
GPU-ENABLED SURFACE VISUALIZATION

by

Mark Kim

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computing

School of Computing

The University of Utah

May 2016

Copyright c©Mark Kim 2016

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Mark Kim

has been approved by the following supervisory committee members:

Charles Hansen , Chair 11-30-2015

Date Approved

Christopher R. Johnson , Member 11-30-2015

Date Approved

Robert Michael Kirby , Member 11-30-2015

Date Approved

Ross Whitaker , Member 11-30-2015

Date Approved

Guoning Chen , Member 12-07-2015

Date Approved

and by Ross Whitaker , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

Visualizing surfaces is a fundamental technique in computer science and is

frequently used across a wide range of fields such as computer graphics, biology,

engineering, and scientific visualization. In many cases, visualizing an interface

between boundaries can provide meaningful analysis or simplification of complex

data. Some examples include physical simulation for animation, multimaterial

mesh extraction in biophysiology, flow on airfoils in aeronautics, and integral sur-

faces. However, the quest for high-quality visualization, coupled with increasingly

complex data, comes with a high computational cost. Therefore, new techniques

are needed to solve surface visualization problems within a reasonable amount of

time while also providing sophisticated visuals that are meaningful to scientists

and engineers.

In this dissertation, novel techniques are presented to facilitate surface visual-

ization. First, a particle system for mesh extraction is parallelized on the graphics

processing unit (GPU) with a red-black update scheme to achieve an order of

magnitude speed-up over a central processing unit (CPU) implementation. Next,

extending the red-black technique to multiple materials showed inefficiencies on

the GPU. Therefore, we borrow the underlying data structure from the closest point

method, the closest point embedding, and the particle system solver is switched

to hierarchical octree-based approach on the GPU. Third, to demonstrate that the

closest point embedding is a fast, flexible data structure for surface particles, it is

adapted to unsteady surface flow visualization at near-interactive speeds. Finally,

the closest point embedding is a three-dimensional dense structure that does not

scale well. Therefore, we introduce a closest point sparse octree that allows the

closest point embedding to scale to higher resolution. Further, we demonstrate

unsteady line integral convolution using the closest point method.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vii

LIST OF TABLES . xi

ACKNOWLEDGEMENTS . xiii

CHAPTERS

1. INTRODUCTION . 1
1.1 Particle-Based Mesh Extraction on the GPU . 4
1.2 Enhanced Particle-Based Mesh Extraction . 5
1.3 Surface Flow Visualization . 5
1.4 Surface Flow Visualization and the Closest

Point Sparse Octree . 7
1.5 Contributions . 7
1.6 Outline . 8

2. BACKGROUND . 10
2.1 Particle Systems . 10

2.1.1 Particle Systems on the GPU . 10
2.1.2 Barnes-Hut Tree Code . 11

2.2 Variational Mesh Extraction . 12
2.2.1 Quality . 12
2.2.2 Variational Methods . 15
2.2.3 Other Multimaterial Meshing Techniques 16

2.3 Flow Visualization . 16
2.3.1 Dye Advection . 16
2.3.2 Line Integral Convolution . 17
2.3.3 Flow on Surfaces . 18

2.4 Closest Point Method . 19
2.4.1 Closest Point Grid . 20
2.4.2 Equivalence of Gradients . 20

2.5 Sparse Octree . 20
2.6 GPU Computing . 21

2.6.1 Programmable Shaders and GPGPU . 21
2.6.2 CUDA . 22

3. GPU-BASED MESH EXTRACTION . 24
3.1 Particle System . 25

3.1.1 Initialization . 25
3.1.2 Per Particle Processing . 25

3.1.2.1 Energy and Velocity Computation . 28
3.1.2.2 Update Position . 29

3.1.3 Density Control . 30
3.1.4 Binning and Neighborhoods . 31

3.2 Parallelization . 31
3.2.1 Bin Processing . 32

3.3 CUDA Implementation . 35
3.3.1 Bin Processing . 36
3.3.2 Energy and Velocity Computation . 36
3.3.3 Memory Management . 36

3.4 Results . 39
3.4.1 Quality . 43
3.4.2 Speed-up . 43
3.4.3 Scaling . 44

3.5 Summation . 50
3.6 Multimaterial Mesh Extraction on the GPU . 50

4. ENHANCED GPU MESH EXTRACTION . 54
4.1 Barnes Hut Tree Code . 54

4.1.1 Constructing the Closest Point Embedding 57
4.2 Closest Point Embedding . 58

4.2.1 Using the Closest Point Embedding . 59
4.3 Results . 60

4.3.1 Timing . 62
4.3.2 Quality . 64

4.4 Discussion . 65

5. SURFACE FLOW VISUALIZATION USING THE CLOSEST POINT
EMBEDDING . 66
5.1 Closest Point Embedding Construction . 67

5.1.1 Constructing the Closest Point Embedding 67
5.1.2 Using the Closest Point Embedding . 71

5.2 Flow Visualization With the Closest Point Embedding 71
5.2.1 Construction . 72
5.2.2 Unsteady Flow Line Integral Convolution 73
5.2.3 UFLIC With the Closest Point Embedding 77

5.3 Results . 77
5.4 Discussion . 80

6. CLOSEST POINT SPARSE OCTREE AND UNSTEADY SURFACE
FLOW . 82
6.1 Embedding the Surface . 83

6.1.1 Sparse Closest Point Grid . 83
v

6.1.2 Morton Order . 86
6.1.3 Sparse Octree Construction . 86
6.1.4 Using the Closest Point Octree . 88

6.2 Flow Visualization With the Closest Point Method 90
6.2.1 UFLIC . 90

6.3 Results and Discussion . 92
6.3.1 Validation . 92
6.3.2 Timing and Scaling Results . 95

6.4 Summary . 102

7. CONCLUSION . 103

REFERENCES . 105

vi

LIST OF FIGURES

1.1 Five-compartment tetrahedral mesh using BioMesh3D. Fig. (a) vi-
sualizes the particles on the surfaces. Fig. (b) and (c) visualize the
tetrahedral mesh. (MacLeod et al. [73]) . 2

1.2 In-flight oil flow [33] (NASA [33]). 3

2.1 Examples of measuring triangle quality. In (a) is the inscribed vs the
circumscribed radius ratio of a triangle and (b) is the angle between
two triangles. 13

2.2 A collection of different tetrahedrons and their descriptions [31].
A round tetrahedron has a good aspect ratio. A needle has good
dihedral angles with a small solid angle and a wedge has small
dihedrals and solid angles. A spindle has small solid angles and
wide dihedrals. A cap tetrahedron has wide solid angles and a sliver
is considered bad for computation. 14

3.1 Overview of the particle system. 26

3.2 Processing a particle is a four-step process: 1) determine the neigh-
bors, 2) compute the energy, 3) compute the velocity, and 4) update
position. The red blocks are the fourth step, i.e., the iterative process
to update the position of the particle. 27

3.3 Processing particles by their bins. 33

3.4 Running multiple neighborhoods concurrently in 2D. (a) Bins to be
processed are labeled. (b) Neighborhoods are highlighted. (c) Move
to next bins. (d) Move to next bins. 34

3.5 Memory layout in CUDA. 37

3.6 Images of the heart dataset on the CPU and GPU, respectively. Fur-
ther, embedded is a zoomed-in area of the image and the histogram for
the dataset. The visual quality of the CPU implementation compared
to the GPU implementation is very similar. Further, the histograms
show that both the CPU and GPU systems are dominated by well-
shaped triangles. 40

3.7 Images of the lung dataset on the CPU and GPU, respectively. Further,
embedded is a zoomed-in area of the image and the histogram for the
dataset. The visual quality of the CPU implementation compared
to the GPU implementation is very similar. Further, the histograms
show that both the CPU and GPU systems are dominated by well-
shaped triangles. 41

3.8 Images of the ribcage dataset on the CPU and GPU, respectively.
Further, embedded is a zoomed-in area of the image and the his-
togram for the dataset. The visual quality of the CPU implementation
compared to the GPU implementation is very similar. Further, he
histograms show that both the CPU and GPU systems are dominated
by well-shaped triangles. 42

3.9 Synthetic test for the ribcage dataset. Graph of Table 3.3 where the
red plot is the CPU and the blue plot is the GPU. 46

3.10 Real-world test for the ribcage dataset. Graph of Table 3.4 timing
results as the number of particles are increased. The GPU results are
in blue and the CPU results are in red. 48

3.11 Three meshes of the same dataset, with varying number of particles.
As the σ and δ parameters are decreased, the number of particles
increases. 49

3.12 Example of multithreading a max(V). Each material is assigned a
different thread for processing Eq. 3.10. 52

4.1 An example of a quadtree decomposition, its tree representation and
center-of-mass representation. (a)-(c) are an example of a quadtree
built with the Barnes-Hut tree code in two dimensions: (a) has eight
particles, A−H, with the domain subdivided into an octree, and (b)
is the octree from (a), visualized as a tree. The blue nodes that are
labeled A−H are leafs, as these are the quads that contain the particles
A−H in (a). The nodes colored in green have the center-of-mass of the
quadtree’s descendants. Finally, (c), is a spatial visualization of the
particles with the domain decomposed into quads. The green points
are the center-of-mass positions of the nodes, and the particle A has
traversed the tree and calculated its energy from the two green nodes
and directly from particles D and H. 56

4.2 An example of the closest point embedding using a circle. (a)-(b) are
examples of the closest point embedding. For all figures, the cells
close to the surface are colored blue, while cells far away from the
surface are colored white. (a) An example surface, a circle embedded
in a coarse grid. (b) Part of the fine level of the surface from (a), with
spacing S = 1/3, and the projection, visualized with an arrow, of the
cell in blue, (36,24) to the surface location (the red point) (40.2,23.1). . . 58

4.3 The head datasets: (a) all the material interfaces of the head dataset. (b)
the triangles of the skin surface. 61

4.4 The pig dataset: (a) shows all the material interfaces of the pig dataset,
and (b) shows some of the triangles on the “lung” material of the
dataset. 61

viii

4.5 A normalized chart of the full timing results for the pig and head
datasets from Tables 4.2 and 4.3. Each bar is the normalized time to
extract the mesh (generating the distance field, generating the sizing
field, advecting the particles, and extracting the mesh) using the CPU,
the red-black implementation, and the Barnes-Hut tree code. 63

5.1 An example of the coarse and fine levels of the closest point em-
bedding. (a)-(c) are two-dimensional examples of the closest point
embedding. For all figures, the cells close to the surface are colored
blue, and cells far away from the surface are colored white. (a) is
an example surface, a curve embedded in a coarse grid. (b) displays
part of the fine level of the surface from (a), with spacing S = 1/4. An
example of the closest point to the surface is shown, where the red cell
is at the fine grid position, (23,14) , the projection is visualized with
an arrow, and the surface location (the green point) is at (21.3,14.8).
Finally, (c) focuses on the fine grid cell (from (b)), which is colored
red. To determine the closest point on the surface, the surface vertex
(in blue) is fetched. Then, the lines adjacent to the vertex are checked
to see if there is a point on them closer to the fine grid cell than the
surface vertex. In this example, there is a point (colored green) on a
line adjacent to the surface vertex that is closer than the surface vertex.
The point on the adjacent line is saved to the fine grid. 68

5.2 An example of a triangle face (in blue) projected into a coordinate
plane and the seven different regions numbered. The green vertex
is a grid vertex projected into the two-dimensional plane and is in
region 3. 70

5.3 To construct the sparsely stored refined grid, the closest point embed-
ding is subdivided. Using the original two-dimensional closest point
embedding example from Fig. 5.1b, the fine grid is subdivided and
two grid cells are each subdivided into eight refined grid cells, which
are shown in red. 73

5.4 Continuing with the two-dimensional fine grid example from Fig. 5.3,
a single refined grid cell is highlighted in green, with its four neighbors
colored yellow. 74

5.5 Two-dimensional examples of the pathlines being halved until the
particle is on the surface. In (a), the original pathline does not end in
a cell near the surface (cells colored blue). Therefore, in (b) the length is
cut in half, but again the pathline does not end in a cell near the surface,
and in (c) the pathline is reduced again. The pathline now terminates
on a cell close to the surface, and a pathline is drawn, shown in red
in (d). A new pathline is started in (d) where the previous pathline
ended using the previous pathline’s length. Drawing pathlines in this
manner is repeated until the original pathline length is drawn. 75

5.6 The ICE train visualized with UFLIC with (a) closest point embedding
and using (b) Flow Charts. 78

ix

5.7 The airliner (F6) dataset visualized with UFLIC and (a) closest point
embedding and (b) using Flow Charts. 78

5.8 Engine cylinder visualizations. The cylinders in (a) and (b) use UFLIC
with the closest point embedding and Flow Charts, respectively, for
visualizing flow in a combustion cylinder. 79

6.1 For all figures, the cells marked as close to the surface are colored blue,
and cells far away from the surface are colored white. Cells colored
blue are stored in the sparse octree, whereas cells colored white are
discarded to save memory. An example surface, a curve embedded
in a 24x24x24 2D grid is in (a) . In (b), part of the grid from (a) is
displayed with an example of the closest point to the surface shown,
where the red cell is at the fine grid position, (23,14) , the projection is
visualized with an arrow, and the surface location (the green point),
is at (21.3,14.8). 83

6.2 A two-dimensional example of Morton order and its hierarchy: (a) is
the highest level Morton order, and (b) is a coarser Morton order. 87

6.3 Continuing with the embedded piecewise curve example from Fig. 6.1,
a 4×4 two-dimensional subgrid is used as an example to construct a
sparse octree in (b). The cells are labeled 0x0 to 0xF in Morton order.
In (a) 0x0 to 0x3 are in the grey level and the parent-child relationship
is recorded in the green level. In this example, only 0x0 and 0x1 are
leaf nodes that exist in the closest point grid. The nodes 0x2 and 0x3
are empty key. 89

6.4 A two-dimensional example of the UFLIC with a one-dimensional
embedded curve. A 40× 40 noise grid is in (a) and a vector field is
in (b), but 20×20 to reduce visual clutter. A zoomed-in portion for (b)
is in (c) and (d). The extension phase of the closest point method is
in (c) . The values have been interpolated into the UFLIC grid. Finally,
a single example is given in (e), where a value that was interpolated
from the surface is then deposited back onto the surface with UFLIC. . 91

6.5 The ICE train visualized with UFLIC with the CPSO (Fig. (a)), SFCPE
(Fig. (b)), and using Flow Charts (Fig. (c)). 93

6.6 The F6 aircraft dataset visualized with UFLIC and the CPSO (Fig. (a))
the SFCPE (Fig. (b)) and using Flow Charts in Fig. (c). 94

6.7 The delta wing vortex bubble dataset is a stream surface off of a delta
wing. It is a complex surface that flows around itself. Fig. (a) shows
the surface of the delta wing vortex bubble. 96

6.8 Three graphs from data in Table 6.1. Fig. (a) and (b) are graphs of
the timing results of the CPSO construction and applying UFLIC,
respectively. Fig. (c) is a chart of the number of voxels that are
generated from the sparse octree. 99

x

LIST OF TABLES

3.1 Multiple datasets, including heart, lungs, and ribcage on the CPU and
GPU, are compared for quality. Qualitative comparison is done by
calculating the mean radius ratio of the resulting meshes. 43

3.2 The amount of time to place particles on the surface is compared in
this table. Multiple datasets, including heart, lungs, and ribcage on
the CPU and GPU, are listed along with the time, in seconds, to place
the particles and the final number of particles for the CPU and the
GPU, respectively. The last column is the speed-up gained from the
GPU system. 44

3.3 Synthetic test data for scaling the ribcage dataset without adding any
particles to give an upper bound on the number of particles. The
details are the initial number of particles (60,000 to 300,000), the time
and final number of particles for the CPU system, and the time and
final number of particles for the GPU system and the speed-up. 45

3.4 Real-world test data for scaling the ribcage dataset by varying the
ε and δ when generating the distance field. The fields are the ε, δ
and iteration count used to generate the sizing field, the time and
final number of particles for the CPU implementation, the time and
number of particles for the GPU implementation, and the speed-up
of the GPU system over the CPU system. 47

4.1 The initial and final particle count for the pig and head datasets, as
well as the mean radius ratio of the final mesh. 60

4.2 A comparison of time (in seconds) to complete particle advection for
the closest point embedding with the CPU, the red-black implemen-
tation (RBGS), and the Barnes Hut tree code (BH). The datasets are
the pig torso and human head volumes. 62

4.3 Timing results for the GenerateDistanceVolumes, GenerateSizingFields,
closest point grid generation, and SurfaceExtraction (Section 3.1) for
the pig and head datasets. All results are in seconds. 62

5.1 The timing results (in seconds) and dimensions for the datasets.
All timing results were performed with an Intel Core i7-3770 with
an Nvidia GeForce GTX-780 GPU. 80

6.1 The timing results (in seconds) and the increase in time from the
previous grid size for the construction of the CPSO and applying
UFLIC as well as dimensions for the datasets are listed. Further, the
number of sparse voxels and the increase from the previous grid size
voxel count are listed in the last two columns. 97

6.2 The timing results (in seconds) and the increase in time from the
previous grid size for applying UFLIC as well as dimensions for the
ICE train dataset are listed using the neighborhood index. Further,
the number of sparse voxels and the increase from the previous grid
size voxel count are listed in the last two columns. 99

xii

ACKNOWLEDGEMENTS

This research was supported by the DOE, NNSA, Award DE-NA0002375:

(PSAAP) Carbon-Capture Multidisciplinary Simulation Center, NSF ACI-1339881,

NSF IIS-1162013, and the DOE SciDAC Institute of Scalable Data Management

Analysis and Visualization DOE DE-SC0007446.

CHAPTER 1

INTRODUCTION

Surface visualization is a fundamental technique in scientific visualization that

facilitates understanding of surface data. It covers a wide range of data types

and techniques, from mathematical algebraic surfaces to raster data and volume

rendering to mesh extraction. Regardless of data type, though, there is usually a

need for sophisticated but fast techniques. Further, surface visualization can be

used as part of an iterative process to explore data sets. This iterative process

requires a reasonable turnaround time for generating results because a lengthy

turnaround time inhibits exploration of the data set. As sophisticated surface

visualization techniques are used to increase the quality of the output, in contexts

such as medical imaging [94] or surface flow visualization [52], these techniques

come with an additional computational cost. That sophistication can also increase

the amount of time it takes to iterate scientific discovery in a timely but accurate

manner [107]. But this sophistication is key to accurate understanding of the data

and cannot be discarded for performance. To address these issues, we developed

new parallel techniques for surface visualization.

Surface visualization aids in the understanding of surface data, and in this

dissertation we focus on two areas: conformal meshing with particles and unsteady

surface flow visualization. Bioengineers need conformal, multimaterial meshes for

accurate simulation [108]. In contrast to meshing, unsteady flow visualization, such

as UFLIC, help engineers understand the flow on surfaces over time. Although

with very different purposes, both of these research areas have similar needs for

exploring their data in a timely manner while maintaining the accuracy of the

results. Additionally, surface visualization covers a broad spectrum of data types

and techniques. Three-dimensional structured scalar data, such as those generated

from magnetic resonance imaging (MRI) or computed tomography (CT), are fre-

2

quently used in biomedical research for electrophysiological modeling. To conduct

the modeling, a tetrahedral mesh is extracted from the structured data using a

software package called BioMesh3D [98]. To perform accurate electrophysiological

modeling, the mesh needs to be a conformal, high-quality multimaterial tetrahedral

mesh [108]. An example of a five-compartment mesh used in electrophysiology

is in Fig. 1.1. In contrast to a structured, three-dimensional scalar field, surface

flow visualization often uses a triangular mesh with a velocity field sampled at the

mesh vertices. With a velocity field represented in the mesh, various surface flow

techniques are applied to visualize the field, such as line integral convolution (LIC),

which has a physical analog: placing oil onto aircraft to visualize flow separation

(Fig. 1.2). Although dissimilar in structure and purpose, both multimaterial

meshing and the surface flow visualization share a similar problem: sophisticated

visualization techniques have a high computational cost for accurate visualization.

Surface visualization, and scientific visualization in general, is often used as part

of an iterative data exploration process. This iterative data exploration process is a

process of trial and error to explore the data. For example, in BioMesh3D there are

user parameters to control some aspects of the mesh generation. If the turnaround

time is lengthy, in practice this can lead to users resisting a technique or being

unable to fully explore the data to generate an optimal solution. Therefore, it is

preferable that surface visualization techniques be fast enough for users to iterate

(a) (b) (c)

Fig. 1.1. Five-compartment tetrahedral mesh using BioMesh3D. Fig. (a) visualizes
the particles on the surfaces. Fig. (b) and (c) visualize the tetrahedral mesh.
(MacLeod et al. [73])

3

Fig. 1.2. In-flight oil flow [33] (NASA [33]).

over their parameter space in a timely manner. At the same time, the high-quality

results from the sophisticated techniques need to be maintained.

Users such as bioengineers or computational fluid dynamicists require in-

creasingly sophisticated surface visualization for more accurate results, and this

requirement increases computation time. The type of conformal multimaterial

meshes used for biomedical electrophysiological modeling comes with a high

computational cost, on the order of hours, or even days, to generate, that inhibits the

ability of biomedical engineers to generate many models over time [107]. Similarly,

state of the art in parameterized surface flow visualization, Flow Charts, requires a

lengthy preprocess step to generate a parameterized surface upon which to perform

unsteady flow line integral convolution [65]. These lengthy times to generate

results can interfere with the iterative nature of using surface visualization as an

exploratory tool for data sets. But these techniques are crucial to their users for

high-quality scientific discovery.

To address these issues, new parallel techniques were developed to be used

in combination with general purpose computing on the graphics processing unit

(GPGPU) to speed up surface visualization. At the same time, care is taken to retain

4

the sophistication, complexity, and accuracy of the techniques that are required to

continue to be useful for practitioners in their field. This chapter continues with an

overview of the contributions in this dissertation for surface visualization.

1.1 Particle-Based Mesh Extraction on the GPU
Isosurface extraction from three-dimensional scalar volumes is a fundamental

technique in visualization. In some cases, the scalar data may be composed of

different materials, and although the material is stored in a regular grid, the material

interfaces generally do not conform to the underlying grid. Meyer et al. [80, 81]

introduced a particle-based approach to extract a conformal, curvature-dependent,

well-formed multimaterial mesh from biological data. This approach used an

energy-based system to extract a surface mesh with nearly equilateral triangles.

Further, it generated meshes with smaller triangles in areas of high curvature,

which gives more resolution in areas that need it. Well-formed triangular meshes

are a good starting point to generate a tetrahedral mesh that is well suited for finite

element simulation.

BioMesh3D [98] is a tool based on the research of Meyer et al. and packaged into

a pipeline for biological mesh extraction [19]. However, due to the computational

complexity of the particle advection process, users are required to find a balance

between the heavy computation required and their needs in terms of the quality of

the mesh, the quantity of tetrahedrons, and the time anticipated to extract the mesh.

The excessive computational cost to generate a well-shaped multimaterial mesh has

hindered the use of the curvature-dependent particle system by the bioengineering

community for numerical simulations [108]. For instance, an attempt was made to

extract a mesh from a six-material dataset, but was finally stopped after two months

because it had yet to finish [107]. Improving the performance could increase the use

of the particle system for multimaterial mesh extraction and for various numerical

simulation tasks.

We introduced a novel implementation of a particle system on the graphics

processing unit (GPU) to reduce the run-time of the particle system. The adaption

of a particle system to the GPU is inherently difficult due to the single instruc-

5

tion multiple threads (SIMT) nature of the hardware. We studied the potential

parallelization of the particle placement and proposed a simple strategy, called

the red-black update, to segment the particles into groups that can be processed

concurrently. Then, we explored the parallel feature provided by the recent

advance of CUDA programming on the GPU, which allowed us to parallelize

the computations when processing each particle in a group. Finally, we applied

our GPU-based particle system to a number of medical datasets. The obtained

meshes have comparable quality to those generated using a CPU-based particle

placement, whereas the computation of our implementation is at least one order of

magnitude faster than the CPU version for most cases, which is described in detail

in Chapter 3.

