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ABSTRACT 

 

 Lipids, including fats, waxes and sterols, are a group of naturally occurring 

cellular molecules that perform a diverse array of vital functions within every 

organism. Broadly, lipids directly or indirectly participate in signaling, act as 

building blocks within membranes, and function as highly efficient sources of 

energy.   In all these roles, lipids can heavily influence the chemical activities that 

sustain life—processes collectively known as metabolism. Lipids are composed 

of fatty acids and particularly, the lipids that constitute biological membranes are 

composed of long chain fatty acids. Long chain fatty acids, in order to be used for 

energy generation, membrane biogenesis, or signaling within the cell, need to be 

activated by esterification to Coenzyme-A. Long chain Acyl CoA Synthase 

enzymes catalyze this important esterification reaction and hence act as key 

metabolic regulators of fatty acid metabolism within the cell. The membrane fatty 

acid composition of a cell determines the protein composition of biological 

membranes and can thus define the developmental fate of a cell as well as its 

membrane bending and migratory abilities. In this regard, Acyl CoA Synthases 

can also act as key developmental regulators.  

 In the current study, we present evidence for the role of Long chain Acyl 

CoA Synthases (ACSL): Bgm and Dbb in Drosophila embryogenesis. 

Particularly, maternally deposited bgm transcript is required for the processes of 
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cellularization and neurogenesis during Drosophila embryonic development. 

Rab-5 tagged endocytic vesicles are critical sources of membrane components 

during cellularization, and Bgm is required for the proper subcellular targeting of 

these vesicles. Neurogenesis also requires maternal expression of bgm, and 

abnormal neurogenesis in bgm mutants appears to be related to the early defect 

in cellularization. In addition, we also demonstrate that bgm and dbb are 

duplicated genes with partially diverged developmental expression patterns and 

are transcriptionally regulated by dorsoventral patterning genes. Lastly, we 

provide evidence for behavioral abnormalities in bgm  and  dbb  mutant flies, thus 

making them attractive models of neurodegenerative disorders, which can be 

potentially used in large scale screens for diet and drug therapies. 
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CHAPTER 1 

 

INTRODUCTION 

 

 Lipids, including fats, waxes, and sterols, are a group of naturally 

occurring cellular molecules that perform a diverse array of vital functions within 

every organism. Broadly, lipids directly or indirectly participate in signaling, act as 

building blocks within membranes, and function as highly efficient sources of 

energy.   In all these roles, lipids can influence the chemical activities that sustain 

life—processes collectively known as metabolism.  

 Within a cell, lipids can themselves act as signaling molecules or facilitate 

protein signaling. The signaling pathways requiring lipids binding as ligands to 

protein receptors comprise the lipid signaling pathways.  Several different types 

of lipids can act as ligands.  As examples, ceramides are signaling molecules 

required for regulation of insulin signaling, senescence, and cell death (Chasan 

et al., 1992). Ceramides are composed of a sphingosine (2-amino-4-octadecene-

1,3-diol) head group and a fatty acid (a carboxylic acid with a long aliphatic tail); 

they bind to the ceramide receptor (Castro et al., 2014). Another lipid ligand 

derived from Sphingosine, Sphingosine-1-phosphate, is required for cell survival, 

cell migration, and inflammation (Mendelson et al., 2014). The Phosphotidyl 

inositol family of lipid second messengers includes inositol triphosphate (IP3) and
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Diacylglycerol (DAG). These two ligands are required mainly for calcium 

signaling in muscles and for activation of Protein Kinase C (PKC) (Schink et al., 

2013; Shisheva, 2013; Takasuga and Sasaki, 2013). Notably, all of these ligands 

are derived from lipids found in biological membranes (Goñi and Alonso, 1999). 

Several other lipid ligands, which are beyond the scope of discussion in this 

review, may or may not be derived from membrane lipids.  Additionally, lipids can 

also influence signaling in an indirect manner. Several protein ligands are 

activated by the addition of acyl chains derived from fatty acids. As an example, 

the conserved developmental regulator Sonic hedgehog is activated by 

palmitoylation (Buglino and Resh, 2012; Ho and Scott, 2002). Most, although not 

all, Wnt ligands are also palmitoylated for their conserved and essential functions 

in development (Bartscherer and Boutros, 2008).  

 The second essential role of lipids in an animals’ life history is as an 

essential source of energy. Most lipids are metabolized in either peroxisomes or 

mitochondria by the process of β−oxidation. When broken down, lipid constituent 

fatty acids generate significantly more energy than do carbohydrates or proteins 

(approximately 2.5 times more). The body also uses lipids to efficiently store 

unused energy in the form of lipid droplets. 

 The third essential role for lipids in all living organisms is as components 

of biological membranes—both cellular and subcellular.  Indeed, the lipid 

composition of the membrane defines the protein components imparting unique 

protein signatures and unique properties to each type of membrane (Bogdanov 

et al., 2014; Poveda et al., 2014; Schmidt and Robinson, 2014). At the plasma 
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membrane, lipids form a selective barrier, which maintains a stable environment 

within the cell while also maintaining a pathway for communication with the 

external environment. As examples, plasma membrane receptors determine the 

signaling pathways that are active within a cell, and anionic transporters 

determine which energy sources will enter the cell (Bogdanov et al., 2014; 

Record et al., 2014). Lipids can also affect membrane bending properties 

(Stachowiak et al., 2013). At the cellular level, different membrane lipid 

compositions can affect changes in cell shape, allowing cells to adapt to the 

demands of developmental or homeostatic processes like morphogenesis, 

migration, and inflammation, to name a few (Bogdanov et al., 2014; Mendelson 

et al., 2014). At the subcellular level, certain lipids are essential for vesicle 

biogenesis, while others assist in trafficking between subcellular organelles 

(Martin, 2001; Osborne et al., 2001; Wurtzel et al., 2012). Thus, the lipid 

composition of membranes dictates a cell’s energy state, developmental fate, 

and its ability to move and change shape in response to developmental or 

homeostatic demands. In this regard, some have suggested that the membrane 

roles of lipids cannot be overlooked in studies of any of their functions. 

 

Membrane Lipids and Fatty Acids 

 Lipids are amphiphilic in nature, having both a hydrophilic end and a 

hydrophobic end. In forming a bilayer, with their polar ends pointing outwards 

and the nonpolar ends pointing inwards, membrane lipids assemble to form the 

plasma membrane that separates the interior of the cell from the exterior 
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environment. The hydrophobic (nonpolar) part of the lipid consists of long 

hydrocarbon chains that are derived from fatty acids (a carboxylic acid with a 

long aliphatic tail). There are four major classes of membrane lipids: 

phospholipids, sphingolipids, glycolipids, and cholesterol, defined on the basis of 

their polar head groups. Phospholipids are the predominant type in membranes; 

they are formed in a multistep reaction whereby dihydroxyacetone phosphate, a 

central metabolite in glycolysis, is reduced to sn-glycerol 3-phosphate using 

NADH (Pol et al., 2014). In the next step, long chain fatty acids are transferred 

from acyl-ACP to sn-glycerol 3-phosphate to form phosphatidic acid. Finally, 

depending on the lipid synthesized, a specific hydrophilic group is added to the 

phosphatidic acid (Pol et al., 2014). The hydrophobic chains of membrane lipids 

are derived from long or very long chain fatty acids.  

 These fatty acids have 14 or more carbons in their acyl chains and help 

membrane lipids span the membrane, either in pairs to form the lipid bilayer, or 

as singletons, spanning the membrane in its entirety to facilitate curving 

(Stachowiak et al., 2013). Importantly, the different fatty acids impart specific 

membrane bending or protein interaction properties to a membrane. Taken 

together, membrane lipids influence the developmental and physiological state of 

a cell, in large part due to their fatty acid composition.  

 Fatty acids (FAs) are classified based on carbon chain length as short, 

medium, long, or very long (Agostoni and Bruzzese, 1992).  Short chain FAs are 

thought to function primarily as signaling molecules within the cell, medium chain 

FAs function primarily as energy sources, and long and very long chain fatty 
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acids as membrane components; however, these functions are not exclusive to 

each of these categories. As membrane components, long and very long chain 

FAs (LCFAs and VLCFAs, respectively) heavily influence signaling and energy 

generation by defining the membrane’s protein composition as discussed earlier 

in this chapter. In order to be incorporated in to membrane lipids, LCFAs and 

VLCFAs need to  be activated by esterification to Coenzyme A, and this reaction 

is catalyzed by Acyl CoA Synthases (Figure 1.1).  

 

Acyl CoA Synthases: Fatty Acid Activators 

 In order to be used for any catabolic, anabolic, or regulatory function 

within the cell, FAs must first be esterified to Coenzyme A (CoA) (Watkins and 

Ellis, 2012). This esterification activates fatty acids and allows their participation 

in enzymatic reactions. The esterification reaction is catalyzed by enzymes 

belonging to the Acyl CoA Synthetase/Synthase family. Acyl CoA Synthases 

(ACS) catalyze a two-step reaction that is ATP dependent and leads to the 

release of two AMP equivalents. In the first half-reaction, the FA substrate is 

adenylated, releasing inorganic pyrophosphate (PPi) (Watkins and Ellis, 2012): 

Fatty acid + ATP→ Fatty acyl−AMP +  PPi 

The ubiquitous enzyme pyrophosphatase, which can be found in soluble, 

mitochondrial, peroxisomal, and other subcellular fractions, rapidly cleaves PPi, 

effectively preventing reversal of this reaction. In the second half reaction, CoA 

displaces AMP, forming a thioester bond to yield the activated FA (Young and  

Fatty acyl−AMP + CoA → Fatty acyl-CoA  
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Figure 1.1: Lipids containing long/very long chain fatty acids induce 
curvature  in membranes 

Green circles in the above figure represent polar head groups, and white 
lines represent hydrophobic fatty acids in membrane lipids. Assembly of fairly 
short chained fatty acid containing lipids leads to a straight, noncurved lipid 
bilayer. Introduction of long/very long chain fatty acids or lipids containing 
these leads to a successive increase in membrane curvature with the 
increase in number of such lipids. The yellow circles represent polar head 
groups and yellow lines represent long/very long chain fatty acids in 
curvature-inducing lipids.  
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Anderson, 1974). ACS family members are homologous in sequence and 

identified based on the presence of two highly conserved motifs.  Motif I is a 10 

amino acid sequence typically located 200–300 residues from the N- terminus; it 

is an AMP-binding site defined by the consensus [YF]TSGTTGxPK.  Mutations in 

this site decrease or abolish catalytic activity (Black and DiRusso, 2003). Motif II 

harbors the ACS catalytic domain.  This motif shares homology with the ANL 

superfamily (Acyl-CoA synthetases, Nonribosomal peptide synthetase, 

Luciferase) and contains 36–37 amino acids with four positions reserved for 

hydrophobic residues (TGDxxxxxxxGxxxhx[DG]RxxxxhxxxxGxxhxxx[EK]hE) 

(Stinnett et al., 2007). The conserved arginine at position 18 is always found 

approximately 260 residues downstream of Motif I. Results of site-directed 

mutagenesis experiments initially suggested that Motif II functions as a signature 

motif, determining the substrate specificity of the acyl-CoA synthetase family 

members, although this has been disputed. It is now understood that there are at 

least four residues outside of and distant from Motif II that are required for 

substrate specificity (Stinnett et al., 2007). Protein structural studies based on 

sequence and spectroscopy indicate the presence of a substrate binding “tunnel” 

that ensures FAs of only a certain chain length are activated by a specific ACS 

(Black et al., 1997; Soupene and Kuypers, 2008; Stinnett et al., 2007).   Motif II, 

along with the four extra residues, forms the tunnel.  There is limited flexibility in 

substrate activation as long chain ACSs can also sometimes activate very long 

chain FAs (Stinnett et al., 2007) (Figure 1.2). In mammals, 26 ACSs have been 

identified; of these, 13 activate long and/or very long chain fatty acids (>14  
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Figure 1.2:	
  Acyl CoA Synthases are required for fatty acid functions 

Fatty acids are activated by Acyl CoA Synthases (ACSs)  in the presence of 
ATP. Activated fatty acids like palmitate and myristilate are used for protein 
acylation and thus facilitate signaling. Fatty acids are used for membrane lipid 
synthesis and thus facilitate membrane biogenesis. Lastly they act as efficient 
sources of energy and also regulate gene expression and enzyme activity.  
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carbons) (Mashek et al., 2007). These ACSs include members of the long-chain 

acyl-CoA synthase (ACSL) family and the very long chain acyl-CoA synthase 

(ACSVL) family (including members of the Bubblegum family [ACSBG]- the 

mammalian ACS homologous of the Drosophila long chain ACS Bgm). Finally, 

some ACSVLs are dual functioning, serving as fatty acid transporters (FATPs) in 

addition to their roles as acyl CoA synthases. Dual functioning ACSVLs are 

sometimes also designated as Solute Carrier Fatty Acid Transporters (SLCA) 

(Abumrad et al., 1998; Schaffer and Lodish, 1994).  

 Long and very long chain ACSs are partitioned in the cell. Both FATP1 

and ACSL6 reside in the plasma membrane, ACSL4 resides in peroxisomes and 

the endoplasmic reticulum, and ACSL5  resides in the inner mitochondrial 

membrane (Gassler et al., 2007; Watkins and Ellis, 2012). As demonstrated by 

ACSL4, ACSL proteins can be present in multiple subcellular locations within a 

single cell; moreover, a single ACSL may vary in its subcellular location in 

different cell types (Küch et al., 2014). As examples, ACSL1 resides in the 

plasma membrane and in GLUT4 vesicles in adipocytes, on the endoplasmic 

reticulum in hepatocytes, and on mitochondria in epithelial cells (Mashek et al., 

2007). ACSBG1 and ACSBG2 are found in the cytoplasm of COS-1 cells, 

mitochondria of neuronal cells, and microsomes of cells in the testis (Mashek et 

al., 2007).  Cell-specific differences in ACSL localization may arise from splicing 

or protein-protein interaction differences that are specific to each tissue type. The 

differential subcellular localization of each of the ACSL/ACSVL/ACSBG isoforms 

points to cell type specific roles for ACSs.  Consistent with this view is the 
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demonstration that mitochondrial-localized ACSL5 is a key regulator of 

mitochondrial energy generation and apoptosis (Gassler et al., 2007; Klaus et al., 

2013). 

 

Role of Acyl CoA Synthases in Fatty Acid Uptake 

Cellular uptake of fatty acids derived from diet or synthesized by different 

tissues occurs either by passive diffusion or by facilitated transport. Because they 

are hydrophobic, it has long been thought that FAs move across the lipid bilayer 

and into a cell by either concentration-based flipping or passive diffusion.  

However, FA uptake studies deploying 1) saturation kinetics, 2) protein-mediated 

plasma membrane transport inhibition, 3) inhibition using nucleophilic fatty acid 

derivatives, and 4) competitive inhibition sensitivities (Glatz et al., 2010) indicate 

that protein-mediated uptake is important at physiological concentrations of fatty 

acids, and evidence for passive diffusion only emerges when fatty acids 

concentrations are quite high and presumably nonphysiological (Abumrad et al., 

1998, 1999). These studies have additionally identified several categories of fatty 

acid transporters. The integral and peripheral plasma membrane proteins that 

transport fatty acids into cells are known as “fatty acid transporter.” Included 

among these are fatty acid binding proteins (FABPs), fatty acid transport protein 

(FATPs), and  fatty acid translocases (Glatz et al., 2010). Of these transporters, 

the FATP family predominates and is the focus of the discussion that follows.  

 The FATP family was discovered in 1994 when Schaffer and Lodish 

screened for adipocyte proteins that increase cellular uptake of fluorescent FA 
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analogs (Schaffer and Lodish, 1994). Two positives that emerged from that 

screen were cloned: ACSL1 and FATP1.  In early studies of FATPs, it was found 

that these proteins shared several domains of sequence homology as well as 

their domain organization with well-characterized members of the acyl-CoA 

synthetase family.  This discovery led to the recognition that FATPs are dual 

functioning—albeit bona fide members of the adenylate forming acyl-CoA 

synthetase superfamily, and specifically the very-long-chain acyl-CoA synthetase 

subgroup (Stahl, 2004).  

 Once transported inside the cell, FA retention likely depends on vectorial 

esterification, wherein exogenous FAs are esterified to acyl-CoAs upon uptake 

and channeled subsequently into downstream pathways (for signal transduction, 

energy production, and/or membrane biogenesis).  Upon esterification, the once 

hydrophobic FAs are now negatively charged and thus unable to traverse the 

cell’s hydrophobic lipid bilayer by flipping or by  transporters, which are 

directional in their transport (Glatz et al., 2010).  

