell autonomous ablation of connective tissue fibroblasts. 

When connective tissue fibroblasts are ablated, satellite cells prematurely differentiate 

resulting in smaller myofibers after regeneration. These results show that connective 

tissue fibroblasts are required for muscle regeneration and function to prevent the 

premature differentiation of the satellite cells, which allows for an adequate pool of 

progenitors to accumulate and efficiently regenerate the muscle. This is the first direct 
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evidence demonstrating that connective tissue fibroblasts are required for muscle 

regeneration.  

 Connective tissue fibroblasts are playing a functional role in muscle regeneration, 

but the molecular mechanisms by which these cells interact with satellite cells has yet to 

be determined. One possible candidate for is the TGFβ signaling pathway. Unfortunately, 

the recombination efficiency of the Tcf4CreERT2 may hinder interpretation of genetic loss 

of function experiments. Therefore, identification of a more efficient molecular marker 

for connective tissue fibroblasts is of great interest to our lab. Performing a microarray 

experiment comparing expression between isolated connective tissue fibroblasts at 

various time points after injury would certainly aid in identification of a molecular 

marker as well as possible candidates for cell-cell signaling between connective tissue 

fibroblasts and satellite cells. Since satellite cells prematurely differentiate when 40% of 

the connective tissue fibroblasts are deleted, a microarray comparing gene expression in 

satellite cells from Tcf4CreERT2/+; R26R+/+ and Tcf4CreERT2/+; R26RDTA/+ mice might 

indicate what signaling pathways are disrupted. I anticipate that future work on 

connective tissue fibroblasts during regeneration from the Kardon lab will further 

elucidate the mechanisms by which these cells regulate muscle regeneration. 

 Satellite cells are known to be sufficient for muscle regeneration; however, their 

requirement had not been determined. In light of recent work identifying other non-

satellite cell populations capable of contributing to muscle regeneration, we decided to 

explicitly test the requirement of satellite cells in muscle regeneration (Mitchell et al., 

2010; Sampaolesi et al., 2003). To test this, we used a similar strategy as detailed above. 

We created, in collaboration with the Cappechi lab, a TMX inducible allele of Pax7, 
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Pax7CreERT2, and confirmed that this allele specifically, and only following delivery of 

TMX, induces recombination in satellite cells. We crossed Pax7CreERT2/+ mice to 

R26RDTA/+ mice and delivered TMX to both Pax7+/+; R26RDTA/+  and Pax7CreERT2/+; 

R26RDTA/+ mice prior to injury. When satellite cells are ablated, muscle fibers do not 

regenerate, the number of connective tissue fibroblasts is decreased, and fibrosis is 

increased. Therefore, we have shown that satellite cells are the endogenous muscle stem 

cell responsible for muscle regeneration and that they positively regulate the connective 

tissue fibroblasts during regeneration.  

 The generation of the Pax7CreERT2 allele allows for the genetic manipulation of the 

satellite cells and can be used to ask questions specifically regarding myogenesis or more 

broadly about the general adult stem cell properties and requirements. From the previous 

results, one important outstanding question is the identity of the molecular signal from 

satellite cells that positively regulates the connective tissue fibroblasts. Also, there are 

many questions regarding the requirement for satellite cells during normal homeostasis in 

the adult or aged mouse. A common condition associated with aging is a loss in muscle 

mass as well as an inability to rebuild muscle mass. Research into the mechanisms of 

muscle aging will be aided by our ability to specifically manipulate the satellite cells 

using the Pax7CreERT2 allele.  

 Multiple studies have looked at the role of Wnt/β-catenin signaling during muscle 

regeneration; however, the function of this pathway remains controversial. Much of this 

controversy stems from a lack of uniformity in experimental design, differences in the 

behavior of cells in vitro and in vivo, and that components of the Wnt pathway also signal 

in a noncanonical manner. Although the expression of Wnt/β-catenin pathway 
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components has been extensively studied, we wanted to confirm in our injury model 

(BaCl2 injection) that Wnt/β-catenin signaling was active within the myogenic lineage 

after injury. We used TCFLef:H2B-GFPTg reporter mice that express nuclear localized 

GFP in response to Wnt/β-catenin signaling (Ferrer-Vaquer et al., 2010). By FACS 

analysis we showed that myogenic cells are responding to Wnt/β-catenin signaling early 

in the regeneration process followed by a decrease later in regeneration. We sought to 

directly test the requirement for β-catenin specifically within the myogenic lineage 

without the complication of developmental defects. We crossed Pax7CreERT2 mice to β-

cateninfl2-6 mice, which harbor a conditional loss of function allele that deletes exons two 

through six by Cre mediated recombination and creates a functional null (Brault et al., 

2001).  In the Pax7CreERT2/+; β-cateninΔ/fl2-6 mice, β-catenin is deleted in satellite cells 

after TMX delivery. We saw no defects in muscle regeneration, nor did we see any 

difference in satellite cell number or inability to return to the niche after injury. 