1.2 Enhanced Particle-Based Mesh Extraction
The red-black update scheme achieved up to an order of magnitude speed-up

for isosurface extraction using a single distance field on the GPU. Although it

performed well on the GPU, unfortunately, it is not a natural mapping to the SIMT

architecture. Further, extending the red-black scheme to multiple materials was

problematic because of the SIMT nature of the GPU. The surface representation,

a distance field, requires a reprojection step realized through an iterative root-

finding algorithm to place particles back onto the surface. This reprojection step is

inefficient on the GPU due to the amount of control flow, and forced the red-black

update to run inefficiently on the GPU. Therefore, a new approach is needed to

overcome these issues. We used the closest point embedding to define the surfaces

in the volume for faster reprojection. We adapted the Barnes-Hut tree code, an

octree-based acceleration structure, to speed up the particle energy calculation.

Finally, new seeding and add/delete algorithms were developed to efficiently place

new particles.

1.3 Surface Flow Visualization
Vector field visualization is a fundamental technique in scientific visualization

and is important in numerous scientific and engineering fields, such as computa-

tional fluid dynamics. One popular approach is line integral convolution (LIC) [17]

6

because of its efficient utilization of the graphics processor as well as its ability to

be used on surfaces embedded in three dimensions.

Computing LIC on surfaces can be done in two ways: image-space methods and

surface parameterization methods. Image-space methods generate LIC images on

the visible parts of the surface [61, 111]. In particular, the visible surface geometry

and velocity field are projected onto the screen, and LIC is applied in the image

space. By processing only the visible parts, the computation is highly interactive

due to the GPU-generated LIC. Unfortunately, there are issues with image-space

methods. Because only the visible geometry is processed, artifacts from altering

the camera position can be noticed around silhouette edges or self-occluded areas

of the mesh.

Parameterizing the surface is another way to generate LIC on surfaces. Li et al.

achieved interactive frame rates rendering unsteady flow by partitioning the mesh

into patches that are then packed into a texture atlas [65]. Partitioning the mesh

into patches is considered a preprocess step that is very time consuming.

To avoid the artifacts from image-space methods while at the same time ad-

dressing the lengthy preprocess step of Flow Charts, we presented a new method

for unsteady flow line integral convolution (UFLIC) on a surface. Our parame-

terized space, the closest point embedding, came from the closest point method a

simple but powerful technique for solving PDEs on embedded surfaces [93]. By

using the closest point embedding, the parameterized surface was generated at

near-interactive rates and the UFLIC was done at interactive rates, which allowed

for flow visualization without the drawbacks of previous methods. To perform the

flow visualization, a sparse closest point embedding was constructed by converting

the triangular mesh into a coarse three-dimensional closest point grid. Once the

closest point embedding was constructed, a refined grid and a neighborhood index

are constructed to visualize the flow. Finally, an unsteady flow technique, UFLIC,

was run over the refined grid to visualize the flow field.

7

1.4 Surface Flow Visualization and the Closest
Point Sparse Octree

Finally, as datasets continue to grow larger, new methods are needed to visualize

them. To address this issue, we introduced the closest point sparse octree [53]. By

using a sparse octree instead of a structured grid, we could construct a closest point

embedding up to 8,1923 in size on the GPU. Further, previously the closest point

embedding was used to keep particles on the surface to perform UFLIC on the

surface. However, by using the closest point method, particles no longer are kept

on the surface to advect the noise. By extending the surface velocities and values

into the surrounding grid and advecting the particles in the three-dimensional grid,

the UFLIC is performed on the surface thanks to the equivalence of gradients [93].

1.5 Contributions
This dissertation explores speeding up surface visualization through the use of

the GPU with the closest point embedding. The following contributions have been

made:

• Particle System for Meshing on the GPU. The curvature-dependent particle

system [80] is adapted to the GPU for isosurface mesh extraction [50]. A

red-black Gauss-Seidel update method was developed to process bins of

particles in parallel. This method achieved up to 44x speed-up over a CPU

version.

• Particle Mesh Extraction With the Closest Point Embedding and the GPU. Unfor-

tunately, the GPU particle system in [50] had some limitations. Although

it achieved an order of magnitude speed-up over a CPU implementation,

nevertheless it was difficult to implement and extend to multiple materials,

and work load balancing was restricted. To remedy this, a tree code is used

instead of binning to increase performance by not limiting the acceleration

structure by the largest local feature size value. Further, a closest point

embedding surface is used instead of multiple distance fields to immediately

project the particle back onto the surface. By choosing the closest point

embedding, multiple projections onto the surface are no longer needed [51].

8

• Surface Flow Visualization Using the Closest Point Embedding. The closest point

embedding is a powerful tool to represent surfaces. Therefore, it is applied to

surface flow visualization [52]. Previous surface flow visualization attempts

are either at least an order of magnitude too slow to parameterize the surface

in near real-time or image-space based and unable to support techniques such

as dye advection [63, 61, 111]. The closest point embedding is constructed in

near real-time, and UFLIC [99, 63] is adapted to the closest point embedding

to do surface flow visualization.

• Closest Point Sparse Octree and Unsteady Surface Flow. As datasets continue to

grow larger, so must the methods adapt to keep up with the increased size.

Therefore, we introduce a GPU-based closest point sparse octree (CPSO)

construction technique [53]. This new technique can construct sparse octree

grids up to 8,1923 in size. Further, we introduce the closest point method to

surface flow visualization by using unsteady flow line integral convolution

(UFLIC) with the closest point method.

1.6 Outline
The remainder of this dissertation is as follows. Chapter 2 outlines the previous

works of particle systems, surface flow visualization, the closest point method, and

sparse octree voxelization. For particle systems, the natural focus is on particle

systems on the GPU in Section 2.1.1 and the Barnes-Hut tree code (Section 2.1.2).

The mesh extraction background reviews variational methods in Section 2.2. Mul-

timaterial mesh extraction methods, besides variational, are briefly covered in

Section 2.2.3. For flow visualization in Section 2.3, the focus is on the fundamentals

of surface flow visualization and image-space versus parameter-space approaches

(Section 2.3.3). The closest point method is covered in Section 2.4, and recent sparse

octree voxelization strategies are covered in Section 2.5.

Chapter 3 reviews the work done to adapt the cotangent energy particle system

to the GPU using the red-black update. Section 3.1 provides an overview of the

serial cotangent energy particle system. Then, we introduce the reasoning behind

the red-black update in Section 3.3 and the nuts-and-bolts of the red-black update

9

on the GPU. Finally, in Section 3.6 we discuss the difficulties in the extension of the

red-black update to multiple materials.

Chapter 4 describes the enhanced mesh extraction for the GPU. In Section 4.1,

we explain why the Barnes-Hut tree code is better suited for the GPU than the

red-black update and how it is adapted to the GPU. Then, we discuss the closest

point embedding and how it is used for particle mesh extraction in Section 4.2.

We then compare the results of this enhanced mesh extraction with our previous

red-black update scheme in Section 4.3.

Chapter 5 continues with the closest point embedding, but we adapt it for

surface flow visualization. Section 5.1 introduces the closest point embedding

and constructs the coarse and refined grid from a triangular mesh and reprojects

particles back onto the surface. Then, we present UFLIC and how it is applied to

the closest point embedding in Section 5.2. Finally, we compare previous results

with our results in Section 5.3.

Chapter 6 discusses the closest point sparse octree with unsteady surface flow

visualization. By using a sparse octree to represent the closest point embedding,

the grid can scale up to 8,1923 in size. Further, the unsteady flow is accomplished

using the closest point method, where the velocities and values on the surface are

interpolated off the surface to perform the advection, depositing, and filtering in

three dimensions. Finally, Chapter 7 includes the conclusion and future works.

CHAPTER 2

BACKGROUND

This chapter provides the background for subsequent chapters. Particle systems

on the graphics processing unit (GPU) are reviewed in Section 2.1, and Section 2.2

discusses mesh extraction with an emphasis on variational methods (Section 2.2.2).

These sections are relevant to Chapters 3 and 4. Flow visualization is reviewed

in Section 2.3 with a focus on surface flow visualization (Section 2.3.3), which is

relevant to unsteady flow line integral convolution on a surface in Chapters 5

and 6. Sparse voxelization is reviewed in Section 2.5, which pertains to the

closest point sparse octree in Chapter 6. The closest point method is discussed

in Section 2.4, which is revelant to Chapters 4 – 6. Finally, GPU computing is

reviewed in Section 2.6.

2.1 Particle Systems
Particle systems are an expansive topic in computer science. In this section,

we limit the topics to particle systems for scientific visualization on the GPU

(Section 2.1.1) and the Barnes-Hut tree code on the GPU (Section 2.1.2).

2.1.1 Particle Systems on the GPU

Particle systems on the GPU were first introduced by Kolb et al. [56] and Kipfer et

al. [54] for real-time animation and rendering of particles in OpenGL. For real-time

three-dimensional flow visualization, Kruger et al. used a particle system on the

GPU because the CPU was too slow [57]. Extending the particle system beyond

computer graphics, the GPU was subsequently used for simulating fluid motion

with smooth particle hydrodynamics (SPH) [55]. A good overview of state-of-the-

art in SPH on the GPU can be found in Goswami et al. [39].

Although there are shared characteristics between these particle systems and the

system presented in this dissertation, such as how particles are stored and accessed

11

on the GPU, each has a different parallelization strategy due to different application

purposes. The particle systems by Kolb et al. [56] and Kruger et al. [57] do not require

neighborhood information and are easily parallelizable (i.e., assigning a thread for

each particle). On the other hand, Kipfer et al. [54] and the SPH implementations [39,

55] require local neighbors for collision detection and advection of the particles.

However, both of these systems are Forward-Euler solutions, which could use a

small uniform time step to adjust the particle velocity to allow the systems to

converge. In our implementation, each particle determines its step size based on

its energy and the local curvature and does not have a uniform time step, which

allows faster convergence for the purpose of mesh extraction.

2.1.2 Barnes-Hut Tree Code

The original tree code by Barnes and Hut was an astrophysics simulation that

transformed the N-Body problem from an order O(n2) problem to O(nlog(n)) [4].

Briefly, all particles in the domain are stored in an octree such that each leaf in the

octree has either zero or one particle. Each internal node represents its children,

the group of particles beneath it, in the tree. To represent children, an internal node

stores a center-of-mass location and the total mass of all its children particles.

Following the original hierarchical Barnes-Hut tree code, there were numerous

attempts to parallelize the method on vector hardware of the time [5, 28, 112],

sometimes with no speed-ups over direct N-body simulations [75]. At the same

time, custom hardware was developed to solve the direct N-body problem called

“GRAvity PipE” (GRAPE), which provided two orders of magnitude speed-up in

comparison to software implementations [74]. GRAPE hardware was modified

to compute the gravitational forces for Barnes-Hut [36], and the hardware and

associated libraries continued to evolve and be used by researchers in astrophysics.

Because of the highly parallel nature of GRAPE and the addition of SIMD

extensions (SSE) instructions on processors, the GRAPE library was implemented

for the CPU [84]. The highly parallel nature of the SIMT instructions of the GPU

and a parallel programming model, common uniform device architecture (CUDA),

also led to the GRAPE hardware API being adapted to the GPU [38]. The advent

12

of programmable GPUs and their significantly higher volumes caused a decline in

the use of GRAPE hardware because GPUs are more cost efficient and cheaper to

buy [7].

An early GPU implementation of tree code by Belleman et al. was faster than the

CPU tree code, but slower than direct N-body methods on the GPU [9]. Hamada et

al. increased the speed-up by combining multiple tree-walks and then transferring

them to the GPU [41], and Gaburov et al. improved upon this by moving the

tree-walk to the GPU [37]. Finally, Bédorf et al. [8] implemented the remaining

parts of the tree code, constructing the octree and particle sorting, solely on the

GPU. A comprehensive overview of parallel Barnes-Hut tree code can be found

in [7, 117].

2.2 Variational Mesh Extraction
A comprehensive review of meshing is outside the purview of this disserta-

tion. Therefore, the focus in this section is on variational meshing. For a more

comprehensive overview of mesh extraction, we refer readers to Shewchuk [102].

2.2.1 Quality

In two dimensions, variational optimization techniques such as Meyer’s cotan-

gent energy system or Centroidal Voronoi Tessellation are effective at generat-

ing high-quality isotropic triangular meshes. Variational optimization strategies

rely on the idea that well-spaced points lead to well-shaped isotropic triangular

meshes [31]. Therefore, isotropic triangulation can be reshaped into a point sam-

pling problem, whereby if the points are distributed evenly on a two-dimensional

domain, the resulting mesh has well-shaped triangles. Numerous strategies ac-

complish this goal. Three major ways to tessellate in two dimensions that attempt

to satisfy this ”well-spaced” criterion include Quadtree, Delaunay refinement,

and disk packing. Quadtrees repeatedly subdivide the domain, but the result

can be biased towards horizontal and vertical edges. The Delaunay refinement

eventually becomes well spaced. Finally, disk packing is not proven, but “seems

straightforward” [31].

13

Well-spaced particles in two dimensions generate high-quality triangulations,

and well-spaced points can be generated and the number of points bounded in any

dimension [31]. However, Delaunay triangulation of well-spaced particles in three

dimensions does not generate good tetrahedral meshes. Listed below are three

methods to measure the quality of a tetrahedron. Minimum sine angle (Freitag

and Oliver-Gooch [35]) is the minimum of the six dihedral angles of the faces and

is in Fig. 2.1b. Volume length measure (Parthasarathy et al. [88]) and radius ratio

(Cavendish et al. [18]) are similar in that they measure the ratio of volume to a side

(Fig. 2.1a).

In three dimensions there are six classifications for tetrahedra: round, needle,

wedge, spindle, sliver, and cap (Fig. 2.2). Eppstein notes that ”well-spaced point

sets form only round and sliver tetrahedra” [31] and Alliez et al. [1] explain it as: ”We

can attribute the slivers to the fact that [CVT] tends to optimizes the compactness of

the dual Voronoi cells, but not the compactness of simplices in the primal Delaunay

triangulation: therefore, the presence of a sliver is not penalized by this energy.”

In other words, the CVT optimizes on the (dual) Voronoi side and ignores packing

on the (primal) triangulation side. Other measurements can alleviate this problem,

however. For instance, a minimum sine does not penalize some tetrahedrons, such

(a) Radius ratio (b) Dihedral angle between two triangles.

Fig. 2.1. Examples of measuring triangle quality. In (a) is the inscribed vs the
circumscribed radius ratio of a triangle and (b) is the angle between two triangles.

14

5RXQG
M �

1HHGOH
�����

:HGJH
�����

6SLQGOH
����� 6OLYHU

�����
&DS
N �

Fig. 2.2. A collection of different tetrahedrons and their descriptions [31]. A round
tetrahedron has a good aspect ratio. A needle has good dihedral angles with a
small solid angle and a wedge has small dihedrals and solid angles. A spindle has
small solid angles and wide dihedrals. A cap tetrahedron has wide solid angles
and a sliver is considered bad for computation.

15

as needles. However, needle tetrahedrons with good dihedral angles might be

“harmless” [103].

Therefore, in two-dimensional space, well-spaced points generate well-shaped

triangular meshes. In three dimensions, however, well-spaced points do not

generate good tetrahedral meshes; rather they form meshes with round and sliver

tetrahedrons.

2.2.2 Variational Methods

Some more modern examples of variational methods are briefly discussed

below. Du and Emelianenko proposed Centroidal Voronoi Tessellation, which

uses Lloyd’s relaxation to iteratively move the generating point of a Voronoi cell

to its centroid [27]. Unfortunately, Lloyd’s relaxation can be slow, but there are

methods to speed it up [26, 67]. Witkin and Heckbert were among the first to

use particles for visualization [116]. They used an energy-based particle system to

visualize implicit functions. They chose to use a Gaussian energy function based

upon the distance from a particle to its neighbors to evenly place particles on the

surface. The energy of a particle repelled its neighbors, which, after a number

of iterations, place particles evenly on the surface. Following the lead of Witkin

and Heckbert in the use of particles for visualization, Crossno and Angel used a

particle system to extract isosurfaces from scalar fields [22]. Shimada and Gossard

developed Bubble Mesh, a nonlinear force system to pack spheres [104].

Meyer et al. employed an energy-based particle system for visualizing implicit

surfaces [79], and extracting high-quality meshes from scalar fields [80]. Instead

of the Gaussian energy function used by Witkin and Heckbert [116], Meyer et

al. applied a compact cotangent energy function because it is approximately

scale invariant. Additionally, Witkin and Heckbert used a gradient descent to

minimize the energy, which requires a tuning parameter. Meyer et al. replaced the

gradient descent with a Gauss-Seidel update and used an inverse Hessian scheme

to automatically tune the energy minimization, removing this tuning parameter.

Finally, this method allowed for the placement of more particles near areas of high

curvature, while leaving regions of low curvature with fewer particles and fewer

16

tuning parameters. Bronson et al. introduced a particle-based system for generating

adaptive triangular surfaces and tetrahedral meshes for CAD models [15]. Instead

of precomputing feature size, their system adapts to curvature and moves the

particles in the parameter space.

2.2.3 Other Multimaterial Meshing Techniques

However, particle-based mesh extraction has no guaranteed bounds. A class of

Delaunay refinement multimaterial mesh generators (Pons et al. [90] and Boltcheva

et al. [12]) used a sliver-removal technique [20] and demonstrated good results.

Instead of capturing the surface and infilling volumes, lattice techniques construct

a background structure, for example a three-dimensional octree, and recover the

surface by finding intersections between the surface and the mesh. The most widely

used example is marching cubes [70]. Zhang et al. expanded the octree-based

dual contour meshing scheme [118] to multiple materials [119]. Liu et al. used a

two-step mesh decimation process to extract multiple materials from a background

lattice [68]. Bronson used a background lattice in combination with mesh warping

to produce bounded-quality meshes [14].

2.3 Flow Visualization
Flow visualization is an expansive topic; therefore, the focus in this section is on

modern dye and texture advection and flow over surfaces. For a comprehensive

overview of flow visualization, we refer the reader to Laramee et al. [60], and for

surface flow visualization, Edmunds et al. [29].

2.3.1 Dye Advection

In physical experimentation, adding a tracer such as smoke or dye to aid in

visualizing fluid flow is a common occurrence. Max et al. introduced flow volumes

as a smoke tracer and three-dimensional equivalent of streamlines for vector field

visualization [78]. Shen et al. [100] advected dye in texture space to highlight

features in combination with LIC visualization, and Jobard et al. [46] used GPU

hardware to advect and blend the dye texture. Van Wijk used image-based flow

visualization (IBFV) to inject a dye and advect it forward.

17

Semi-Lagrangian advection is a hybrid Lagrangian-Eulerian method that ad-

vects particles from the Eulerian grid points and resamples them in the next time

step back to the grid, usually with backwards time integration [23, 48, 64, 114].

Unfortunately, because of this continous interpolation onto an Eulerian grid, semi-

Lagrangian methods suffer from numerical diffusion. Jobard et al. tackled this

with a sharpening function [48], and Weiskopf used a level-set to model the

dye interface [114]. The level-set is used to represent the interface between dye

and background materials and periodically reinitialized to correct the diffusion.

Unfortunately, the level-set still has numerical diffusion, and Cuntz et al. attempted

to correct this with particles [23]. Li et al. used a “control volume” instead of point

samples and a piecewise-parabolic interpolant to minimize the numerical diffusion

in dye advection [64].

Unfortunately, semi-Lagrangian methods are not mass preserving. Therefore,

Karch et al. employed a dimension-splitting WENO-based finite volume flux

through the faces scheme to decrease the numerical diffusion and enforce con-

servation [49]. Although this method is mass conserving and interactive, it is now

constrained by the Courant-Friedrich-Levy (CFL) condition, whereby a velocity

step must be smaller than the grid size, which reduces performance because

more steps must be taken. Nonetheless, it is an accurate, mass-conserving, and

interactive method.

2.3.2 Line Integral Convolution

For this dense texture advection section, we focus on the vector field visu-

alization family of line integral convolution, which was introduced by Cabral

and Leedom [17]. Line integral convolution is a texture advection technique for

visualizing vector fields. Briefly, a noise field is convolved along bidirectional

streamlines using a low-pass filter. In particular, given a streamline σ and a pixel

at position x, the intensity I at x is:

I(x) =

∫ s0+L/2

so+L/2
k(s− s0)T(σ(s))ds (2.1)

18

where s is the arc length to decompose the streamline curve, T is the input noise

texture, k is the low-pass filter, and L is the width of the filter.

There have been various attempts to speed up LIC, with the most successful

being that by Stalling and Hege [105]. Here, a key observation is made: there is

a significant amount of redundant streamlines and kernel convolution work to be

reused.

Another way to speed up LIC is to parallelize it. One of the earliest attempts to

parallelize LIC was that of Zöckler et al. [120], who used a massively parallel “Cray

T3D” by taking advantage of temporal coherence between frames. However, it

would be a few more years until commodity graphics would come along to allow

for parallel LIC without the massive hardware [46, 47, 110].

To visualize time-varying data, Shen and Kao extended line integral convolution

and called it unsteady flow line integral convolution or UFLIC [99, 101]. Instead

of streamlines and a low-pass filter, UFLIC integrates over pathlines and uses a

high-pass filter and noise jittering to generate a smooth, temporally coherent dense

texture. Shen and Kao also extended UFLIC to shared-memory multiprocessor

computers [101]. Unfortunately, UFLIC can be slow. Attempts have been made to

increase the performance, similar to Stalling and Hege, by reusing pathlines and

convolutions [69]. Li et al. adapted UFLIC to the GPU (GPUFLIC) by using texture

hardware for the particle advection as well as the graphics hardware to deposit the

values [63]. By adapting UFLIC to the GPU, they were able to achieve interactive

rates with GPUFLIC.

2.3.3 Flow on Surfaces

Dye and texture advection has seen success in both two dimensions and three

dimensions, but visualization of flow on surfaces is more limited. Forssell and

Cohen [34] first applied an LIC-based approach to parameterized surfaces by

generating the LIC in parameter space. Unfortunately, with this scheme it is

difficult to get a distortion-free global parameterization. Battke et al. tessellated the

surface and performed LIC in the local coordinate space of each triangle [6]. This

technique requires a good mesh to perform correctly, limiting its usefulness. Both

19

the Laramee et al. method, called Image Space Advection (ISA) [61], and the Van

Wijk method, Image Based Flow Visualization on Surfaces (IBFVS), [111] extend

Image Based Flow Visualization [110], a dense texture unsteady two-dimensional

flow visualization method, to surfaces. The IBFV method starts with a white noise

texture that is warped by the vector field and then blended with other white noise

textures over time. Both the ISA and IBFVS extend IBVF by generating, advecting,

and blending the textures in image space for arbitrary smooth surfaces. Recently,

Huang et al. extended image-space based visualization to enhance the coherency

of the output [45] by fixing the triangle-texture matching as well as mipmapping

the noise texture. While creating a consistent image, it does not solve the inherent

problem of correct surface occlusion nor allow the use of other unsteady flow

techniques such as dye advection [64, 49].

Li et al. developed Flow Charts for unsteady flow visualization on surfaces [65].

The Flow Chart method decomposes the triangular mesh into patches with a

texture atlas, and then the two-dimensional flow is run via a particle system.

Once the patches are packed into textures, particle advection schemes for dense

texture-based flow visualization, GPU Line Integral Convolution, Unsteady Flow

Advection- Convolution, and level-set dye advection are used to visualize the

vector field on the texture [63, 113, 114]. Finally, this texture is texture-mapped

onto the surface during rendering. Flow Charts is a flexible flow visualization

scheme, but it has the following drawback: the preprocessing step to decompose

the mesh with a particle system is very time consuming.

2.4 Closest Point Method
The closest point method was introduced by Ruuth and Merriman as an em-

bedding surface for solving PDEs [93]. Its usefulness lies in its simplicity, whereby

unmodified R3 differential operators replace intrinsic surface operators. Macdon-

ald and Ruuth continued the work with an implicit time step, which replaced

the original two-phase explicit time step as well as evolving a level-set on a

surface [72, 71]. März and Macdonald followed up on the work of Macdonald and

Ruuth with proofs for the principles of the method [76], and Tian et al. followed

20

up on the level-set on a surface with segmentation on a surface [109]. Hong et al.

applied the closest point method to the level-set equation to simulate fire on an

animated surface [44]. Finally, Auer et al. used the closest point method to solve

the Navier-Stokes equations on dynamic surfaces [2].

2.4.1 Closest Point Grid

The closest point method utilizes the closest point grid, which is similar to a

discrete distance field [77, 106], except the closest point method is restricted to

neither grid points nor facets of a mesh and can represent smooth surfaces. Instead

of storing the distance to the surface in the grid, the point on the surface that is

nearest to the grid point is stored. This grid is an embedding (the closest point

embedding) whereby a surface is represented in the three-dimensional grid.