 In addition to cellular retention, there is also increasing evidence to 

suggest that the ACS activity of ACSL and ACSVL/FATP family members is 

necessary and/or sufficient to transport FAs into the cell.  Several studies show 

that ACS activity alone is sufficient for FA transport, and expression of fatty acyl-

CoA synthetases that are unrelated to the FATP-associated VLACS can enhance 

fatty acid uptake in Escherichia coli (Mangroo et al., 1995) and yeast (Tong et al., 

2006). In other scenarios, ACS activity is necessary in conjunction with 

transporter activity to facilitate FA transport. In 3T3-L1 adipocytes, ACS1 is an 
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integral membrane protein which colocalizes and interacts with FATP1 (Hall et 

al., 2003). Overexpression of either of these ACS1 or FATP1 increases fatty acid 

uptake, while their concomitant overexpression has a synergistic effect on fatty 

acid uptake (Gargiulo et al., 1999). When FATP1 contains a mutation that 

abolishes ACS activity, its overexpression severely suppresses FA uptake. 

Similarly, overexpressing normal FATP4 enhances FA uptake in COS cells, but 

overexpressing a FATP4 mutant that lacks ACS activity abolishes these effects 

(Mashek et al., 2007) .  Finally, overexpressing certain isoforms of either ACSL 

or FATP increases FA uptake despite the fact that ACSL1, ACSL4, ACSL5, and 

FATP4 are located only on intracellular organelles in the cells examined (Heimli 

et al., 2003; Marszalek et al., 2004; Mashek et al., 2006; Milger et al., 2006). 

These data suggest that FA uptake depends on inherent ACS activity of the cell 

and not on direct transport at the plasma membrane.  

 

Role of Acyl CoA Synthases in Fatty Acid Channeling 

 Once inside the cell, it appears that ACSs channel FAs into specific 

downstream pathways. The existence of 13 ACSL, FATP, and ACSBG isoforms 

that all activate long-chain FAs has led to the suggestion that each has an 

independent role in channeling FA within cells and there are several lines of 

evidence supporting this supposition. 

 In cultured mammalian cells, gain-of-function and loss-of-function studies 

strongly implicate the different ACSLs in channeling FAs into specific metabolic 

pathways, consistent with differences in their subcellular residencies and 
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substrate preferences. As examples, ACSL1 overexpression in either NIH-3T3 

fibroblasts or PC12 neurons increases oleic acid incorporation into 

Triacylglycerol (TAG) (Marszalek et al., 2004; Souza et al., 2002). In transgenic 

mice with heart-specific expression of ACSL1, TAG increases approximately 12-

fold in the heart and choline glycerophospholipid increases 50% (Chiu et al., 

2001).  In contrast, overexpressing ACSL1 in rat primary hepatocytes increases 

oleate incorporation into phospholipid and diacylglycerol, while decreasing 

incorporation into cholesterol esters and having no effect on TAG (Li et al., 

2006). In a study of ACSL3 knockdown in rat primary hepatocytes, decreased 

incorporation of labeled acetate into TAG and phospholipids was observed.   

 Altering the expression of FATPs similarly affects FA channeling. For 

example, FATP1 overexpression in HEK293 cells alters partitioning of both oleic 

acid (exogenously added) and FAs (synthesized de novo from acetate into 

cellular lipids) and increases cellular TAG content while decreasing cholesterol 

and sphingomyelin content (Hatch et al., 2002). In skeletal muscle, adenovirus-

mediated overexpression of FATP1 increases the partitioning of oleate or 

palmitate into TAG and decreases β-oxidation; overexpression in mouse heart 

increases FA uptake and TAG content and causes a lipotoxic cardiomyopathy 

(Chiu et al., 2001). Conversely, in muscle from FATP1 null mice fed a high fat 

diet, the content of TAG, DAG, and acyl-CoA is lower than in wild-type controls. 

Knockdown of FATP1 in 3T3-L1 adipocytes reduces FA uptake with no changes 

in lipolysis, but knockdown of FATP4 instead, increases basal lipolysis (Mashek 

et al., 2007). Thus, the specific effects of individual ACSs support the notion that 
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different ACSLs or FATPs channel FAs to distinct metabolic fates and the role of 

each isoform varies based on the tissue type.  

 It is possible that the differential effects of different ACS isoforms in 

different tissues result from tissue specific protein interactions. These interactions 

may determine the fates of acyl-CoAs synthesized by ACSs and thus channel 

them according to the metabolic demands of a given cell type. There is, however, 

only limited evidence to support the role of protein-protein interactions in  

channeling of Acyl CoAs. Immunoprecipitation of endogenous FATP1 from 3T3-

L1 adipocytes followed by mass spectrometry identified mitochondrial 2-

oxoglutarate dehydrogenase (OGDH), a key enzyme in the tricarboxylic acid 

cycle. Additionally, FATP1 enhances OGDH activity in proteoliposomes, whereas 

FATP1 knockdown in 3T3-L1 adipocytes showed decreased OGDH and TCA 

cycle activity (Wiczer and Bernlohr, 2009). These data suggest that channeling of 

Acyl CoAs occurs via interactions of metabolic enzymes with ACSs, and these 

interactions heavily influence metabolic reactions by controlling substrate 

availability.  However, it will be interesting to see if other FA channeling roles of 

ACSs require direct protein-protein interactions.  

 

Long-chain Acyl-coenzyme A Synthetase’s  

Role in Disease 

 Increases or decreases in ACSL isoforms under pathological conditions 

highlight the importance of optimal ACS function within an organism. Several 

ACS proteins have been implicated in a number of diseases; however, the 
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specific roles of these enzymes in disease conditions are completely understood 

only in a few cases.  

 Ichthyosis Prematurity Syndrome (IPS) is an autosomal recessive disorder 

characterized by premature birth, respiratory complications and dry, thickened, 

and scaly skin (Ichthyosis). The disease is caused by mutations in the gene 

encoding the FATP4 enzyme and a specific reduction in the incorporation of 

VLCFA into cellular lipids (Klar et al., 2009). The mutations identified are either 

nonsense mutations or missense mutations within the ATP binding pocket of 

FATP4. Studies of human IPS patients, as well as Fatp4 null mice, suggest that 

FATP4 plays a role in early epidermal development and that other ACS enzymes 

cannot compensate for a deficit of this enzyme. 

 Expression of the very long chain fatty acyl-CoA synthetase, ACSVL3, 

was found to be markedly elevated in clinical malignant gliomas in comparisons 

to normal glia (Pei et al., 2013). ACSVL3 levels correlated with the malignant 

behavior of human glioma cell lines with glioma cells propagating as xenografts. 

Direct ACSVL3 knockdown using RNA interference also inhibited glioma cell 

growth by 70% to 90%, while ACSVL3-depleted cells were less tumorigenic than 

control cells (Pei et al., 2009). It is now known that ACSVL3 maintains oncogenic 

properties of malignant glioma cells via up-regulation of Akt function (Pei et al., 

2009). 

 Several mutations in the ACSL4 gene are known to be causative of X-

linked mental retardation, a common cause for mental disability in young males. 

Deletions and missense mutations of the FACL4 gene are associated with 
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nonspecific mental retardation and with multisyndrome AMME complex disorder 

(Alport syndrome, Mental retardation, Midface hypoplasia, and Elliptocytosis). 

FACL4 is expressed in the human brain where it functions to activate 

polyunsaturated fatty acids (PUFA), like arachidonic acid (AA), eicosapentaenoic 

acid (EPA), and docosahexaenoic acid (DHA). In the mammalian brain, PUFAs 

function both as essential components of cellular membranes and as signaling 

molecules (Kantojärvi et al., 2011; Meloni et al., 2009; Yonath et al., 2011). It was 

proposed that defects in fatty acid metabolism due to the loss of FACL4 function 

can affect brain development. Cao et al. have shown that exposure to exogenous 

polyunsaturated fatty acids causes Caspase 3 dependent apoptosis in cell lines, 

and that this effect is abolished by overexpression of FACL4 (Cao et al., 2000). 

These data suggest that mutations in FACL4 cause nervous system damage via 

a direct cytotoxic effect of accumulated fatty acids. However, this hypothesis 

remains to be confirmed by in vivo studies.  

 Adenocarcinomas with an invasive phenotype and enhanced proliferation 

of enterocytes show decreased levels of ACSL5; however, it is unclear if ACSL5 

is causative of the disease (Gassler et al., 2003). ACSL5 is expressed in an 

ascending gradient along the crypt-villus axis of human small intestine with the 

highest expression level in enterocytes at the villus tip. It is thought that ACSL5 

sensitizes enterocytes to TRAIL (TNF-Related Apoptosis-Inducing Ligand)  

derived apoptosis susceptibility by down-regulation of the antiapoptotic FLIP and 

up-regulation of TRAIL-R1 receptors on the cell surface. TRAIL shows a 

corresponding gradient expression pattern. In sporadic intestinal 
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adenocarcinomas, the ACSL5 gradient is lost along with its reduced expression. 

Thus, a functional correlation between the appearance of an adenocarcinoma 

phenotype in the absence of ACSL5-derived apoptosis susceptibility of 

enterocytes has been considered (Klaus et al., 2014).  

 Elongases are downstream of ACSs in the fatty acid biogenic pathway. 

They produce FAs with longer acyl chains by using CoA esterified products from 

ACSs. Elongase of very long chain fatty acids-4 (ELOVL4) is the only 

mammalian enzyme known to synthesize C28-C36 fatty acids (McMahon and 

Kedzierski, 2010). In humans, ELOVL4 mutations cause Stargardt Disease-3 

(STGD3), a juvenile form of dominant macular degeneration (McMahon et al., 

2007). Heterozygous Stgd3 mice that carry a pathogenic mutation in the mouse 

Elovl4 gene demonstrate reduced levels of retinal C28-C36 acyl 

phosphatidylcholines (PC) and epidermal C28-C36 acylceramides (Barabas et 

al., 2013). Homozygous Stgd3 mice die shortly after birth with signs of disrupted 

skin barrier function. Targeted Elovl4 expression, driven by an epidermal-specific 

involucrin promoter in homozygous Stgd3 mice, restores both epidermal Elovl4 

expression and synthesis of the two missing epidermal lipid groups (McMahon et 

al., 2011). Transgene expression also restores skin barrier function and rescues 

the neonatal lethality of homozygous Stgd3 mice. These studies establish the 

critical requirement for epidermal C28-C36 fatty acid synthesis for animal 

viability.  

 Mutations in the peroxisomal ABCD1 transporter are responsible for X-

linked Adrenoleukodystrophy (X-ALD) in humans (Fuchs et al., 1994; Mosser et 
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al., 1994). The ABCD1 transporter is a cassette ATP binding protein that as a 

dimmer transports fatty acids activated by ACSs into the peroxisomes. X-ALD 

affects 1 in 17,000 births and is equally distributed among ethnic populations. 

Mutations in the ABCD1 gene can either lead to a severe neurodegenerative 

phenotype affecting the central nervous system or to a milder form of the 

disease, affecting only the peripheral nervous system (Adrenomyeloneuropathy 

[AMN]. The cerebral form of X-ALD manifests itself in otherwise normal children 

at about 3–5 years of age. Symptoms include anxiety, temperamental issues, 

difficulty in reading, and sensory loss (Berger et al., 2014). Sadly, these 

symptoms quickly progress to paralysis and death. The genetic modifiers that 

determine the severity of the phenotype have not yet been identified. Reduced   

activity of the peroxisomal ACSL proteins ACSBG 1 and 2 and elevated VLCFA 

levels in fibroblasts of X-ALD patients have been found, suggesting that ACSs 

could function as a genetic modifier of the clinical severity of X-ALD (Jia et al., 

2004; Moriya-Sato et al., 2000).  However, murine models using either the 

ABCD1 transporter gene and the ACSBG 1 and 2 genes in combination or alone 

have been unsuccessful in recapitulating the cerebral form of X-ALD and only 

exhibit mild abnormalities associated with Adrenomyeloneuropathy. Thus it is not 

yet clearly understood how a dysfunction in fatty acid transport leads to 

neurodegeneration.  

 Together these disease studies suggest that any imbalance in the activity 

of ACSs can lead to severe pathological conditions affecting a variety of systems 

in the body.  Thus, ACSs are critical metabolic regulators that play a significant 
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role in maintaining optimal physiology.   

 

ACSs in Development 

 Although a fair amount of research has focused on the diseases that result 

from ACS malfunction, the developmental processes dependent upon this family 

of  enzymes have remained largely unexplored.  Indeed, given the importance of 

ACSs in fatty acid metabolism and given that so many life-threatening diseases 

result from ACS malfunction, it would be surprising if ACSs played no critical 

roles in development.   

 Limited data suggestive of developmental roles for ACSs are two-pronged 

and include expression studies documenting differential ACSL transcriptional 

regulation during development, as well as diet studies documenting the effects of 

polyunsaturated fatty acids in mother's milk on development.  Expression studies 

have been useful in demonstrating that during 3T3-L1 adipocyte differentiation, 

Acsl1 mRNA abundance increases 160-fold while other transcripts encoding 

other ACSs remain unchanged (Marszalek et al., 2004), suggesting that ACSL1 

has an important role during adipocyte differentiation. In contrast, during the 

differentiation of PC12 neuronal cells, Acsl1 and Acsl3 mRNA levels remain 

unchanged, while that of Acsl4, 5, and 6 increases significantly (Marszalek et al., 

2004). Further, in mouse heart, Acsl1 mRNA increases 4-fold postnatally, while 

Acsl3 mRNA decreases and other ACSL isoforms do not change (de Jong et al., 

2007). Additionally, in Drosophila we have shown that six long chain ACS isoform 

are expressed early on in embryogenesis (Scuderi et al., unpublished data). Of 
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these, only two (the bubblegum [bgm] and double bubble [dbb] long chain acyl 

CoA synthase genes, which are homologous to the mammalian ACSBG) are 

expressed in a ventrally restricted pattern, and their mRNA levels seem to be 

differentially regulated during development.  Moreover, preliminary studies 

indicate that the expression of bgm and dbb is under the control of dorsoventral 

patterning genes (refer to Chapter 3).   

 A developmental role for ACSs has also been implicated in a very different 

line of research.  Clinical studies suggest that polyunsaturated fatty acids such as 

Omega 3 and Omega 6, both long chain fatty acids, are critical for proper 

development of the human embryo.  Absence or reduction of LCFAs in mother’s 

milk, as well as in the diet of children, has been associated with an increased 

predisposition to neurodevelopmental disorders including Dyslexia, Dyspraxia 

and the Autism Spectrum Disorders (Ward, 2000; Young and Conquer, 2005). 

Additionally, each of these neurodevelopmental  disorders is thought to result 

from disturbances in neuronal and/or glial membranes, which are rich in LCFAs 

and VLCFAs (Laycock et al., 2007). One reason why the developmental roles of 

long and very long chain fatty acids have not been explored systematically is the 

lack of a genetic model system that allows precise manipulations of small 

populations of fatty acids during activation of small, medium, or long chain fatty 

acids that will affect specific populations of fatty acids during development and 

thus provide a segue to their specific roles in development. To date, however, 

ACS knockout models in mice and flies have yielded only homozygous viable 

animals.   
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Drosophila ACSLs: A Genetic Model for	
  

Human Developmental Disorders  

 Drosophila melanogaster provides a powerful genetic model, one that is 

widely used to study development and the pathogenesis of human degenerative 

disorders. The high degree of conservation of fundamental biological processes 

and neural function between humans and flies, coupled with the broad repertoire 

of fly genetic approaches, makes Drosophila a powerful model system for 

understanding the basics of molecular and cellular pathology of the vertebrate 

systems. In addition, fly genomes have little to no redundancy in genetic 

pathways, thus making forward genetics much more efficient and successful. 

This is especially true with respect to ACS genes, six of which exist in the fly 

compared to 26 in mammalian systems. Other advantages of the Drosophila 

model system include its low cost, compact and sequenced genome, and 

amenability to large scale genetic and pharmacological screens. While the lipid 

composition in the insects is different from mammals, the components of lipid 

metabolism pathways are conserved. As in humans, lipid homeostasis in 

Drosophila is tightly linked to systemic integrity and development, and loss-of-

function mutations affecting enzymes involved in Drosophila lipid metabolism 

manifest as developmental and degenerative changes in the fly. Significantly, fly 

models of several developmental disorders like Angelman syndrome, Rett 

syndrome, Neurofibromatosis Type 1, and Fragile X syndrome have recently 

been established (reviewed in Gatto and Broadie, 2011). These studies prove the 

existence of conserved pathways between flies and humans and indicate that 
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understanding fly development will go a long way in understanding human 

developmental processes. These investigations in Drosophila continue to provide 

the essential mechanistic understanding required to facilitate the conception of 

rational therapeutic treatments for developmental disorders. 