Additionally, when we performed multiple rounds of injury, we saw no effects on 

satellite cells or muscle regeneration. Therefore, β-catenin is not required in satellite cells 

or their progeny for activation, proliferation, differentiation, or for their return to the 

niche. If loss of β-catenin made satellite cells slightly less efficient at regenerating muscle 

than their wild type counterparts, we might expect that the few satellite cells that did not 

undergo recombination would have contributed a greater number of fibers to the 

regenerated muscle. To address this concern, we followed recombination using R26RmTmG 

reporter mice, which express membrane bound Tomato in the absence of recombination 

and membrane bound GFP subsequent to recombination. We did not see any difference in 

the contribution of recombined cells between Pax7CreERT2/+; β-cateninΔ/fl2-6 and 
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Pax7CreERT2/+; β-cateninΔ/+ mice; although, the high level of recombination may make 

subtle differences difficult to detect. Alternatively, we could deliver a lower dose of 

TMX to Pax7CreERT2/+; β-cateninΔ/fl2-6; R26RmTmG/+ and Pax7CreERT2/+; β-cateninΔ/+; 

R26RmTmG/+ mice and determine whether the contribution of recombined GFP+ cells 

differs between mutant and control mice. Then, by the classic standards of stem cell 

function serial transplantation (analogous to the re-injury model) and competition (low 

dose TMX) we could say that satellite cells do not require β-catenin. These results are 

surprising given the expression of the Wnt/β-catenin reporter in the myogenic cells after 

injury and should caution against the interpretation that expression implies function. 

 Although these results show that β-catenin is absolutely not required within the 

myogenic lineage for muscle regeneration, we know from preliminary experiments in 

collaboration with Richard Lang that loss of Wnt signaling in macrophages results in a 

decrease in satellite cell number at both 3 and 5 dpi. Therefore, Wnt signaling from 

macrophages is either noncanonical or the Wnt/β-catenin signal is being received by a 

non-myogenic cell type within the muscle that effects the satellite cell population. The 

connective tissue fibroblasts are a likely candidate for this role. The expansion of the 

Tcf4+ connective tissue fibroblasts during regeneration corresponds to the time when 

macrophages go through the M1 to M2 transition, switching from pro-inflammatory and 

phagocytic to anti-inflammatory and signal secreting (Tidball and Villalta, 2010). It will 

be interesting to pick apart these direct interactions and determine how they are 

modulating muscle regeneration.     

 The TCF/Lef:H2B-GFPTg reporter data show that Wnt/β-catenin signaling is 

down regulated soon after injury. We wanted to determine the effect of continued β-
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catenin signaling on satellite cells and muscle regeneration overall. We activated β-

catenin in satellite cells by crossing Pax7CreERT2 mice to mice harboring the gain of 

function β-cateninfl3 allele. In these mice, exon three of β-catenin is deleted upon Cre 

mediated recombination, which is required for phosphorylation and degradation of β-

catenin (Harada et al., 1999). When we constitutively activated β-catenin in satellite cells, 

we saw no effect on the satellite cell number or their ability to return to their niche after 

injury. However, constitutively active β-catenin signaling in the myoblast progeny of 

satellite cells resulted in a delay of myofiber formation at 5 dpi and an extension of 

MyoG and MyHCembryonic expression long after the normal period of regeneration. 

Therefore, it is important to downregulate Wnt/β-catenin signaling to prevent prolonged 

muscle regeneration. Interestingly, we observed a significant increase in the expression of 

MyHCslow when β-catenin is not degraded. This correlates with the phenotypes observed 

during development when β-catenin is constitutively active in the fetal myogenic 

population even though the other phenotypes, including disrupted fiber orientation and 

increased Pax7+ cells, are not recapitulated in the adult (Hutcheson et al., 2009). Our 

results provide an example in which the information provided by a molecular signal is 

transduced by shutting off the signal.  