2.4.2 Equivalence of Gradients

One of the fundamental principles of the closest point method is the “equiva-

lence of gradients,” where u is defined as a surface function, cp(x) is the surface

point closest to point x, and ν is a volume function such that

ν(x) = u(cp(x))⇒∇su(x) = ∇ν(x). (2.2)

In other words, the gradient on the surface, ∇Su(x) agrees with the R3 gradient of

the volume function, ν, where ν is the closest point extension of u, which makes

sense because the closest point extension, ν(x) = u(cp(x)), is constant in the normal

direction to the surface, so changes in ν must be tangent to the surface.

Further, a second principle concerning surface divergence operators can be

derived in a fashion similar to Eq. 2.2. From these two principles, other differential

operators can be constructed, including the Laplace-Beltrami operator [93].

2.5 Sparse Octree
Recently, numerous fast, sparse GPU voxelization for rendering systems have

been proposed. GigaVoxels, introduced by Crassin et al. [21], renders large vol-

umetric datasets depending on the viewpoint and adaptive data representation.

The approach of Laine and Karras [59] is also rendering based, using a slice-based

21

approach to construct a top-down tree. Schwarz and Seidel [97] replaced the two-

dimensional rasterization approach previously used with a set of “3D rasterizers”,

which gave a more flexible scheme by reducing some of the redundant per-triangle

processing.

On the other hand, Baert et al. [3] proposed a CPU out-of-core sparse voxelization

approach. Although not as fast as previous GPU implementations, it is the only

method that is not bound by the available memory.

2.6 GPU Computing
Over the last fifteen years, GPU performance has increased signficantly faster

than CPU performance in parallel computing. To take advantage of the perfor-

mance of the GPU, new algorithms have to be developed.

Graphic processing units (GPUs) were historically designed for fast rasteri-

zation of three-dimensional graphics. As increasingly advanced hardware was

introduced, the fixed functionality of the GPU became a burden as program-

mers looked to use the GPU for increasingly complex rendering. The Nvidia

GeForce 3 was the first commercial consumer graphics card available to support

a programmable shading architecture, Microsoft’s HLSL 1.0 and DirectX 8. The

programmable vertex [66] and fragment shaders, in combination with the ability

for fragment shaders to write floating point values to texture buffers, allowed for

general-purpose programming in the graphics processing unit, or GPGPU.

The reason to choose GPUs is simple: the parallel floating point processing

power. For instance, the Nvidia K80 had approximately 5 to 10 times the double

precision FLOPS of an Intel Xeon E5-2697 v2 [85]. Further, this dramatic perfor-

mance increase has even led to the adoption of GPUs as accelerator cards in exascale

computing [25].

2.6.1 Programmable Shaders and GPGPU

Immediately upon the availability of programmable GPUs, one of the first

noncomputer graphics-related works was published for fast matrix multiplication

on the GPU [62]. From there, using the programming languages available on the

GPU at the time, researchers explored the performance of mathematical algorithms

22

on the GPU [58, 32]. At the same time, graphics researchers were also looking at

the GPGPU for ray tracing [91] and created stream programming models for the

GPU [16]. The stream programming model used in the Brook stream programming

language is a powerful abstraction for GPU programming, and many of the ideas

can be seen in Thrust, a parallel template library [43]. Thrust provides many of the

parallel operators laid out in Brook, including prefix-sum [11] scan [10], reduce,

map, sort, filtering, and search. Around this time, there was a significant amount

of research done in GPGPU, and we refer the reader to [87] for an overview of the

work done.

2.6.2 CUDA

Unfortunately, shading languages were limited by the constraints of the graph-

ics pipeline. In 2007, Nvidia introduced the Common Uniform Device Access

(CUDA) language, a dedicated GPGPU programming language that unlocked the

performance of the GPU to a wider audience by providing more direct access

to the hardware while avoiding the graphics pipeline inherent with the use of

shading languages. Although there are other compute languages (OpenCL, DirectX

Compute Shaders, OpenGL Compute Shaders, Microsoft DirectCompute), we

focus on CUDA and use the terminology from that language.

Logically, the CUDA programming API treats the hardware as a single-in-

struction multiple-threads (SIMT) architecture. The host system runs the program

on the device that is the physically separate GPU. The hardware is invoked by a

kernel, a C/C++ (post CUDA v.7.0) program that is subsequently processed by a

large number of threads on the GPU device. The number of threads is given at

invocation.

The number of threads at execution is a two-level hierarchy, blocks and grids.

Blocks are composed of threads that share an execution runtime (and therefore

lifetime) and can be synchronized for memory-access purposes. Blocks are grouped

into grids. Within the kernel invocation, there are API functions to identify the

thread within a block and the block index within the grid, as well as the number

of threads in a block and the number of blocks in a grid. Generally, the thread

23

index, in combination with the block index and block dimensions, is used to map

to a global memory position to process. Further, the resources available at different

hierarchical levels, such as shared memory vs global memory, can be indexed.

There is a memory hierarchy as well. Global memory is the largest memory

available to the device. Typically, this is the video RAM on the GPU. Global memory

can be accessed as read and write from any thread. Shared memory is fast memory

with a maximum size of 48KB shared within a single block of threads. Shared

memory accesss is an order of magnitude faster than global memory. Typically,

shared memory is used as a cache for a thread block to process information it can

share between the threads. There are atomic operators available that allow for

synchronization at different levels of the hierarchy.

CHAPTER 3

GPU-BASED MESH EXTRACTION

Isosurface extraction from three-dimensional scalar volumes is a fundamental

technique in visualization. In some cases, the scalar data may be composed

of different materials, and although a material is stored in a regular grid, the

materials generally do not conform to the underlying grid. Recent work by

Meyer et al. [80, 81] uses a particle-based approach to extract curvature-dependent,

well-formed multimaterial mesh from biological data. This approach uses an

energy-based system to extract a surface mesh with equilateral triangles. Further,

it generates meshes with smaller triangles in areas of high curvature, which gives

more resolution in areas that need it. Good triangular meshes are an excellent

starting point to generate a tetrahedral mesh that is well suited for finite element

simulation.

This method generates meshes that are suitable for numerical simulation, but

it comes with a very high computational cost. The excessive computational

cost to generate a well-shaped multimaterial mesh has hindered the use of the

curvature-dependent particle system by the bioengineering community for nu-

merical simulations [108]. Therefore, improving the performance would increase

the use of the particle system for various numerical simulation tasks [94].

In recent years, advances in computing power have come from an increase in

the number of cores as well as in the frequency of the cores. This increase is true for

the graphic processing unit, or GPU, where hundreds of cores are run in a single

instruction, multiple thread (SIMT) fashion. To take advantage of this new parallel

processing power, efficient parallel algorithms are needed.

25

3.1 Particle System
The particle system used is based on the dynamic particle system described by

Meyer et al. [79, 80]. A brief overview of the system is in Fig. 3.1. Initially, a distance

field and a sizing field are precomputed to represent the isosurface as an implicit

function, F, and to encode the distance between points on F, respectively. Next,

particles are seeded on the isosurface based on the results of marching cubes. Then,

the particles are processed sequentially: determine neighbors, compute energy and

velocity, and update position. A particle moves only if the new position has lower

energy than its original position. Once every particle has been processed, the

density of the particles is checked to delete or add particles. The above particle

process is repeated until the system energy has converged.

3.1.1 Initialization

Before placing the particles, a distance field and a sizing field are precomputed.

A distance field of the implicit surface is computed from the scalar data and used

with reconstruction filters to generate the implicit function, F [80, 81, 115]. The

sizing field, h, is based on the local feature size and curvature of the implicit surface

and used by the particle system to meet ε-sampling distribution requirements [80].

The distance between particles is scaled based on the sizing field in order to

control the sampling density, which also reflects the local curvature of the implicit

surface (Eq. 3.2). For more information on the construction of the sizing field, see

Meyer et al. [80]. Once the distance and sizing fields are computed, the system is

initialized with a set of particles. The positions of the particles are determined from

a marching cubes triangulation to ensure that the entire isosurface is seeded, even

the disconnected regions. The initial seeds are then projected onto F (Eq. 3.5).

3.1.2 Per Particle Processing

Processing a particle is a four-step process (Fig. 3.2). First, the neighbors of pi

are determined. Consider all other particles, p j, in the system where i , j, p j is a

neighbor of pi if di j ≤ 1.0, where di j is the scaled distance from pi to p j. Second,

the energy, Ei of pi, is computed based on its neighbors. Third, the velocity, vi, at

the position of pi is computed to give a magnitude and direction for pi to move

26

in
it
ia
li
ze

p
ro
ce
ss

al
l

p
ar
ti
cl
es

ad
ju
st

p
ar
ti
cl
e

d
en

si
ty

S
y
st
em

co
n
-

ve
rg
es
?

st
op

n
o

ye
s

Fi
g.

3.
1.

O
ve

rv
ie

w
of

th
e

pa
rt

ic
le

sy
st

em
.

27

p
ar
ti
cl
e,

p
i

fi
n
d

n
ei
gh

b
or
s

C
om

p
u
te

en
er
gy
,
E

i

co
m
p
u
te

ve
lo
ci
ty
,
v i

u
p
d
at
e

p
os
it
io
n
,

p
′ i
←

p
i
+
v i

co
m
p
u
te

en
er
gy
,

E
n
e
w

E
n
e
w
<

E
i

p
i
=

p
′ i

ye
s

n
o

in
cr
ea
se

λ

Fi
g.

3.
2.

Pr
oc

es
si

ng
a

pa
rt

ic
le

is
a

fo
ur

-s
te

p
pr

oc
es

s:
1)

de
te

rm
in

e
th

e
ne

ig
hb

or
s,

2)
co

m
pu

te
th

e
en

er
gy

,3
)

co
m

pu
te

th
e

ve
lo

ci
ty

,a
nd

4)
up

da
te

po
si

ti
on

.
Th

e
re

d
bl

oc
ks

ar
e

th
e

fo
ur

th
st

ep
,i

.e
.,

th
e

it
er

at
iv

e
pr

oc
es

s
to

up
da

te
th

e
po

si
ti

on
of

th
e

pa
rt

ic
le

.

28

in. Finally, an iterative process (the red blocks in Fig. 3.2) is conducted to update

the position of the particle, depending on whether the energy, Enew, at the updated

particle position p′i = pi + vi, is less than the current energy, Ei. If Enew is less than

Ei, the particle position is updated to p′i ; otherwise we iterate, with a smaller step

size, until the new particle position has a lower energy than the previous position.

3.1.2.1 Energy and Velocity Computation

To compute the energy and the velocity, Meyer et al. proposed the cotangent

energy function because of its scale invariance and compactness [79]. The energy,

Ei, of pi is the sum of the energies Ei j between pi and p j such that

Ei j =

 cot(|di j|
π

2
) + |di j|

π

2
−
π

2
|di j| ≤ 1.0

0 |di j| > 1.0
(3.1)

and

di j =
|pi−p j|

2× cos(
π

6
)×min(hi,h j)

(3.2)

where di j is the scaled distance between pi and p j (i , j) and |pi−p j| is the Euclidean

distance between particles pi and p j. We will refer to di j as the distance between pi

and p j, in the rest of this chapter.

To compute distance, di j, between pi and p j, the sizing values, hi and h j, at

pi and p j are used (Eq. 3.2). The distance between pi and p j is scaled by the

min(hi,h j). Because the distance and energy are scaled by the surface curvature as

in Eq. 3.2, when the distance is less than 1.0 (i.e., within the neighborhood of the

desired radius), the energy Ei j is computed between the two particles using Eq. 3.1.

Otherwise, there is no energy between them and Ei j = 0.

The energy of a particle is used to determine whether a new position, p′i , is at

a lower energy state than the original position. However, to move pi, the velocity

of pi is computed. The velocity, vi, is the derivative of the energy function. The

velocity for pi is computed as the sum of all the velocities, vi j, between pi and p j

and (i , j) where

29

vi j = −(H̃i)−1(
∂Ei j

∂|di j|

di j

|di j|
) (3.3)

and

∂Ei j

∂|di j|
=


π

2

1− sin−2(|di j|
π

2
)

 |di j| ≤ 1.0

0 |di j| > 1.0
(3.4)

where H̃i is the Hessian of pi’s potential with the diagonal of H̃i adjusted by λ

according to the Levenberg-Marquardt (L-M) algorithm. The L-M algorithm is

discussed further in Section 3.1.2.2. The velocity is used to move pi in the tangent

plane of the F at pi. Once pi is moved in the tangent plane, it is projected back onto

the surface,

pi← pi + Fi
∇Fi

∇Fi ·∇Fi
(3.5)

where Fi is the implicit function and ∇Fi is the gradient of the implicit function at

pi.

3.1.2.2 Update Position

Updating the position of the particle is an iterative process to find the appropri-

ate step size for vi. The L-M algorithm is used because with the current step size

of vi, the particle may not be moved to a place with lower energy. Each particle

has a λ value, which it maintains throughout the entire run of the particle system.

Increasing λ decreases the step size of vi. As λ is increased (or decreased), the

step size of vi is converging to a good step size, i.e., the step will produce a proper

velocity that leads to a lower energy state. In practice, λ is incremented by 10. For

more details on the L-M algorithm, see Meyer et al. [79].

Algorithm 3.1 is used to update the position of pi. A possible new position,

p′i = pi + vi, is computed. The energy of p′i , Enew, is computed using Eq. 3.1.

If Enew < Ei then pi is updated to its new position p′i . Otherwise, the particle

system iteratively increases λ and computes a new particle position p′i = pi +vi and

energy, Enew, until Enew < Ei or λ ≥ λmax. If λ ≥ λmax, then the particle’s position is

30

Algorithm 3.1 Update Particle Position

iterate← true
while iterate do

increase λ by 10
p′i ← pi + vi
Project p′i onto surface.
for all particles p j in neighborhood NH do

if p′i , p j AND distance(pi,p j) ≤ 1.0 then
Ei j← calcEnergy() as in Eq. 3.1

end if
end for
Enew = sum Ei j over NH
if Enew < Ei then

Save λ
pi← p′i
iterate← f alse

else if λ ≥ λmax then
iterate←= f alse
reset λ to its original value.

end if
end while

not updated, and λ is reset to its value at the beginning of the iteration process.

Otherwise, the position of pi is updated to p′i .

3.1.3 Density Control

Controlling the density of the particles is an important aspect in the placement

of the particles. Recall that the particle system is initially seeded with particles

on the surface from marching cubes. However, the number of particles needed to

create the proper density is not known a priori. Therefore, we may seed too many

or too few particles. If that is the case, no matter how the particles are moved, an

optimal configuration may not be achieved.

Therefore, at the end of every iteration, the energy, Ei, of every particle pi

is checked against an ideal energy, Eideal. Recall that Ei is calculated from the

distance, di j, of pi to its neighbors, p j and di j is adjusted by the sizing field, hi

(Eq. 3.2). If the energy is too high, there are too many particles close to pi. If

the energy is too low, then there are not enough particles close to pi. The ideal

31

energy of a particle, Eideal = 3.462, is based on the energy computed from a natural

hexagonal configuration [79]. In other words, the desired configuration is to have

six neighboring particles. Achieving Eideal is controlled through the addition and

deletion of particles. The addition or deletion of particles is biased with a random

value from [0,1] to prevent mass addition or deletion [116].

3.1.4 Binning and Neighborhoods

The complexity of the aforementioned particle system as explained is O(N2). A

particle’s energy and force are determined by the distance to every other particle in

the system. Heckbert introduced binning as an acceleration structure [42]. Instead

of computing energy between a particle and every other particle in the system, he

subdivided the space according to a parameter, σ. Thus, it was only necessary to

compare a particle with its immediate neighbors. By setting the bin length to at

least σ, it is guaranteed that all possible neighbors are located within the current

bin plus all the surrounding bins, i.e., the neighborhood. The neighboring bins

must be included since a particle may lie near the edge of the bin, and therefore

its neighbors would be in the surrounding bins. Because the sizing field contains

the distance between particles needed for a quality reconstruction, it is used to

determine the bin size as σ = max(h), the global maximum of the sizing field. This

acceleration structure is used to speed up the particle system described by Meyer

et al. and is implemented in BioMesh3D.

3.2 Parallelization
This GPU parallel implementation relies on neighborhoods to allow concurrent

processing of bins at the CUDA block level. Whereas particles are advected

concurrently, the computation of the energy Ei of particle pi and the velocity vi

of pi are dependent on the distance di j from pi to its neighbors p j. This computation

is parallelized as well, where a CUDA thread is assigned to each pairwise compu-

tation, pi to each of its neighbors p j. This parallelization strategy maximizes the

amount of work done, but also gives the flexibility required due to the uncertain

nature of determining the velocity step size.

32

3.2.1 Bin Processing

Instead of trying to process all of the particles concurrently, groups of particles

can be processed simultaneously if their neighborhoods do not overlap. The

binning structure provides the necessary knowledge for such a grouping since

every particle contained in a bin is a potential neighbor to every other particle

within the same bin. To guarantee a correct energy and velocity computation, the

particles in the bins neighboring the current bin are also considered as neighbors

of every particle in the current bin. That said, the particles in the neighboring

bins cannot be processed simultaneously while the particles in the central bin are

being processed. Therefore, no overlapping neighborhoods are allowed for any

groups of particles that are being processed concurrently. Before attempting to run

groups of particles concurrently, though, how the particles are processed needs

to be changed. Previously, all particles in the system were processed serially as

described in Fig. 3.1. Instead, since the particles are binned, the particle system

can process the groups of particles. Thus, for each bin, B, and its neighborhood,

NH, in the particle system, all the particles pi ∈ B are processed serially as shown

in Fig. 3.3. Although this change does not affect serial processing of the particles

within a bin, it allows particles to be processed concurrently by executing bins with

nonoverlapping neighborhoods.

If the particles are grouped (and processed) by their bins, the bins can be

processed in parallel but only if the neighborhoods do not overlap. Recall that the

bin size is max(h). The step size is limited to a maximum of the sizing field, h, which

means the particle can travel into an adjacent bin. Therefore, given a bin B(a,b)

and its neighborhood, NH =
⋃i=a+1, j=b+1

i=a−1, j=b−1 B(i, j), if B(a,b) is currently processed, the

other bins that can run concurrently are B(a+3k,b+3m). An example of processing

multiple bins concurrently is given in 2D in Fig. 3.4. The bins in Fig. 3.4a that are

about to be processed are labeled W through Z. Bin W is at position (0,0); therefore,

the next bins that are processed concurrently are at positions (3,0), (0,3) and (3,3)

for X, Y, and Z, respectively. Once all the particles in bins W through Z have been

processed, the next bins are processed as in 3.4c and 3.4d. This procedure is

repeated until all the bins in the 3×3 space, i.e., the compute block, are processed.

33

b
in

p
ar

ti
cl

es

u
n

p
ro

ce
ss

ed
b

in
B

i
∈

p
ar

ti
cl

e
sy

st
em

u
n

p
ro

ce
ss

ed
p

ar
ti

cl
e

p
j
∈

B
i

p
ro

ce
ss

p
j

(F
ig

.
3.

2)

al
l

p
ar

ti
cl

es
∈
B

i
p

ro
-

ce
ss

ed
?

al
l

b
in

s
p

ro
-

ce
ss

ed
?

st
o
p

n
o

ye
s

n
o

ye
s

Fi
g.

3.
3.

Pr
oc

es
si

ng
pa

rt
ic

le
s

by
th

ei
r

bi
ns

.

34

Y Z

W X

(a)

Y Z

W X

0

1

321 4 5

2

3

4

5

(b)

Y Z

W X

0

1

321 4 5

2

3

4

5

(c)

Y Z

W X

0

1

321 4 5

2

3

4

5

(d)

Fig. 3.4. Running multiple neighborhoods concurrently in 2D. (a) Bins to be
processed are labeled. (b) Neighborhoods are highlighted. (c) Move to next bins. (d)
Move to next bins.

35

3.3 CUDA Implementation
In the previous sections, we described how particles are moved and how bins

can be run concurrently. Now, we explain how the particle system is run on

the GPU. The motivation for using the GPU is simple. Recently, processing

power on the GPU has outstripped the CPU [86]. Further, parallel computing

architectures such as CUDA have made that processing power more accessible

than what was previously available with GPU shaders alone. Although the GPU

has more processing power than the CPU, it also has limitations. In particular, the

GPU is a massively parallel system with many hardware threads. Unfortunately,

these hardware threads do not handle divergence well, where control statements

may cause threads to follow different execution paths, which serializes the com-

putations [86]. With the use of the Levenberg-Marquardt algorithm (L-M), it is not

possible to run a particle per thread because there is no way to know a priori how

many iterations the L-M algorithm will take to find an appropriate velocity step

size. If every particle requires a different number of iterations to determine the step

size, all the threads would have to run serially, which hinders performance. Beyond

the thread divergence limitation, memory management is important as well. In

particular, coalescing memory fetches is very important. Coalesced memory fetches

require memory to be aligned when fetched from global memory.

With divergence and memory management in mind, running the particle system

on the GPU is as follows. First, bins are run concurrently (Section 3.2.1) by

processing a bin in a CUDA thread block because processing a bin per thread

is not possible due to thread divergence. Second, note that a thread block is

composed of tens to hundreds of CUDA threads, so for every particle run in a

thread block, multiple threads are available for processing. Thus, the pairwise

energy and velocity computations can be processed in parallel. Finally, memory

management is discussed. To coalesce memory access, neighborhoods are copied

into contiguous memory. Further, preprocessed data, i.e., the sizing and distance

fields, use texture memory for automated memory management.

36

3.3.1 Bin Processing

Bins are processed concurrently by executing a CUDA block per bin. Assign

each bin Bi and its neighborhood (see Fig. 3.4) to a CUDA block CBi. Processing

all the bins in the particle system means iteratively processing bins in a compute

block. Thus, once a group of bins is processed, the adjacent bins are processed next.

We continue until all the bins have been processed, as illustrated in Fig. 3.4. This is

the block-level parallelization.

3.3.2 Energy and Velocity Computation

Since a thread block is run per bin and particles are run serially within a bin,

when pi ∈ B is processed, multiple CUDA threads are used to calculate the energy

and velocity. A CUDA thread, t j, is assigned to do the pairwise energy computation

from pi to one other p j ∈NH. Once the pairwise energy calculations are finished, a

parallel sum reduction is conducted to compute Ei from the array of energy values,

Ei j. The velocity is computed in a similar manner to the energy computation. By

running a CUDA block per bin, the computation is parallelized at both block (bins)

and thread (energy and velocity computation) levels.

3.3.3 Memory Management

The method to build the bins efficiently in CUDA is similar to the one used

to build spatial subdivision for uniform grids in Green [40]. To coalesce memory

access, at the beginning of every iteration the indexes of the particles are binned in

global memory. Additionally, a particle count is generated for every bin, B CNT.

Before each neighborhood is processed, the particles are copied into a contiguous

span of global memory. As pi is processed serially in bin B, and the energy (or

velocity) is computed according to Eq. 3.1 (or Eq. 3.3), a thread, t j, is assigned

for the pairwise computation. Copying the particles to coalesce memory access

constitutes less than 4% of the total run-time required.

To create multiple neighborhoods, NHk, in global memory, NH, compactly and

concurrently, a three-step approach is used as outlined in Algorithm 3.2. First, the

number of particles in each NHk are counted (Fig. 3.5a). For each NHk, and for

each bin Bi ∈NHk, NH CNTk += B CNTi. Second, the particle system computes the

37

NH_CNT0 NH_CNT1 NH_CNT2 NH_CNT3 ... NH_CNTk-4 NH_CNTk-3 NH_CNTk-2 NH_CNTk-1

(a) Number of particles per bin

NH_IDX0 NH_IDX1 NH_IDX2 NH_IDX3 ... NH_IDXk-4 NH_IDXk-3 NH_IDXk-2 NH_IDXk-1

...

(b) Index into neighborhood array

Fig. 3.5. Memory layout in CUDA.