 There have been a few studies to explore the role of LCFAs/VLCFAs, 

lipids, and the enzymes responsible for their production in developmental 

processes using Drosophila as a model system. What follows is a brief overview 

of these studies.  

 There are three studies of Drosophila sperm that implicate very-long-chain 

fatty acids or their derivative phosphatidylinositol lipids in membrane biogenesis 

and/or its connection to contractile components during cell division.  First, 

mutations in the gene bond, which encodes a Drosophila member of the family of 

very long chain fatty acid elongase (Elovl), block or dramatically slow cleavage-

furrow ingression during early telophase in dividing spermatocytes (Szafer-

Glusman et al., 2008). In bond mutant cells at late stages of division, the 

contractile ring detaches from the cortex and constricts or collapses to one side 

of the cell, and the cleavage furrow regresses. 

 Perhaps the best known Drosophila story of lipids in development is the 

wunen story. Lipid phosphate phosphatases (LPPs) are integral membrane 

enzymes that regulate the levels of bioactive lipids such as Sphingosine 1 

Phosphate and lysophosphatidic acid. The two Drosophila LPPs, Wunen (Wun) 

and Wunen-2 (Wun2), have redundant roles in regulating the survival and 

migration of germ cells (Renault et al., 2010). wun and wun2 function in the 
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central nervous system and other somatic tissues to repel germ cells, likely via 

generation of a lipid signal. wun and wun2 also mediate germ cell–germ cell 

repulsion for germ cell dispersal to two embryonic gonads at the onset of germ 

cell migration. In addition, wun2 is required in the germ cells for their survival and 

to perceive the signal. Besides its well-established role in germ cell migration, 

wun also regulates the function of septate junctions: in wun mutants, the integrity 

of septate junction in the trachea and the blood–brain barrier is lost (Renault et 

al., 2010). 

 Our studies of the bubblegum (bgm) and double bubble (dbb) ACSs 

contribute to the short list of developmental lipid stories in Drosophila.  The 

Drosophila bgm gene, which encodes an ACSL, was identified in a P-element 

screen for genes that affect nervous system integrity. bgm mutants were found to 

exhibit subtle and incompletely penetrant defects in neuronal health. The 

similarities between bgm neurodegenerative phenotypes and human X-ALD are 

notable and perhaps not unexpected given that the fly and human genes 

responsible for this neurodegeneration are part of a single biochemical pathway 

(Min and Benzer 1999).   

 More recently we identified double bubble (dbb), a close homolog of bgm 

as a ventrally restricted transcript in an automated screen for transcriptionally 

regulated targets of early developmental signaling pathways (Simin, Scuderi et 

al., 2002). The sequence similarity of the bgm and dbb genes and their close 

proximity in the genome suggests that they are duplicated genes playing 

redundant or overlapping developmental roles. In order to analyze the functional 
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relationship between Bgm and Dbb, we generated dbb and bgm dbb mutant flies 

by homologous recombination.  We demonstrated that bgm dbb exhibit a more 

fully penetrant and more severe neurodegenerative phenotype than do either of 

the single mutants; thus the closely related genes function in redundant fashion 

in neuromaintenance (Anna Sivatchenko, unpublished data). Intriguingly, upon 

closer examination, we observed developmental defects in our bgm and  bgm 

dbb mutant lines, providing us with a previously unrecognized opportunity to 

study the developmental role of ACSLs in the fly.  

 

Summary 

 In studies presented in this dissertation, I show that the maternally derived 

bgm is required for Drosophila embryonic development and survival. bgm is 

required for cellularization, and failures in this very early developmental process 

appear to have later widespread manifestations as well (Chapter 2); I also report 

studies of regulation of bgm  and dbb gene expression (Chapter 3) and some 

behavioral studies relating to the neurodegenerative phenotype of bgm and dbb 

adult flies (Chapter 4). 
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  CHAPTER 2 

 

  LONG CHAIN ACYL CoA SYNTHASE: A NECESSITY 

TO MEMBRANES AND NEUROGENESIS  

	
  

  Introduction 

   Lipids, one of the four macromolecules of the cell, perform a diverse array 

  of extremely vital functions within every organism. Broadly, lipids directly or 

  indirectly participate in signaling pathways, act as building blocks within 

  membranes, are highly efficient sources of energy compared to carbohydrates, 

  and lastly directly or indirectly affect the availability of vitamins in the body, thus 

  affecting biochemical reactions and metabolism. 

   As components of biological membranes, the lipid composition of the 

  membrane defines the protein components of the membrane under consideration 

  and thus, lipids impart to each type of membrane in an organism unique protein 

  signatures and unique properties. At the plasma membrane, lipids form a 

  selective barrier that maintains a stable environment within the cell while also 

  maintaining a pathway for communication with the external environment. The 

  plasma membrane protein composition specifies the signaling pathways that are 

  active within a cell as well as the energy sources that enter the cell. Depending 

  on the type of lipids present, each membrane has a unique shape and also the 
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unique ability to change its shape in response to the demands of morphogenesis, 

migration, and the immune response, to name just a few biological processes 

(Bogdanov et al., 2014; Poveda et al., 2014; Schmidt and Robinson, 2014; 

Stachowiak et al., 2013). The lipid composition of a cell is very sensitive to the 

physiological state of the organism, and this sensitivity imparts a dynamic ability 

to the cell, in terms of energy sources used and the signaling pathways activated. 

This ability allows a cell and/or organism to adapt and survive in a changing 

environment. Thus, the role of lipids as building blocks for membranes is the 

most influential as it affects all aspects of a cell’s physiology (Abumrad et al., 

1999). 

 Lipids are amphiphilic: having both a hydrophilic end and a hydrophobic 

end. The hydrophobic chains of membrane lipids are derived from long or very 

long chain fatty acids which have 14 or more carbons in their acyl chains 

(Agostoni and Bruzzese, 1992). These help membrane lipids span the 

membrane either in pairs to form the lipid bilayer, or singly in the case of very 

long chain fatty acids, which can span the membrane in its entirety to facilitate 

curving. Importantly, the different fatty acids impart specific membrane bending 

or protein interaction properties to a membrane (Stachowiak et al., 2013). In 

contrast, short chain FAs are thought to function primarily as signaling molecules 

within the cell and medium chain FAs function primarily as energy sources; 

however, all these functions may not be exclusive to each class of FAs (Agostoni 

and Bruzzese, 1992).   

 Irrespective of their function, in order to participate in catabolic, anabolic, 
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or regulatory functions within the cell, FAs need to be esterified to Coenzyme A 

(CoA) (Watkins and Ellis, 2012). This esterification activates fatty acids and 

makes them energetically efficient as substrates in enzymatic reactions. The 

esterification reaction is catalyzed by the enzymes belonging to the Acyl CoA 

Synthetase/Synthase (ACS) family. ACSs catalyze a two-step reaction that is 

ATP dependent and leads to the formation of Acyl-CoA and two AMP equivalents 

(Watkins and Ellis, 2012). In mammals, 26 ACSs have been identified; of these, 

13 activate long and/or very long chain fatty acids (>14 carbons) (Mashek et al., 

2007). These ACSs include the members of the long-chain acyl-CoA synthetase 

(ACSL) family and members of the very long chain acyl-CoA synthetase 

(ACSVL) family, as well as members of the BGM family, which are mammalian 

ACSs homologous to the Drosophila long chain ACS Bgm (ACSBG). Some 

ACSVLs are dual functioning, serving as both fatty acid transporters (FATP) and 

acyl CoA synthases (Abumrad et al., 1998; Schaffer and Lodish, 1994). In 

addition to roles in esterification and transport, ACSs appear to facilitate the 

channeling of fatty acids to specific processes in the cell by associating with the 

specific enzymes/proteins. Moreover, the specific downstream pathways vary in 

a tissue-specific manner (reviewed in Mashek et al., 2007). Taken together these 

data indicate that each ACS isoform has a specific function and each isoform is 

different and important enough for it to be conserved through evolution.  

 Several ACSs and their downstream effectors in fatty acid biosynthesis 

have been implicated in a number of diseases. Ichthyosis Prematurity Syndrome 

(IPS) is an autosomal recessive disorder characterized by premature birth; 
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respiratory complications; and dry, thickened, and scaly skin (Ichthyosis). The 

disease is caused by mutations in the gene encoding the FATP4 enzyme and a 

specific reduction in the incorporation of VLCFA into cellular lipids (Klar et al., 

2009). Expression of the very long chain fatty acyl-CoA synthetase, ACSVL3, 

was found to be markedly elevated in clinical malignant gliomas in comparisons 

to normal glia (Pei et al., 2013). ACSVL3 levels correlated with the malignant 

behavior of human glioma cell lines with glioma cells propagating as xenografts. 

Direct ACSVL3 knockdown using RNA interference also inhibited glioma cell 

growth by 70% to 90% (Pei et al., 2009). Mutations in the ACSL4 gene are 

known to be causative of X-linked mental retardation, a common cause for 

mental disability in young males. Deletions and missense mutations of the 

FACL4 gene are associated with nonspecific mental retardation. Mutations in 

FACL4 cause nervous system damage via a direct cytotoxic effect of 

accumulated fatty acids. (Kantojärvi et al., 2011; Meloni et al., 2009; Yonath et 

al., 2011) Adenocarcinomas with an invasive phenotype and enhanced 

proliferation of enterocytes show decreased levels of ACSL5; however, it is 

unclear if ACSL5 is causative of the disease (Gassler et al., 2003). A functional 

correlation between the appearance of an adenocarcinoma phenotype in the 

absence of ACSL5-derived apoptosis susceptibility of enterocytes has been 

considered (Klaus et al., 2014).  

 Elongases are downstream of ACSs in the fatty acid biogenic pathway. 

They produce FAs with longer acyl chains by using CoA esterified products from 

ACSs. Elongase of very long chain fatty acids-4 (ELOVL4) is the only 
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mammalian enzyme known to synthesize C28-C36 fatty acids (McMahon and 

Kedzierski, 2010). In humans, ELOVL4 mutations cause Stargardt Disease-3 

(STGD3), a juvenile form of dominant macular degeneration (McMahon et al., 

2007). Targeted Elovl4 expression, driven by an epidermal-specific involucrin 

promoter in homozygous Stgd3 mice, restores both epidermal Elovl4 expression 

and rescues the phenotype.  

 Mutations in the ABCD1 transporter, which is downstream of ACSs in the 

peroxisomal fatty acid metabolic pathway,  are known to be causative of X-linked 

Adrenoleukodystrophy (X-ALD) in humans (Fuchs et al., 1994; Mosser et al., 

1994). The ABCD1 transporter is a cassette ATP binding protein that as a 

dimmer, transports fatty acids activated by ACSs into the peroxisomes. X-ALD 

affects 1 in 17,000 births and is equally distributed among ethnic populations. 

Mutations in the ABCD1 gene can either lead to a severe neurodegenerative 

phenotype affecting the central nervous system or to a milder form of the 

disease, affecting only the peripheral nervous system (Adrenomyeloneuropathy 

[AMN]). The cerebral form of X-ALD manifests itself in otherwise normal children 

at about 3–5 years of age. Symptoms include anxiety, temperamental issues, 

difficulty in reading, and sensory loss (Berger et al., 2014).  Sadly, these 

symptoms quickly progress to paralysis and death. The genetic modifiers that 

determine the severity of the phenotype have not yet been identified. Reduced   

activity of the peroxisomal ACSL proteins ACSBG 1 and 2 and elevated VLCFA 

levels in fibroblasts of X-ALD patients have been found, suggesting that ACSs 

could function as a genetic modifier of the clinical severity of X-ALD (Jia et al., 
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2004; Moriya-Sato et al., 2000). 

 ACSLs are thus quite clearly critical metabolic regulators and promising 

targets for the treatment of several diseases. Although a considerable amount of 

research has been done on diseases that result from ACS malfunction, 

surprisingly there are only a handful of studies that focus on the role of these 

enzymes in developmental processes. Given that so many diseases affecting 

different tissues result from ACS malfunction and knowing how important ACSs 

are in fatty acid metabolism, it seems likely that these enzymes must play critical 

roles in developmental processes as well. Moreover, the multiple roles of 

LCFAs/VLCFAs within membranes make them particularly interesting from a 

developmental perspective. Development entails extensive membrane 

remodeling, widespread cell migrations and movements, a hierarchy of signaling 

cascades, and most importantly energy to drive each of these processes.  Each 

of these functions is heavily influenced by LCFA/VLCFAs in the membranes and 

within the cellular cytoplasm, and it would be surprising if ACSLs played no 

critical roles in development.   

 Limited data suggestive of developmental roles for ACSs are two-pronged 

and include expression studies documenting differential ACSL transcriptional 

regulation during development as well as diet studies documenting the effects of 

polyunsaturated fatty acids in mother's milk on development. 

 Several clinical studies have suggested that polyunsaturated fatty acids 

such as Omega 3 and Omega 6 are critical for the development of the human 

embryo. Absence or reduction of LCFAs in mother’s milk or in the diet of children 
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has been associated with an increased predisposition to neurodevelopmental 

disorders including Dyslexia, Dyspraxia, and Autism Spectrum disorders (Ward, 

2000; Young and Conquer, 2005). Additionally, each of these neurodevelopmental  

disorders is thought to result from disturbances in neuronal and/or glial 

membranes that are rich in LCFAs and VLCFAs (Laycock et al., 2007). All these 

pieces of information make it impending to explore the role of LCFAS and ACSLs 

in development.  

 Expression studies have been useful in demonstrating that during 

mammalian and invertebrate development, many ACSL isoforms are differentially 

expressed, many of them during key developmental events (Marszalek et al., 

2004; Scuderi et al., unpublished data, refer to Chapter 3).  

 One reason why the developmental roles of long and very long chain fatty 

acids have not been explored systematically is the lack of a genetic model 

system that allows precise manipulations of small populations of fatty acids 

during development. It is likely that mutations in Acyl CoA synthases responsible 

for activation of small, medium, or long chain fatty acids will affect specific 

populations of fatty acids during development and thus provide a segue to their 

specific roles in development.  To date, however, ACS knockout models in mice 

and flies have yielded only homozygous viable animals (Heinzer et al., 2003). 

 Drosophila embryos, lacking the long chain acyl CoA synthases Bgm and 

Dbb, are the ideal genetic system to explore this subject. In addition to the 

excellent set of genetic tools available for study in Drosophila melanogaster, the 

fly embryo provides us with an excellent in vivo system that allows experimental 
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manipulation and microscopic observation. In this dissertation, I explore the 

developmental role of the highly conserved Drosophila proteins Bgm and Dbb 

during embryogenesis in Drosophila. I find that embryos derived from bgm 

homozygous females suffer an incompletely penetrant lethality very early in 

embryonic development. This lethality is due to a failure in cellularization. Loss of 

maternal bgm also leads to defects in neuromusculature and behavioral 

abnormalities in first instar larvae. At the molecular level, it appears that the Bgm 

ACS is required for vesicular targeting within the cell, and this failure in vesicular 

trafficking leads to a failure in cellularization.  

 

Materials and Methods 

Fly strains and genetic analysis 

 Wild type Canton S flies, mutant flies with the bgm1  null allele, the dbb 

null allele, and bgm dbb flies carrying both null alleles were used for all the 

experiments. The bgm1   as well as the dbb maternal zygotic stocks are 

homozygous semiviable or viable, respectively, and can be maintained as such.  

Flies lacking maternal  bgm were generated using standard genetic techniques 

where F1 progeny from a cross of  bgm1  females with Canton S males were 

collected. Zygotic bgm mutants were generated by crossing bgm1 / CyO females 

with bgm1 / CyO males and collecting F1 progeny with no GFP expression in 

them. The CyO balancer used carries a GFP transgene, thus marking any flies 

containing the balancer.  
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Immunocytochemistry 

 Embryos were collected at the appropriate stage after incubation at 25 C. 

Embryos were dechorionated and fixed using standard fixation methods except, 

when using Phalloidin. Ethanol was used instead of methanol for the 

divitellization step when Phalloidin staining was to follow. Standard 

immunostaining techniques staining techniques were used including the Rapid 

Staining Procedure (unpublished by Nipam Patel) in some cases. Primary mouse 

monoclonal antibodies were obtained from DSHB and used at these 

concentrations: Singleminded (1:300), Neurotactin (1:10), BP102 (1:200), Anti-

Futch/mAb22c10(1:100), Anti-Robo (1: 300). Anti-Rab 5 antibody generated in 

Rabbit was obtained from Abcam and used at 1:250 dilution. Secondary 

antibodies against mouse or rabbit primaries were tagged with Alexa 488 or 594 

in most cases. These were obtained from Jackson Laboratories and used at 

1:300 dilution. Phalloidin(Abcam) tagged with Alexa fluor 488 or 594 was used to 

stain filamentous actin.  