The satellite cells are not susceptible to constitutive activation of β-catenin, but 

the MyoD+ myoblasts are affected. Even though there was an extension in the timing of 

MyoG expression, it is not clear whether this is a direct effect of β-catenin expression in 

the myocytes or if it is an indirect consequence of the earlier effect on the myoblasts. It 

would be interesting to use a TMX inducible MyoG Cre to activate β-catenin only in the 

myocytes to address this question. It is intriguing that no adult cancer is associated with 
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skeletal muscle even though there is a stem cell population. Possibly, one reason for this 

is that the satellite cells are impervious to either loss or overexpression of Wnt/β-catenin 

signaling.     

Scientists have been observing vertebrate muscle regeneration for nearly 150 

years (Carlson, 1973). There have been many reports and reviews describing the cellular 

and molecular processes involved in muscle regeneration (Charge and Rudnicki, 2004; 

Hawke and Garry, 2001; Shi and Garry, 2006; Zammit et al., 2006). Despite the extent of 

previous work, our examination of the normal time course of events during muscle 

regeneration suggests further elucidation is needed. In our regeneration model, the peak 

number of Pax7+ satellite cells occurs at 5 dpi. This is the same time as the peak of 

MyHCembryonic expression. This is counterintuitive if the Pax7+ cells are giving rise to 

nascent myofibers. The expectation would be that the number of satellite cells should be 

decreasing as the myofibers are forming. It is possible that our time course was not 

performed at a fine enough scale to accurately portray each peaks. Therefore, a finer scale 

time course including 1, 2, 3, 4, 5, 6, 7, 14, 21, and 28 dpi may provide more insight. 

However, the number of MyoD+ myoblasts, which by all accounts are the immediate 

progeny of the satellite cells, peak at 3 dpi, which is earlier than satellite cells. Also of 

note, the number of MyoD+ myoblasts at their peak is at least 2-fold less than the peak 

number of satellite cells. This leaves an average of 500 Pax7+ cells in one 10µm section 

in excess. Most reports suggest that the self-renewal of satellite cells occurs early; 

however, the timing has not been specifically tested or reported in the literature. 

Regardless, it is difficult to imagine that all of those cells would return to the niche since  

in uninjured muscle there are only about 200 satellite cells in one cross section. We have 
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never detected any significant level of apoptosis after injury; although, TUNEL staining 

may not be optimized for muscle tissue or apoptosis may not be the mode of cell death. It 

would be interesting to include both MyoD+ myoblasts and MyoG+ myocytes into the 

refined time course to better understand the relationships between the myogenic cells in 

vivo. Crossing Pax7CreERT2 mice to mice with a nuclear reporter and giving single doses of 

TMX at various time points after injury could also be used to discern the significance of 

these observations.  

Another question that has largely been unaddressed in vivo is the mechanism and 

cellular processes involved in myogenic cell fusion to muscle. With the advancements in 

live, in vivo confocal microscopy and the development of stable and strongly expressed 

fluorescent reporters, it may be possible to use Pax7CreERT2 mice to visualize muscle cell 

fusion in the endogenous environment.  

Additionally, we noticed when examining the normal myogenic regeneration 

exhibited in wild type controls from the β-catenin loss and gain of function experiments 

that the expression of MyHCslow appears to be upregulated after injury. This 

phenomena, although mentioned in a few reports, has not been specifically characterized 

and may represent an interesting similarity to embryonic muscle development as all 

muscles initially express MyHCslow.            

 This thesis has definitively shown that satellite cells and connective tissue 

fibroblasts are required for muscle regeneration and that Wnt/β-catenin signaling is not 

required but must be turned off for precise muscle regeneration. However, it has raised 

many questions as well, and I expect that future efforts will greatly expand our 

understanding of the cell-cell interactions occurring during muscle regeneration. 
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APPENDIX 
 
 
 

REVIEW OF WNT SIGNALING IN MUSCLE REGENERATION 
 
 

 
A whole host of studies have examined the expression of Wnts and downstream 

components of both the β-catenin dependent and independent Wnt pathways during 

muscle regeneration. Secreted Frizzled-related proteins (sFRPs) modulate Wnt signaling 

by binding to Wnt ligands to either prevent binding to receptors or expand the range of 

signal by preventing interactions with the extracellular matrix, reviewed in (Mii and 

Taira, 2011). Both C2C12 cells and primary myogenic cells in culture express sFRPs 

(Polesskaya et al., 2003; Tanaka et al., 2011). Additionally, in whole muscle isolates, 

transcription of sFRPs increases following injury (Le Grand et al., 2009; Polesskaya et 

al., 2003). The expression of sFRPs suggests that Wnt signaling may be active and 

require modulation for appropriate regeneration. 