Algorithm 3.2 buildNeighborhoods()

for all neighborhoods NH do
for all bins B ∈NH do

NH CNT += num of particles ∈ B
end for
NH IDXk = atomicInc(ptr, NH CNT)
Copy particles in NH to NH IDX

end for

38

memory location, NH IDXk of NHk (Fig. 3.5b). Recursively, it is defined as

NH IDXk = NH IDXk−1 + NH CNTk (3.6a)

with

NH IDX0 = 0. (3.6b)

To determine the neighborhoods concurrently in CUDA, Eq. 3.6, the CUDA

atomicInc() function and a global integer, ptr, are used to create the array of indexes.

The atomicInc() function takes two values, a memory reference ptr and an integer

val, and returns the previous value, prev, at P atomically. Thus, although every

neighborhood in the particle system is calling atomicInc(), it is serialized because

the ptr can be incremented only by NH CNTk atomically. Therefore, NH IDXk =

ptr + NH CNTk where ptr = NH IDXk−1. Third, with an index, NH IDXk into the

span of global memory reserved for NH, it is easy to copy particles into their

respective neighborhoods (Fig. 3.5b). This procedure produces a per neighborhood

count of particles for each neighborhood, a per neighborhood index into the list

of particles, and a copy of all the particles binned into their neighborhoods. As

mentioned before, this procedure is done to copy a neighborhood into contiguous

memory to coalesce memory access.

The sizing field is precomputed in a separate process, and therefore the data is

read into a three-dimensional texture to take advantage of texture caching. How-

ever, the built-in interpolation function was not accurate enough. The hardware

trilinear interpolation is only a “9-bit fixed point format with 8 bits of fractional

value” [86]. Instead, a full float type trilinear interpolation function was used.

Every thread block has a shared memory variable for the sizing field value at its

location for better localized access. Likewise, the distance field is precomputed

and read into a texture for the same reasons the sizing field was put into a texture.

However, instead of trilinear interpolation, cubic B-spline kernels were used to

reconstruct the surface and its gradient and Hessian [80]. Although slower than

trilinear interpolation, the cubic B-spline kernel balances efficiency with good

derivative approximations [82].

39

Finally, because of the addition and deletion of particles, the particles are double

buffered between iterations. The addition or deletion of a particle is carried out

after all the particles have been processed. If the energy of the particle is not

within a certain threshold of Eideal, then it is either added or deleted. In practice,

if Ei < .75×Eideal, then a particle is added, and if Ei > 1.35×Eideal, then the particle

is deleted. The energy calculation for adding or deleting particles is done in

the same manner as moving the particles, with the block-level and thread-level

parallelization. Although adding or deleting can be performed without the double

buffer, this helps cluster the particles by region and allows for faster binning in the

next iteration.

3.4 Results
A CPU version of the particle system, BioMesh3D [98], is used to generate the

CPU mesh. A level set method [115] is used to generate the distance field and the

sizing field h in the precomputation step. A B-spline reconstruction kernel is used

to interpolate values and compute the gradient and the Hessian of F. For the sizing

field, h, linear interpolation is used to lookup the values at pi.

Once the particles have been saved from BioMesh3D or the CUDA imple-

mentation, TIGHT COCONE [24] is used to create a water-tight mesh. The

three-dimensional scalar fields are 268x129x177 volume data of a human heart,

human lungs, and human ribcage. The results of the heart, lungs, and ribcage

(CPU and GPU) are in Figs. 3.6a through 3.8b.

Marching cubes is used to seed the particles and is generated on the CPU. Once

the initial particles are seeded and projected onto the surface, they are copied to the

GPU, and the system processes the particles as described in the previous sections.

Once 50 iterations are completed or the energy has stagnated where
Eprev−E

E
<Emin,

the process is terminated. We have found in practice that Emin = 0.0015 produces

good meshes. All tests were run on an nVidia Tesla c2070 with 6GB of RAM and

an Intel Xeon X5650 2.67Ghz with 196GB of RAM.

40

0
1

0

1000

2000

3000

4000

5000

6000

(a) GPU heart with zoomed-in image and histogram of radius ratio.

0
1

0

1000

2000

3000

4000

5000

6000

7000

(b) CPU heart with zoomed-in image and histogram of radius ratio.

Fig. 3.6. Images of the heart dataset on the CPU and GPU, respectively. Further,
embedded is a zoomed-in area of the image and the histogram for the dataset. The
visual quality of the CPU implementation compared to the GPU implementation
is very similar. Further, the histograms show that both the CPU and GPU systems
are dominated by well-shaped triangles.

41

0
1

0

500

1000

1500

2000

2500

3000

3500

4000

4500

(a) GPU lungs with zoomed-in image and histogram of radius ratio.

0
1

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

(b) CPU lungs with zoomed-in image and histogram of radius ratio.

Fig. 3.7. Images of the lung dataset on the CPU and GPU, respectively. Further,
embedded is a zoomed-in area of the image and the histogram for the dataset. The
visual quality of the CPU implementation compared to the GPU implementation
is very similar. Further, the histograms show that both the CPU and GPU systems
are dominated by well-shaped triangles.

42

0
1

0

5000

10000

15000

20000

25000

30000

35000

(a) GPU torso with zoomed-in image and histogram of radius ratio.

0
1

0

5000

10000

15000

20000

25000

30000

35000

(b) CPU torso with zoomed-in image and histogram of radius ratio.

Fig. 3.8. Images of the ribcage dataset on the CPU and GPU, respectively. Further,
embedded is a zoomed-in area of the image and the histogram for the dataset. The
visual quality of the CPU implementation compared to the GPU implementation
is very similar. Further, he histograms show that both the CPU and GPU systems
are dominated by well-shaped triangles.

43

3.4.1 Quality

To evaluate the quality of the obtained mesh, the ratio of the inscribed and

circumscribed radii is computed for every triangle on the mesh, and the mean

radius ratio of the mesh is calculated. The higher the ratio between inscribed and

circumscribed radii, the closer a triangle is to being equilateral. The radius ratio is

a common quality metric that allows a direct comparison between two meshes.

Table 3.1 includes the qualitative results. The mean ratio of a mesh generated

through the GPU system is within 1% of the mean radius ratio of the CPU

implementation. Thus, the GPU meshes have a very similar quality to the CPU

meshes. The histograms in Fig. 3.6a through 3.8b generated for the heart, lungs,

and ribcage, respectively, show that the distributions of the ratios are dominated

by good triangles and that both the CPU and GPU meshes have similar profiles.

The close-up images in Figs. 3.6a through 3.8b show that the quality of the mesh

using our GPU particle system is similar to or comparable to the one using the CPU

version.

3.4.2 Speed-up

The quality of the meshes is nearly the same, but there is a substantial per-

formance gain with the GPU version (Table 3.2). The GPU version is 7.8× to

35.2× faster than the single-threaded CPU implementation. The reductions in the

run-time are from 835.26 to 107.64 seconds for the lungs, 3150.38 to 245.77 seconds

TABLE 3.1. Multiple datasets, including heart, lungs, and ribcage on the CPU and
GPU, are compared for quality. Qualitative comparison is done by calculating the
mean radius ratio of the resulting meshes.

CPU GPU

Dataset Rad. Ratio Min. Ratio Rad. Ratio Min. Ratio

Heart 0.92114 0.249245 0.92079 0.117757
Lungs 0.912578 0.217819 0.913214 0.324375
Ribcage 0.914975 0.186664 0.914975 0.186664

44

TABLE 3.2. The amount of time to place particles on the surface is compared in
this table. Multiple datasets, including heart, lungs, and ribcage on the CPU and
GPU, are listed along with the time, in seconds, to place the particles and the final
number of particles for the CPU and the GPU, respectively. The last column is the
speed-up gained from the GPU system.

CPU GPU

Dataset Time # Particles Time # Particles Speed-up
Lungs 835.26 74153 107.64 74129 7.8x
Heart 3150.38 80125 245.77 80594 12.8x
Ribcage 9460.29 468877 269.12 468623 35.2x

for the heart, and 9460.29 to 269.1 seconds for the ribcage (Table 3.2). Those are 7.8,

12.8, and 35.2× speed-up of the GPU over the CPU, respectively.

3.4.3 Scaling

In the previous section, there was a correlation between the number of particles

and the speed-up. As the number of particles increases, so does the speed-up, but

this is across different implicit functions. To measure the speed-up, we conducted

a real-world test and a synthetic test using the ribcage dataset. The real-world test

controls the number of particles by varying ε and δ parameters when generating

the sizing field around the isosurface. The ε and δ parameters control the density of

the particles, where the smaller the values of ε and δ, the denser the particles [80].

However, for the ribcage dataset, the lowest number of particles generated by

manipulating the ε and δ values in the precomputed phase was 320,000. Generating

a sizing field using ε > 8.0 and δ > 2.0 resulted in an incomplete mesh. For instance,

with ε = 10.0 and δ = 5.0, the ribs of the ribcage were removed. Therefore, a

synthetic test was created. The synthetic test removes the add new particles stage

and seeds a user-defined number of particles, which creates an upper bound on the

number of particles in the system. This seeding is done through marching cubes

and generates an initial seeding that is closer to the original implicit function than

using large ε and δ values.

45

For the synthetic test, the seed numbers were 60,000 to 300,000, increasing by

30,000. Note in Table 3.3 that although adding particles is disallowed, removing

particles is still active. Therefore, the final particle count is less than the initial

number seeded. Fig. 3.9 shows a plot of the amount of time to generate a mesh

versus the number of particles. As the number of particles increase, the speed-up

increases as well, from 6.14× speed-up of the GPU over the CPU with 57,000

particles to 22.0× speed-up with 230,000 particles. Therefore, for the synthetic test,

as the number of particles increases, the speed-up increases in a linear manner.

The synthetic test is useful to verify linear speed-up when the number of desired

particles is not achievable by changing the sizing field, but the real-world test is a

better reflection of attainable speed-ups. Table 3.4 contains the data from generating

different sizing fields dependent on the ε and δvalues. Further, the iteration number

is the number of times the level set method is run to generate the sizing field. Thus,

the more iterations of the level set method, the denser the particles.

The real-world test mirrors the results of the synthetic test, i.e., the speed-up

is related to the number of particles. Fig. 3.10 is a graph of Table 3.4 comparing

the GPU (in blue) timing results in seconds versus the CPU (in red) timing results.

Fig. 3.11 is an image of the real-world ribcage dataset and the embedded images

TABLE 3.3. Synthetic test data for scaling the ribcage dataset without adding any
particles to give an upper bound on the number of particles. The details are the
initial number of particles (60,000 to 300,000), the time and final number of particles
for the CPU system, and the time and final number of particles for the GPU system
and the speed-up.

CPU GPU

Init. Parts. Time # Particles Time # Particles Speed-up
60000 213.22 57456 34.75 56844 6.14x
90000 444.62 81432 48.82 80208 9.1x
120000 756.8 103913 66.35 103716 11.4x
150000 1360.87 131145 98.26 133792 13.8x
180000 1571.96 145958 100.76 146754 15.6x
210000 2354.04 170805 141.4 175775 16.6x
240000 2860.53 185035 160.28 194354 17.8x
270000 3455.14 200925 172.31 208866 20.1x
300000 4042.60 225054 183.98 237921 22.0x

46

0 50000 100000 150000 200000 250000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

GPU

CPU

Num of Particles

T
im

e
(s

ec
)

Fig. 3.9. Synthetic test for the ribcage dataset. Graph of Table 3.3 where the red
plot is the CPU and the blue plot is the GPU.

47

TABLE 3.4. Real-world test data for scaling the ribcage dataset by varying the ε
and δwhen generating the distance field. The fields are the ε, δ and iteration count
used to generate the sizing field, the time and final number of particles for the CPU
implementation, the time and number of particles for the GPU implementation,
and the speed-up of the GPU system over the CPU system.

CPU GPU

ε δ Iterations Time # Particles Time # Particles Speed-up
8.0 2.0 4 3798.74 317809 160.17 323762 23.7x
2.0 1.0 4 5526.21 377681 200.6 384531 27.6x
0.5 0.5 4 5952.6 398838 212.19 405097 28.1x
0.25 0.25 4 8805.9 428885 265.8 431491 33.1x

0.125 0.125 4 9460.29 464265 269.12 468623 35.2x
0.01 0.01 4 11356.3 493697 285.51 494477 39.8x
0.01 0.01 7 19750.2 530565 445.49 530717 44.3x

48

300000 350000 400000 450000 500000 550000
0

5000

10000

15000

20000

25000

GPU

CPU

Number of Particles

T
im

e
(s

ec
)

Fig. 3.10. Real-world test for the ribcage dataset. Graph of Table 3.4 timing results
as the number of particles are increased. The GPU results are in blue and the CPU
results are in red.

49

(a) σ = 0.125, δ = 0.125, with the area marked for Fig. 3.11c - 3.11d

(b) σ= 2.0, δ= 1.0, 384,531
particles

(c) σ= 0.5, δ= 0.5, 405,097
particles

(d) σ = 0.125, δ = 0.125,
468,623 particles

Fig. 3.11. Three meshes of the same dataset, with varying number of particles. As
the σ and δ parameters are decreased, the number of particles increases.

are selected ε and δ values. As the ε and δ parameters are decreased and the

iteration number is increased, the number of particles increases while the speed-up

increases as well (Fig. 3.10). Further, as the number of particles increases, the

speed-up increases in a linear manner as well. For the CPU results in Fig. 3.11,

it appears increasing the number of iterations of the level-set method from 4 to 7

increases the amount of time in a nonlinear fashion. This indicates that, for the

CPU implementation, the binning structure performance is limited by the number

of particles and will regress to O(n2).

50

3.5 Summation
This chapter described a new method to parallelize particle meshing by pro-

cessing bins concurrently. Further, on the GPU, by mapping bins to thread blocks,

the energy and velocity computations are parallelized as well. We have presented

a variety of datasets that show a reliable speed-up can be achieved regardless of the

number of particles. We compared the accuracy of the GPU particle system against

a CPU particle system and demonstrated that the resulting meshes are similar as

measured by the mean ratio of the triangles. Finally, we have shown that as the

number of particles increases, so does the speed-up of the GPU over the CPU.

This chapter explained the adaption of a single distance field to the GPU. The

next section discusses adapting multiple material mesh extraction on the GPU.

3.6 Multimaterial Mesh Extraction on the GPU
The multimaterial surfacing in this work is based on the multimaterial surfacing

of Meyer et al. [81]. Their multimaterial implementation is based on functional

representation from [89] where the interfaces are modeled by a function. The

interface model is a set of N indicator functions F = {Fi| fi : V 7−→ R}, which represents

N materials. A material label is assigned to a point x ∈V ⇐⇒ fi(x) < f j(x)∀i , j. In

this multimaterial model, a junction is the set of all points x, where fi(x)− f j(x) = 0.

Generally, for three dimensions, there are three types of junctions: four material

junctions that are points, three junctions that are lines, and two junctions that are

surfaces.

The cell indicator function, J, approximates the material junction between differ-

ent materials and starts with an inside/outside function,

f̃i = fi−maxn
j=1, j,i f j (3.7)

where the function max is the maximum value of f j,∀ j , i. The inside/outside

function has a value greater than zero when in the presence of material i and a

value less than zero for other materials and a value of zero when on the zero set.

With the zero set between adjacent materials defined as f̃i = f̃ j = 0, the cell indicator

function, Ji is defined as

Ji j = f̃i
2
+ f̃ j

2 (3.8)

51

for the points on the zero set between the two materials fi and f j. The gradient of

the two material junction, Eq. 3.8, is

∇Ji j = 2 f̃i∇ f̃i + 2 f̃ j∇ f̃ j. (3.9)

To distribute particles over the junctions, the particles are advected in the local

tangent space of the manifold and reprojected back onto the surface. Both steps

require first derivative information. However, the function max in Eq. 3.7 is only

C0, which makes max undefined on the junction. An approximation is used for

max [81],

max(V) =
1

2m−1

m∑
i=1

vi

m∏
j=1, j,1

g(vi−v j) (3.10)

where m is the number of functions and g() is a differentiable copysign function [81].

The gradient of the function max is

∇max(V) =
1

2m−1

m∑
i=1

∇vi

m∏
j=1, j,i

g(vi−v j)+

vi

 m∑
j=1, jnei

∇g(vi−v j)
m∑

j=1, j,i

g(vi−v j)


 (3.11)

where ∇g() is the derivative of the copysign function [81].

Finally, the gradients of the inside/outside function will be close to equal and

opposite near the zero set. The projection vector is defined as the average of these

inside/outside functions such that

nt =
∇ f̃i−∇ f̃ j

| ∇ f̃i−∇ f̃ j |
. (3.12)

One key observation is centered on optimizing the distance field and sizing

field interpolations for performance on the GPU. Optimizing the interpolation is

particularly important because the distance and the sizing field values at particle

pi are recalculated anytime pi potentially moves. In other words, finding the correct

step size requires temporarily placing the current particle pi at a new position, p̄i

and calculating its temporary energy Ē. However, calculating Ē requires the sizing

field value, h̄, at p̄i. Further, the projection of p̄i after its step in the tangent plane

may require a gradient search before p̂i is back onto the surface.

52

First, the precomputed distance and sizing fields are loaded into three-dimensional

textures on the GPU. When a particle, pi is moved in the system, max (Eq. 3.10) and

∇max (Eq. 3.11) are called numerous times to advection the particle and project it

back onto the surface. Both functions are parallelized dependent on the number of

materials. Fig. 3.12 is an example of the max function, given a five material volume

dataset (’0’,’1’,’2’,’3’,’4’) and working with a two material junction with labels of ’1’

and ’2’. First the material junction of ’1’ is processed, which is called the primary

material. The distance field values at the position of particle pi, Fi, are interpolated

with a B-spline interpolant [80] for all surfaces except label ’2’, the other material

of the junction. Then, for each thread we process the function max; the values are

summed in threadIdx.x == 0, and the summed value is divided by 2m−1 (Eq. 3.10),

which is equivalent to f̃i in Eq. 3.8. The same procedure is done for material ’2’

to determine f̃ j in Eq. 3.8. To prevent the same texture lookups and interpolations

from occurring again, however, those texture lookups are stored in an array in

CUDA shared memory and the last position is swapped with the primary material.

Finally, a similar parallelization strategy is implemented for the computation of

∇max (Eq. 3.11) as well.

The GPU implementation of single- and multiple-material mesh extraction

provided up to an order of magnitude speed-up over the CPU implementation.

However, the Gauss-Seidel update method is an iterative approach and not well

v[0]=tex(0,x,y,z) v[2]=tex(1,x,y,z) v[3]=tex(3,x,y,z) v[4]=tex(4,x,y,z)

v[0]*=g(v-v[0]) v[2]*=g(v-v[1]) v[3]*=g(v-v[3]) v[4]*=g(v-v[4])

v[0]*=g(v-v[4]) v[2]*=g(v-v[0]) v[3]*=g(v-v[1]) v[4]*=g(v-v[3])

v[0]*=g(v-v[3]) v[2]*=g(v-v[4]) v[3]*=g(v-v[0]) v[4]*=g(v-v[1])

v[0]*=g(v-v[1]) v[2]*=g(v-v[3]) v[3]*=g(v-v[4]) v[4]*=g(v-v[0])

val=v[0]+v[2]+v[3]+v[4]

Thread 0 Thread 1 Thread 2 Thread 3

Fig. 3.12. Example of multithreading a max(V). Each material is assigned a different
thread for processing Eq. 3.10.

53

suited for the GPU. The Levenberg-Marquardt update scheme and the projection

operator increase the control flow and prevent a one-to-one mapping of the particles

to the GPU threads, and the static binning is inflexible with regards to load

balancing. Therefore, a more efficient approach is required to fully utilize the

GPU.

CHAPTER 4

ENHANCED GPU MESH EXTRACTION

Although speed-ups of up to 44x over the CPU implementation were achieved

with the original isosurface GPU implementation as described in Chapter 3, im-

provements can be made. In particular, the Gauss-Seidel update method is a

serial scheme. Although it can be parallelized with a pseudo-red-black Gauss

Seidel update, the original Gauss-Seidel update was chosen because each particle

advection step attempts to maximize the step-size. This maximization step in-

creases the amount of control flow required, which is antithetical to the very limited

branching structure of the GPU. Further, because the binning structure depends

on the maximum sizing field value, the bins have unbalanced workloads. Finally,

the reprojection step is an iterative search to find the surface and is used frequently

while advecting a particle. Because it is an iterative search, it increases the control

flow and prevents a one-to-one mapping of particles to threads. Therefore, one goal

of this dissertation is to develop an efficient method for particle advection for mesh

extraction on the GPU. To increase the efficiency of particle advection for meshing

on the GPU, a Barnes-Hut tree code is used to build an acceleration structure and

advect the particles [8]. Further, a closest point embedding (CPE) is used to place

particles back on the surface after being advected in the tangent plane. Combining

these two methods allows for a more efficient particle placement than in [50].

4.1 Barnes Hut Tree Code
The Barnes-Hut tree code is better suited for particle advection than the previous

Gauss-Seidel update method on the GPU. The Barnes-Hut acceleration structure

stores all particles in the domain in an octree such that each leaf in the tree has

either zero or one particle. Each node links to its children nodes and also contains

55

a representation of its children with a center-of-mass position and the total mass of

all its children particles. In practice, the mass of any particle is set to one.

To construct the tree serially, each particle, pi, is inserted at the root node. Then

the particle descends down the tree and at each node updates the center-of-mass

and total mass of the node until a leaf is reached. At the leaf, child nodes are created

and the center-of-mass of the node is updated.

Once the tree is built, it is used to calculate the force or energy of a particle.

For each particle, pi, the tree is traversed, searching for every other particle, p j,

to calculate the energy or velocity of the particle, pi. However, during the tree

traversal, if the center-of-mass of a node is sufficiently far away from the particle,

pi, then the center-of-mass of the node is used as a single large particle for the

energy or velocity computation of particle pi, and the children of the node are not

traversed. The children are not traversed because the farther a particle or group of

particles is away from particle pi, the less effect it has on the energy or velocity of

pi. The children of the node are approximated with the center-of-mass of the node

because the cotangent energy function (Eq. 3.1) falls off as the distance between two

particles increases. For example, in Fig. 4.1c, the force of particle A is computed by

traversing the tree. The particle A directly computes the force from particles D and

H, but uses the center-of-mass of particles (B,C) and (E,F,G) instead of traversing

the whole tree, which significantly reduces the number of particle-particle energy

and velocity computations.

To determine whether a node is “far” away from a particle, a user-defined value,

θ, is used. This value is a threshold on the ratio between the size of the node that a

particle, pi, is in, where the size is the edge length defined by the octree level and

the distance from the center-of-mass of the node to pi. In practice, we set θ to 0.75.

The Barnes-Hut tree code eliminates two problems with the Kim et al. method

[50]. First, the tree code eliminates the need to bin the computational space by

the maximum sizing field value. Second, traversing the tree with the Barnes-Hut

tree code on the GPU significantly reduces the control flow, which makes the

Barnes-Hut tree code a better algorithm for the GPU than the Gauss-Seidel update

method. Although all the particles move at the same time with the Barnes-Hut

56

A

C

B

H
G

F

E

D

(a) Particles with octree.

A

H

E F GCBD

(b) Tree representation of (a)

A

C

B

D

H
G

F

E

(c) Particles and the
center-of-mass.

Fig. 4.1. An example of a quadtree decomposition, its tree representation and
center-of-mass representation. (a)-(c) are an example of a quadtree built with
the Barnes-Hut tree code in two dimensions: (a) has eight particles, A−H, with the
domain subdivided into an octree, and (b) is the octree from (a), visualized as a tree.
The blue nodes that are labeled A−H are leafs, as these are the quads that contain
the particles A−H in (a). The nodes colored in green have the center-of-mass of
the quadtree’s descendants. Finally, (c), is a spatial visualization of the particles
with the domain decomposed into quads. The green points are the center-of-mass
positions of the nodes, and the particle A has traversed the tree and calculated its
energy from the two green nodes and directly from particles D and H.

algorithm, if the step is small enough then the particles will still converge to a good

solution.

The implementation used in this work to construct and traverse the tree code on

the GPU is similar to that of Bédorf et al. [8], with two changes. First, the energy and

velocity calculations are done with the cotangent energy functions in Section 3.1.

The second change is to the velocity calculation. Once the tree code traversal

has calculated the velocity for all the particles, pi, the velocities are multiplied by

the sizing field value at the location of the particle, pi. If the sizing field value

is less than zero, i.e., the particles are packed closely because of high curvature,

the velocity length is reduced. Likewise, if the sizing field value is large, which

indicates an area of low curvature, the velocity length is increased by the sizing

field value. By increasing or decreasing the velocity length by the sizing field, the

57

particles will take smaller steps in areas of high curvature and larger steps in areas

of low curvature.