 

Microscopy 

 Live time lapse imaging of embryos was done by placing the embryos, 

after dechorionation, in halocarbon oil in a hydrated chamber. DIC or phase 

contrast or Fluorescence (when imaging transgenic flies) microscopy was used 

to capture images. Standard fluorescence microscopy and Confocal microscopy 

was done on the Olympus FV1000 microscope in the University of Utah 

microscopy core.   
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Larval assays 

 Peristalsis assay: 1st instar larvae which were about to hatch were 

observed under halocarbon oil using Phase contrast or Fluorescence 

microscopy(when transgenic GFP present). The time taken for one peristaltic 

wave to reach from the posterior end of the larva to the anterior end was 

measured as described by (Gjorgjieva et al., 2013). Nod assay: 2nd instar larvae 

were placed in a drop of water on a juice plate at 25 C. The number of head 

nods/ minute were measured. These measurements were repeated thrice per 

animal. Roll Over assay: 3rd instar larvae were placed dorsal side down on a 

juice plate at 25 C and the time taken to roll over so that the dorsal side is up, 

and move away was measured (Varnam et al., 1996). Each animal was tested 

using the assay three times and each measurement is an average of three these 

three measurements.  The number of animals for each experiment and assay 

was determined based on requirements for statistical significance. This averaged 

between 10-50 animals for each experiment.  

 

Statistical analysis 

 The error bars in all graphical representations in the present study 

represent standard error of mean (SEM). The significance values were calculated 

using standard statistical methods. Students t test,  paired t tests, one tailed or 

two tailed t tests were used depending on the hypothesis for a given experiment. 

ANOVA was used to calculate the significance values following the t tests.  
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Results 

Maternal bgm expression is required  

for embryogenesis 

 To determine whether defects in lipid metabolism lead to defects in 

Drosophila development, we assessed the consequences of loss-of-function for 

the homologous ACS genes bgm and dbb, alone and in combination.  Lethal 

stage analysis of bgm, dbb, and bgm dbb maternal-zygotic null animals revealed 

that whereas dbb homozygotes derived from dbb homozygous females are fully 

viable, bgm and bgm dbb maternal-zygotic nulls suffer an incompletely penetrant 

lethality that is confined to the embryonic stage of development. ~40% of both 

bgm and bgm dbb maternal-zygotic nulls suffer embryonic death, indicating that 

loss of bgm is sufficient to cause lethality in both bgm and bgm dbb animals, and 

bgm, but not dbb, plays an essential developmental role in Drosophila 

embryogenesis.   

 Embryonic transcription profiles for bgm and dbb are largely overlapping, 

although only bgm is deposited maternally (Figure 2.1B).  Given that only bgm is 

required for embryogenesis, we postulated that bgm-dependent lethality results 

from a strictly maternal effect.  Standard genetic methods were employed to 

generate embryos lacking either maternal or zygotic bgm only.  Consistent with 

our hypothesis, we found that only embryos deficient in maternal bgm (either as 

bgm1 homozyotes or bgm1 in Trans to deficiency) suffer an embryonic lethality 

(Figure 2.1C).   In both cases lethality occurred in 40% of embryos, confirming 

previous reports that that bgm1 allele is a null (Min and Benzer 1999; Sivatchenko 
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and Letsou, in prep).  Ubiquitous expression of UAS: bgm-FLAG using a 

Tubulin:Gal4 driver rescued embryonic lethality in embryos derived from bgm 

homozygous females (Figure 2.1D). 

 

The Bgm ACSL is required in cellularization for  

targeting of Rab 5 and Rab 11 vesicles  

to the growing furrow canals  

 To identify the developmental process that requires bgm, we visualized 

development in live embryos (Figure 2.1A).  Using time lapse microscopy, we 

documented failures in cellularization in 40% of embryos derived from bgm 

females. Embryos which successfully undergo cellularization complete 

embryogenesis and eventually hatch into larvae. However, embryos that fail to 

complete cellularization, also fail to progress in embryogenesis and abort 

development soon after. Therefore, failed cellularization accounts for all the 

embryonic lethality observed in lethal stage analyses (Figure 2.2A).  Moreover, 

although bgm-dependent lethality is incompletely penetrant, it results from a 

block at a single embryonic stage very early in development. This is only the 

second demonstration of a specific defect attributable to loss-of-function of a 

single very long chain fatty acidy acyl-coA synthase (Kniazeva et al., 2012). In 

Drosophila, cellularization occurs via multiple well-characterized steps (Lecuit, 

2004).  After 14 cycles of nuclear division, the 6000 zygotic nuclei move to the 

periphery of the embryo, immediately adjacent to the embryo plasma membrane. 

Columnar membrane structures called furrow canals ingress between aligned  
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Figure 2.1:	
  bgm is required maternally for embryogenesis.  

A. Lethal stage analysis of wild type and maternal zygotic loss of 
function mutants in bgm, dbb, and bgm dbb. 

B. Analysis of embryonic lethality in wild type embryos and embryos 
lacking either maternal zygotic, maternal, or zygotic bgm. Embryos 
derived from a crossing of bgm1/Df females with wild type males were 
also analyzed. 

C. Maternal and Zygotic expression patterns of bgm and dbb 
transcripts.  

D. Rescue of embryonic lethality in bgm1 embryos using a UAS:bgm 
FLAG    transgene  driven by a ubiquitous Tubulin::GAL4 driver. 
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nuclei. Membrane addition via vesicle fusion increases furrow canal length. After 

about 60 minutes, bilateral furrow canals fuse at the base of the nuclei; thereby 

each nucleus is enclosed within a contained cellular space.   In bgm-deficient 

embryos, all steps preceding the extension of furrow canals occur normally. 

Nuclei move to the periphery of the embryo and align, and furrow canal formation 

initiates. Once initiated, however, furrow canals fail to extend (Figure 2.2A).   

 Next we used the junction protein Armadillo/B-catenin to monitor furrow 

progression during cellularization. At the onset of cellularization, Armadillo is 

localized in an apicolateral position with respect to the nuclei.  In contrast, with 

completion of cellularization 3 hours after egg lay (AEL), Armadillo constitutes 

adherence junctions that are localized bilaterally along the furrow canals as they 

help the newly formed lateral membranes to be held tightly together.  Spaghetti 

squash (Sqh)/Nonmuscle Myosin-2 and filamentous Actin (F-Actin) produce the 

contractile force initially needed for extension of furrow canals and later for the 

fusion of the basal membranes. In congruence with their functional requirement, 

both these components are localized apicolaterally at the beginning of 

cellularization and basally with respect to the nuclei towards the completion of 

cellularization. 

 In bgm-deficient embryos, Armadillo and F-Actin fail to localize 

appropriately on completion of cellularization; instead, the proteins are distributed 

in a diffuse pattern apically, which is reminiscent of earlier stages of 

cellularization (Figure 2.2B, 2.2C). Mislocalization does not merely represent a 

delay in cellularization because these proteins fail to localize appropriately in  
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Figure 2.2: The Bgm LACS is required for cellularization during 
embryogenesis. 
 
A. Analysis of furrow canal progression during cellularization in wild type and 
bgm1 embryos using time lapse phase contrast microscopy.  

B. Localization of Armadillo (Green) and blastoderm nuclei(Blue) in wild type 
embryos  (0 hours post fertilization (hpf) and 3.5 hpf) and bgm1 embryos (3.5 
hpf). 

C. Localization of filamentous actin and Spaghetti Squash (Nonmuscle 
myosin)(Red) along with blastoderm nuclei (Blue) in wild type and bgm1 
embryos 3.5 hpf. 
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bgm-deficient embryos even after an extended time period, and the embryos 

ultimately abort their development. These data confirm and extend results from 

our phase contrast studies indicating that bgm embryos suffer from an 

incomplete furrow extension that leads subsequently to a failure in cellularization.    

 The extension of furrow canals during cellularization requires enormous 

amounts of membrane addition, the majority of which is recycled from the 

embryonic plasma membrane using the endocytic machinery of the embryo. Rab 

5 and Rab 11 GTPases, important members of the endocytic pathway, have 

been shown to be necessary to the process of furrow extension during 

cellularization (Lecuit, 2004).  We have illustrated in the present study that 40% 

of bgm embryos fail to complete cellularization due to a failure in furrow 

extension. Given these data, we hypothesized that vesicle biogenesis and/or 

vesicle targeting is impaired in bgm-deficient embryos, and this leads to a failure 

in cellularization in 40% of the embryos. We tested this hypothesis by 

immunostaining of wild type and bgm embryos using antibodies directed against 

the Rab-5 protein to visualize vesicles. We observed a 2-fold increase in the 

number of membranous particles positive for Rab-5 in bgm-deficient embryos as 

compared to wild type.  Additionally, we observed enlarged Rab-5 positive 

compartments in the bgm-deficient embryos, but not in their wild type 

counterparts.  We suspect the later to be large vesicular bodies, also observed 

by Sheckman et al. (Wuestehube et al., 1996) in their yeast vesicle targeting 

mutants. Lastly, we observed that whereas the cellularization zone in wild-type 

embryos is divided into areas of dense (basally) and sparse (apically) vesicle 
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distributions, such a partition of vesicles is absent in the cellularization zone in 

bgm embryos. We see the above defects in 65% of bgm embryos. These data 

imply that in the absence of the bgm gene product, proper targeting of Rab-5 

tagged vesicles does not occur, and this prevents the extension of furrow canals 

leading to a failure of cellularization. Similar experiments to visualize the 

localization of the Rab-11 GTPase are currently underway.  

 

Maternally deposited bgm is necessary for  

neuromuscular development  

in the embryo  

 Bgm is clearly essential for embryogenesis, yet only 40% of bgm maternal 

zygotic null animals suffer embryonic lethality, and the remaining 60% animals 

survive to adulthood. Data in the following sections demonstrate that although 

60% of bgm homozygous animals do not suffer from embryonic lethality, they do 

demonstrate developmental abnormalities that do not result in lethality. Thus, 

100% of bgm homozygous embryos suffer from developmental defects to 

different degrees of severity. Bgm expression throughout embryogenesis, 

combined with cellularization defects in a fraction of the embryos that survived, 

led us to speculate that loss of bgm might have additional developmental 

consequences (Figure 2.3). Additionally, during lethal stage analyses, we 

noticed that although all hatched larvae survived to adulthood, they were 

sluggish in their movements in comparisons to wild type. We used three motor 

assays to characterize and quantify these effects.  First, we quantified the rate of 
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Figure 2.3: Rab 5 vesicles are mistargeted in bgm1 mutants. 

Rab 5 marked vesicles (Red) are partitioned into a clear area of sparse 
(apical) and dense (basal) distribution with respect to the nuclei (Blue) in wild 
type cellularizing embryos. This differential distribution of vesicles is lost in 
bgm1 embryos, along with an increase in total vesicle number accompanied 
by an increase in large vesicular bodies. We observe all of these vesicular 
defects in all affected embryos and hence, they appear to be related to each 
other and to the primary causative event.  
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peristalsis at the time of hatching of wild type and bgm-deficient animals. In 

hatching wild type 1st instar larvae, one peristaltic wave takes less than 1 second 

to reach from the most posterior to the anterior most segments. However, in case 

of bgm larvae, the movement is asynchronous and variable and takes a 

significantly longer time (5–10 seconds) to propagate across the animal  (n = 

50/genotype). Second,  we measured head nods per minute in 2nd instar larvae. 

bgm larvae performed approximately 40 nods/minute compared to wild type 

larvae, which performed 100 nods/minute (n = 50/genotype, Figure 2.4B). Third, 

we measured the time taken by L3 larvae to roll over and move away after 

placing them with their dorsal side down. We find that while wild type L3 larvae 

take about 5–7 seconds to roll over,  bgm  larvae take 15–20 seconds to do the 

same (n = 100/genotype, Figure 2.4C). Thus, all three of the above assays at 

each larval stage demonstrate that loss of bgm during larval development leads 

to a 50% loss of motor function.  

 These data made us ask the obvious question: are these severe motor 

impairments caused by defects in the neuromusculature of the larvae or do they 

result from a defect elsewhere in the system? Based on microscopic analysis 

during the peristalsis assay, we find that the nervous system of larvae is severely 

compromised (data not shown). 

 We see that neuromuscular and behavioral defects in bgm maternal 

zygotic mutant larvae persist throughout larval development (Figure 2.4A). 

Maternally expressed bgm is required for early embryonic development, while 

zygotic expression of bgm seems to be required for maintenance of the adult 
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nervous system (Sivachencko et al., unpublished). We wondered if the larval 

phenotypes in bgm maternal zygotic mutants are of maternal or zygotic origin. 

Also, do they arise due to a developmental abnormality, or are they early signs of 

neurodegeneration that we and Benzer et al. (Min and Benzer, 1999) have seen 

in the adult bgm flies? Interestingly, we find that based on preliminary 

experiments,  the behavioral and neuromuscular defects in bgm   1st instar larva 

arise from maternal loss of bgm (Figure 2.4D), whereas preliminary data 

suggests that the behavioral defects observed in 2nd and 3rd instar bgm larvae 

arise from loss of zygotic bgm (data not shown).  

 The early embryonic phenotype in bgm embryos, where we see defects in 

cellularization and finally a failure to complete embryogenesis, arises from a loss 

of maternal bgm expression (Figure 2.1C). Given that the larval motor defects in 

bgm mutants are also maternal in nature, it is highly likely that these behavioral 

defects arising from defects in the neuromusculature have an embryonic origin.  

We tested this hypothesis by using distinct markers to look at different stages of 

neuronal development in the embryo. We began our analysis at the earliest stage 

of neuronal development in the embryo and worked our way through later 

developmental stages. Neuroblasts first delaminate and appear in the ventral 

region of the embryo at Stage 9 and express the Singleminded (SIM) protein. 

Upon immunostaining Stage 9 embryos with an antibody against Singleminded, 

we found 1) the arrangement of neuroblasts in bgm embryos was highly 

disorganized and 2) the neuroblasts were reduced in number by 25–30% (180–

185 neuroblasts) compared to wild type embryos (225 neuroblasts). On further 
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Figure 2.4: Early larval movement defects in bgm1 embryos are maternal 
in origin. 

A. Measurement of time taken in seconds for a single propagation of the 
peristaltic wave in wild type and bgm1  1st instar larvae. 

B. Measurement of head nods/minute in wild type and bgm1 2nd instar larvae. 

C. Measurement of time taken in seconds to roll over in wild type and bgm1 
3rd instar larvae. 

D. Measurement of time taken in seconds for propagation of a peristaltic 
wave in wild type 1st instar larvae and bgm1 1st larvae lacking either maternal 
zygotic, maternal only, or zygotic bgm, respectively.   



	
   53	
  

analysis, we find that defects in the nervous system—including absence of 

neuronal cell bodies and missing and/or mistargeted axons—continue to appear 

through later developmental stages. Immunostaining with an antibody against the 

protein Roundabout (Robo) at stage 13 and the antibody BP102 at stage 17, 

reveals severe defects in the axonal tracts of the central nervous system (Figure 

2.5A’). Specifically, in the stage 17 CNS of bgm embryos we observe breaks in 

the longitudinal fascicles as well as the commissures. In addition the 

commissures are frequently disorganized and cross over incorrectly.  Thus we do 

not see the ladder like pattern in the CNS of bgm embryos, which is typically 

observed in wild type embryos at this stage. Upon staining the stage 17 

peripheral nervous system using the mAb22c10/anti-Futch antibody, we find that 

in bgm embryos a large number of neuronal cell bodies are missing or 

mislocalized, in addition to defasciculation of the axon bundles arising from the 

four sets of cell bodies in each segment (Figure 2.5B). Both the CNS and PNS 

of bgm embryos have severe defects, and the phenotype is variably expressed. 

The number of segments affected as well as the severity of the axonal defects in 

each segment varies between bgm embryos. Upon quantification, a total of 

approximately 45% of bgm embryos (n = 300/genotype for each assay) show the 

above described phenotypes in the CNS and PNS. Significantly, we observe that 

the nervous system defects (Figure 2.5A) are always accompanied by defects in 

the musculature (Figure 2.5C). All neurons in the CNS and PNS arise as a result 

of mitotic cell divisions of the neuroblasts, and so any defects in neuroblast 

formation or division should result in missing or mislocalized neurons.  Absence 
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Figure 2.5: Movement defects in bgm1 1st instar larvae have an 
embryonic origin. 