Myogenic cells express the receptors and intracellular components required to 

transduce Wnt signaling. Lrp5 and 6 are up-regulated in C2C12 cells following the 

switch to differentiation media, and the Fzd receptors 2 and 8 peak in expression early at 

day 2 in differentiation media while Fzd 1, 4, and 5 peak 2 days later (Tanaka et al., 

2011). Fzd7 is localized to satellite cells on isolated myofibers and this expression 

increases after 2 days in culture (Le Grand et al., 2009). FACs isolated myogenic cells 

from myofiber explants have increased expression of Fzd1 and 2 after 4 days in culture 
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(Brack et al., 2008). Whole muscle shows increased expression of Fzds three days after 

injury as well as during hypertrophy (Armstrong and Esser, 2005; Le Grand et al., 2009) 

Dsh protein is also up-regulated after exercise and hypertrophy (Armstrong and Esser, 

2005; Aschenbach et al., 2006). Therefore, myogenic cells express the receptors 

necessary for reception of Wnt signals. 

Expression of multiple Wnt ligands has been demonstrated both in vitro and in 

vivo. Both C2C12 cells and primary myoblasts have been shown to express the Wnt 

ligands Wnt4, 5b, 9a, 10b, and 11, as well as R-spondin (Rspn)  2 and 3. Rspn proteins 

have also been shown to bind to Fzd/LRP receptors and activate β-catenin signaling. 

However, C2C12s also express Wnt10a, 2b, and 5 whereas primary myogenic cells 

express Wnt1, 3a, 5a, 7a, and Rspo1 (Abiola et al., 2009; Bernardi et al., 2011; Brack et 

al., 2008; Han et al., 2011; Otto et al., 2008; Polesskaya et al., 2003; Tanaka et al., 2011). 

Additionally, whole muscle has been analyzed for expression of Wnt ligands, and in 

addition to all of the Wnts found in in vitro myogenic cells (except Wnt3a) Wnt2, 7b, 8b, 

10a, and 16a were also expressed (Abiola et al., 2009; Le Grand et al., 2009; Polesskaya 

et al., 2003). The expression of these proteins not found in purely myogenic cells 

probably reflects expression of Wnts by other cell types residing in muscle such as 

connective tissue fibroblasts and macrophages.  These results show that adult myogenic 

cells have the capacity for autocrine Wnt signaling because they express the receptors 

and downstream components necessary to respond to Wnt signal as well as various Wnt 

ligands. This does not preclude the possibility that other cell types send paracrine Wnt 

signals to myogenic cells. These other cell types may even be modulating the signals by 

expressing Wnt ligands that are not expressed by the myogenic cells.  
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Expression analysis of the downstream components that undergo phosphorylation, 

a change in intracellular localization, or the expression of known transcriptional targets 

suggests that the Wnt/β-catenin signaling pathway is active during regeneration. 

Phosphorylated GSK3β, which indicates it is no longer participating in the degradation of 

β-catenin, is increased in muscle after exercise (Aschenbach et al., 2006). Many studies 

have examined the phosphorylation state as well as the intracellular localization of β-

catenin protein because it is the central mediator of the Wnt/ β-catenin signaling pathway. 