A reprojection step (Eq. 3.12) is required to place the particle back on the surface

when advecting a particle on an interface (Chapter 3). Unfortunately, this repro-

jection step is problematic because for each particle, the projection operator is an

iterative search to find the surface. Since the projection operator is a search, particles

cannot be assigned to individual threads in CUDA because the threads would

diverge. This reprojection search limits the performance on the GPU. To overcome

this limitation, we convert the distance field into a closest point embedding, which

can place the particle directly onto the surface. The preprocessing step of the closest

point embedding construction is covered in Section 4.1.1. Once the closest point

embedding is constructed, it is used during particle advection to place particles

back on the surface, as covered in Section 4.2.1.

4.1.1 Constructing the Closest Point Embedding

The closest point embedding is reconstructed from the distance field as a

preprocess step. A distance field is generated by BioMesh3D, which stores the

distance from a cell to the surface, but only for cells close to the surface. Fig. 4.2a is

an example of a distance field, where the blue cells are close to the surface, and the

white cells are outside the narrow band and do not store a distance to the surface.

The closest point embedding stores the location on the surface that is nearest to the

cell. Using Fig. 4.2b as an example, the cell at (36,24) is colored blue, and the closest

location on the surface to the cell is colored red. The value stored in the distance

field at cell (36,24) is 4.3, which is the distance to the surface. However, the value

stored in the closest point embedding at the cell (36,24) is (40.2,23.1).

A two-level grid is constructed to store the closest point embedding, similar to

Auer et al. [2] The grid has two levels, a coarse level and a fine level. The coarse

level is a three-dimensional grid with the same dimensions as the distance field,

and each cell, corresponding to the narrow band in the distance field, represents

a block of subcells for interpolating the closest point position. The fine level is

58

(a) The coarse grid. (b) The fine grid.

Fig. 4.2. An example of the closest point embedding using a circle. (a)-(b) are
examples of the closest point embedding. For all figures, the cells close to the
surface are colored blue, while cells far away from the surface are colored white. (a)
An example surface, a circle embedded in a coarse grid. (b) Part of the fine level of
the surface from (a), with spacing S = 1/3, and the projection, visualized with an
arrow, of the cell in blue, (36,24) to the surface location (the red point) (40.2,23.1).

composed of the subcells of the blocks that are close to the surface and is stored in

a one-dimensional array. An example of the coarse grid is in Fig. 4.2a.

4.2 Closest Point Embedding
To construct the closest point embedding, the cells closest to the surface are

determined by looking up the corresponding cell value in the distance field. If the

value is close to the surface (the blue region in Fig. 4.2b), the cell is processed. For

each cell in the one-dimensional fine level, the subcell closest point is computed by

projecting the cell position onto the surface using Eq. 3.12. An example is shown in

Fig. 4.2b. Once the projection is complete, the closest points are stored contiguously

in the fine level array. In practice, to ensure the closest point embedding matches the

interfaces generated in BioMesh3D, a Catmull-ROM interpolant is used to project

the cells onto the surface [98, 81].

59

4.2.1 Using the Closest Point Embedding

Once the interfaces are reconstructed into a closest point embedding, a new

reprojection step is required to use the closest point embedding to place particles

back on the surface after the advection method. To place a particle back onto

the surface with closest point embedding, a WENO4 interpolant (Algorithm 4.1)

is used to interpolate the position on the surface [30]. For every particle, pi, the

closest point is retrieved from the closest point embedding data structure based

on the position of the particle in one dimension. This process is repeated for the

three cells surrounding the particle because the WENO4 interpolant requires three

neighbors for the parabolic interpolation. These values from the surrounding cells

are interpolated to compute the location on the surface, cpi. The particle, pi, is

placed at the location of the interpolated result, cpi. It is trivial to expand the

interpolation to three dimensions and the three variables, xyz, that are required

for interpolating the three-dimensional surface position from the closest point

embedding.

The Barnes-Hut tree code with the closest point embedding is a more efficient

approach to a particle system on the GPU for mesh extraction. By using a tree

code, the energy and velocity calculations no longer rely on naive binning, which

Algorithm 4.1 WENO1d(f1, f2, f3, f4,x)

wp1← parabola(f1, f2, f3,x)
wp2← parabola(f4, f3, f2,1−x)
f ← (wp1.x ·wp1.y + wp2.x ·wp2.y)/(wp1.x + wp2.x)
return f

Algorithm 4.2 parabola(f1, f2, f3,x)

Fx← (f3− f1) ·0.5 . first derivative
Fxx← f1−2 ∗ f2 + f3 . second derivative
IS← Fx ∗ (Fx ∗Fxx) + 1.25 ∗Fxx ∗Fxx . smoothness IS
IS← IS +ε . ε = 0.000001
IS← IS · IS
wp.x = (2−x)/IS . weight
wp.y = f2 + x · (Fx + 0.5 ·x ·Fxx) . value at x
return wp

60

increases workload flexibility on the GPU. The closet point embedding represents

the surface on the GPU better than the distance field because it does not require

an iterative search to reproject the particles onto the surface. The CPE allows the

particles to be mapped to GPU threads in a one-to-one manner, which is more

efficient. With this new method, there is up to an order of magnitude performance

increase over the multimaterial GPU implementation from Chapter 3.

4.3 Results
In this section, the timing results and the quality of the extracted meshes are

discussed. All GPU tests were performed on an Intel Xeon E5-2640 with 32GB of

RAM with an Nvidia K20 Tesla card with 5GB of RAM using CUDA 5.0. The CPU

tests were performed on an Intel Xeon X5550 with 24GB of RAM. Two datasets,

a human head and pig torso, were used and their initial and final particle count

are in Table 4.1. The head dataset (Fig. 4.3a) is a four-material volume with a

size of (199,250,249), and the pig dataset is a five-material volume with a size of

(136,136,136) (Fig. 4.4a). With the new seeding method, the pig dataset begins with

286,346 particles, and the head dataset begins with 1,283,799 particles. BioMesh3D

initial seeding for the pig is 151,141 particles, and the head dataset begins with

614,344 particles. The pig dataset has approximately 350,000 particles when the

particle system finishes, and the head dataset has approximately 2.1 million particles

when the particle system finishes. Both datasets were run with the maximum sizing

field value set to 1.0.

TABLE 4.1. The initial and final particle count for the pig and head datasets, as well
as the mean radius ratio of the final mesh.

CPU Red-Black Update Closest Point

Dataset Initial # Final # Quality Initial # Final # Quality Initial # Final # Quality

pig 151,141 342,231 0.93 151,141 347,906 0.92 286,346 350,498 0.93
head 614,344 1,429,517 0.93 614,344 2,159,347 0.90 1,283,799 2,145,468 0.93

61

(a) The head dataset. (b) The mesh of the head dataset

Fig. 4.3. The head datasets: (a) all the material interfaces of the head dataset. (b) the
triangles of the skin surface.

(a) The pig dataset. (b) The mesh of the pig dataset.

Fig. 4.4. The pig dataset: (a) shows all the material interfaces of the pig dataset,
and (b) shows some of the triangles on the “lung” material of the dataset.

62

4.3.1 Timing

The timing results of the particle advection for extracting biological multi-

material volume data are in Table 4.2. For this timing comparison, the Kim et

al. GPU implementation was extended to extract multiple materials [50]. The

new closest point embedding with the Barnes Hut acceleration structure is 2.8×

faster than the red-black update on the GPU for the pig and 4.4× faster for the

head dataset. Further, the closest point with the Barnes-Hut tree code is 10.7×

faster and 25.2× than the CPU implementations for the pig and head datasets,

respectively. These are significant performance increases over the previous CPU

and GPU implementation. Table 4.3 contains the timing results for preprocessing

the multimaterial volume: generating the distance fields and sizing fields as well

as the closest point embedding. Further, the timing results for extracting the

surface, as examined in Section 3.1, are included. The distance and sizing fields

generated with BioMesh3D are shared with the CPU, the red-black, and closest

point implementations. Fig. 4.5 combines the timing results for the distance field,

sizing field, and surface extraction from Tables 4.2 and 4.3 into a normalized stacked

TABLE 4.2. A comparison of time (in seconds) to complete particle advection for
the closest point embedding with the CPU, the red-black implementation (RBGS),
and the Barnes Hut tree code (BH). The datasets are the pig torso and human head
volumes.

Time (secs) Speed-up

Dataset CPU RBGS BH CPU vs RBGS BH vs CPU BH vs RBGS

pig 5,056 1,312 472 3.9x 10.7x 2.8x
head 42,725 7,445 1,694 5.7x 25.2x 4.4x

TABLE 4.3. Timing results for the GenerateDistanceVolumes, GenerateSizingFields,
closest point grid generation, and SurfaceExtraction (Section 3.1) for the pig and head
datasets. All results are in seconds.

Preprocessing Postprocessing

Dataset Distance Volume Sizing Field Closest Point Extract Total Time
pig 60 723 6 17 800
head 1,135 3,129 35 70 4,334

63

Pig CPU Pig RB Pig BH Head CPU Head RB Head BH
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Extraction

Advection

Sizing Field

Distance Field

Fig. 4.5. A normalized chart of the full timing results for the pig and head datasets
from Tables 4.2 and 4.3. Each bar is the normalized time to extract the mesh
(generating the distance field, generating the sizing field, advecting the particles,
and extracting the mesh) using the CPU, the red-black implementation, and the
Barnes-Hut tree code.

chart. Each bar is stacked with distance field, sizing field, particle advection, and

mesh extraction timing results, from bottom to top, respectively. The closest point

grid generation constitutes less than 1% of the preprocess time and has been omitted

from the chart.

With the pig dataset, the particle advection section takes 86% of the total time

to extract the mesh on the CPU, a significant portion of the total time to extract

the mesh. With the red-black implementation, the advection takes 63% of the total

time. Although an improvement over the CPU, the particle advection still requires

1.8x more time than generating the sizing field, the segment that takes the second

most amount of time. Finally, the closest point embedding with Barnes-Hut tree

code is 37% of the total time to extract the mesh, which is a smaller portion of the

total time than the sizing field generation, which is 57% of the total time. This

increase in performance is illustrated in Fig. 4.5. The three bars on the left are

the timing results for pig dataset for the CPU, the red-black, and closest point

implementations. These normalized graphs show that particle advection takes

a significant portion of the time on the CPU. With the closest point embedding,

64

though, particle advection takes less time than the sizing field generation. With the

Barnes-Hut tree code, particle advection is no longer the bottleneck for extracting

conformal meshes from multimaterial data.

With the head dataset, the particle advection takes 91% of the total time to extract

the mesh on the CPU. With the red-black implementation, the advection takes 63%

of the total time, but still needs 2.4x more time than the segment that takes the

second most time, the sizing field generation. Finally, the closest point embedding

with Barnes-Hut tree code is 28% of the total time and is almost twice as fast the

sizing field generation, which is 54% of the total time. The head dataset timing

is also in Fig. 4.5, where the three bars on the right are the timing results for the

head dataset for the CPU, the red-black, and closest point implementations. Like

the pig dataset, these normalized bars of the head dataset illustrate that particle

advection takes a significant portion of the time on the CPU. With the closest

point embedding, though, particle advection takes less time than the sizing field

generation. Again, as with the pig dataset, particle advection is no longer the

bottleneck in the particle-based multimaterial meshing pipeline with the closest

point embedding and the Barnes-Hut tree code.

The Barnes-Hut tree code with closest point embedding is up to 4.4x faster

than the fastest known GPU particle advection for multimaterial mesh extraction.

Further, it is up to 25.2x faster than BioMesh3D. This new technique removes the

largest bottleneck of the multimaterial, conformal mesh extraction pipeline and

would facilitate the adoption of the particle system pipeline in the biomedical

community [94].

4.3.2 Quality

To measure the quality of the mesh, the multimaterial triangular mesh is

constructed using the particle locations. With the triangular mesh, the inscribed/-

circumscribed radius ratio of every triangle in the mesh is calculated and averaged

over the entire mesh. A numerical value of 0.90 or greater for the radius ratio

is considered to be an adequate triangular mesh, whereas a value over 0.92 is

considered to be a high-quality triangular mesh and a good starting point for

65

generating a good tetrahedral mesh. The head and the pig dataset have an average

inscribed/circumscribed radius ratio of 0.93. This ratio is better than the ratios of the

meshes from the red-black update scheme. Further, both the pig and head dataset

average radius ratio are above 0.92 and considered to be high-quality triangular

meshes.

By eliminating the iterative search for the surface with the closest point embed-

ding and using a flexible acceleration scheme, the Barnes-Hut tree code, the new

particle update scheme works better on the GPU. This new technique for particle

advection for mesh extraction is faster than the previous GPU implementation and

generates high-quality triangular meshes.

4.4 Discussion
In this chapter we have presented a new isosurface extraction algorithm with

the closest point embedding. This new technique, coupled with a GPU Barnes-

Hut tree code, is used for curvature-adaptive, multimaterial mesh extraction from

labeled volume data. The closest point embedding is a faster method for the GPU

because the reprojection step is no longer an iterative search. Each particle can

be assigned to a thread without the need for an iterative search for the surface in

the reprojection step. Further, the Barnes-Hut tree code is better suited for particle

advection on the GPU because instead of maximizing the step for each particle,

small velocity steps are taken to reach an optimal particle configuration on the

surface. These small velocity steps remove much of the control flow that hindered

the performance in previous GPU implementations of particle systems for surface

extraction. The closest point embedding with Barnes-Hut tree code is faster than

any known particle system for multimaterial mesh extraction. The speed-up is

transformative for biomedical work such as Electrical Impedance Tomography

(EIT) Imaging of the lung [94].

CHAPTER 5

SURFACE FLOW VISUALIZATION USING

THE CLOSEST POINT EMBEDDING

In the previous chapter, the surface representation from the closest point method

(CPM), the closest point embedding, was used as an embedding surface to project

particles back onto the surface. The CPM was originally developed for solving

partial differential equations on surfaces with normal three-dimensional stencils.

The closest point embedding provides a functionality that gives us an opportunity

to solve an interesting surface flow problem: surface flow visualization on an

arbitrary surface.

Surface flow visualization techniques can be classified into two categories:

parameterization methods and image space techniques. The state of the art in

parameterized methods is Flow Charts, which decomposes the surface into patches

and packs those patches into a two-dimensional atlas [65]. The parametric method

was chosen for Flow Charts because image space techniques, such as Image Based

Flow Visualization (IBFV) [111], are limited by the image space parameterization,

and any self-occluded surface will be incoherent. Further, user movements can

create “popping” when the surface is rotated because the image space param-

eterization is not fully consistent between frames. However, parameterizing a

surface is difficult, especially for complex geometry. For instance, Flow Charts

requires a lengthy preprocess step that prevents the parameterized surface from

being generated at an interactive rate.

This chapter describes a new method for surface flow visualization to solve

the problem of artifacts with image-space based techniques without the difficulties

of parameterizing the surface by using the closest point embedding with particle-

based flow techniques such as GPUFLIC [63].

67

5.1 Closest Point Embedding Construction
In Chapter 4, the closest point embedding was constructed by projecting grid

cells onto the surface using a distance field (Section 4.1.1). Since surface flow

usually begins with a mesh, it must be converted to the closest point embedding.

The closest point embedding accomplishes two objectives. First, the closest

point grid is used to project UFLIC particles back onto the surface (Section 5.1.1).

Second, the closest point embedding is used to generate a refined grid and a

neighborhood index (Section 5.2.1). This neighborhood index is used to run high-

pass filtering and antialiasing pathlines on the embedded surface at interactive

rates. Therefore, the closest point embedding provides a good framework for

surface flow visualization.

Usually, surface flow datasets are stored as two-dimensional triangular meshes

embedded in a three-dimensional space with the velocity field embedded at the

vertices of the mesh. To achieve near interactive rates embedding the mesh, Thrust

and CUDA are utilized to convert the mesh to the closest point embedding [43, 83].

Constructing the closest point embedding is covered in Section 5.1.1. Once the

closest point embedding is constructed, it is used during particle advection to

place particles back on the surface, which is covered in Section 5.1.2.

5.1.1 Constructing the Closest Point Embedding

The closest point embedding is constructed from a surface mesh with the

velocity field at the vertices of the mesh. Fig. 5.1a is a two-dimensional grid, where

the blue cells are close to the surface and the white cells are outside of a narrow

band around the surface. The closest point embedding stores the location on the

surface that is nearest to the cell. Using Fig. 5.1b as an example, the cell at (23,14) is

colored red and the closest location on the surface to the cell is colored green. The

value stored in the closest point embedding at the cell (23,14) is (21.3,14.8).

A two-level grid is constructed to store the closest point embedding, similar to

Auer et al. [2]. The grid has two levels, a coarse level and a fine level. The coarse

level is a three-dimensional grid where each cell represents a block of subcells for

interpolating the closest point position. The fine level is composed of the subcells

68

(a) The coarse grid. (b) The fine grid. (c) The closest point.

Fig. 5.1. An example of the coarse and fine levels of the closest point embedding.
(a)-(c) are two-dimensional examples of the closest point embedding. For all
figures, the cells close to the surface are colored blue, and cells far away from
the surface are colored white. (a) is an example surface, a curve embedded in a
coarse grid. (b) displays part of the fine level of the surface from (a), with spacing
S = 1/4. An example of the closest point to the surface is shown, where the red
cell is at the fine grid position, (23,14) , the projection is visualized with an arrow,
and the surface location (the green point) is at (21.3,14.8). Finally, (c) focuses on
the fine grid cell (from (b)), which is colored red. To determine the closest point
on the surface, the surface vertex (in blue) is fetched. Then, the lines adjacent to
the vertex are checked to see if there is a point on them closer to the fine grid cell
than the surface vertex. In this example, there is a point (colored green) on a line
adjacent to the surface vertex that is closer than the surface vertex. The point on
the adjacent line is saved to the fine grid.

of the coarse grid cells and is stored in a one-dimensional array. This two-level

grid saves memory by refining only the coarse grid where the cells are close to the

surface.

Construction of the closest point embedding is shown in Algorithm 5.1. The

vertices of the surface mesh are binned in the three-dimensional coarse grid. Every

cell that contains at least one vertex is marked as “on surface.” Fig. 5.1a is an

example of a one-dimensional curve embedded into a coarse two-dimensional

grid. The coarse grid cells colored blue are “on surface,” whereas white cells are

considered far away. Next, each coarse grid cell that is “on surface” is subdivided

to create the fine grid cells. Once all the fine grid cells are determined, the closest

point on the triangular surface is computed and stored in a one-dimensional fine

grid array: one for each coarse grid cell.

69

Algorithm 5.1 BuildClosestPointGrid() Input: Triangular Mesh, TM with velocity
field VM Output: coarse grid CG, fine grid FG

for all Vertices vi in mesh TM do
idx← index(vi) . Mark cells in coarse grid as “on surface”
CG[idx]← True

end for
for all Cells cell ∈ CG that are True do

. For all cells that are “on surface”
for all Fine Grid FG ∈ cell do . Generate subcells

. Compute the closest point on the surface, cp
vtx← TM vertex nearest to FG
closest point cp← vtx
distance d← ‖cp−FG‖

. Calculate closest point on faces adjacent to vertex vtx
for all Face f adjacent to vtx do

f pt← triToEmbedded(f ,FG)
. triToEmbedded returns the point on face f closest to FG [96])

dnew = ‖ f pt−FG‖
if dnew < d then

d← dnew
cp← f pt

end if
end for
FG← cp . Store closest point in grid

end for
end for

To construct the fine grid cells, each coarse cell that is “on surface” is subdivided

into fine cells. Fig. 5.1b is a two-dimensional example of six coarse cells (colored in

blue), each subdivided into 16 fine grid cells, which are stored in a one-dimensional

array. For three dimensions, the number of subdivisions is 64. For each cell in the

fine grid, the vertex on the surface mesh that is nearest to the cell is saved as the

current closest point. For each face adjacent to the vertex on the surface, the point

on the face that is closest to the grid cell is computed. A two-dimensional example

is given in Fig. 5.1c. To determine the closest point on the surface, the surface vertex

nearest to the fine grid cell is fetched (colored blue). Then, the lines adjacent to the

surface vertex are checked to see if there is a point closer to them than the surface

vertex. In this example, there is a point (colored green) on the line adjacent to the

70

vertex that is closer to the grid cell than the surface vertex. Therefore, the green

point is saved to the fine grid.

In three dimensions, the faces adjacent to a surface vertex are triangles. To

compute the point on a triangle closest to the fine grid cell, the triangle is translated

and rotated such that one vertex is at the origin and the two other vertices are in

a coordinate plane. This transformation converts finding the closest point into a

two-dimensional problem, where solving for the location in two dimensions gives

seven regions where the projected grid vertex can lie [96]. Fig. 5.2 is an example of

a triangle projected into two dimensions with the seven regions (labeled 0−6) and

a grid vertex, which is in region 3, projected onto the coordinate plane. If this new

point on the face is nearer to the fine grid cell than the current closest point, then

the current closest point is updated to this new point. This process continues until

all faces have been processed, and then the closest point is stored in the refined

grid cell. The velocity grid is constructed in a similar manner, except the velocity

is stored in the grid cell instead of the closest point.

1

6

2

2

4
5

3

x

y
0

Fig. 5.2. An example of a triangle face (in blue) projected into a coordinate plane and
the seven different regions numbered. The green vertex is a grid vertex projected
into the two-dimensional plane and is in region 3.

71

5.1.2 Using the Closest Point
Embedding

Once the triangular mesh is converted to a closest point embedding, a new

reprojection step is required to place particles back onto the surface after the

advection method. To place a particle back onto the surface with closest point

embedding, a WENO4 interpolant (Algorithms 5.2 and 5.3) is used to interpolate

the position on the surface [30]. For every particle, pi, the closest point is retrieved

from the closest point embedding data structure based on the position of the particle

in one dimension. This process is repeated for the three cells surrounding the

particle because the WENO4 interpolant requires three neighbors for the parabolic

interpolation. These are interpolated to compute the location on the surface, cpi.

The particle, pi, is placed at the location of the interpolated result, cpi.

5.2 Flow Visualization With the Closest Point Embedding
To demonstrate the effectiveness of the closest point embedding for flow visual-

ization, we adapt the unsteady flow line integral convolution, or UFLIC, to visualize

surface flow. In this section, we describe constructing the three-dimensional data

structure, called the sparsely stored refined grid, that is used to visualize the flow

and adapt UFLIC to the closest point embedding.

Unsteady Flow Line Integral Convolution (UFLIC) is a technique to visualize

two-dimensional unsteady flow [99]. In this scheme, particles are released from the

center of every pixel and are advected forward, depositing their scalar value along

the pathline. Once the advection and depositing are completed, the accumulated

values are normalized, filtered, and jittered, creating the flow visualization.

Algorithm 5.2 WENO1d(f1, f2, f3, f4,x)

wp1← parabola(f1, f2, f3,x)
. parabola function in Alg. 5.3

wp2← parabola(f4, f3, f2,1−x)
f ← (wp1.x ·wp1.y + wp2.x ·wp2.y)/(wp1.x + wp2.x)
return f

72

Algorithm 5.3 parabola(f1, f2, f3,x)

Fx← (f3− f1) ·0.5 . first derivative
Fxx← f1−2 ∗ f2 + f3 . second derivative
IS← Fx ∗ (Fx + Fxx) + 4/3 ∗Fxx ∗Fxx . smoothness IS
IS← IS +ε . ε = 0.000001
IS← IS · IS
wp.x = (2−x)/IS . weight
wp.y = f2 + x · (Fx + 0.5 ·x ·Fxx) . value at x
return wp

5.2.1 Construction

To visualize pathlines on the surface, a high-resolution data structure, the

sparsely stored refined grid, is constructed. Using the closest point grid size as

the refined grid size could result in surface aliasing because it might be too coarse.

Globally refining the closest point embedding size would lead to an unacceptable

increase in memory. Therefore, the refined grid size is decoupled from the closest

point grid size. The closest point grid from Section 5.2 is used to build the refined

grid. Once the refined grid is built, a neighborhood index is constructed to speed-up

high-pass filtering and antialiasing the three-dimensional pathlines.