A. Wild type and bgm1 embryos at stage 9, 13, and 17, respectively, stained 
using antibodies against Singleminded, Roundabout, and BP102.  

A’ Measurement of neuroblast number in stage 9 wild type and bgm1 
embryos stained with an antibody against Singleminded. 

B. Analysis of defects in the peripheral nervous system of wild type and bgm1 
stage 16 embryos using an anti-Futch antibody (mAb22c10). 

C. Analysis of neuromuscular defects in wild type and bgm1 stage 17 
embryos by staining filamentous actin in these tissues. Filamentous actin has 
been stained using phalloidin (Green). Ventral nerve cord seen in slightly 
ventralized views and the somatic musculature in lateral views.  
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or ectopic location of neurons may result in disorganization of the newly formed 

axonal architecture. We tested the possibility of mitotic phenotypes being 

correlated to the axonal phenotypes by colabeling embryos with the neuronal 

nuclear marker Singleminded and the F-Actin stain Phalloidin to mark the axons. 

DAPi was used as a general nuclear stain. Upon analysis, we found that reduced 

and disorganized neuronal nuclei in bgm embryos spatially coincide with a 

disorganized and/or damaged axonal architecture. It appears that in the absence 

of a given set of neurons, the nervous system of bgm embryos is unable to 

develop normally and results into a disorganized axonal architecture, presumably 

as the nervous system tries to compensate for the missing neurons. However, 

these data are correlative and not definitive. Live imaging or fate mapping of 

neuroblasts will be required to confirm the above described results. Neuroblasts 

in the Drosophila embryo are specified during the process of gastrulation, which 

follows immediately after completion of cellularization. Cellularization requires 

maternal expression of bgm, and the process of gastrulation requires many 

maternally expressed genes in addition to zygotic expression. Thus, it remained 

to be determined whether the defects in neuroblast formation and neuronal 

architecture arise from maternal and/or zygotic loss of bgm. In order to 

distinguish between the two possibilities,  we employed standard genetic 

methods to generate embryos lacking either maternal or zygotic bgm only. Loss 

of maternal bgm  accounts entirely for the neuromuscular defects (Figure2.6A) 

observed in the bgm  maternal zygotic mutants while zygotic loss of bgm has no 

significant effect (Figure 2.6B). In our close examination of embryos derived 
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from bgm females, we find that 40% embryos fail to complete cellularization and 

abort embryogenesis. However, a subset of the remaining 60% embryos show 

huge cells with incompletely formed cell membranes as seen using the 

membrane stain Neurotactin (Figure 2.6C). Additionally, during our time lapse 

imaging experiments to study the process of cellularization, we find that a small 

percentage of bgm mz embryos undergo only a partial failure in cellularization 

(data not shown). These defects in cellularization are localized to a small area of 

the embryo, and they do not cause the embryos to abort development. It is 

possible that these subtle defects in cellularization lead to the neuronal defects 

observed in bgm embryos.  

 

Discussion 

 In the present study we have demonstrated the requirement of maternally 

deposited bgm transcripts for furrow extension during Drosophila cellularization. 

Additionally, membrane vesicles, which are known to be absolutely critical to 

furrow extension, have been shown to be mislocalized in bgm1 mutant embryos. 

These data suggest that the failure in cellularization is due to defects in vesicle 

targeting. The extension of furrow canals during cellularization requires 

enormous amounts of membrane addition. This membrane is only partially 

synthesized de novo with the  majority of it recycled from the embryonic plasma 

membrane via endocytosis (Strickland and Burgess, 2004). Endocytosed 

vesicles harbor the GTPase Rab-5 and these Rab-5 vesicles are then targeted to 

and fuse with the recycling endosome (RE). Membrane components that will  
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Figure 2.6: Defects in the embryonic nervous system of bgm1 embryos 
have a maternal origin.  

A. Coimmunostaining of  neuroblasts (Singleminded, Green)  and axonal 
tracts (Phalloidin, Red) to determine origin of axonal defects.  

B. Analysis of neuronal defects using BP102 staining in wild type Stage 16 
embryos and bgm1 stage 16 embryos lacking either maternal zygotic, 
maternal, or zygotic bgm. 

C.Membrane staining in stage 9 wild type and bgm 1 embryos using anti- 
Neurotactin (Red) to demonstrate the presence of  huge cells  resulting from 
partial acellularization  in bgm1 embryos.  
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impart apicobasal polarity to the newly assembled cellular membranes 

postcellularization are also delivered to the RE via vesicular traffic from the Golgi. 

Here, in the RE, vesicles are repackaged with a defined set of cellular 

components intended for specific cellular compartments. The reconstituted 

vesicles contain GTPases in the vesicular membrane, and these GTPases 

function to 1) assign a specific identity to each set of vesicles and 2) target them 

to specific cellular compartments.  One particular class of vesicles harbors the 

Rab-11 GTPase on the vesicle surface, and fusion of these Rab 11 vesicles at 

the growing end drives the rapid extension of furrow canals during cellularization 

(Lecuit and Pelissier, 2003). The Rab-11 GTPase directs these vesicles to the 

furrow canals and thus allows furrow extension. However, it is not understood as 

to how Rab 5 tagged vesicles are specifically targeted to the RE and the Rab 11 

tagged vesicles from the RE are targeted to the growing furrow canals. Data 

presented in the current study demonstrate the requirement of the Bgm Long 

chain Acyl CoA synthase for targeting of Rab-5 vesicles during cellularization. 

Molecules acting as “Identifier signals” for subcellular vesicular targeting have 

been largely elusive to cell biologists, and our research is an important first step  

towards the discovery of such molecules. Based on the data presented in this 

study, we hypothesize that activated long chain fatty acids themselves or via 

interaction with specific proteins provide the identifier signal that directs Rab5 

vesicles to the recycling endosome and Rab 11 vesicles to the growing furrow 

canals. In the absence of the Bgm ACS, these activated LCFAs are missing and 

so is the identifier signal.  
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 Ours is only the second study to show the requirement of an Acyl CoA 

synthase in a specific developmental process. Kniazeva et al. have 

demonstrated the requirement of C. elegans Acsl-1 in cytokinetic processes 

during mitotic cell divisions in C. elegans embryogenesis. Additionally, a few 

studies in Drosophila have implicated enzymes required for lipid biogenesis and 

modification in cytokinesis of spermatocytes (Routt and Bankaitis, 2004). Thus 

there is emerging evidence for the role of Long chain fatty acids and enzymes 

required for their biogenesis in cytogenetic processes. We also provide evidence 

for the role of the Bgm ACSL in neurogenesis. The maternal requirement of bgm 

for the processes of neuroblast formation and axonogenesis suggests that these 

defects are related to a partial failure in cellularization. It is possible that failure in 

cellularization leads to a failure in proper cell fate specification, thus leading to 

defects in neurogenesis (Figure 2.7). However, experiments to obtain direct 

evidence to prove this hypothesis are underway. It is also possible that there is 

an independent requirement for LCFAs and the Bgm ACS for neurogenesis and 

axonogenesis. In either case, our findings are significant in light of the many 

clinical studies suggestive of a requirement of LCFAs and VLCFAs in  neuronal 

development. Several studies have implicated an imbalance in LCFAs and 

VLCFAs in neurodevelopmental disorders like Dyslexia, Dyspraxia, 

Schizoaffective disorder, and Autism Spectrum Disorders (ASD) (Das, 2013; 

Schuchardt et al., 2010).  All of these disorders have overlapping neurological 

symptoms accompanied by a dysfunctional immune response (Ward, 2000). 

Neuronal and glial membranes are very rich in LCFAs and VLCFAs and hence, 
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Figure 2.7: Model for the role of Bgm ACS  and Long Chain Fatty Acids 
in cellularization and vesicle targeting. 

Endocytosed vesicles from the apical surface of the embryo are tagged with 
Rab5 GTPase(1). These vesicles are targeted towards the recycling 
endosome (2, RE) and use LCFAs or LCFA associated proteins as a signal to 
identify the RE compartment. New  membrane components from  the Golgi 
apparatus are also delivered to the RE(2’). Reconstituted vesicles from the 
RE are tagged with Rab11 GTPase and targeted towards the growing furrow  
canals during cellularization (3). LCFAs or LCFA associated proteins in the 
growing furrow  canals  are identified by Rab 11 GTPase, causing the Rab11 
vesicles to fuse with the furrow canals.  
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the nervous system is very sensitive to any changes in fatty acid metabolism 

(Laycock et al., 2007). In addition, a large number of signaling molecules 

required by the immune system are lipid based.  These findings in association 

with clinical studies,  are very suggestive of a suboptimal lipid metabolism in 

patients with neurodevelopmental disorders. Our findings are a significant first 

step towards a successful genetic model to understand the mechanistic role of 

LCFAs/VLCFAs and ACSLs in neuronal development. Further research in this 

direction will provide promising avenues for targeted treatment strategies, which 

are unavailable at the moment. 

 

References 

Abumrad, N., Harmon, C., and Ibrahimi, A. (1998a). Membrane transport of long-
chain fatty acids: evidence for a facilitated process. J. Lipid Res. 39, 2309–2318. 
 
Abumrad, N., Harmon, C., and Ibrahimi, A. (1998b). Membrane transport of long-
chain fatty acids: evidence for a facilitated process. J. Lipid Res. 39, 2309–2318. 
 
Abumrad, N., Coburn, C., and Ibrahimi, A. (1999). Membrane proteins implicated 
in long-chain fatty acid uptake by mammalian cells: CD36, FATP and FABPm. 
Biochim. Biophys. Acta 1441, 4–13. 

Agostoni, C., and Bruzzese, M.G. (1992). [Fatty acids: their biochemical and 
functional classification]. Pediatr. Med. Chir. 14, 473–479. 

Andersen, O.S., and Koeppe, R.E. (2007). Bilayer thickness and membrane 
protein function: an energetic perspective. Annu. Rev. Biophys. Biomol. Struct. 
36, 107–130. 

Barabas, P., Liu, A., Xing, W., Chen, C.-K., Tong, Z., Watt, C.B., Jones, B.W., 
Bernstein, P.S., and Križaj, D. (2013). Role of ELOVL4 and very long-chain 
polyunsaturated fatty acids in mouse models of Stargardt type 3 retinal 
degeneration. Proc. Natl. Acad. Sci. U.S.A. 110, 5181–5186. 

Bartscherer, K., and Boutros, M. (2008). Regulation of Wnt protein secretion and 
its role in gradient formation. EMBO Rep. 9, 977–982. 



	
   62	
  

Berger, J., Forss-Petter, S., and Eichler, F.S. (2014). Pathophysiology of X-linked 
adrenoleukodystrophy. Biochimie 98, 135–142. 

Black, P.N., and DiRusso, C.C. (2003). Transmembrane movement of 
exogenous long-chain fatty acids: proteins, enzymes, and vectorial esterification. 
Microbiol. Mol. Biol. Rev. 67, 454–472, table of contents. 

Black, P.N., Zhang, Q., Weimar, J.D., and DiRusso, C.C. (1997). Mutational 
analysis of a fatty acyl-coenzyme A synthetase signature motif identifies seven 
amino acid residues that modulate fatty acid substrate specificity. J. Biol. Chem. 
272, 4896–4903. 

Bogdanov, M., Dowhan, W., and Vitrac, H. (2014). Lipids and topological rules 
governing membrane protein assembly. Biochim. Biophys. Acta 1843, 1475–
1488. 

Buglino, J.A., and Resh, M.D. (2012). Palmitoylation of Hedgehog proteins. 
Vitam. Horm. 88, 229–252. 

Cao, Y., Pearman, A.T., Zimmerman, G.A., McIntyre, T.M., and Prescott, S.M. 
(2000). Intracellular unesterified arachidonic acid signals apoptosis. Proc. Natl. 
Acad. Sci. U.S.A. 97, 11280–11285. 

Castro, B.M., Prieto, M., and Silva, L.C. (2014). Ceramide: a simple sphingolipid 
with unique biophysical properties. Prog. Lipid Res. 54, 53–67. 

Chiu, H.C., Kovacs, A., Ford, D.A., Hsu, F.F., Garcia, R., Herrero, P., Saffitz, 
J.E., and Schaffer, J.E. (2001). A novel mouse model of lipotoxic 
cardiomyopathy. J. Clin. Invest. 107, 813–822. 

Coleman, R.A., Lewin, T.M., Van Horn, C.G., and Gonzalez-Baró, M.R. (2002). 
Do long-chain acyl-CoA synthetases regulate fatty acid entry into synthetic 
versus degradative pathways? J. Nutr. 132, 2123–2126. 

D’Souza, K., and Epand, R.M. (2014). Enrichment of phosphatidylinositols with 
specific acyl chains. Biochim. Biophys. Acta 1838, 1501–1508. 

Das, U.N. (2013a). Autism as a disorder of deficiency of brain-derived 
neurotrophic factor and altered metabolism of polyunsaturated fatty acids. 
Nutrition 29, 1175–1185. 

Fuchs, S., Sarde, C.O., Wedemann, H., Schwinger, E., Mandel, J.L., and Gal, A. 
(1994). Missense mutations are frequent in the gene for X-chromosomal 
adrenoleukodystrophy (ALD). Hum. Mol. Genet. 3, 1903–1905. 

Gargiulo, C.E., Stuhlsatz-Krouper, S.M., and Schaffer, J.E. (1999). Localization 
of adipocyte long-chain fatty acyl-CoA synthetase at the plasma membrane. J. 
Lipid Res. 40, 881–892. 



	
   63	
  

Gassler, N., Schneider, A., Kopitz, J., Schnölzer, M., Obermüller, N., Kartenbeck, 
J., Otto, H.F., and Autschbach, F. (2003). Impaired expression of acyl-CoA-
synthetase 5 in epithelial tumors of the small intestine. Hum. Pathol. 34, 1048–
1052. 

Gassler, N., Roth, W., Funke, B., Schneider, A., Herzog, F., Tischendorf, J.J.W., 
Grund, K., Penzel, R., Bravo, I.G., Mariadason, J., et al. (2007). Regulation of 
enterocyte apoptosis by acyl-CoA synthetase 5 splicing. Gastroenterology 133, 
587–598. 

Gatto, C.L., and Broadie, K. (2011). Drosophila modeling of heritable 
neurodevelopmental disorders. Curr. Opin. Neurobiol. 21, 834–841. 

Gjorgjieva, J., Berni, J., Evers, J.F., and Eglen, S.J. (2013). Neural circuits for 
peristaltic wave propagation in crawling Drosophila larvae: analysis and 
modeling. Front Comput. Neurosci. 7, 24. 

Glatz, J.F.C., Luiken, J.J.F.P., and Bonen, A. (2010). Membrane fatty acid 
transporters as regulators of lipid metabolism: implications for metabolic disease. 
Physiol. Rev. 90, 367–417. 

Goñi, F.M., and Alonso, A. (1999). Structure and functional properties of 
diacylglycerols in membranes. Prog. Lipid Res. 38, 1–48. 

Hage Hassan, R., Bourron, O., and Hajduch, E. (2014). Defect of insulin signal in 
peripheral tissues: important role of ceramide. World J. Diabetes 5, 244–257. 

Hall, A.M., Smith, A.J., and Bernlohr, D.A. (2003). Characterization of the Acyl-
CoA synthetase activity of purified murine fatty acid transport protein 1. J. Biol. 
Chem. 278, 43008–43013. 

Hatch, G.M., Smith, A.J., Xu, F.Y., Hall, A.M., and Bernlohr, D.A. (2002). FATP1 
channels exogenous FA into 1,2,3-triacyl-sn-glycerol and down-regulates 
sphingomyelin and cholesterol metabolism in growing 293 cells. J. Lipid Res. 43, 
1380–1389. 

Heimli, H., Hollung, K., and Drevon, C.A. (2003). Eicosapentaenoic acid-induced 
apoptosis depends on acyl CoA-synthetase. Lipids 38, 263–268. 

Heinzer, A.K., McGuinness, M.C., Lu, J.-F., Stine, O.C., Wei, H., Van der Vlies, 
M., Dong, G.-X., Powers, J., Watkins, P.A., and Smith, K.D. (2003). Mouse 
models and genetic modifiers in X-linked adrenoleukodystrophy. Adv. Exp. Med. 
Biol. 544, 75–93. 

Ho, K.S., and Scott, M.P. (2002). Sonic hedgehog in the nervous system: 
functions, modifications and mechanisms. Curr. Opin. Neurobiol. 12, 57–63. 

Jia, Z., Pei, Z., Li, Y., Wei, L., Smith, K.D., and Watkins, P.A. (2004). X-linked 



	
   64	
  

adrenoleukodystrophy: role of very long-chain acyl-CoA synthetases. Mol. Genet. 
Metab. 83, 117–127. 