β-catenin localization in C2 cells is dynamic, localizing to the nucleus in proliferation 

media, to the adherens junctions in differentiating myocytes, and diffusely within the 

cytoplasm in myotubes (Goichberg et al., 2001). Immunofluorescence for β-catenin in 

satellite cells residing on isolated myofibers show nuclear localization after 24hrs in 

culture and co-localize with BrdU. Therefore, there is active Wnt/β-catenin signaling 

during the proliferative phase of satellite cells. Nuclear localization decreases as these 

cells differentiate and up-regulate Myogenin (Otto et al., 2008). The nuclear protein 

fraction isolated from hypertrophied muscle shows an increase in β-catenin and muscle 

that has been strenuously exercised shows an increase in activated, de-phosphorylated β-

catenin protein (Armstrong and Esser, 2005; Aschenbach et al., 2006). After injury there 

is an increase in total β-catenin protein levels in whole muscle (Kim et al., 2006; 

Polesskaya et al., 2003). Immunofluorescence on sections of regenerating muscle from 

both mouse and humans show dephosphorylated β-catenin positive nuclei under the 

basement membrane, and in humans this co-localizes with the proliferation mark Ki-67 

(Otto et al., 2008). Co-localization of nuclear β-catenin with proliferation markers 



 116 

suggests that active Wnt/β-catenin signaling is concurrant with proliferation in progenitor 

cells.  

Several studies have looked at the expression or up-regulation of known Wnt 

signaling target genes to indicate active signaling. In C2C12 cells there is evidence for 

both up-regulation and down-regulation of Wnt target genes when these cells are induced 

to differentiate by switching to low serum media. Wnt/β-catenin targets c-Myc, 

CyclinD1, and Fosl1 show decreased expression, whereas Axin2 and Tcf4 are up-

regulated (Bernardi et al., 2011; Tanaka et al., 2011). FACs isolated cells from myofiber 

explants cultured for 4 days up-regulate Axin2 (Brack et al., 2008). Hypertrophied 

muscle has increased expression of c-Myc, CyclinD1, Pitx2, and Lef-1, and Axin2 is up-

regulated following injury or exercise (Armstrong and Esser, 2005; Aschenbach et al., 

2006; Brack et al., 2008). Immunofluorescence of hypertrophied muscle shows nuclear c-

Myc expression in cells under the basement membrane and within the interstitial space 

(Armstrong and Esser, 2005). These results show that Wnt/β-catenin signaling is active 

with the muscle tissue during regeneration. 

In addition to Wnt/β-catenin targets, β-catenin independent targets are also up-

regulated in myogenic cells. The noncanonical transcriptional targets Tle-2 and CyclinD3 

are up regulated in C2C12 cells after switching to differentiation media (Tanaka et al., 

2011).  On freshly isolated myofibers Vangl2, an effector of the PCP pathway, is not 

expressed by satellite cells. However after 2 days in culture, Vangl2 can be detected by 

immunofluorescence in the Pax7+ progenitor cells. Other than the correlation of 

proliferation marks with β-catenin in satellite cells, the expression of Wnt pathway 

components does not provide insight into the actual function of Wnt signaling in 
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myogenic cells. It does however show that the Wnt/β-catenin pathway is active during 

muscle regeneration as well as the β-catenin independent Wnt pathway.  

Wnt/β-catenin signaling could have different transcriptional outputs because of 

different available binding sites and/or binding partners, and therefore function 

differently during the different stages of myogenic differentiation. Evidence for this 

comes from work by (Kim et al., 2008) showing that MyoD specifically binds to β-

catenin to promote transcription of target genes at the myotube stage in C2C12 cells 

while in the myoblast stage MyoD binds to E2a proteins, such as E47, to bind to Ebox 

elements on transcriptional targets. Interestingly, it has been shown that on muscle fibers 

isolated from MyoD null mice there is a delay of activation of the progenitor cells 

residing on the fiber, but proliferation eventually reaches the level of the wild type fiber-

associated cells. This correlates to the delay and subsequent restoration of nuclear 

localization of β-catenin in these cells (Macharia et al., 2010). While β-catenin may bind 

to TCF/LEFs in satellite cells to promote proliferation it appears that in more 

differentiated cells it might interact with MyoD to promote differentiation. 

The effort to understand the function of Wnt signaling in muscle regeneration has 

focused mostly on manipulating Wnt signaling either by overexpression or repression of 

various components of the pathway in cell culture systems or non-cell type specific 

techniques in vivo. Multiple studies have investigated the role of specific Wnt ligands on 

muscle regeneration. However, many of these studies have shown conflicting data. Wnt4 

has been shown to activate the TOPflash β-catenin signaling reporter assay in primary 

myogenic cells, however another study saw that not only did Wnt4 not activate the 

TOPflash reporter in C2C12 cells, but when Wnt4 was expressed with Wnt3a it could 
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repress the reporter activity seen with Wnt3a alone (Bernardi et al., 2011; Tanaka et al., 

2011). It is not clear whether Wnt4 is acting through the β-catenin dependent pathway 

during regeneration; however, both studies show that Wnt4 promotes differentiation in 

cultured myogenic cells. Additionally, when isolated myofibers are co-cultured with cells 

secreting Wnt4 there is a decrease in proliferation of fiber associated progenitor cells 

(Otto et al., 2008). The function of Wnt3a has also been investigated in muscle 

regeneration, presumably because it is the prototypical β-catenin dependent Wnt ligand. 