To construct the sparsely stored refined grid, the closest point grid from Sec-

tion 5.2 is utilized. The closest point grid is subdivided to refine the grid to suitable

levels to visualize the surface. For each cell in the closest point grid that is near

the surface, the closest point cell is subdivided into refined grid cells, according to

a user-defined parameter, in each dimension. For example, in Fig. 5.3, two cells

in the closest point grid (the blue grid) are each subdivided into eight refined grid

cells that are highlighted in red.

Once the refined grid is created, the neighborhood index is constructed to speed

up applying the high-pass filter and antialiasing the pathline because interpolating

the closest point for every neighbor lookup is computationally expensive. To

construct the neighborhood index, for each refined grid cell, the closest point of the

neighboring refined grid cells, ncpi, is computed using the closest point grid and a

WENO4 interpolant (Section 5.1.2). Then, the index of the ncpi is computed, idxncp,

and stored in the neighboring index array. By storing the neighboring indices, the

73

Fig. 5.3. To construct the sparsely stored refined grid, the closest point embedding is
subdivided. Using the original two-dimensional closest point embedding example
from Fig. 5.1b, the fine grid is subdivided and two grid cells are each subdivided
into eight refined grid cells, which are shown in red.

Laplacian filter can be applied directly on the refined grid and the antialiasing of

the pathline is sped up.

For example, in Fig. 5.4, the green cell is the current cell with an index of cc.

The yellow cells are its neighboring cells with indices of rc, lc, uc, and dc. In

three dimensions, the neighbor cells would be the neighbors in two dimensions

plus the near and far cells, nc and f c. The neighborhood index for the green cell

is [cc,cc,uc,dc] because the right and left neighbors project back into the original

green cell.

5.2.2 Unsteady Flow Line Integral Convolution

To adapt unsteady flow line integral convolution (UFLIC) to the embedded

three-dimensional surface, a piecewise pathline is constructed by advecting the

seed particles in three dimensions and depositing values onto the surface-refined

grid. A piecewise pathline is used because the velocity field may advect the particle

74

Fig. 5.4. Continuing with the two-dimensional fine grid example from Fig. 5.3,
a single refined grid cell is highlighted in green, with its four neighbors colored
yellow.

off the surface. If the advected particle is not near the surface, then the pathline

is iteratively bisected. This binary search continues until the advected particle is

in a grid cell that contains surface. Then the advected particle is projected onto

the surface, and a line is drawn on the refined grid from the starting point to the

advected point. This process is repeated until the length of the piecewise pathline

is the same length as the original pathline.

An example is given in Fig. 5.5. In Fig. 5.5a, the pathline ends off the surface,

i.e., in a white cell. The pathline length is cut in half (Fig. 5.5b), but again the

pathline terminates off the surface in a white cell. The pathline is halved a third

time (Fig. 5.5c), and this time the pathline ends in a blue cell, which contains the

surface. A pathline is drawn between the beginning point and the end point, and

the end point is projected onto the surface (Section 5.1.2) and becomes the new

starting point, as in Fig. 5.5d.

To draw the piecewise pathline, a three-dimensional Bresenham algorithm [13]

(Algorithm 5.4) is used and adapted for antialiasing. To antialias the line, a low-pass

75

(a) (b)

(c) (d)

Fig. 5.5. Two-dimensional examples of the pathlines being halved until the particle
is on the surface. In (a), the original pathline does not end in a cell near the surface
(cells colored blue). Therefore, in (b) the length is cut in half, but again the pathline
does not end in a cell near the surface, and in (c) the pathline is reduced again.
The pathline now terminates on a cell close to the surface, and a pathline is drawn,
shown in red in (d). A new pathline is started in (d) where the previous pathline
ended using the previous pathline’s length. Drawing pathlines in this manner is
repeated until the original pathline length is drawn.

76

Algorithm 5.4 Antialiased Three-Dimensional Line Algorithm()

. Input: Begin point begin, end point end and scalar val, val. Output:
three-dimensional, antialiased line on the refined grid
int3 p1 = f loor(begin)
int3 p2 = f loor(end)
p← f loat3(p1)
d← f loat3(p2−p1)
N←max(abs(d))
s← d/N
for i := 0→N do

if s.z = 1 then
Update neighbors in the xy-plane by val÷8.

else
if s.y = 1 then

Update neighbors in the xz-plane by val÷8.
else

Update neighbors in the yz-plane by val÷8.
end if

end if
end for

77

Gaussian filter is applied to the neighbors in the plane orthogonal to the primary

direction of the line. For each grid step, if the step is in the z-axis, the low-pass

filter is applied to the xy-plane. Otherwise, if the step is in the y or x-axis, then the

xz or yz-plane is updated in a similar fashion, respectively.

5.2.3 UFLIC With the Closest Point Embedding

To run UFLIC on the closest point embedding, initially a white noise refined grid

is created. Given closest point and velocity grids, the refined grid is constructed

as in Section 5.2.1. Once the refined grid is constructed, each refined grid cell

is seeded with a particle, and the particle is projected onto the surface using the

WENO4 from Section 5.1.2. The particles fetch the velocity from the velocity grid

using a linear interpolant and the noise values from the noise refined grid. The

particles draw pathlines on the surface as described in Section 5.2.2.

Once all the particles have generated pathlines on the refined grid, a sharpening

filter is applied because of the diffusive nature of the UFLIC method [99]. A three-

dimensional Laplacian filter is applied to the embedded refined grid by looking up

the closest point neighborhood index and fetching the value from the surface cells.

Once the filtering is completed, the surface is jittered by adding random values

back onto the refined grid, and the method is ready for the next iteration.

5.3 Results
To test this new method, three datasets are used: the ICE train, the F6 plane,

and the cylinder combustion datasets (Figs. 5.6, 5.7, and 5.8, respectively). An

important goal is that the closest point embedding has comparable results to Flow

Charts [65], so each dataset has a figure using Flow Charts for comparison purposes.

The ICE train (Fig. 5.6) is a simulation of a high-speed train traveling at 250

km/h with wind blowing at a 30 degree angle. The wind creates a drop in pressure,

generating separation and attachment flow patterns, which can be seen on the

surface in Fig. 5.6a. Shear stress is shown on the airliner (F6) dataset, which is in

Fig. 5.7a. The combustion dataset (Fig. 5.8) is a complex combustion cylinder with

input and exhaust pipes as well as valves inside the combustion chamber. The

78

(a) The Closest Point ICE Train (b) The Flow Charts ICE Train

Fig. 5.6. The ICE train visualized with UFLIC with (a) closest point embedding
and using (b) Flow Charts.

(a) The Closest Point F6 (b) The Flow Charts F6

Fig. 5.7. The airliner (F6) dataset visualized with UFLIC and (a) closest point
embedding and (b) using Flow Charts.

79

(a) Closest Point Cylinder (b) Flow Charts Cylinder

Fig. 5.8. Engine cylinder visualizations. The cylinders in (a) and (b) use UFLIC
with the closest point embedding and Flow Charts, respectively, for visualizing
flow in a combustion cylinder.

swirling flow visualization is aligned with an axis through the cylinder, which is

to be expected and can be seen on the cylinder exterior in Fig. 5.8a.

The timing results and the dimensions of the closest point grid and refined grid

for the datasets are in Table 5.1 and were performed with an Intel Core i7-3770 using

a Nvidia GeForce GTX-780 GPU and CUDA v5.5. All tests were performed with a

life span (ttl) set to 2. The timing results are produced for constructing the closest

point grid, constructing the refined grid and neighborhood index, and running

UFLIC. All timing results are in seconds. All datasets were constructed and run

with less than 1GB of GPU RAM.

To save time initializing memory on the GPU, a simple memory pool manager

is used. In a preprocess step, a large amount of GPU memory is allocated as a

memory pool: all the datasets run a maximum of 975,175KB of RAM. The memory

is split into two types, temporary and permanent. Permanent data, such as the

closest point grid or the grey scale refined grid, are data structures that will last the

full iteration. Temporary data are usually helper arrays to compact other arrays

in Thrust. Permanent data are added at the head of the memory pool, whereas

temporary data are added to the tail of the memory pool. This way, permanent

80

TABLE 5.1. The timing results (in seconds) and dimensions for the datasets. All
timing results were performed with an Intel Core i7-3770 with an Nvidia GeForce
GTX-780 GPU.

Timing (seconds) Dimensions (w×h×d)

Build

CPM Refined UFLIC Closest Point Refined Grid

Ice Train 0.03 0.02 0.1 (512×58×69) (2048×232×276)

F6 0.06 0.11 0.12 (384×191×55) (1536×764×220)

Cylinder 0.07 0.21 0.17 (144×222×472) (432×666×1416)

arrays are not interleaved with temporary arrays, and the temporary data can be

pushed and popped of the tail of the memory pool without affecting the permanent

data. Allocating 975MB as a preprocess takes 0.30s. Allocating on the fly can more

than double the runtime, making interactivity difficult.

These experimental results demonstrate a near-interactive rate for constructing

the closest point grid and an interactive rate for running the UFLIC. The results

also show reasonable memory usage with less than 1GB of GPU RAM used for any

of the datasets. The timing results for the closest point embedding with UFLIC

are similar to the performance of UFLIC with Flow Charts using high-resolution

textures and a ttl of 2, although it was generated on older GPU hardware.

5.4 Discussion
In this chapter, a new method for surface flow visualization using the closest

point embedding was introduced. This new scheme achieves interactive rates for

performing unsteady flow visualization and a near-interactive rate for creating the

embedded surface grid. The key idea is that by embedding the closest point to a

surface into the surrounding grid, particles can be kept on the surface. Further,

the closest point embedding can also perform the high-pass filtering required for

UFLIC. With our new technique, there are numerous advantages compared to

previous works. Our technique avoids the visibility problems of image-space

approaches, such as popping artifacts on the silhouettes, and can resolve occluded

81

areas that image-space methods cannot. Further, it does not require a lengthy

preprocess step such as Flow Charts.

CHAPTER 6

CLOSEST POINT SPARSE OCTREE AND

UNSTEADY SURFACE FLOW

As datasets continue to grow in size and complexity, surface visualization

techniques need to scale to address this challenge. In Chapter 5, surface flow

visualization with the closest point embedding (SFCPE) achieved near-interactive

rates for unsteady flow line integral convolution. The SFCPE uses a two-level

coarse grid/refined subgrid to represent an embedded surface. The coarse grid is

the closest point grid, whereas the refined subgrid is used to visualize the surface

flow. The coarse grid does not scale well as the grid resolution increases because

it is a three-dimensional dense grid. To visualize increasingly large and complex

surface flows, we introduce the closest point sparse octree (CPSO) to represent an

embedded surface. By using a sparse octree, regions that are not near the embedded

surface are skipped, which saves memory over a dense grid and scales to higher

grid resolutions. The CPSO is, to our knowledge, the first sparse octree for the

closest point method.

In addition to the CPSO, an unsteady flow visualization technique is im-

plemented for the closest point method. In Chapter 5, a particle reprojection

method was used to perform unsteady flow line integral convolution, UFLIC, on

the closest point embedding [52]. Instead of using a projection step, UFLIC is

adapted for the closest point method, which solves partial differential equations on

embedded surfaces [93]. By extending the velocity field and surface values into

the embedding grid, the particle advection portion of UFLIC can be performed

in three dimensions without the particle reprojection step. Further, standard

three-dimensional operators, such as the Laplacian operators, can be applied

directly to the surface instead of using intrinsic operators, which simplifies the

implementation.

83

6.1 Embedding the Surface
To maintain as much flexibility as possible, we implement the sparse voxeliza-

tion octree approach similar to Baert et al. [3] on the GPU. The closest point method

is extended to use this data structure on the GPU. The sparse voxelization algorithm

is a bottom-up sparse voxelization approach that proceeds in two steps: the

voxelization and the sparse octree construction. Further, this is a hybrid approach

where the voxelization and closest point embedding process is implemented in

CUDA, whereas the sparse octree construction is on the CPU. The first phase inputs

a triangular mesh and generates an intermediate sparse closest point grid using

Morton order. The second phase produces a sparse octree through a streaming

process using Morton order.

6.1.1 Sparse Closest Point Grid

The closest point grid is constructed from a surface mesh with the velocity field

at the vertices of the mesh. Fig. 6.1a is a two-dimensional grid, where the blue cells

(a) A piecewise curve embedded
into a grid.

(b) A subsection of the grid show-
ing a closest point to the surface.

Fig. 6.1. For all figures, the cells marked as close to the surface are colored blue,
and cells far away from the surface are colored white. Cells colored blue are stored
in the sparse octree, whereas cells colored white are discarded to save memory. An
example surface, a curve embedded in a 24x24x24 2D grid is in (a) . In (b), part of the
grid from (a) is displayed with an example of the closest point to the surface shown,
where the red cell is at the fine grid position, (23,14) , the projection is visualized
with an arrow, and the surface location (the green point), is at (21.3,14.8).

84

are close to the surface and contain the closest point to the surface. The white cells

are outside of the narrow band around the surface and therefore are excluded from

the sparse octree. The closest point embedding stores the location on the surface

that is nearest to the cell. Using Fig. 6.1b as an example, the cell at (23,14) is colored

red, and the closest location on the surface to the cell is colored green. The value

stored in the closest point embedding at the cell (23,14) is (21.3,14.8), which is the

closest surface point (green circle) to the red cell.

Construction of the closest point octree is shown in Algorithm 6.1. The whole

octree grid is decomposed into subgrids because the grid memory increases expo-

nentially as the grid size increases. Then, for each grid cell and each triangle near

the grid cell, a count of the number of triangles near the grid cell is computed. This

count is needed to construct an array of triangles that are near to a grid cell.

Then, for each triangle in the subgrid, an axis-aligned bounding box (AABO)

is determined. This AABO is expanded by a user-defined offset. In practice, the

offset is set to 3. Then, for each grid cell in the AABO, the closest point to the

grid cell on the triangle is computed. If the distance from the closest point to the

grid cell is less than a user-defined value, radius, then a counter is incremented

with atomicInc in CUDA because other triangles may also be near the grid cell. In

practice, radius = 5. Next, an exclusive scan is performed on the grid cell counts,

which gives us an index for each grid cell to have its own subarray of triangles.

Further, it also computes the total number of triangles to cells needed, and a new

array is constructed to store the triangle to cells.

After an array is created for storing lists of triangles close to grid cells, the

array is filled in parallel. For each triangle in the subgrid and for each grid cell

in its expanded axis-aligned bounding box (AABO), the triangle is stored in the

triangles-to-cell array. Finally, for each grid cell that has a triangle near it, and

for each triangle near it, the closest point is computed, and if this is closer than

previous triangles, it is stored. The velocity field is stored into its own sparse grid

in a similar manner.

To compute the point on a triangular mesh closest to the grid cell, for every

triangle in the grid, the triangle is translated and rotated such that one vertex is at

85

Algorithm 6.1 BuildClosestPointOctree() Input: Triangular Mesh, TM with velocity
field VM, Grid G Output: Sparse closest point octrees

for all subgrid, SG ∈ G do
Initialize all cell counts cnt ∈ SG to 0
for all Triangles t j in grid G do

AABB j← axis-aligned bounding box of t j
AABB j← expand in each direction by offset o
for all cells ck ∈ AABB j do

cntk← cntk + 1
end for

end for
. copy the index if cnt is greater than 0

tri lookup idx = exclusivescan(cnt)
tri idx← 0
tri cnt← 0
for all triangles t j ∈ SG do

AABB j← axis-aligned bounding box of t j
AABB j← expand in each direction by offset o
for all cells ck ∈ AABB j do

tri idxtri lookupk ← tri cntk
tri cntk← tri cntk + 1

end for
end for
for all cells ci ∈ SG do

if tri cnti > 0 then
dist = 1e6
for all triangles t j ∈ tri idxi do

cpm← ClosestPoint(ci)
if (then|(cpm− ci)| < dist)

dist← |(cpm− ci)|
cpmi← cpm

end if
end for

end if
end for

end for

86

the origin, and the two other vertices are in a coordinate plane. This translation and

rotation transforms finding the closest point into a two-dimensional problem [96].

To ensure scalability of the closest point construction, the grid is subdivided

into subgrids depending on the amount of memory on the GPU. The number of

partitions required is determined by the amount of memory needed to store a

Morton code (8 bytes), a closest point (12 bytes), and a velocity vector (12 bytes) for

each grid cell in the subcell (in the worst case), plus an integer (4 bytes) per grid

cell to count the number of triangles that are near the cell.

6.1.2 Morton Order

Morton order, or z-order (Fig. 6.2), is a multidimensional to one-dimensional

mapping that maintains locality. It is a hierarchical ordering such that the Morton

order for a high level of the tree (Fig. 6.2a) is congruent to the Morton order of a

lower level (Fig. 6.2b) of the octree. The purpose of using Morton codes for the

octree construction is that Morton order allows a bottom-up construction. Further,

Morton order makes it easier to divide the work into separate “queues,” where

there is one queue for each level of the octree. To construct the Morton code, the

three-dimensional grid cell coordinate is stored interleaved in a 64-bit unsigned

integer (Algorithm 6.2). To interleave the bits, for each bit b at position i in a grid

cell coordinate c, a mask is created (1 << i) and anded to that coordinate. Then, it is

bitshifted by twice the bit position i and ored to the output. This procedure is carried

out for each dimension of the grid cell coordinate. For instance, the coordinate

(23,6,14) is (10101,00110,01110) in binary and interleaved 001100111110001 or the

6641st cell in the z-order.

6.1.3 Sparse Octree Construction

The sparse octree construction is as follows. Given a sorted-order Morton key

list of occupied cells from the closest point construction in Section 6.1.1, for each

Morton key, place it in the queue at the highest level (leaf level) of the tree. Continue

filling the highest level queue with Morton keys from the list of occupied cells or

empty keys until the queue is full. Once the leaf level queue is full, a parent node

is created in a queue at the second highest level and the parent-child relationship

87

10 11 14 15

8 9 12 13

2 3 6 7

0 1 4 5

(a) Highest level Morton order.

10 11 14 15

8 9 12 13

2 3 6 7

0 1 4 5

0 1

2 3

(b) Level below the highest level
Morton order.

Fig. 6.2. A two-dimensional example of Morton order and its hierarchy: (a) is the
highest level Morton order, and (b) is a coarser Morton order.

Algorithm 6.2 Interleaved Morton encode where the input is a grid cell coordinate,
(x,y,z), the output is the Morton code, mc and << is the left bitshift.

mc← 0
i← 0
while i < 21 do

mc←mc ∨ (x∧ (1 << i) << i×2)
i← i + 1

end while
i← 0
while i < 21 do

mc←mc ∨ (y∧ (1 << i) << i×2 + 1)
i← i + 1

end while
i← 0
while i < 21 do

mc←mc ∨ (z∧ (1 << i) << i×2 + 2)
i← i + 1

end while

88

is recorded. The lowest level queue is reused for the next set of leaf nodes. This

parent-child relationship recording is recursively done for each queue of the tree,

until the tree is completed. Note, if a queue is filled with empty keys, then the

queue can be skipped and a key inserted at the parent queue. This procedure

makes for an efficient empty key skipping technique.

An example of the sparse octree construction is given in two dimensions in

Fig. 6.3. At the highest level of the octree, Morton keys 0x0 to 0x2, along with

empty keys 0x2 and 0x3, are placed in the queue. Then, a parent-child relationship

is recorded at the parent node, A, on the green level and the queue is cleared. Then,

for empty keys 0x4 through 0x7, the parent node B is created and recorded in the

queue at the green level, and the queue at the gray level is cleared. Then, Morton

keys 0x8 through 0xB are placed in the queue, and the parent node is created in the

queue at the green level. Finally, 0xC, 0xE and 0xF Morton keys, with the empty

key 0xD, are copied to the queue. The parent node is then created in the green

queue. Since the queue is done, the queue at the red level records the parent-child

relation between the red and green levels. Fig. 6.3 is an example with the queue

stopped after the parent-child relationship is recorded for the green level A.

6.1.4 Using the Closest Point Octree

Once the triangular mesh is converted to a sparse closest point octree, locating

a cell now requires a tree-traversal of O(log(n)) time. Given a point within the

domain of the closest point grid, the search starts at the root node. For each level

in the tree, find the child node that encapsulates the point. This search continues

down each level until either an empty node is reached or the leaf node is found.

Although the cost of any lookup is log(n) with the octree, this search can limit

performance for three-dimensional stencil operations such as Laplacian or linear

interpolation. Therefore, if there is enough memory on the GPU, a neighborhood

index is constructed for each grid cell by doing a tree-traversal on each neighbor

grid cell and storing its index in a neighborhood lookup.

89

0x3

B C

0x8 0xA 0xB

A 0

0x0 0x1 0x2 0x3
0x2 0x9

D

0xC 0xE 0xF

(a) Sparse octree construction

A B

C D

0 1

2 3

4 5

6 7

8 9

A B

C D

E F

(b) Sparse octree example

Fig. 6.3. Continuing with the embedded piecewise curve example from Fig. 6.1, a
4× 4 two-dimensional subgrid is used as an example to construct a sparse octree
in (b). The cells are labeled 0x0 to 0xF in Morton order. In (a) 0x0 to 0x3 are in the
grey level and the parent-child relationship is recorded in the green level. In this
example, only 0x0 and 0x1 are leaf nodes that exist in the closest point grid. The
nodes 0x2 and 0x3 are empty key.

90

6.2 Flow Visualization With the Closest Point Method
To demonstrate the effectiveness of the closest point method for flow visualiza-

tion, we apply UFLIC to visualize surface flow. In this section, we describe usage

of the UFLIC on the surface as well as the visualization of the surface flow.

UFLIC is a technique to visualize unsteady flow [99]. In this scheme, particles

are released from the center of every pixel and are advected forward, depositing

their scalar value along the pathline. Once the advection and depositing are

completed, the accumulated values are normalized, filtered, and jittered, creating

the flow visualization.

6.2.1 UFLIC

The closest point sparse octree is used to produce and visualize the UFLIC on

the surface. Initially, given the closest point and velocity grid, a UFLIC sparse grid

of the same size is filled with random noise, similar to how a two-dimensional

UFLIC is initialized. Once the noise grid is constructed, the values on the surface

are extended from the surface into the surrounding extension grid in the extension

phase. To extend the surface values into the surrounding grid cells, for each grid

cell, linearly interpolate the values around the closest point of the grid cell. Then

the interpolated value is stored in the grid cell in the extension grid.

Once the white noise has been extended into the extension grid, for each cell, a

point is placed at the center of the cell and stores the value of the initial grid cell.

As the particles are advected through the grid, their initial values are accumulated

in the UFLIC grid using a three-dimensional Bresenham line drawing algorithm.

Once the advection process is complete, the field is normalized, sharpened with

a three-dimensional laplacian operator, and jittered. To visualize the surface, a

parametric CPU raycaster is implemented [92].

An example of the extension and application of UFLIC is shown in Fig. 6.4.

Fig. 6.4a and 6.4b are a 40×40 noise grid and a 20×20 velocity field, respectively.

The velocity field is down sampled to reduce visual clutter. Fig. 6.4c shows the

zoomed-in region of Fig. 6.4b combined with the noise of 6.4a. Fig. 6.4d extends

the surface values into the extension grid, where the closest point to a grid cell is

91

(a) 40×40 noise grid. (b) 20×20 velocity field.

(c) Zoomed-into noise grid. (d) Extending the values on
the surface into the grid.

(e) Applying UFLIC.

Fig. 6.4. A two-dimensional example of the UFLIC with a one-dimensional
embedded curve. A 40× 40 noise grid is in (a) and a vector field is in (b), but
20× 20 to reduce visual clutter. A zoomed-in portion for (b) is in (c) and (d).
The extension phase of the closest point method is in (c) . The values have been
interpolated into the UFLIC grid. Finally, a single example is given in (e), where a
value that was interpolated from the surface is then deposited back onto the surface
with UFLIC.

92

shown with a red line. Finally, UFLIC is applied to the two-dimensional extended

grid in Fig. 6.4e, but only a single particle advection is shown. The value that is

deposited onto the UFLIC grid was interpolated off the surface in the extension

phase.

After the particles are advected through the surface, the UFLIC grid is normal-

ized and a standard three-dimensional laplacian filter is applied to all the cells.

Then, the grid is clamped and jittered to prepare for the next iteration of UFLIC.

6.3 Results and Discussion
To validate the UFLIC on a surface using the closest point method, a visual

comparison is performed between our technique and two previous unsteady

surface flow visualization methods: Flow Charts [65] and SFCPE [52]. Then,

to demonstrate the CPSO performs and scales well, three datasets are used with

varying grid sizes.