De Jong, H., Neal, A.C., Coleman, R.A., and Lewin, T.M. (2007). Ontogeny of 
mRNA expression and activity of long-chain acyl-CoA synthetase (ACSL) 
isoforms in Mus musculus heart. Biochim. Biophys. Acta 1771, 75–82. 

Kantojärvi, K., Kotala, I., Rehnström, K., Ylisaukko-Oja, T., Vanhala, R., von 
Wendt, T.N., von Wendt, L., and Järvelä, I. (2011). Fine mapping of Xq11.1-
q21.33 and mutation screening of RPS6KA6, ZNF711, ACSL4, DLG3, and 
IL1RAPL2 for autism spectrum disorders (ASD). Autism Res. 4, 228–233. 

Klar, J., Schweiger, M., Zimmerman, R., Zechner, R., Li, H., Törmä, H., 
Vahlquist, A., Bouadjar, B., Dahl, N., and Fischer, J. (2009). Mutations in the fatty 
acid transport protein 4 gene cause the ichthyosis prematurity syndrome. Am. J. 
Hum. Genet. 85, 248–253. 

Klaus, C., Jeon, M.K., Kaemmerer, E., and Gassler, N. (2013a). Intestinal acyl-
CoA synthetase 5: activation of long chain fatty acids and behind. World J. 
Gastroenterol. 19, 7369–7373. 

Klaus, C., Kaemmerer, E., Reinartz, A., Schneider, U., Plum, P., Jeon, M.K., 
Hose, J., Hartmann, F., Schnölzer, M., Wagner, N., et al. (2014). TP53 status 
regulates ACSL5-induced expression of mitochondrial mortalin in enterocytes 
and colorectal adenocarcinomas. Cell Tissue Res. 357, 267–278. 

Kniazeva, M., Shen, H., Euler, T., Wang, C., and Han, M. (2012a). Regulation of 
maternal phospholipid composition and IP(3)-dependent embryonic membrane 
dynamics by a specific fatty acid metabolic event in C. elegans. Genes Dev. 26, 
554–566. 

Küch, E.-M., Vellaramkalayil, R., Zhang, I., Lehnen, D., Brügger, B., Sreemmel, 
W., Ehehalt, R., Poppelreuther, M., and Füllekrug, J. (2014). Differentially 
localized acyl-CoA synthetase 4 isoenzymes mediate the metabolic channeling 
of fatty acids towards phosphatidylinositol. Biochim. Biophys. Acta 1841, 227–
239. 

Laycock, R., Crewther, S.G., and Crewther, D.P. (2007). A role for the 
“magnocellular advantage” in visual impairments in neurodevelopmental and 
psychiatric disorders. Neurosci. Biobehav. Rev. 31, 363–376. 

Lecuit, T. (2004). Junctions and vesicular trafficking during Drosophila 
cellularization. J. Cell. Sci. 117, 3427–3433. 

Lecuit, T., Pelissier, A., and Chauvin, J.P. (2003). Trafficking through Rab 11 
endosomes is required for cellularization during Drosophila embryogenesis. J. 
Cell. Sci. 109, 51-57. 



	
   65	
  

Lécuyer, E., Yoshida, H., Parthasarathy, N., Alm, C., Babak, T., Cerovina, T., 
Hughes, T.R., Tomancak, P., and Krause, H.M. (2007). Global analysis of mRNA 
localization reveals a prominent role in organizing cellular architecture and 
function. Cell 131, 174–187. 

Li, L.O., Mashek, D.G., An, J., Doughman, S.D., Newgard, C.B., and Coleman, 
R.A. (2006). Overexpression of rat long chain acyl-coa synthetase 1 alters fatty 
acid metabolism in rat primary hepatocytes. J. Biol. Chem. 281, 37246–37255. 

Liu, Z., and Huang, X. (2013). Lipid metabolism in Drosophila: development and 
disease. Acta Biochim. Biophys. Sin. (Shanghai) 45, 44–50. 

Mangroo, D., Wu, X.Q., and RajBhandary, U.L. (1995). Escherichia coli initiator 
tRNA: structure-function relationships and interactions with the translational 
machinery. Biochem. Cell Biol. 73, 1023–1031. 

Marszalek, J.R., Kitidis, C., Dararutana, A., and Lodish, H.F. (2004). Acyl-CoA 
synthetase 2 overexpression enhances fatty acid internalization and neurite 
outgrowth. J. Biol. Chem. 279, 23882–23891. 

Martin, T.F. (2001). PI(4,5)P(2) regulation of surface membrane traffic. Curr. 
Opin. Cell Biol. 13, 493–499. 

Mashek, D.G., and Coleman, R.A. (2006). Cellular fatty acid uptake: the 
contribution of metabolism. Curr. Opin. Lipidol. 17, 274–278. 

Mashek, D.G., McKenzie, M.A., Van Horn, C.G., and Coleman, R.A. (2006). Rat 
long chain acyl-CoA synthetase 5 increases fatty acid uptake and partitioning to 
cellular triacylglycerol in McArdle-RH7777 cells. J. Biol. Chem. 281, 945–950. 

Mashek, D.G., Li, L.O., and Coleman, R.A. (2007). Long-chain acyl-CoA 
synthetases and fatty acid channeling. Future Lipidol. 2, 465–476. 

McMahon, A., and Kedzierski, W. (2010). Polyunsaturated very-long-chain C28-
C36 fatty acids and retinal physiology. Br. J. Ophthalmol. 94, 1127–1132. 

McMahon, A., Jackson, S.N., Woods, A.S., and Kedzierski, W. (2007). A 
Stargardt disease-3 mutation in the mouse Elovl4 gene causes retinal deficiency 
of C32-C36 acyl phosphatidylcholines. FEBS Lett. 581, 5459–5463. 

McMahon, A., Butovich, I.A., and Kedzierski, W. (2011). Epidermal expression of 
an Elovl4 transgene rescues neonatal lethality of homozygous Stargardt disease-
3 mice. J. Lipid Res. 52, 1128–1138. 

Meloni, I., Parri, V., De Filippis, R., Ariani, F., Artuso, R., Bruttini, M., Katzaki, E., 
Longo, I., Mari, F., Bellan, C., et al. (2009). The XLMR gene ACSL4 plays a role 
in dendritic spine architecture. Neuroscience 159, 657–669. 



	
   66	
  

Mendelson, K., Evans, T., and Hla, T. (2014). Sphingosine 1-phosphate 
signalling. Development 141, 5–9. 

Milger, K., Herrmann, T., Becker, C., Gotthardt, D., Zickwolf, J., Ehehalt, R., 
Watkins, P.A., Stremmel, W., and Füllekrug, J. (2006). Cellular uptake of fatty 
acids driven by the ER-localized acyl-CoA synthetase FATP4. J. Cell. Sci. 119, 
4678–4688. 

Min, K.T., and Benzer, S. (1999). Preventing neurodegeneration in the 
Drosophila mutant bubblegum. Science 284, 1985–1988. 

Morisato, D., and Anderson, K.V. (1995). Signaling pathways that establish the 
dorsal-ventral pattern of the Drosophila embryo. Annu. Rev. Genet. 29, 371–399. 

Moriya-Sato, A., Hida, A., Inagawa-Ogashiwa, M., Wada, M.R., Sugiyama, K., 
Shimizu, J., Yabuki, T., Seyama, Y., and Hashimoto, N. (2000). Novel acyl-CoA 
synthetase in adrenoleukodystrophy target tissues. Biochem. Biophys. Res. 
Commun. 279, 62–68. 

Mosser, J., Lutz, Y., Stoeckel, M.E., Sarde, C.O., Kretz, C., Douar, A.M., Lopez, 
J., Aubourg, P., and Mandel, J.L. (1994). The gene responsible for 
adrenoleukodystrophy encodes a peroxisomal membrane protein. Hum. Mol. 
Genet. 3, 265–271. 

Osborne, S.L., Meunier, F.A., and Schiavo, G. (2001). Phosphoinositides as key 
regulators of synaptic function. Neuron 32, 9–12. 

Pei, Z., Sun, P., Huang, P., Lal, B., Laterra, J., and Watkins, P.A. (2009). Acyl-
CoA synthetase VL3 knockdown inhibits human glioma cell proliferation and 
tumorigenicity. Cancer Res. 69, 9175–9182. 

Pei, Z., Fraisl, P., Shi, X., Gabrielson, E., Forss-Petter, S., Berger, J., and 
Watkins, P.A. (2013). Very long-chain acyl-CoA synthetase 3: overexpression 
and growth dependence in lung cancer. PLoS ONE 8, e69392. 

Pol, A., Gross, S.P., and Parton, R.G. (2014). Review: biogenesis of the 
multifunctional lipid droplet: lipids, proteins, and sites. J. Cell Biol. 204, 635–646. 

Poveda, J.A., Giudici, A.M., Renart, M.L., Molina, M.L., Montoya, E., Fernández-
Carvajal, A., Fernández-Ballester, G., Encinar, J.A., and González-Ros, J.M. 
(2014). Lipid modulation of ion channels through specific binding sites. Biochim. 
Biophys. Acta 1838, 1560–1567. 

Record, M., Carayon, K., Poirot, M., and Silvente-Poirot, S. (2014). Exosomes as 
new vesicular lipid transporters involved in cell-cell communication and various 
pathophysiologies. Biochim. Biophys. Acta 1841, 108–120. 

Renault, A.D., Kunwar, P.S., and Lehmann, R. (2010). Lipid phosphate 



	
   67	
  

phosphatase activity regulates dispersal and bilateral sorting of embryonic germ 
cells in Drosophila. Development 137, 1815–1823. 

Routt, S.M., and Bankaitis, V.A. (2004). Biological functions of 
phosphatidylinositol transfer proteins. Biochem. Cell Biol. 82, 254–262. 

Schaffer, J.E., and Lodish, H.F. (1994). Expression cloning and characterization 
of a novel adipocyte long chain fatty acid transport protein. Cell 79, 427–436. 

Schink, K.O., Raiborg, C., and Stenmark, H. (2013). Phosphatidylinositol 3-
phosphate, a lipid that regulates membrane dynamics, protein sorting and cell 
signalling. Bioessays 35, 900–912. 

Schmidt, C., and Robinson, C.V. (2014). Dynamic protein ligand interactions--
insights from MS. FEBS J. 281, 1950–1964. 

Schuchardt, J.P., Huss, M., Stauss-Grabo, M., and Hahn, A. (2010). Significance 
of long-chain polyunsaturated fatty acids (PUFAs) for the development and 
behaviour of children. Eur. J. Pediatr. 169, 149–164. 

Shisheva, A. (2013). PtdIns5P: news and views of its appearance, 
disappearance and deeds. Arch. Biochem. Biophys. 538, 171–180. 

Soupene, E., and Kuypers, F.A. (2008). Mammalian long-chain acyl-CoA 
synthetases. Exp. Biol. Med. (Maywood) 233, 507–521. 

Souza, S.C., Muliro, K.V., Liscum, L., Lien, P., Yamamoto, M.T., Schaffer, J.E., 
Dallal, G.E., Wang, X., Kraemer, F.B., Obin, M., et al. (2002). Modulation of 
hormone-sensitive lipase and protein kinase A-mediated lipolysis by perilipin A in 
an adenoviral reconstituted system. J. Biol. Chem. 277, 8267–8272. 

Stachowiak, J.C., Brodsky, F.M., and Miller, E.A. (2013). A cost-benefit analysis 
of the physical mechanisms of membrane curvature. Nat. Cell Biol. 15, 1019–
1027. 

Stahl, A. (2004). A current review of fatty acid transport proteins (SLC27). 
Pflugers Arch. 447, 722–727. 

Stein, J. (2000). The neurobiology of reading difficulties. Prostaglandins Leukot. 
Essent. Fatty Acids 63, 109–116. 

Stinnett, L., Lewin, T.M., and Coleman, R.A. (2007). Mutagenesis of rat acyl-CoA 
synthetase 4 indicates amino acids that contribute to fatty acid binding. Biochim. 
Biophys. Acta 1771, 119–125. 

Strickland, L.I., and Burgess, D.R. (2004). Pathways for membrane trafficking 
during cytokinesis. Trends Cell Biol. 14, 115–118. 



	
   68	
  

Szafer-Glusman, E., Giansanti, M.G., Nishihama, R., Bolival, B., Pringle, J., 
Gatti, M., and Fuller, M.T. (2008a). A role for very-long-chain fatty acids in furrow 
ingression during cytokinesis in Drosophila spermatocytes. Curr. Biol. 18, 1426–
1431. 

Takasuga, S., and Sasaki, T. (2013). Phosphatidylinositol-3,5-bisphosphate: 
metabolism and physiological functions. J. Biochem. 154, 211–218. 

Tong, F., Black, P.N., Coleman, R.A., and DiRusso, C.C. (2006). Fatty acid 
transport by vectorial acylation in mammals: roles played by different isoforms of 
rat long-chain acyl-CoA synthetases. Arch. Biochem. Biophys. 447, 46–52. 

Varnam, C.J., Strauss, R., Belle, J.S., and Sokolowski, M.B. (1996). Larval 
behavior of Drosophila central complex mutants: interactions between no bridge, 
foraging, and Chaser. J. Neurogenet. 11, 99–115. 

Ward, P.E. (2000). Potential diagnostic aids for abnormal fatty acid metabolism in 
a range of neurodevelopmental disorders. Prostaglandins Leukot. Essent. Fatty 
Acids 63, 65–68. 

Ward, J.D., Mullaney, B., Schiller, B.J., He, L.D., Petnic, S.E., Couillault, C., 
Pujol, N., Bernal, T.U., Van Gilst, M.R., Ashrafi, K., et al. (2014). Defects in the C. 
elegans acyl-CoA synthase, acs-3, and nuclear hormone receptor, nhr-25, cause 
sensitivity to distinct, but overlapping stresses. PLoS ONE 9, e92552. 

Watkins, P.A., and Ellis, J.M. (2012). Peroxisomal acyl-CoA synthetases. 
Biochim. Biophys. Acta 1822, 1411–1420. 

Wiczer, B.M., and Bernlohr, D.A. (2009). A novel role for fatty acid transport 
protein 1 in the regulation of tricarboxylic acid cycle and mitochondrial function in 
3T3-L1 adipocytes. J. Lipid Res. 50, 2502–2513. 

Wuestehube, L.J., Duden, R., Eun, A., Hamamoto, S., Korn, P., Ram, R., and 
Schekman, R. (1996). New mutants of Saccharomyces cerevisiae affected in the 
transport of proteins from the endoplasmic reticulum to the Golgi complex. 
Genetics 142, 393–406. 

Wurtzel, J.G.T., Kumar, P., and Goldfinger, L.E. (2012). Palmitoylation regulates 
vesicular trafficking of R-Ras to membrane ruffles and effects on ruffling and cell 
spreading. Small GTPases 3, 139–153. 

Yonath, H., Marek-Yagel, D., Resnik-Wolf, H., Abu-Horvitz, A., Baris, H.N., 
Shohat, M., Frydman, M., and Pras, E. (2011). X inactivation testing for 
identifying a non-syndromic X-linked mental retardation gene. J. Appl. Genet. 52, 
437–441. 

Young, G., and Conquer, J. (2005). Omega-3 fatty acids and neuropsychiatric 
disorders. Reprod. Nutr. Dev. 45, 1–28. 



	
   69	
  

Young, O.A., and Anderson, J.W. (1974). Properties and substrate specificity of 
some reactions catalysed by a short-chain fatty acyl-coenzyme A synthetase 
from seeds of Pinus radiata. Biochem. J. 137, 423–433. 

 

	
  



 

 

CHAPTER 3 

 

DROSOPHILA bgm AND dbb-DUPLICATED GENES DISPLAYING PARTIAL 

DIVERGENCE IN DEVELOPMENTAL EXPRESSION AND 

COREGULATED BY DORSAL PATHWAY GENES 

 

Introduction 

 Genetic analysis has allowed subdivision of the genetic loci involved in 

dorsoventral (DV) patterning into three conserved signaling pathways defined by 

the Epidermal Growth Factor Receptor (EGFR), Toll/Dorsal, and 

Decepentaplegic (Dpp), each of which transmits positional information through 

the localization of an extracellular morphogen. As development proceeds, 

sequential activities of these signaling cascades refine the positional identity of 

cells, giving rise to unique molecular and morphological characteristics for each 

domain along the dorsoventral axis.  