Despite the fact that C2C12 cells express Wnt3a, it has not been detected in vivo during 

muscle regeneration. When isolated myofibers are cultured with Wnt3a expressing cells 

the fiber associated progenitor cells display increased proliferation (Otto et al., 2008). 

When C2C12 cells are treated with adenoviral Wnt3a they have decreased expression of 

differentiated muscle proteins such as troponin (Tanaka et al., 2011). However, when 

recombinant Wnt3a is added to isolated myofibers one group saw an increase in Desmin 

staining 2 days after treatment, suggesting that Wnt3a is promoting differentiation (Brack 

et al., 2008). Additionally, when Wnt3a is either injected or electroporated into 

regenerating muscle it promotes premature differentiation as seen by an early increase in 

regenerated fiber size but slightly later the fiber size is decreased compared to controls.  

This premature differentiation ultimately results in a decrease in final fiber caliber, an 

increase in fiber number, and more extracellular matrix (Brack et al., 2008; Brack et al., 

2007; Le Grand et al., 2009). Wnt10b appears to be involved in preventing differentiation 

because primary muscle cells from Wnt10b-/- mice fuse rapidly and after injury of 

Wnt10b-/- mice, mononuclear interstitial cells show an increase in Myogenin expression 

(Vertino et al., 2005). Don’t know what to say about (Abiola et al., 2009). Although Wnt 
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7a can act through the β-catenin dependent pathway in other systems, it appears to act 

independently of β-catenin in muscle regeneration. Wnt7a promotes self-renewal of 

satellite cells through Vangl2 and the PCP pathway. Wnt7a-/- mice have 18% fewer 

satellite cells before injury and after injury they have 36% fewer satellite cells without 

any obvious myogenesis defects (Le Grand et al., 2009). It also appears that Wnt7a is 

acting through PI(3)K/TOR pathway to promote hypertrophy of myofibers (von Maltzahn 

et al., 2012). Treating primary myogenic cells with Rspn2 results in an increase in Myf5 

transcript levels (Han et al., 2011). Manipulation of Wnt ligands appears to have an effect 

upon regeneration; however, there does not seem to be a consensus as to whether some 

Wnts are acting through β-catenin as well as what the ultimate function of these proteins 

is. This may be due to the fact that many Wnts appear to be expressed in regenerating 

muscle and may act together to modulate the signal. It has been shown that β-catenin 

dependent and β-catenin independent pathway Wnts can modulate each other’s ability to 

bind receptors in other systems (Bryja et al., 2009; Topol et al., 2003). Therefore, in these 

experiments, increasing one Wnt ligand could activate downstream targets of that Wnt 

but also repress other Wnt signals.  

sFRPs are secreted Fzd related proteins that can bind to Wnt ligands and either 

block their binding to receptors or increase the diffusion of the ligand (Mii and Taira, 

2011). Continuously adding sFRPs to C2C12 cells or primary myogenic cells cultured in 

differentiation media for 8 days results in decreased cell fusion, smaller myotubes, and 

fewer myotubes as well as a decrease in MRF expression. This effect is sensitive to 

timing because if sFRPs are given Day1-3, Day1-5, or Day3-8 there was no effect 

(Descamps et al., 2008). When sFRPs were injected directly into the muscle at 2 days 
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post injury there was no effect; however, when injected at 3.5 days postinjury, sFRPs 

induce decreased fiber size and number (Brack et al., 2008). Therefore, there is a narrow 

time frame during which sFRPs can prevent differentiation. 