6.3.1 Validation

To validate UFLIC with the CPSO, two datasets are used: the ICE train and

the F6 aircraft datasets (Fig. 6.5 and 6.6, respectively). An important goal is that

the CPSO has comparable results to previous parametric unsteady flow surface

visualization techniques: Flow Charts [65] and the SFCPE [52]. A figure is provided

for each dataset using Flow Charts and SFCPE, as well as the CPSO, for comparison

purposes. Both the ICE train and the F6 aircraft are voxelized with a grid size of

10243, and the delta wing vortex bubble dataset is voxelized with a grid size of

81923. The grid size of 10243 for the ICE train and F6 aircraft was chosen because

it is visually similar to the Flow Charts and SFCPE using UFLIC. However, the

grid size of 81923 for the delta wing vortex bubble was chosen because it is the

resolution that accurately represents the surface. The delta wing vortex bubble is a

complex integral surface that tightly wraps around itself, and in some regions the

surface is very close to itself. Therefore, a refined sparse octree, with a grid size

of 81923, is needed to correctly represent the surface with the CPSO and to apply

UFLIC properly.

93

(a) The CPSO ICE Train

(b) The SFCPE ICE Train (c) The Flow Charts ICE Train

Fig. 6.5. The ICE train visualized with UFLIC with the CPSO (Fig. (a)), SFCPE
(Fig. (b)), and using Flow Charts (Fig. (c)).

94

(a) The CPSO Aircraft (b) The CPE Aircraft

(c) The Flow Charts Aircraft

Fig. 6.6. The F6 aircraft dataset visualized with UFLIC and the CPSO (Fig. (a)) the
SFCPE (Fig. (b)) and using Flow Charts in Fig. (c).

95

The ICE train is a simulation of a high speed train traveling at 250 km/h with

wind blowing at a 30 degree angle. The wind creates a drop in pressure, generating

separation and attachment flow patterns, which can be seen on the surface in

Fig. 6.5a. Shear stress is shown on the F6 aircraft dataset, which is in Fig. 6.6a.

When generated with Flow Charts, the SFCPE, and the CPSO, both datasets are

visually similar. For the ICE train in Fig. 6.5, the separation (highlighted by the

red circle) and the attachment (highlighted by the green circle) flow patterns can

be seen in all three procedures. With the F6 dataset in Fig. 6.6, the shear stress from

the wind (highlighted with a red circle) can been seen in all three implementations

as well.

6.3.2 Timing and Scaling Results

To demonstrate the effectiveness of the CPSO, the construction of the CPSO and

the application of UFLIC are timed using varying grid sizes. The amount of time it

takes to construct the CPSO scales with the number of sparse voxels. Further, the

amount of memory used is significantly reduced in comparison to a full grid.

Three datasets were used for timing purposes: the two datasets used for visual

verification (Section 6.3.1), the ICE train and the F6 aircraft were voxelized into

grids ranging from 5123 to 40963. The third dataset, a vortex coming off a delta

wing is also voxelized (Fig. 6.7), but it is from 5123 to 8,1923.

The timing results, dimensions of the full grid, and the number of sparse voxels

of the CPSO are in Table 6.1. All tests were performed on an Intel Xeon 5170 with

16GB of RAM using a Nvidia Quadro K6000 GPU and CUDA v7.0. The timing

results are produced for constructing the CPSO and running UFLIC. All the UFLIC

runs were performed with a life span (ttl) set to 2. Further, UFLIC is run without

constructing the neighborhood lookup, for consistent scaling results (Section 6.1.4).

All timing results are in seconds.

To save time initializing memory on the GPU, a simple memory pool manager

is used. In a preprocess step, a large amount of GPU memory is allocated as a

memory pool, which allows for quicker allocation and deallocation of temporary

memory buffers when constructing the closest point octree.

96

(a) The CPSO delta wing vortex bubble

Fig. 6.7. The delta wing vortex bubble dataset is a stream surface off of a delta
wing. It is a complex surface that flows around itself. Fig. (a) shows the surface of
the delta wing vortex bubble.

97

TA
B

LE
6.

1.
T

he
ti

m
in

g
re

su
lt

s
(i

n
se

co
nd

s)
an

d
th

e
in

cr
ea

se
in

ti
m

e
fr

om
th

e
pr

ev
io

us
gr

id
si

ze
fo

r
th

e
co

ns
tr

uc
ti

on
of

th
e

C
PS

O
an

d
ap

pl
yi

ng
U

FL
IC

as
w

el
la

s
di

m
en

si
on

s
fo

r
th

e
da

ta
se

ts
ar

e
lis

te
d.

Fu
rt

he
r,

th
e

nu
m

be
r

of
sp

ar
se

vo
xe

ls
an

d
th

e
in

cr
ea

se
fr

om
th

e
pr

ev
io

us
gr

id
si

ze
vo

xe
lc

ou
nt

ar
e

lis
te

d
in

th
e

la
st

tw
o

co
lu

m
ns

.

Ti
m

in
g

D
im

en
si

on
s

Sp
ar

se
Vo

xe
ls

Sp
ar

se
ne

ss
(%

)

C
PS

O
U

FL
IC

Bu
ild

(s
)

In
cr

ea
se

of
ti

m
e

R
un

(s
)

In
cr

ea
se

of
ti

m
e

C
ou

nt
In

cr
ea

se
of

si
ze

IC
E

tr
ai

n

1.
12

-
0.

53
-

51
23

93
0,

80
3

-
99

.3
3.

15
2.

8x
1.

88
3.

5x
10

24
3

3,
83

6,
48

4
4.

1x
99

.6
14

.3
4

4.
6x

11
.4

8
6.

1x
20

48
3

15
,8

00
,0

19
4.

1x
99

.8
59

.4
4.

1
14

7.
84

12
.9

x
40

96
3

65
,7

42
,2

08
4.

2x
99

.9

F6
A

ir
cr

af
t

3.
22

-
0.

31
-

51
23

61
1,

85
4

-
99

.5
4.

5
1.

4x
1.

42
4.

6x
10

24
3

2,
64

7,
53

7
4.

3x
99

.8
12

.8
5

2.
9x

7.
63

5.
4x

20
48

3
11

,0
78

,1
57

4.
2x

99
.9

48
.8

4
3.

8x
84

.3
1

11
.0

x
40

96
3

45
,5

26
,3

55
4.

1x
99

.9

ed
el

ta
vo

rt
ex

1.
71

-
0.

06
-

51
23

11
4,

21
5

-
99

.9
2.

25
1.

3x
0.

29
4.

8x
10

24
3

48
9,

71
0

4.
3x

99
.9

5
5.

58
2.

5x
1.

66
5.

7x
20

48
3

2,
59

4,
11

0
5.

3x
99

.9
7

5.
58

2.
5x

14
.0

8.
7x

40
96

3
15

,2
59

,8
59

5.
9x

99
.9

8
20

.6
5

3.
7x

31
4.

8
19

.7
x

81
92

3
87

,6
77

,5
18

5.
8x

99
.9

8

98

For the CPSO construction (Fig. 6.8a), the amount of time it takes to construct

the sparse octree scales at similar rate as the number of sparse voxels (Fig. 6.8c)

rather than increasing exponentially with the dense grid size. Table 6.1 includes

the timing results for building the CPSO and applying UFLIC to each dataset for

varying grid sizes. Further, the number of voxels generated is also in the table.

The ICE train dataset with a grid size of 5123, 10243, 20483, and 40963 takes 1.12,

3.15, 14.34, and 59.4 seconds to construct the CPSO, respectively. The number

of voxels in the sparse octree are 930,803, 3,836,484, 15,800,019, and 65,742,208

for grid sizes 5123, 10243, 20483, and 40963. For an increase in dimensions from

5123 to 10243, the numbers of voxels increases by 4.1x, and the amount of time to

build the CPSO increases by 2.8x. For an increase in the grid size from 10243 to

20483, the number of voxels increases by 4.1x, and the time to construct the CPSO

increases by a factor of 4.6x. Changing the grid size from 20483 to 40963 increases

the voxel count by 4.2x, and the build time for the CPSO increases by 4.1. For

each increase in the grid size, both the CPSO and the number of voxels increase

linearly at a similar rate. On the other hand, the increase in the UFLIC runtime

does not have a linear increase. The increase in time for grid size 5123 to 10243 is

3.5x, the increase in time for grid size 20483 is 6.1x, and the increase in time for

grid size 40963 is 12.9x. The nonlinear increase for the UFLIC time is because the

neighborhood index is not used. For instance, without the neighborhood index,

applying the Laplacian operator requires eight lookups starting from the root node

of the octree. This tree traversal is the cause for the UFLIC performance not scaling

linearly with the number of voxels. Table 6.2 has the ICE train UFLIC timing results

(in seconds) while using the neighborhood index. Increasing the grid size from

5123 to 10243, the time to run UFLIC increased by 0.89 and the number of voxels

increased by 4.1x. Similarly, increasing the grid size from 10243 to 20483 increases

the amount of time to apply UFLIC by 4.1x, and the number of voxels increased

by 4.1x. By using the neighborhood index, the time to apply the UFLIC increases

at a rate similar to the increase in the number of voxels.

Similar to the linear scaling of the CPSO construction and voxel count of the

ICE train, the F6 aircraft dataset’s CPSO construction time increases linearly, as

99

1,000 2,000 3,000 4,000
0

50

100

150

Grid Size

Ti
m

e
(s

)

Ice train
F6

edelta

(a) Sparse Octree Construction Timing

1,000 2,000 3,000 4,000
0

50

100

150

Grid Size

Ti
m

e
(s

)

Ice train
F6

edelta

(b) UFLIC Timing

1,000 2,000 3,000 4,000

0

0.5

1

1.5
·108

Grid Size

#
of

Vo
xe

ls

Ice train
F6

edelta

(c) Voxelization Count

Fig. 6.8. Three graphs from data in Table 6.1. Fig. (a) and (b) are graphs of the
timing results of the CPSO construction and applying UFLIC, respectively. Fig. (c)
is a chart of the number of voxels that are generated from the sparse octree.

TABLE 6.2. The timing results (in seconds) and the increase in time from the
previous grid size for applying UFLIC as well as dimensions for the ICE train
dataset are listed using the neighborhood index. Further, the number of sparse
voxels and the increase from the previous grid size voxel count are listed in the last
two columns.

UFLIC Timing Dimensions Sparse Voxels Sparseness (%)

Run (s) Increase of time Count Increase of size

ICE train
0.21 - 5123 930,803 - 99.3
0.89 4.2 10243 3,836,484 4.1x 99.6
3.78 4.3 20483 15,800,019 4.1x 99.8

100

does the voxel count. The voxel counts for the F6 aircraft are 611,854, 2,647,537,

11,078,157, and 45,526,355 for grid sizes 5123, 10243, 20483, and 40963, respectively.

Further, the construction times for the CPSO (in seconds) are 3.22, 4.5, 12.85,

and 48.84 for grid sizes 5123, 10243, 20483, and 40963, respectively. The increase

in the voxel count from grid size 5123 to 10243 is 4.3x, the increase from grid size

10243 to 20483 is 4.2x, and the increase in the voxel count from grid size 20483

to 40963 is 4.1x. Similarly, the increase in CPSO time as the grid size increases is

linear. Increasing the grid size from 5123 to 10243 increases the CPSO construction

time by 1.4x, whereas expanding the grid size from 10243 to 20483 increases the

construction time by 2.9x. Finally, increasing the grid size from 20483 to 40963 is

an increase in the construction time of 3.8x. Like the ICE train dataset, applying

UFLIC is a nonlinear increase in time. The increase in time for grid size 5123 to

10243 is 4.6x, the increase in time for grid size 20483 is 5.4x, and the increase in time

for grid size 40963 is 11.0x. The nonlinear increase in UFLIC runtime is because

the neighborhood lookup is not used.

Finally, the scaling of the CPSO and voxel count of the delta wing vortex bubble

dataset are similar to ICE train and F6 aircraft datasets. The delta wing vortex

bubble dataset with a grid size of 5123, 10243, 20483, 40963, and 81923 takes 1.71,

2.25, 5.58, 20.65, and 113.16 seconds to construct the CPSO, respectively. The

voxel count for the delta wing vortex bubble dataset is 114,215, 489,710, 2,594,110,

15,259,859, and 87,677,518 for grid sizes 5123, 10243, 20483, 40963, and 81923,

respectively. For an increase in dimensions from 5123 to 10243, the number of

voxels increases by 4.3x, and the amount of time to build the CPSO increases

by 1.3x. For an increase in the grid size from 10243 to 20483, the number of voxels

increases by 5.3x and the time to construct the CPSO increases by a factor of 2.5x.

Raising the grid size from 20483 to 40963 increases the voxel count by 5.9x and

the build time for the CPSO increases by 3.7x. Increasing the grid size from 40963

to 81923 increases the CPSO build time by 5.5x and the voxel count by 5.8x. For

each increase in the grid size, both the CPSO and the number of voxels increases

linearly at a similar rate. Like the ICE train and F6 aircraft datasets, it is a nonlinear

increase in time for applying UFLIC. The increase in time for grid size 5123 to 10243

101

is 4.8x, the increase in time for grid size 20483 is 5.7x, and the increase in time for

grid size 40963 is 8.7x. For the increase in the gridsize to 81923, the amount of time

to perform UFLIC increases by 19.7x. The increase in the time to apply UFLIC is

not unexpected because the shape of the delta wing vortex bubble is very long and

narrow, and the surface folds closely back onto itself multiple times. This closeness

requires a higher resolution for the delta wing vortex bubble dataset than the ICE

train and the F6 aircraft. Further, the nonlinear jump seen increasing the grid size

from 20483 to 40963 in the ICE train and F6 aircraft datasets occurs at the higher,

81923, grid size. The nonlinear increase in UFLIC runtime is the same as the ICE

train and F6 aircraft: the neighborhood lookup is not used.

One measure of memory efficiency for the CPSO is comparing the number of

voxels in a dense grid to the number of voxels eliminated in the CPSO. All the

datasets, regardless of grid size, achieve a 99% or higher sparseness percentage in

Table 6.1, which means that at least 99% of the dense grid is empty data, and the

sparse octree removed those empty grid cells to save memory.

Finally, compared to the previous technique, the SFCPE [52], the CPSO scales

beyond the SFCPE memory-limited 10243 grid size on the Nvidia Quadro K6000.

The SFCPE is a two-level grid, with the coarse dense grid constructing the closest

point grid whereas the refined subgrid is the visualization grid. Unfortunately,

constructing the CPSO is not as fast as the two-level grid from the SFCPE, which

can construct a closest point grid, with a grid size of 512× 58× 69 in 0.03s for the

ICE train dataset compared with 5123 time for the CPSO of 1.12s. For the F6

aircraft dataset, a closest point grid with a grid size of 384×192×55 is constructed

in 0.06s compared with the 5123 time for the CPSO of 3.22s. Although significantly

faster than our implementation, the SFCPE cannot skip empty space for the closest

point grid construction, and therefore cannot scale to the resolution required to

accurately represent the delta wing vortex bubble surface because memory on the

GPU is limited.

102

6.4 Summary
We have introduced a new method for surface flow visualization using the

closest point method. The key idea is that by embedding the closest point to a

surface into the surrounding grid and extending the surface into the grid, UFLIC

can be performed in three dimensions to generate the two-dimensional embedded

surface flow visualization.

Further, we have introduced a sparse octree for the closest point method.

Constructing a sparse octree for the closest point method helps save memory

over other construction techniques. The sparse octree expands the ability of the

closest point method to larger datasets, which is increasingly important as datasets

continue to grow larger over time.

With our new technique, there are numerous advantages compared to previous

works. It avoids the visibility problems of image-space approaches, such as pop-

ping artifacts on the silhouettes, and can resolve occluded areas that image-space

methods cannot.

CHAPTER 7

CONCLUSION

In this dissertation, we have presented several techniques for surface visual-

ization. In Chapter 3, the red-black Gauss-Seidel advection scheme is introduced

to place particles evenly on a surface. This pseudo-red-black Gauss-Seidel update

scheme was applied to the GPU and achieved an order of magnitude speed-up

over a similar CPU implementation.

However, this technique was not optimal for the GPU, and a new approach was

sought to improve performance. A GPU Barnes-Hut tree code coupled with the

closest point embedding is discussed in Chapter 4. The Barnes-Hut tree code was

chosen to replace the binning structure and the Gauss-Seidel update because it is

more efficient on the GPU. Further, the closest point embedding was used because

the distance field required an iterative search for the surface, which was not a

good mapping for the GPU. By coupling the Barnes-Hut tree code with the closest

point embedding, the particles were mapped to hardware threads in a one-to-one

manner.

The closet point embedding is a flexible data structure, and was adapted

to surface flow visualization in Chapter 5. Previously, the surface was either

parameterized or an image-space technique was used, with either being a com-

promise. The closest point embedding provides a flexible framework such that

particle-based flow visualization techniques such as UFLIC were implemented

without the difficulties of parameterization or the “popping” and self-occlusion

problems of image-space based techniques.

Finally, the closest point embedding is a flexible data structure, but it scales

poorly as the size increases. Therefore, the closest point sparse octree discussed in

Chapter 6 is the first sparse octree structure introduced for the closest point method.

This octree scales up to a 8,1923 grid size. Further, instead of a particle reprojection

104

implementation of UFLIC, the equivalence of gradience is used to move the surface

values into the sparse grid and allow for particles to advect, deposit values, and

filter in three dimensions, which is, to our knowledge, the first implementation of

an unsteady flow visualization technique using the closest point method.

In the future, we would like to explore the fast embedding technique to visualize

unsteady flow on moving surfaces. Further, we would like to explore increasing

the performance of the octree to bring the runtime down to near-interactive rates.

In particular, adapting a two-level approach for the octree, such as [52], could

improve the performance. Further, we would like to adapt other PDE-based flow

visualization techniques, such as reaction-diffusion [95].

REFERENCES

[1] P. Alliez, D. Cohen-Steiner, M. Yvinec, and M. Desbrun, “Variational
tetrahedral meshing,” in ACM SIGGRAPH 2005 Papers, ser. SIGGRAPH
’05. New York, NY, USA: ACM, 2005, pp. 617–625. [Online]. Available:
http://doi.acm.org/10.1145/1186822.1073238

[2] S. Auer, C. Macdonald, M. Treib, J. Schneider, and R. Westermann,
“Real-time fluid effects on surfaces using the closest point method,”
Computer Graphics Forum, vol. 31, no. 6, pp. 1909–1923, 2012. [Online].
Available: http://dx.doi.org/10.1111/j.1467-8659.2012.03071.x

[3] J. Baert, A. Lagae, and P. Dutré, “Out-of-core construction of sparse voxel
octrees,” in Proceedings of the 5th High-Performance Graphics Conference, ser.
HPG ’13. New York, NY, USA: ACM, 2013, pp. 27–32. [Online]. Available:
http://doi.acm.org/10.1145/2492045.2492048

[4] J. Barnes and P. Hut, “A hierarchical o(n log n) force-calculation algorithm,”
Nature, vol. 324, pp. 446–449, dec 1986.

[5] J. E. Barnes, “A modified tree code: Don’t laugh; it runs,” Journal of
Computational Physics, vol. 87, no. 1, pp. 161 – 170, 1990. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/002199919090232P

[6] H. Battke, D. Stalling, and H.-C. Hege, “Fast line integral convolution for
arbitrary surfaces in 3d,” in Visualization and Mathematics, H.-C. Hege and
K. Polthier, Eds. Springer Berlin Heidelberg, 1997, pp. 181–195. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-59195-2 12

[7] J. Bédorf and S. Portegies Zwart, “A pilgrimage to gravity on gpus,” The
European Physical Journal Special Topics, vol. 210, no. 1, pp. 201–216, 2012.
[Online]. Available: http://dx.doi.org/10.1140/epjst/e2012-1647-6

[8] J. Bédorf, E. Gaburov, and S. P. Zwart, “A sparse octree gravitational n-body
code that runs entirely on the gpu processor,” J. Comput. Physics, vol. 231,
no. 7, pp. 2825–2839, 2012.

[9] R. Belleman, J. Bdorf, and S. Portegies Zwart, “High performance
direct gravitational n-body simulations on graphics processing
units ii: An implementation in cuda,” New Astronomy,
vol. 13, no. 2, pp. 103–112, 2008, cited By (since 1996)108.
[Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.
0-35148867733&partnerID=40&md5=97b5cd93659bfa9fd310c14e3b9afeb5

106

[10] G. E. Blelloch, “Scans as primitive parallel operations,” IEEE Trans.
Comput., vol. 38, no. 11, pp. 1526–1538, Nov. 1989. [Online]. Available:
http://dx.doi.org/10.1109/12.42122

[11] ——, “Prefix sums and their applications,” Synthesis of Parallel Algorithms,
Tech. Rep., 1990.

[12] D. Boltcheva, M. Yvinec, and J.-D. Boissonnat, “Mesh generation from 3d
multi-material images,” in Medical Image Computing and Computer-Assisted
Intervention MICCAI 2009, ser. Lecture Notes in Computer Science, G.-Z.
Yang, D. Hawkes, D. Rueckert, A. Noble, and C. Taylor, Eds. Springer
Berlin Heidelberg, 2009, vol. 5762, pp. 283–290. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-04271-3 35

[13] J. Bresenham, “Algorithm for computer control of a digital plotter,” IBM
Systems Journal, vol. 4, no. 1, pp. 25–30, 1965.

[14] J. Bronson, J. Levine, and R. Whitaker, “Lattice cleaving: A multimaterial
tetrahedral meshing algorithm with guarantees,” Visualization and Computer
Graphics, IEEE Transactions on, vol. 20, no. 2, pp. 223–237, Feb. 2014.

[15] J. R. Bronson, J. A. Levine, and R. T. Whitaker, “Particle systems for adaptive,
isotropic meshing of CAD models,” in 19th IMR, Oct. 2010, pp. 279–296.

[16] I. Buck et al., “Brook for gpus: Stream computing on graphics
hardware,” in ACM SIGGRAPH 2004 Papers, ser. SIGGRAPH ’04.
New York, NY, USA: ACM, 2004, pp. 777–786. [Online]. Available:
http://doi.acm.org/10.1145/1186562.1015800

[17] B. Cabral and L. C. Leedom, “Imaging vector fields using line
integral convolution,” in Proceedings of the 20th Annual Conference
on Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’93.
New York, NY, USA: ACM, 1993, pp. 263–270. [Online]. Available:
http://doi.acm.org/10.1145/166117.166151

[18] J. C. Caendish, D. A. Field, and W. H. Frey, “An apporach to automatic
three-dimensional finite element mesh generation,” International Journal for
Numerical Methods in Engineering, vol. 21, no. 2, pp. 329–347, 1985. [Online].
Available: http://dx.doi.org/10.1002/nme.1620210210

[19] M. Callahan, M. Cole, J. Shepherd, J. Stinstra, and C. Johnson, “A
meshing pipeline for biomedical models,” Engineering with Computers,
vol. 25, no. 1, pp. 115–130, 2009. [Online]. Available: http:
//www.sci.utah.edu/publications/callahan09/scirun meshing.pdf

[20] S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, and S.-H. Teng,
“Silver exudation,” J. ACM, vol. 47, no. 5, pp. 883–904, Sep. 2000. [Online].
Available: http://doi.acm.org/10.1145/355483.355487

107

[21] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann, “Gigavoxels:
Ray-guided streaming for efficient and detailed voxel rendering,” in
Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, ser.
I3D ’09. New York, NY, USA: ACM, 2009, pp. 15–22. [Online]. Available:
http://doi.acm.org/10.1145/1507149.1507152

[22] P. Crossno and E. Angel, “Isosurface extraction using particle systems,”
in IEEE Visualization 97, 1997, pp. 495–498. [Online]. Available:
http://doi.acm.org/10.1145/266989.267130

[23] N. Cuntz, A. Kolb, R. Strzodka, and D. Weiskopf, “Particle level set advection
for the interactive visualization of unsteady 3d flow,” Comput. Graph. Forum,
vol. 27, no. 3, pp. 719–726, 2008.