 The EGFR signaling cascade patterns the oocyte prior to fertilization. The 

TGF alpha-like ligand encoded by gurken provides the dorsalizing signal to the 

EGF receptor encoded by torpedo.  Thus, the most proximal follicle cells adopt a 

dorsal cell fate (Neuman-Silberberg and Schüpbach, 1993; Schejter and Shilo, 

1989). The signal generated by Gurken and Torpedo is transmitted subsequently 

through the Ras pathway; however, the events downstream of Ras are not 



 

	
  
	
  

completely understood (Brand and Perrimon, 1994). The dorsalizing signal 

represses transcription of the Dorsal/Toll signaling component Pipe (Sen et al., 

1998), thereby restricting activity of the Dorsal/Toll signaling pathway to the 

ventral-most regions of the embryo.  

 The Dorsal/Toll pathway is a maternal signaling cascade that interprets 

the DV signal initiated in oogenesis. Eleven dorsal group mutants and the 

negative regulator cactus were identified in genetic screens by their dramatic loss 

of DV positional identity (Anderson and Nüsslein-Volhard, 1984a; Morisato and 

Anderson, 1995). In the absence of any one dorsal-group gene, cells at all DV 

positions differentiate into dorsal epidermis, while ventral epidermis, 

neuroectoderm, and mesoderm fail to develop. Partial loss of function alleles 

leads to preferential loss of the ventral-most pattern elements (Anderson et al., 

1985). The DV pattern is based on a nuclear gradient of the maternal morphogen 

Dorsal, the Drosophila member of the NFκB family. dorsal mRNA and protein are 

uniformly distributed in the embryo, but the protein is selectively imported into the 

nucleus in a ventral to dorsal gradient (Roth et al., 1989; Steward, 1987). Proper 

generation of this gradient requires the upstream activities of the eleven dorsal-

group genes and cactus. Three somatic genes pipe, nudel, and windbeutel are 

transcribed in follicle cells and localize to the embryonic vitelline space where 

they initiate an activation cascade (Hong and Hashimoto, 1995; Manseau and 

Schüpbach, 1989; Sen et al., 1998). Ventrally restricted signaling by pipe, nudel, 

and windbeutel activates the Easter protease, which in turn leads to the localized 

proteolytic cleavage of the Spatzle ligand (Chasan et al., 1992; Schüpbach and 
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Roth, 1994; Smith and DeLotto, 1994). Cleaved and activated Spatzle activates 

the Toll receptor, allowing Toll to transduce the ventral signal intracellularly. Toll 

shares homology with the vertebrate interleukin-1 receptor (Gay and Keith, 

1991). Toll protein is uniformly distributed in the embryonic membrane; thus, 

restriction of the Spatzle ligand is essential for localized receptor activation 

(Hashimoto et al., 1991). A complex between two intracellular components of the 

pathway, Tube and Pelle, is presumably formed at sites of receptor activation 

(Towb et al., 1998). The serine threonine kinase Pelle interacts with the novel 

protein Tube via death domains present in both proteins, then signals to disrupt 

the inhibitory complex between Dorsal and its antagonist, the IKB homolog 

Cactus (Galindo et al., 1995; Letsou et al., 1991; Norris and Manley, 1992; Shen 

and Manley, 1998; Xiao et al., 1999). Similar to mammalian IKB, phosphorylation 

of Cactus marks it for ubiquitin-mediated degradation and releases the NFKB 

transcription factor, thus allowing it to enter ventral nuclei and regulate 

transcription (Beg et al., 1993).  

 Subdivision of the DV axis into distinct domains of transcriptional readout 

occurs in response to defined thresholds of Dorsal activity (Huang et al., 1997; 

Rusch and Levine, 1996). By acting as both transcriptional activator and 

repressor, Dorsal specifies domains distinguished at the molecular level by the 

expression of zygotic marker genes and at the morphological level by the cell 

fates that these domains predict. High levels of Dorsal in ventral-most cells 

pattern the mesoderm through the activation of transcription factors, Twist and 

Snail (Boulay et al., 1987; Thisse et al., 1987, 1988, 1991). Expression of Twist 
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and Snail is restricted to ventral cells by the inability of the low affinity binding 

sites in their promoters to be activated in more lateral regions (Pan et al., 1991). 

Intermediate levels of nuclear Dorsal activate neurogenic fate markers including 

rhomboid, short gastrulation, and single minded (Ip et al., 1992). Dorsal 

simultaneously restricts dorsal fates by repression of  decapentaplegic (dpp), 

zerkneult (zen), and tolloid (tld) in ventral and lateral domains (Ip et al., 1992; 

Shimell et al., 1991).  The inherent activator functions of Dorsal are transformed 

into repressor capabilities by interactions with additional cofactors (Dubnicoff et 

al., 1997; Jiang et al., 1992; Valentine et al., 1998). Together, Dorsal and its 

cofactors bind to neighboring sites in the promoter of the target gene and repress 

transcription. The absence of dorsal activity in dorsal-most cells permits 

expression of dpp, zen, and tld, allowing them to fix the limits of dorsal ectoderm 

and amnioserosa cell fates.  

 The Dpp ligand is a member of TGF-alpha superfamily of growth factors 

sharing the most extensive homology with vertebrate BMP 2A and BMP-4 

(Wozney et al., 1988). Transcriptional repression of dpp by Dorsal restricts dpp 

transcripts to the dorsal 40% of the blastoderm where it specifies dorsal cell fates 

(Irish and Gelbart, 1987; Wharton et al., 1993). 

 

Few Targets of Signaling Have Been Isolated Genetically 

 Taken together, the genetically defined pathways that specify dorsoventral 

patterning comprise signaling molecules and their attendant transcription factors, 

but very few of the targets of signaling have been identified to date. These target 
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genes are essential to our understanding of fate specification as they are the 

biological effectors of signaling. Identification and characterization of these 

effector targets will further our understanding of how they contribute to the 

determination of cell fates and in a broader context will provide insight into the 

developmental signals present in eukaryotes as a whole. Our limited 

understanding of the effectors of signaling may be due to our inability to identify 

genes with redundant functions, genes with both maternal and zygotic 

components, and genes with specialized developmental roles through classic 

genetic approaches. The forward genetic screens that successfully identified 

signaling components of patterning relied on mutations that would cause 

embryonic lethality and additionally resulted in some visible abnormality of the 

larval cuticle (Anderson and Nüsslein-Volhard, 1984b; Nüsslein-Volhard and 

Wieschaus, 1980; Wieschaus et al., 1984). Overall, only 25% (450) of the 1800 

lethal mutations generated caused embryonic death, and only 13% (580) of the 

embryonic lethal mutations caused visible alterations in the morphology of the 

larval cuticle (Wieschaus, 1996). In light of these numbers, as well as the relative 

paucity of effector molecules isolated in genetic screens, it appears likely that 

screening criteria were too stringent to identify most target genes.  

 At the level of transcriptional activation, the linear signaling pathway 

expands to regulate a diverse set of biological effectors. Effector molecules are 

expected to encode a wide range of biological functions. Some, such as 

structural proteins, enzymes, and cell adhesion molecules may directly generate 

the final differentiated state. Others, such as transcription factors and cofactors, 
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may serve as intermediate regulators in the differentiation process. These genes 

may share overlapping or interacting functions that make them difficult to isolate 

through classic genetic methods. In addition, because they are at the branch 

point of a linear signal, effector genes are expected to display only a subset of 

the characteristics that contribute to phenotypes displayed by the pathway as a 

whole; thus, phenotypes that arise from mutations in target genes will range from 

strong to nonexistent.   

 Finally, genes with redundant functions are also likely to be missed in 

genetic screens since both genes of the pair must be mutated simultaneously to 

disrupt shared functions. The Drosophila genome encodes 13,601 genes and 

based on sequence similarity alone nearly half of these are designated as 

duplicated genes (Adams et al., 2000; Rubin, 2000). Coupled with the genetic 

observation that only one third of loci mutate to a detectable phenotype, the high 

number of duplicated genes suggests that many nonmutable genes share 

redundant functions. However, at this point genome analysis cannot reveal 

functional requirements for duplicated genes. Additional approaches will be 

needed to distinguish duplicated genes that function redundantly from those that 

share sequence similarity but do not have overlapping functional requirements.  

 Few examples of functionally redundant genes have been reported in 

Drosophila. In these case studies, functional redundancy has been addressed in 

pairs of genes in which one partner was isolated genetically and the other was 

identified subsequently by sequence similarity. Examples include engrailed and 

invected (Coleman et al., 1987), knirps and knirp-like (González-Gaitán et al., 
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1994), and buttonhead and D-spl (Schöck et al., 1999). These related genes 

share similarities in sequence and expression profile, and in all cases the 

molecularly identified partner displays only a subset of the phenotypes presented 

by their genetically isolated counterparts. Duplicated genes with equivalent roles 

in development are expected to be more difficult to detect genetically.   

 

Effectors of DV Patterning Remain to Be Identified 

 Very few effectors or downstream targets of DV patterning have been 

identified to date. And taken together theses effector genes represent only a 

subset of the phenotypes that would result from complete loss of DV patterning, 

thus revealing many gaps in our knowledge of DV effectors. For example the 

transcription factor encoded by zen is a target of DPP signaling; however, zen 

mutants display a weak ventralized phenotype, and amnioserosa fates are lost 

while the dorsal ectoderm remains intact (Wakimoto et al., 1984). Thus, whereas 

Dpp patterns the dorsal domain in its entirety, transcriptional regulation through 

zen alone is not sufficient to provide all dorsal fates. Importantly, very few 

transcriptionally regulated targets of zen have been identified, and none of them 

display mutant phenotypes corresponding to their role in DV patterning (Hirose et 

al., 1994; Rusch and Levine, 1997; Tatei et al., 1995). Similarly, twist and snail 

are downstream targets of the Dorsal signaling pathway. However, both genes 

encoded are transcription factors, and very few cytological effectors downstream 

of this pair of genes have been identified. One example is folded gastrulation, 

which codes for a receptor that transduces the ventralizing signal into ventral 
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cells and is responsible for inducing the cytological changes that lead to ventral 

furrow formation during gastrulation (Costa et al., 1994). fog mutants display a 

failure to invaginate only in a subset of ventral furrow forming cells, and the 

effectors inducing changes in other cells still need to be identified (Dawes-Hoang 

et al., 2005).  

 

Conservation 

 One of the themes in developmental biology that has emerged over the 

past decade is that a small number of signaling pathways have been 

evolutionarily conserved, and these pathways are exploited repeatedly in 

numerous developmental and life history contexts within the same organism, as 

well as across species. As an example, Dorsal/Toll signaling mediates immune 

responses to microbial infection in flies, plants, and mammals (Anderson, 2000). 

Similarly studies in Xenopus have identified a BMP signaling pathways required 

for DV patterning analogous to Dpp signaling in Drosophila (Ferguson, 1996). 

 Signaling pathways have evolved various mechanisms to generate unique 

cellular responses at different developmental stages in different organisms. 

Modulation of the signal by the use of multiple ligands, receptors, differential 

endocytosis, receptor turnover, and crosstalk with other signaling pathways have 

been demonstrated to allow signaling pathways to elicit the correct biological 

response for each developmental event. As effectors of signaling, target genes 

are directly responsible for generating different biological responses. For 

example, the EGFR signaling pathway has been studied as a potential target for 
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drug development, but because the core components are reused in so many 

distinct processes, emphasis has been placed on molecules involved more 

peripherally in signaling. Essentially, the emphasis is now on identifying effectors 

of signaling rather than the upstream drivers of signaling, with the hope for 

effective and localized responses to drug treatments. In this regard, identification 

and characterization of effectors that modulate specific subsets of signals 

represent an important next step. 

 

Expression-based Reverse Genetic Approach to  

Identify Effectors of DV Patterning 

 In order to identify effectors of DV patterning, we assayed expression 

profiles early in development. The rationale for the screen being that if an 

embryonic transcript is expressed early on in development and has a restricted 

pattern of expression, it must have a critical function at that time and place in 

development.  We used a high-throughput robotic screen for the identification of 

genes with spatially restricted RNA in situ expression patterns during the 0–4 

hours of embryonic development (Simin et al., 2002). Among the 778 sequence-

selected genes from a 0–4 hour embryonic cDNA library, some had established 

roles in pattern formation such as the pair-rule gene odd-skipped and the 

dorsoventrally restricted genes neuralized and delta. In addition, we discovered a 

number of novel genes with spatially restricted patterns of expression in the early 

embryo, like the dorsally restricted gene scylla, the charybde homologue. Our 

studies revealed scylla and charybde to be duplicated genes with essential (but 
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redundant) functions as effectors of the Dpp/Zen pathway in head involution 

(Scuderi et al., 2006). Our studies of scylla and charybde helped validate our 

approach to identification of biologically significant cell fate determinants in 

expression screens. A yet another previously unidentified dorsoventrally 

restricted gene that emerged from the screen was the U5F9 or CG4500 

transcript, which exhibited ventral expression in the blastoderm stage and in 

gastrulating Drosophila embryos (Simin et al., 2002).  

 

Material and Methods 

RNA in situ hybridization  

	
   cDNA clones (LD28132 and GM14009), corresponding to dbb and bgm, 

respectfully, were obtained from BDGP. cDNA inserts were amplified from 

bacterial cultures diluted 1:50 in ddH2O by the polymerase chain reaction (PCR). 

Primers, SP6 and T7, specific for the pOT2 plasmid were used to amplify cDNA. 

Full-length antisense probes labeled with digoxigenin-UTP were generated using 

1ug of the amplified reaction product as template in an in vitro transcription 

reaction. RNA in situ hybridization to whole-mount Drosophila embryos and third 

instar larvae was performed as described (Tautz and Pfeifle, 1989). For 

detection, embryos and dissected larvae were incubated in alkaline phosphatase 

conjugated anti-DIG antibody (Boehringer Mannheim) diluted 1:2000, followed by 

incubation with chromogenic substrates 5-bromo-4-chloro-3-indolyl phosphate 

(BCIP) and nitroblue tetrazolium (NBT). The color reaction was terminated with a 

series of PBT washes with subsequent rinse in 100% methanol. Embryos and 
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larvae were cleared for 24 h in 80% glycerol, mounted on glass slides, and then 

scored using light microscopy. Embryos were classified by developmental stage: 

preblastoderm and blastoderm (stages 0–5), early gastrula (stages 6–8), and 

germ band extended (stages 9–11) (Campos-Ortega and Hartenstein 1997). 

Images were captured on an Zeiss Axioscope microscope using digital camera 

(AxioCam). 

 

Northern blot analysis 

 Nucleic acid manipulations were performed according to standard 

protocols (Sambrook et al., 1989). For northern blot analyses, total RNA was 

isolated from developmentally staged embryos, larvae, and adults. Approximately 

4 µg/lane were separated on denaturing 1% formaldehyde-agarose gels. 

Fractionated RNA was transferred to nylon membranes and immobilized by UV 

crosslinking. Hybridization with random-primed radiolabeled probes was 

performed by standard methods. 

 

Cryosectioning protocol for Drosophila embryos 

 Fix and perform in situ hybridization (RNA or Protein). Saturate embryos in 

sequential steps in sucrose + gelatin solution, with the final saturation being 7.5% 

sucrose+ 15% gelatin. Saturation/equilibration is when the embryos sink at the 

bottom of the tube of sucrose + gelatin solution. Start a set up with couple mug 

warmers and a few WET paper towels on top. Place one mug warmer under a 

dissecting scope. Place the plastic mould on the wet paper towel. Add about 25–
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50 ul of gelatin solution containing about 10–15 stained embryos. Have a couple 

forceps, the embryo containing vials of gelatin and extra gelatin solution heating 

on the other mug warmer. Line up the embryos in the vertical direction towards 

the front end of the mould (this is Side A). The easiest way to do this is take as 

little gelatin as possible. Drag embryos as you align them vertically towards the 

front of the mould, i.e., towards side A. Drag the next set of embryos towards 

Side A but behind the front row of embryos. This will prevent embryos from being 

disturbed.        

 Once you have a decent number of embryos aligned vertically, remove the 

mould from the mug warmer and set it down to cool. Once gelatin has solidified, 

gradually add small amounts of warm gelatin solution on top and fill up the mould 

to the top. Do not fill up with hot gelatin all at once, or the gelatin at the bottom 

will melt and all the alignment will be lost. Once fairly solid, place the mould 

overnight at -20 C. When ready to section, set the cryosection at -30 C at least 2 

hours in advance. Have the cryosection blade and chucks inside the 

cryochamber. Have liquid N2, OCT, and compressed CO2 at hand. The following 

should be done inside the Cryo chamber as much as possible. Remove the 

gelatin block from the plastic mould carefully without breaking it. Cut the plastic 

mould with a blade if needed to remove the gelatin block neatly.  Hold the block 

with a forcep and wave it very close to the surface of Liquid N2 but not within it. 