β-catenin dependent Wnt signaling focuses on the destruction or accumulation of 

β-catenin, therefore by experimentally manipulating the amount of β-catenin the pathway 

can be activated or repressed. There are chemicals that have been found to prevent the 

degradation of β-catenin such as LiCl or BIO. When these are added to C2C12 cells or 

primary myogenic cells in culture there is an increase in myotube area, but when LiCl is 

added to C2 cells there is a decrease in myogenin expression (Bernardi et al., 2011; 

Gavard et al., 2004). When adenoviral β-catenin is injected into a model of ischemic 

muscle injury total proliferation is increased; however, this was not a myogenic cell 

specific effect (Kim et al., 2006). Small molecule inhibitors of β-catenin added to C2C12 

cells promote differentiation, shown as an increase in troponin expression in myotubes 

(Tanaka, Terada et al. 2011).  When EGCG, a chemical that induces β-catenin 

breakdown, is added to cultured isolated myofibers the fiber-associated progenitors 

proliferate less (Otto et al., 2008). Knockdown of expression of β-catenin by siRNA in 

C2 cells results in an increase in myogenin expression; however, when β-catenin siRNA 

is added to C2C12 cells there is impaired regeneration, although how that was determined 

was not explicitly shown (Gavard et al., 2004; Kim et al., 2008).  

There are well-characterized genetic tools available in mouse to genetically 

manipulate β-catenin in vivo. The β-catenin loss of function allele β-cateninfl2-6 has LoxP 

sites flanking exons 2-6 in the β-catenin locus, creating a functional null following Cre-

mediated recombination (Brault et al., 2001). When adenoviral Cre is injected into the 
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muscle of β-cateninfl2-6/fl2-6 mice undergoing hypertrophy the Cre infected fibers are 

smaller than adjacent uninfected fibers (Armstrong et al., 2006). BCL9 and BCL9-2 are 

β-catenin co-activators, and when the conditional null alleles BCL9fl/fl and BCL9-2fl/fl are 

crossed to the Myf5cre driver BCL9/9-2 are deleted in the myogenic lineage and in ~95% 

of the adult satellite cells. When Myf5cre; BCL9fl/fl; BCL9-2fl/fl mice are injured there are 

fewer and smaller caliber regenerated myofibers at 4 and 6dpi and this effect was not due 

to proliferation of satellite cells (Brack et al., 2009). Interestingly, it was shown that 

treatment of C2C12 cells with a dominant negative version a TCF/LEF, in which the β-

catenin binding site is mutated preventing β-catenin from activating TCF/LEF target gene 

expression, had no effect on C2C12 cells (Kim et al., 2008). The evidence suggests that 

β-catenin is important for myogenesis and the lack of phenotype when TCF/LEFs no 

longer bind β-catenin may reflect an overriding function of β-catenin as a co-activator for 

MyoD in myoblasts. Alternatively, because β-catenin binds to the cytoplasmic tail of 

cadherin as well as a-catenin to link cadherin to the actin cytoskeleton, it is an important 

member of the adherens junction complex. It has been shown that there is convergence of 

the Wnt/β-catenin signaling pathway and the adherens junction complex through β-

catenin, reviewed in (Nelson and Nusse, 2004). It is possible that the Wnt signaling 

pathway may be utilized to regulate the level of β-catenin not just to activate 

transcriptional targets but to regulate the availability of β-catenin for adherens junctions. 

Myogenin expression and differentiation have been shown to be downstream of adherens 

junctions in C2 cells (Goichberg et al., 2001). M-cadherin is required for myoblast fusion 

(Charrasse et al., 2006). When p120, another catenin that binds to cadherin at the 

membrane to maintain the structural integrity of the junction complex, is knocked down 
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by siRNA in C2C12 cells they have decreased differentiation (Gavard et al., 2004). 

However when β-catenin is mutated at the α-catenin binding site there is no effect on 

differentiation (Kim et al., 2008). The Calpain3 protein regulates the amount of M-

cadherin and β-catenin localized to the membrane by degrading β-catenin. In primary 

culture of myogenic cells isolated from mice null for Calpain3 there is an increase in M-

cadherin and β-catenin localized to the membrane of myocytes. This results in an increase 

in fusion but a subsequent block in differentiation (Kramerova et al., 2006). Ozz is a 

muscle specific E3 ubiquitin ligase that acts on β-catenin to promote proteasomal 

degradation. Mice null for Ozz show an increase in β-catenin localization to the 

membrane of myofibers as well as a disruption of myofibril organization and increased 

splitting (Nastasi et al., 2004). Mutations in both Calpain3 and Ozz have been shown to 

cause myopathies in humans. In addition to myogenic proliferation and differentiation as 

well as muscle structure and function, β-catenin expression in muscle has been shown to 

be involved in setting up appropriate neuromuscular junctions (NMJ) in the diaphragm. 