[24] T. K. Dey and S. Goswami, “Tight cocone: a water-tight surface
reconstructor,” in Proceedings of the eighth ACM symposium on solid modeling
and applications, ser. SM ’03. New York, NY, USA: ACM, 2003, pp. 127–134.
[Online]. Available: http://doi.acm.org/10.1145/781606.781627

[25] J. Dongarra et al., “The international exascale software project roadmap,”
Int. J. High Perform. Comput. Appl., vol. 25, no. 1, pp. 3–60, Feb. 2011. [Online].
Available: http://dx.doi.org/10.1177/1094342010391989

[26] Q. Du and M. Emelianenko, “Acceleration schemes for computing centroidal
voronoi tessellations,” Numerical Linear Algebra with Applications, vol. 13, no.
2-3, pp. 173–192, 2006. [Online]. Available: http://dx.doi.org/10.1002/nla.476

[27] Q. Du, V. Faber, and M. Gunzburger, “Centroidal voronoi tessellations:
Applications and algorithms,” SIAM Rev., vol. 41, no. 4, pp. 637–676, Dec.
1999. [Online]. Available: http://dx.doi.org/10.1137/S0036144599352836

[28] J. Dubinski, “A parallel tree code,” New Astronomy, vol. 1, no. 2, pp. 133 –
147, 1996. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1384107696000097

[29] M. Edmunds et al., “Surface-based flow visualization,” Computers & Graphics,
vol. 36, no. 8, pp. 974–990, 2012.

[30] E. Edwards and R. Bridson, “A high-order accurate particle-in-cell method,”
International Journal for Numerical Methods in Engineering, vol. 90, no. 9, pp.
1073–1088, 2012. [Online]. Available: http://dx.doi.org/10.1002/nme.3356

[31] D. Eppstein, “Global optimization of mesh quality.” in Tutorial at
the 10th Int. Meshing Roundtable, Newport Beach., S. Shontz, Ed.
Springer Berlin Heidelberg, 2001, pp. 367–384. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-15414-0 22

[32] K. Fatahalian, J. Sugerman, and P. Hanrahan, “Understanding the efficiency
of gpu algorithms for matrix-matrix multiplication,” in Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, ser.
HWWS ’04. New York, NY, USA: ACM, 2004, pp. 133–137. [Online].
Available: http://doi.acm.org/10.1145/1058129.1058148

108

[33] D. F. Fisher, J. H. Delfrate, and D. M. Richwine, “In-flight flow
visualization characteristics of the nasa f-18 high alpha research vehicle at
high angles of attack,” National Aeronautic and Space Agency (NASA),
Tech. Rep., 1991. [Online]. Available: http://naca.larc.nasa.gov/search.
jsp?R=19910010742&hterms=in-flight+visualization+characteristics&
qs=N%3D0%26Ntk%3DAll%26Ntt%3Din-flight%2520visualization%
2520characteristics%26Ntx%3Dmode%2520matchallpartial

[34] L. K. Forssell and S. D. Cohen, “Using line integral convolution for
flow visualization: Curvilinear grids, variable-speed animation, and
unsteady flows,” Visualization and Computer Graphics, IEEE Transactions
on, vol. 1, no. 2, pp. 133–141, Jun. 1995. [Online]. Available:
http://dx.doi.org/10.1109/2945.468406

[35] L. A. Freitag and C. Ollivier-gooch, “Tetrahedral mesh improvement using
swapping and smoothing,” INTERNATIONAL JOURNAL FOR NUMERICAL
METHODS IN ENGINEERING, vol. 40, no. 21, pp. 3979–4002, 1997.

[36] T. Fukushige et al., “GRAPE-1A: Special-Purpose Computer for N-body
Simulation with a Tree Code,” Publications of the Astronomical Society of Japan,
vol. 43, pp. 841–858, Dec. 1991.

[37] E. Gaburov, J. Bdorf, and S. P. Zwart, “Gravitational tree-code
on graphics processing units: implementation in {CUDA},” Procedia
Computer Science, vol. 1, no. 1, pp. 1119 – 1127, 2010, ¡ce:title¿ICCS
2010¡/ce:title¿. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1877050910001250

[38] E. Gaburov, S. Harfst, and S. P. Zwart, “Sapporo: A way
to turn your graphics cards into a grape-6,” New Astronomy,
vol. 14, no. 7, pp. 630 – 637, 2009. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1384107609000359

[39] P. Goswami, P. Schlegel, B. Solenthaler, and R. Pajarola, “Interactive SPH
simulation and rendering on the GPU,” in Proceedings ACM SIGGRAPH
Eurographics Symposium on Computer Animation, July 2010, pp. 55–64.
[Online]. Available: http://www.zora.uzh.ch/43069/

[40] S. Green, “Particle simulation using cuda,” NVIDIA, White Paper, May 2010.

[41] T. Hamada and K. Nitadori, “190 tflops astrophysical n-body simulation
on a cluster of gpus,” in Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–9.
[Online]. Available: http://dx.doi.org/10.1109/SC.2010.1

[42] P. S. Heckbert, “Fast surface particle repulsion,” in SIGGRAPH ’97, New
Frontiers in Modeling and Texturing Course. ACM Press, 1997, pp. 95–114.

[43] J. Hoberock and N. Bell, “Thrust: A parallel template library,” Thrust: A
Parallel Template Library, 2009.

109

[44] Y. Hong, D. Zhu, X. Qiu, and Z. Wang, “Geometry-based control of fire
simulation,” Vis. Comput., vol. 26, no. 9, pp. 1217–1228, Sep. 2010. [Online].
Available: http://dx.doi.org/10.1007/s00371-009-0403-8

[45] J. Huang et al., “Output-coherent image-space lic for surface flow visualiza-
tion,” in Visualization Symposium (PacificVis), 2012 IEEE Pacific, Feb 2012, pp.
137–144.

[46] B. Jobard, G. Erlebacher, and M. Hussaini, “Hardware-accelerated texture
advection for unsteady flow visualization,” in Visualization 2000. Proceedings,
Oct 2000, pp. 155–162.

[47] B. Jobard, G. Erlebacher, and M. Y. Hussaini, “Lagrangian-eulerian
advection for unsteady flow visualization,” in Proceedings of the
Conference on Visualization ’01, ser. VIS ’01. Washington, DC,
USA: IEEE Computer Society, 2001, pp. 53–60. [Online]. Available:
http://dl.acm.org/citation.cfm?id=601671.601678

[48] ——, “Lagrangian-eulerian advection of noise and dye textures for unsteady
flow visualization,” IEEE Trans. Vis. Comput. Graph., vol. 8, no. 3, pp. 211–222,
2002.

[49] G. K. Karch, F. Sadlo, D. Weiskopf, C.-D. Munz, and T. Ertl,
“Visualization of advection-diffusion in unsteady fluid flow,” Computer
Graphics Forum, vol. 31, no. 3pt2, pp. 1105–1114, 2012. [Online]. Available:
http://dx.doi.org/10.1111/j.1467-8659.2012.03103.x

[50] M. Kim, G. Chen, and C. Hansen, “Dynamic particle system for mesh
extraction on the gpu,” in Proceedings of the 5th Annual Workshop on General
Purpose Processing with Graphics Processing Units, ser. GPGPU-5. New York,
NY, USA: ACM, 2012, pp. 38–46.

[51] M. Kim and C. Hansen, “GPU surface extraction with the closest point
embedding,” in Proceedings of IS&T SPIE Visualization and Data Analysis, 2015,
February 2015. [Online]. Available: http://www.sci.utah.edu/publications/
Kim2015b/Kim SPIEVDA2015.pdf

[52] ——, “Surface flow visualization using the closest point embedding,”
2015 IEEE Pacific Visualization Symposium, April 2015. [Online]. Available:
http://www.sci.utah.edu/publications/Kim2015a/Kim PacVis2015.pdf

[53] ——, “Closest point sparse octree for surface flow visualization,” 2016, in
Submission.

[54] P. Kipfer, M. Segal, and R. Westermann, “Uberflow: a GPU-based particle
engine,” in HWWS ’04: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware. New York, NY, USA: ACM Press, 2004, pp.
115–122.

[55] A. Kolb and N. Cuntz, “Dynamic particle coupling for GPU-based fluid
simulation,” in Proc. of the 18th Symposium on Simulation Technique, 2005, pp.
722–727.

110

[56] A. Kolb, L. Latta, and C. Rezk-Salama, “Hardware-based simulation and
collision detection for large particle systems,” in Proc. Graphics Hardware,
2004, pp. 123–131.

[57] J. Krüger, P. Kipfer, P. Kondratieva, and R. Westermann, “A particle system
for interactive visualization of 3d flows,” IEEE Transactions on Visualization
and Computer Graphics, vol. 11, pp. 744–756, November 2005. [Online].
Available: http://dx.doi.org/10.1109/TVCG.2005.87

[58] J. Krüger and R. Westermann, “Linear algebra operators for gpu
implementation of numerical algorithms,” in ACM SIGGRAPH 2003 Papers,
ser. SIGGRAPH ’03. New York, NY, USA: ACM, 2003, pp. 908–916.
[Online]. Available: http://doi.acm.org/10.1145/1201775.882363

[59] S. Laine and T. Karras, “Efficient sparse voxel octrees,” in Proceedings of the
2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, ser.
I3D ’10. New York, NY, USA: ACM, 2010, pp. 55–63. [Online]. Available:
http://doi.acm.org/10.1145/1730804.1730814

[60] R. S. Laramee et al., “The state of the art in flow visualization: Dense
and texture-based techniques,” Computer Graphics Forum, vol. 23, no. 2,
pp. 203–221, 2004. [Online]. Available: http://dx.doi.org/10.1111/j.1467-8659.
2004.00753.x

[61] R. S. Laramee, B. Jobard, and H. Hauser, “Image space based visualization
of unsteady flow on surfaces,” in IEEE Visualization, 2003, pp. 131–138.

[62] E. Larsen and D. McAllister, “Fast matrix multiplies using graphics hard-
ware,” in Supercomputing, ACM/IEEE 2001 Conference, Nov 2001, pp. 43–43.

[63] G.-S. Li, X. Tricoche, and C. Hansen, “Gpuflic: Interactive and accurate
dense visualization of unsteady flows,” in Proceedings of the Eighth Joint
Eurographics / IEEE VGTC Conference on Visualization, ser. EUROVIS’06.
Aire-la-Ville, Switzerland: Eurographics Association, 2006, pp. 29–34.
[Online]. Available: http://dx.doi.org/10.2312/VisSym/EuroVis06/029-034

[64] ——, “Physically-based dye advection for flow visualization,” Computer
Graphics Forum, vol. 27, no. 3, pp. 727–734, 2008. [Online]. Available:
http://dx.doi.org/10.1111/j.1467-8659.2008.01201.x

[65] G.-S. Li, X. Tricoche, D. Weiskopf, and C. D. Hansen, “Flow charts: Visualiza-
tion of vector fields on arbitrary surfaces,” IEEE Transactions on Visualization
and Computer Graphics, vol. 14, no. 5, pp. 1067–1080, 2008.

[66] E. Lindholm, M. J. Kilgard, and H. Moreton, “A user-programmable vertex
engine,” in Proceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques, ser. SIGGRAPH ’01. New York, NY, USA: ACM, 2001,
pp. 149–158. [Online]. Available: http://doi.acm.org/10.1145/383259.383274

[67] Y. Liu et al., “On centroidal voronoi tessellation—energy smoothness
and fast computation,” ACM Trans. Graph., vol. 28, no. 4, pp. 101:1–101:17,
Sep. 2009. [Online]. Available: http://doi.acm.org/10.1145/1559755.1559758

111

[68] Y. Liu, P. Foteinos, A. Chernikov, and N. Chrisochoides, “Multi-tissue mesh
generation for brain images,” in Proceedings of the 19th International Meshing
Roundtable, S. Shontz, Ed. Springer Berlin Heidelberg, 2010, pp. 367–384.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-15414-0 22

[69] Z. Liu and R. J. Moorhead, II, “Auflic: An accelerated algorithm for
unsteady flow line integral convolution,” in Proceedings of the Symposium
on Data Visualisation 2002, ser. VISSYM ’02. Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association, 2002, pp. 43–ff. [Online]. Available:
http://dl.acm.org/citation.cfm?id=509740.509747

[70] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution
3d surface construction algorithm,” in Proceedings of the 14th Annual
Conference on Computer Graphics and Interactive Techniques, ser. SIGGRAPH
’87. New York, NY, USA: ACM, 1987, pp. 163–169. [Online]. Available:
http://doi.acm.org/10.1145/37401.37422

[71] C. B. Macdonald and S. J. Ruuth, “Level set equations on surfaces via the
closest point method,” J. Sci. Comput., vol. 35, no. 2-3, pp. 219–240, 2008.

[72] ——, “The implicit closest point method for the numerical solution of partial
differential equations on surfaces,” SIAM J. Scientific Computing, vol. 31, no. 6,
pp. 4330–4350, 2009.

[73] R. MacLeod et al., “Subject-specific, multiscale simulation of
electrophysiology: a software pipeline for image-based models
and application examples,” Philosophical Transactions of The
Royal Society A, Mathematical, Physical & Engineering Sciences,
vol. 367, no. 1896, pp. 2293–2310, 2009. [Online]. Available:
http://www.sci.utah.edu/publications/Mac2009a/MacLeod TRSA2009.pdf

[74] J. Makimo and M. Taiji, Scientific Simulations with Special Purpose Computers:
The Grade Systems, 1st ed. New York, NY, USA: John Wiley & Sons, Inc.,
1998.

[75] J. Makino and P. Hut, “Galaxies in the connection machine,” Celestial
mechanics, vol. 45, no. 1-3, pp. 141–147, 1988. [Online]. Available:
http://dx.doi.org/10.1007/BF01228995

[76] T. März and C. B. Macdonald, “Calculus on surfaces with general closest
point functions,” SIAM J. Numerical Analysis, vol. 50, no. 6, pp. 3303–3328,
2012.

[77] S. Mauch, “A fast algorithm for computing the closest point and distance
transform,” Calif. Inst. of Technology, Pasadena, CA, USA, Tech. Rep., 2000.

[78] N. Max, B. Becker, and R. Crawfis, “Flow volumes for interactive vector
field visualization,” in Visualization, 1993. Visualization ’93, Proceedings., IEEE
Conference on, Oct 1993, pp. 19–24.

112

[79] M. Meyer, P. Georgel, and R. Whitaker, “Robust particle systems for
curvature dependent sampling of implicit surfaces,” in Proceedings of the
International Conference on Shape Modeling and Applications (SMI), June 2005,
pp. 124–133. [Online]. Available: http://www.sci.utah.edu/publications/
miriah05/smi05meyer.pdf

[80] M. Meyer, R. Kirby, and R. Whitaker, “Topology, accuracy, and quality
of isosurface meshes using dynamic particles,” IEEE Transactions on
Visualization and Computer Graphics (Visualization 2007), vol. 13, no. 6, pp.
1704–1711, 2007. [Online]. Available: http://www.sci.utah.edu/publications/
meyer07/vis07meyer.pdf

[81] M. Meyer, R. Whitaker, R. Kirby, C. Ledergerber, and H. Pfister,
“Particle-based sampling and meshing of surfaces in multimaterial
volumes,” IEEE Transactions on Visualization and Computer Graphics
(Visualization 2008), vol. 14, no. 6, pp. 1539–1546, 2008. [Online]. Available:
http://www.sci.utah.edu/publications/meyer08/Meyer VCG2008.pdf

[82] T. Moller, K. Mueller, Y. Kurzion, R. Machiraju, and R. Yagel, “Design of
accurate and smooth filters for function and derivative reconstruction,” in
Volume Visualization, 1998. IEEE Symposium on, Oct 1998, pp. 143–151.

[83] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with cuda,” Queue, vol. 6, no. 2, pp. 40–53, Mar. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1365490.1365500

[84] K. Nitadori, J. Makino, and P. Hut, “Performance tuning of
n-body codes on modern microprocessors: I. direct integration
with a hermite scheme on x86 64 architecture,” New Astronomy,
vol. 12, no. 3, pp. 169 – 181, 2006. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1384107606000947

[85] Nvidia, “Tesla k80 is all about instant gratification, early users say,” 2014.
[Online]. Available: http://blogs.nvidia.com/blog/2014/11/18/tesla-k80-perf/

[86] NVIDIA Corporation, NVIDIA CUDA Compute Unified Device Architecture
Programming Guide. NVIDIA Corporation, 2007.

[87] J. D. Owens et al., “A survey of general-purpose computation on graphics
hardware,” Computer Graphics Forum, vol. 26, no. 1, pp. 80–113, 2007.
[Online]. Available: http://dx.doi.org/10.1111/j.1467-8659.2007.01012.x

[88] V. N. Parthasarathy, C. M. Graichen, and A. F. Hathaway, “A
comparison of tetrahedron quality measures,” Finite Elem. Anal.
Des., vol. 15, no. 3, pp. 255–261, Jan. 1994. [Online]. Available:
http://dx.doi.org/10.1016/0168-874X(94)90033-7

[89] A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko, “Function representation
in geometric modeling: Concepts, implementation and applications,” The
Visual Computer, vol. 11, no. 8, pp. 429–446, 1995.

113

[90] J.-P. Pons et al., “High-quality consistent meshing of multi-label datasets,”
in Information Processing in Medical Imaging, ser. Lecture Notes in
Computer Science, N. Karssemeijer and B. Lelieveldt, Eds. Springer
Berlin Heidelberg, 2007, vol. 4584, pp. 198–210. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-73273-0 17

[91] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan, “Ray tracing
on programmable graphics hardware,” in Proceedings of the 29th Annual
Conference on Computer Graphics and Interactive Techniques, ser. SIGGRAPH
’02. New York, NY, USA: ACM, 2002, pp. 703–712. [Online]. Available:
http://doi.acm.org/10.1145/566570.566640

[92] J. Revelles, C. Urea, and M. Lastra, “An efficient parametric algorithm for
octree traversal,” in Journal of WSCG, 2000, pp. 212–219.

[93] S. J. Ruuth and B. Merriman, “A simple embedding method for solving
partial differential equations on surfaces,” J. Comput. Physics, vol. 227, no. 3,
pp. 1943–1961, 2008.

[94] P. Salz, A. Reske, H. Wrigge, G. Scheuermann, and H. Hagen, “Improving
Electrical Impedance Tomography Imaging of the Lung with Patient-specific
3D Models,” in Visualization in Medicine and Life Sciences, L. Linsen, H. C.
Hege, and B. Hamann, Eds. The Eurographics Association, 2013.

[95] A. Sanderson, C. Johnson, and R. Kirby, “Display of vector fields using a
reaction-diffusion model,” in Visualization, 2004. IEEE, Oct 2004, pp. 115–122.

[96] P. J. Schneider and D. Eberly, Geometric Tools for Computer Graphics. New
York, NY, USA: Elsevier Science Inc., 2002.

[97] M. Schwarz and H.-P. Seidel, “Fast parallel surface and solid voxelization
on gpus,” in ACM SIGGRAPH Asia 2010 Papers, ser. SIGGRAPH ASIA ’10.
New York, NY, USA: ACM, 2010, pp. 179:1–179:10. [Online]. Available:
http://doi.acm.org/10.1145/1866158.1866201

[98] SCI, bioMesh3D: Quality Mesh Generator for Biomedical Applications.
Scientific Computing and Imaging Institute (SCI). [Online]. Available:
http://www.biomesh3d.org

[99] H.-W. Shen and D. Kao, “Uflic: a line integral convolution algorithm for
visualizing unsteady flows,” in Visualization ’97., Proceedings, 1997, pp. 317–
322.

[100] H.-W. Shen, C. R. Johnson, and K.-L. Ma, “Visualizing vector fields
using line integral convolution and dye advection,” in Proceedings of
the 1996 Symposium on Volume Visualization, ser. VVS ’96. Piscataway,
NJ, USA: IEEE Press, 1996, pp. 63–ff. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=236226.236234

114

[101] H.-W. Shen and D. L. Kao, “A new line integral convolution
algorithm for visualizing time-varying flow fields.” IEEE Trans. Vis.
Comput. Graph., vol. 4, no. 2, pp. 98–108, 1998. [Online]. Available:
http://dblp.uni-trier.de/db/journals/tvcg/tvcg4.html#ShenK98

[102] J. R. Shewchuk, “Unstructured mesh generation,” in In Combinatorial Scientific
Computing, U. Naumann and O. Schenk, Eds. CRC Press, 2012, pp. 257–297.

[103] ——, “Constrained delaunay tetrahedralizations and provably good bound-
ary recovery,” in In Eleventh International Meshing Roundtable, 2002, pp.
193–204.

[104] K. Shimada and D. C. Gossard, “Bubble mesh: Automated triangular
meshing of non-manifold geometry by sphere packing,” in Proceedings of
the Third ACM Symposium on Solid Modeling and Applications, ser. SMA
’95. New York, NY, USA: ACM, 1995, pp. 409–419. [Online]. Available:
http://doi.acm.org/10.1145/218013.218095

[105] D. Stalling and H.-C. Hege, “Fast and resolution independent line
integral convolution,” in Proceedings of the 22Nd Annual Conference
on Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’95.
New York, NY, USA: ACM, 1995, pp. 249–256. [Online]. Available:
http://doi.acm.org/10.1145/218380.218448

[106] R. Strzodka and A. Telea, “Generalized distance transforms and skeletons
in graphics hardware,” in Proceedings of the Sixth Joint Eurographics -
IEEE TCVG Conference on Visualization, ser. VISSYM’04. Aire-la-Ville,
Switzerland, Switzerland: Eurographics Association, 2004, pp. 221–230.
[Online]. Available: http://dx.doi.org/10.2312/VisSym/VisSym04/221-230

[107] D. Swenson, private communication, 2012.

[108] D. Swenson, J. Levine, Z. Fu, J. Tate, and R. MacLeod, “The effect
of non-conformal finite element boundaries on electrical monodomain
and bidomain simulations,” Computing in Cardiology, no. 37, pp. 97–100,
2010. [Online]. Available: http://www.sci.utah.edu/publications/swenson10/
Swenson CinC2010.pdf

[109] L. L. Tian, C. B. Macdonald, and S. J. Ruuth, “Segmentation on surfaces with
the closest point method,” in ICIP, 2009, pp. 3009–3012.

[110] J. J. van Wijk, “Image based flow visualization,” in SIGGRAPH, 2002, pp.
745–754.

[111] ——, “Image based flow visualization for curved surfaces,” in IEEE Visual-
ization, 2003, pp. 123–130.

[112] M. S. Warren and J. K. Salmon, “A parallel hashed oct-tree n-body
algorithm,” in Proceedings of the 1993 ACM/IEEE Conference on Supercomputing,
ser. Supercomputing ’93. New York, NY, USA: ACM, 1993, pp. 12–21.
[Online]. Available: http://doi.acm.org/10.1145/169627.169640

115

[113] D. Weiskopf, G. Erlebacher, and T. Ertl, “A texture-based framework for
spacetime-coherent visualization of time-dependent vector fields,” in Visual-
ization, 2003. VIS 2003. IEEE, 2003, pp. 107–114.

[114] D. Weiskopf, “Dye advection without the blur: A level-set approach for
texture-based visualization of unsteady flow,” Comput. Graph. Forum, vol. 23,
no. 3, pp. 479–488, 2004.

[115] R. T. Whitaker, “Reducing aliasing artifacts in iso-surfaces of binary
volumes,” in Proceedings of the 2000 IEEE symposium on volume visualization,
ser. VVS ’00. New York, NY, USA: ACM, 2000, pp. 23–32. [Online].
Available: http://doi.acm.org/10.1145/353888.353893

[116] A. Witkin and P. Heckbert, “Using particles to sample and control implicit
surfaces,” Computer Graphics, pp. 269–278, Jul. 1994, proceedings of SIG-
GRAPH’94.

[117] R. Yokota and L. Barba, “Hierarchical n-body simulations with autotuning
for heterogeneous systems,” Computing in Science Engineering, vol. 14, no. 3,
pp. 30–39, 2012.

[118] Y. Zhang and C. Bajaj, “3d finite element meshing from imaging data,”
Computer Methods in Applied Mechanics and Engineering (CMAME), pp. 5083 –
5106, 2005.

[119] Y. Zhang, T. J. Hughes, and C. L. Bajaj, “An automatic 3d mesh
generation method for domains with multiple materials,” Computer
Methods in Applied Mechanics and Engineering, vol. 199, no. 58, pp. 405
– 415, 2010, computational Geometry and Analysis. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S004578250900214X

[120] M. Zöckler, D. Stalling, and H.-C. Hege, “Parallel line integral
convolution,” Parallel Computing, vol. 23, no. 7, pp. 975 – 989,
1997, parallel graphics and visualisation. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0167819197000392