One group interested in NMJ formation took advantage of a Cre-responsive activating 

allele of β-catenin. This allele of β-catenin, β-cateninfl3, deletes the phosphorylation site 

necessary for proteasomal degradation of β-catenin after Cre-mediated recombination 

(Harada et al., 1999). When the β-cateninfl3 allele is crossed to the MyoCre (a transgenic 

line in which Cre is driven by the myogenin promoter and MEF2c enhancer) β-catenin is 

not degraded in the myofibers. The authors saw that there is aberrant localization and 

defassiculation of the Phrenic nerve and the diaphragm myofibers have smaller 

diameters, but the sarcomere structure is normal and there is no sign of degradation or 

regeneration (Liu et al., 2012). When β-catenin is deleted in the myofibers by crossing 
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the β-cateninfl2-6 allele to the transgenic HSACre line, which expresses Cre in the mature 

myofibers, there are disrupted NMJ in the diaphragm. However, there is no affect on the 

muscle structure, size, or organization (Li et al., 2008). These results show that muscle is 

sensitive to over-accumulation of β-catenin and therefore the regulation of β-catenin 

levels either dependently or independently of Wnt signaling is essential for myocyte 

fusion and muscle function. 

Although there are a multitude of studies examining the role of Wnts and β-

catenin in muscle regeneration very little consensus has been made concerning the 

ultimate function of these proteins during muscle regeneration. This is due to both 

biological and experimental factors. Muscle regeneration is a complicated process 

orchestrated by a multitude of cells and signals that must all cooperate to achieve fully 

functional, structurally appropriate myofibers. Using cell culture to simplify the 

experimental system to ask direct questions about the function of specific Wnt pathway 

components is a relevant and useful endeavor. However, there are caveats to these 

experiments that should be considered when interpreting the data. Transformed myogenic 

cell lines are a useful tool because they are easier to use, will proliferate indefinitely, and 

can be developmentally synced by switching from proliferation media to differentiation 

media. These properties are necessary for experiments requiring large amounts of protein 

for biochemistry or reporter assays, but transformation has induced genetic changes. 

Although the C2C12 cell line was originally isolated from mouse satellite cells, they 

express CollagenVI, which is not expressed by primary myogenic cells (Zou et al., 2008). 

Therefore, care must be taken when interpreting results from this cell line because their 

expression profile and behavior may not reflect a purely myogenic character. Primary 
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myogenic cells have not undergone the genetic changes associated with transformation, 

but just by taking these cells out of their normal environment and putting them into a dish 

their behavior is affected. The tension of the substrate primary myoblasts as well as 

C2C12 cells are grown on in cell culture can affect adhesion, proliferation, and 

differentiation (Boontheekul et al., 2007). Even when experiments are conducted in vivo 

analysis of the effects of experimental manipulation can be complicated. Addition or 

knockdown of proteins in a non-cell type specific manner could have unknown 

consequences on cell types other that the myogenic population such as connective tissue 

fibroblasts or macrophages which both have been shown to be involved in directing 

muscle regeneration (Murphy et al., 2011; Tidball and Villalta, 2010).  To directly 

determine the role of β-catenin in muscle regeneration I have specifically deleted and 

prevented degradation of β-catenin within the satellite cells and will discuss my results in 

chapter 4 of this thesis. 

For muscle regeneration to happen in vivo multiple processes within the myogenic 

lineage must occur. The satellite cells must activate, proliferate, self-renew, and 

differentiate into myoblasts. These myoblasts must proliferate and differentiate into 

myocytes that then fuse to either themselves or damaged myofibers. Once the myofibers 

are formed they must grow to the correct size while organizing sarcomere structure, 

express the correct MyHC profile for the needs of the muscle, as well as communicate to 

the system that they have reached the necessary myonuclear number. Therefore, multiple 

factors are influencing the ultimate outcome of an appropriately sized myofibers. Many 

studies use myofiber size as a readout of functional regeneration. A smaller myofiber 

certainly reflects a defect in regeneration, but that alone does not elucidate which process 
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is affected: proliferation, differentiation, fusion, or hypertrophy or whether the defect 

occurred in the progenitor, myoblast, myocytes, or myofibers themselves.  
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