Expose all sides of the block to Liquid N2 in this manner. Once fairly solid and 

frozen, dip the block briefly into the Liquid N2 solution. Place a drop of OCT on 

the chuck and quickly place the frozen gelatin block on the OCT. Apply more 
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OCT on the chuck surrounding the gelatin block to provide support. Make sure 

Side A is facing towards you and is not stuck to the chuck because that is the 

part containing embryos and needs to be sectioned. Spray with compressed CO2 

and allow solidifying again inside the Cryo chamber. 

 When solid, cut out extra parts of the gelatin block without disengaging it 

from the chuck. Make it a nice square to obtain neat ribbons. Adjust the section 

thickness to 10 uM.  Adjust the angle of the chuck so that it is perpendicular to 

the blade. Adjust the glass over the blade so that it is completely aligned with the 

blade and not in front or back. Clean blade and the glass with ethanol and Kim 

wipes. Go ahead and section! If everything goes well, you should get neat 

ribbons that can be picked up by just touching a room temperature slide on top of 

the ribbon lightly. Keep these slides in the refrigerator overnight and cover with 

an aqueous mounting medium and coverslip the next day. Allow to dry and they 

are ready for microscopy. 

 

Results 

Acyl CoA synthases in Drosophila melanogaster 

 Examination of the nucleotide sequence revealed U5F9 to encode a long 

chain fatty acyl CoA Synthase (ACSL), which had not yet been characterized at 

the functional level. The predicted mRNA size of 2069 bp corresponded well with 

the 2.4 kb transcript detected in northern blot analyses. Database searches 

allowed us to uncover five Drosophila homologs of U5F9 in Drosophila 

melanogaster, which are also predicted to encode Acyl CoA synthases based on 
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their sequence (work done by previous graduate students: Anne Schuderi and 

Anna Sivachenko). However, the most closely related homolog was the gene 

bubblegum (bgm), and its protein sequence is 43% identical and 62% similar to 

that of U5F9 at the amino acid level. Homology extended across the entire length 

of the protein sequence (data not shown). Additionally, although all homologs of 

U5F9 identified are ACSs, only bgm and U5F9 encode long chain Acyl CoA 

Synthases.  U5F9 was later named double bubble (dbb) based on its close 

homology with bgm. bgm and dbb map only 7.6 kb apart from one another on 

chromosome 2L in the Drosophila genome. Hence in silico analysis suggests that 

bgm and dbb are duplicated genes with a common ancestor (Figure 3.1A).  

 In order to determine if any of the other ACS genes share the ventrally 

restricted spatial expression pattern with dbb, we performed mRNA in situ 

hybridization using RNA probes against some of the ACS genes (Figure 3.1B). 

Most of the ACS genes are ubiquitously expressed at 2 hrs AEL, when the dbb 

and bgm mRNAs are ventrally restricted. Their shared pattern of expression 

suggests that dbb and bgm are regulated by a common mechanism(s), at least at 

this stage of development and that both these genes have a potential role in 

mesodermal patterning.  

 

bgm and  dbb  are duplicated genes with differential  

gene expression during development  

 To gain insight into the evolutionary dynamics of the bgm and dbb gene 

pair, we performed BLAST alignments between the D.melanogaster genomic  
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Figure 3.1:Predicted Acyl CoA Synthases in Drosophila Melanogaster  

A. Phylogenetic tree of Acyl-CoA synthases in D. melanogaster. 

B. bgm and  dbb transcripts show overlapping expression profiles at stage 5 in 
Drosophila embryos. Note ubiquitous expression at Stage 5 of the genes 
encoding other Acyl CoA Synthases.  
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region, to which bgm and dbb are localized and the genomes of ancestral 

Drosophila species, as well as to other insect genomes (refer to Sivatchenko 

thesis). We found that all Drosophilidae possess both the bgm/dbb gene pair and 

that in all species the genes are located in close proximity to one another. 

Furthermore, we have seen remarkable conservation of the exon-intron structure 

of bgm and dbb orthologs across all the Drosophila species. The analysis of 

other insect genomes revealed that A.gambiae, A. aegypti, N. vitripennis, and T. 

castaneum have one bgm ortholog. The genomic structure of the bgm group 

gene in Anopheles was similar to Drosophila bgm. These observations suggest 

that the ancestral gene is most homologous to the D. Melanogaster bgm, that 

dbb is the newly acquired gene, and that the gene duplication event has probably 

occurred in Drosophilidae lineage. Because bgm and dbb have different exon-

intron structures that are well conserved in ancestral species, the duplication 

event must be very old. Indeed, we have identified close homologues of bgm and 

dbb as far back into the speciation tree as in D. Pseudoobscura, suggesting that 

the duplication took place earlier than 43 million years ago. The bgm and dbb 

exonic sequences have high sequence similarity; however, the dbb single 

intronic sequence appears to be newly acquired as it appears neither in the bgm 

genomic sequence nor in any other gene in Drosophila or other species. Thus 

the dbb gene most likely arose by retrotransposition and postduplication; the 

gene acquired a new intronic sequence.  

 As a first step in studying the gene regulatory relationship between bgm 

and dbb genes, we used developmental Northern blots to visualize temporal 
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distribution of transcripts at critical stages in development. Consistent with the 

lack of maternally derived dbb expression in situ, transcripts were expressed at 

very low levels in RNA samples from 0–2 hr embryos. The peak of expression 

occurred at 2–8 hours after egg lay (AEL), concurrent with the onset of zygotic 

transcription. In subsequent stages dbb was expressed at low levels and was 

ultimately undetectable in larval stages. A second smaller peak of expression 

was observed during pupal development. Low level expression was observed in 

adults. The temporal expression profile of bgm was distinct from that of its 

homolog dbb. Expression of bgm peaked between 0–2 hr AEL, suggesting 

maternal depositions of the bgm transcript.  The expression of bgm mRNA was 

reduced between 2–16 hrs of embryogenesis, indicating low zygotic expression 

during embryogenesis. The bgm mRNA expression peaked again during larval 

and adult stages with reduced expression in pupal stages. These data suggest 

an overlapping as well as complementary requirement of the bgm and dbb 

transcripts during development (Figure 3.2A).  

 In order to assess the spatial relationship between bgm and dbb, we 

examined mRNA expression in staged whole-mount embryos (Figure 3.2B). 

Indeed, our analysis of mRNA expression localization revealed that bgm mRNA 

is maternally deposited as well as zygotically expressed, confirming the results 

obtained from Northern blot analysis. When zygotic expression begins in the 

embryo, both bgm and dbb exhibit overlapping, ventrally restricted expression 

patterns. This is in contrast to the transcripts corresponding to the other acyl-CoA 

synthetases in Drosophila that retain ubiquitous expression in blastoderm-stage  
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Figure 3.2: Overlapping yet divergent expression patterns of bgm and 
dbb during embryonic development. 

A. Northern blot analysis of dbb and bgm. Developmental northern blots 
were hybridized with a radiolabeled probe for dbb or bgm. 

B.  Spatial distribution of bgm and dbb transcripts during embryogenesis. 
Stages are shown according to Hartenstein and Ortega 1997. bgm 
transcripts are deposited maternally, whereas dbb is expressed 
zygotically. Stage 5 expression patterns of bgm and dbb are 
overlapping, however the expression patterns diverge into distinct 
mesoderm derivatives at later stages. 

     (Experiments contributed by Anne Schuderi) 
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embryos.  It is only in later embryonic stages that the bgm and dbb gene 

expression profiles diverge, the most striking differences being their relative 

expression levels in mesodermal derivatives. The overlapping as well as 

complementary spatiotemporal expression patterns, as well as the difference in 

transcript levels of bgm and dbb at different developmental stages, suggest that 

changes in their regulation have allowed the duplicated bgm and dbb genes to 

evolve divergent developmental roles. It is possible that this pair of genes is 

under the control of both shared and distinct regulatory mechanisms for 

transcription.  Possibly, the initial zygotic transcription of both genes is controlled 

by a common signaling pathway, with slightly overlapping and differential 

mechanisms of regulation coming into play as the embryo progresses through 

embryonic development.  

 

Molecular epistasis 

 To place dbb within the developmental context of the well-characterized 

Dorsal pathway that specifies ventral fates, expression of dbb was examined in 

embryos lacking DV fate cues. In embryos derived from dorsal-deficient females, 

dbb expression is absent.  Conversely, in ventralized embryos, the extent of dbb 

expansion is proportional to the ventralizing strength of the mutant. The dbb 

expression domain expands from the ventral-most region of the embryo into 

lateral regions in embryos derived from females homozygous for a hypomorphic 

allele of cactus (cact011).  In contrast dbb expression expands to lateral as well 

as dorsal regions in embryos derived from females harboring a dominant 
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ventralizing (constitutively active) allele of Toll.  Together, these data indicate the 

Dorsal transcription factor is necessary and sufficient for dbb transcription 

(Figure 3.3A).   

 We next tested whether dbb is transcriptionally regulated by patterning 

genes downstream of  Dorsal signaling. The expression of transcription factors 

Twist (Twi) and Snail (Sna) is directly regulated by Dorsal, and the genes 

encoding these proteins represent the first zygotic targets of signaling in the 

Dorsal pathway. We assessed bgm and dbb mRNA expression in twist, snail, 

and twist snail double mutants in hybridization studies in situ (Figure 3.3B). We 

find that in both twist and snail single mutants there is reduced dbb mRNA 

expression as compared to wild-type embryos, while in the twist snail double 

mutants there is a complete loss of dbb mRNA expression. Thus, dbb 

transcription is controlled by both Twist and Snail and transcriptional inputs from 

both Twist and Snail were required for wild type expression levels of dbb. 

Analogous bgm experiments are ongoing, but preliminary studies indicate a 

similar pattern of regulation. The transcriptional regulation of dbb (and 

presumably bgm) by Twist and Snail places the Bgm and Dbb ACSs in a key 

position enabling them to impact mesoderm patterning. To further define their 

mesodermal expression domains, we examined transcription in cryosections of 

embryos at different stages of embryogenesis, starting at stage 5 (2 hrs AEL) 

when zygotic expression begins and the ventral furrow forms through stage 9, 

when germ band elongation initiates.  We observed both bgm and dbb mRNAs in 

each of tthe 18 ventral-most cells that undergo apical constriction and  
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Figure 3.3: dbb gene expression is regulated by the Dorsal pathway 
genes.  

 A. RNA in situ hybridization of stage 5 mutant embryos. Ventrally localized                                                             
wild-type expression of dbb mRNA is lost in dorsal  mutants, and partially 
or fully expanded in cactus and Tl10b  mutants.  

 B. Graphical representation of the loss of dbb mRNA expression in twist, 
snail,   and twist snail  mutant embryos shows partial reduction in the twi 
and sna single mutants and a complete loss in twi sna  double mutants. 

     (Experiments contributed by Anne Schuderi) 
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invagination during ventral furrow formation. Whereas bgm transcripts are 

distributed throughout the cell, dbb mRNAs appear to be restricted to the apical 

portion of these cells.  Restricted subcellular expression of mRNAs is rare, but is 

usually associated with localized translation. Such a machinery is able to  provide 

an immediate supply, with respect to time, of the specific protein at a given 

subcellular location (Besse and Ephrussi, 2008). Hence, it is intriguing to 

speculate that Dbb ACS activity is required specifically at the site of apical 

constriction in the ventral furrow forming cells. We have not observed any 

embryonic lethality associated with zygotic loss of bgm or dbb, either alone or in 

combination (Chapter 2); however, it is possible that the phenotype is very subtle 

and has thus been undetected. Given the very specific expression pattern of dbb 

mRNA,  we are conducting precise and careful experiments to determine any 

role of dbb in development of the ventral furrow.  For this analysis,   we will 

examine ventral furrow formation in live and fixed bgm, dbb, and bgm dbb mutant 

embryos using time lapse microscopy and high resolution techniques like 

Scanning Electron Microscopy.  Our expectation is that defects, if they exist will 

be subtle enough to not result in lethality, but may result in delayed and/or 

improper ventral furrow formation (Figure 3.4).  

 

Discussion 

 The bgm/dbb gene pair represents the second pair of duplicated genes 

(after scylla and charybde) that we identified based on an asymmetric pattern of 

DV axis expression.  As was the case for scylla and charybde, both bgm and dbb  
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Figure 3.4: dbb  and bgm  mRNA localization  in the ventral  furrow  
forming cells.  

Cryosections of wild type embryos at different stages of gastrulation  stained 
for dbb and  bgm transcripts. dbb transcripts are expressed in the ventral 
furrow forming cells starting at stage 5, and the mRNA is localized to the 
apical region of the cells, as shown by arrows. bgm transcripts are also 
present in the ventral furrow forming cells, albeit in a diffused fashion, as 
shown by arrowheads. 
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are regulated by the Dorsal signaling pathway, although their expression is 

restricted ventrally (rather than dorsally), and thus one or both may have roles in 

effecting ventral cell specific fates. mRNA localization is a widespread 

posttranscriptional mechanism for targeting protein synthesis to specific cellular 

sites. It is involved in the generation of cell polarity, asymmetric segregation of 

cell fate determinants, and germ cell specification. Lecuyer et al. employed a 

high-resolution fluorescent in situ hybridization procedure to comprehensively 

evaluate mRNA localization dynamics during early Drosophila embryogenesis.  

 Of the 3370 genes analyzed, 71% of those expressed encode 

subcellularly localized mRNAs. Tight correlations between mRNA distribution and 

subsequent protein localization and function indicate major roles for mRNA 

localization in nucleating localized cellular machineries (Lécuyer et al., 2007). 

Apical restriction of dbb transcripts in the invaginating cells of the ventral furrow 

is particularly intriguing, and we are currently investigating whether this 

localization facilitates Dbb function in ventral furrow formation. Based on other 

examples of subcellular RNA localization (Cody et al., 2013; Gaspar, 2011; 

Jansen and Niessing, 2012), it is possible that dbb mRNA localization to 

the apical side of invaginating cells assists in rapid translation and localization of 

the Dbb ACS and thereby facilitates rapid lipid-dependent remodeling of 

membranes at the cells’ constricting surface. The invaginating ventral furrow 

consists of a 18 cell wide stripe along the ventral midline of the blastoderm (Foe, 

1989). In a brief 10 min, these cells constrict apically and invaginate as a unit, 

forming a tube within the ventral portion of the embryo. In twist and snail mutants, 
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the ventral furrow does not form, and consequently mutants fail to develop 

mesoderm derivatives. The ventral furrow defects in twist and snail mutants 

represent the earliest visible requirements for zygotic transcription (Ferguson and 

Anderson, 1991). In fact, the window for transcription and translation of twist and 

snail targets is only 30–40 min, making it likely that target genes will encode 

effectors directly and that these effectors will correspond to modulators rather 

than structural proteins themselves (Simpson, 1983). Accordingly, both integrin 

subunit PS2a and Xanthine Dehydrogenase (rosy) are transcribed in cells that 

become the furrow (Leptin et al., 1989). An enzyme that catalyzes the activation 

of membrane components, such as dbb, also fits this prediction and fits the 

profile of an effector of DV patterning. 

Despite 60% sequence similarity (40% identical) of dbb and bgm, 

differences in their spatiotemporal expression profiles suggest that their functions 

have diverged. In this regard, results from northern blot studies are indicative of 

complementary roles in development.  Peaks of dbb expression correspond to the 

troughs of bgm expression.  Moreover, our observation that dbb transcripts 

accumulate apically at the site of constriction in invaginating cells of the ventral 

furrow tempts us to speculate that the developmental regulation of dbb in 

the embryo is important for the rapid membrane remodeling that takes place 

during gastrulation and possibly again later in embryogenesis, while bgm 

functions predominate later in larval and adult stages of the animal's life history.  

Comparisons of ventral furrow formation in wild-type, dbb, and bgm mutant 

embryos, required as a first step in testing potential mechanisms of dbb and bgm  
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function in ventral furrow formation, are ongoing.      

	
  

References 

Adams, M.D., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J.D., 
Amanatides, P.G., Scherer, S.E., Li, P.W., Hoskins, R.A., Galle, R.F., et al. 
(2000). The genome sequence of Drosophila melanogaster. Science 287, 2185–
2195. 
 
Anderson, K.V. (2000). Toll signaling pathways in the innate immune response. 
Curr. Opin. Immunol. 12, 13–19. 
 
Anderson, K.V., and Nüsslein-Volhard, C. (1984a). Information for the dorsal—
ventral pattern of the Drosophila embryo is stored as maternal mRNA. Nature 
311, 223–227. 
 
Anderson, K.V., Bokla, L., and Nüsslein-Volhard, C. (1985). Establishment of 
dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the 
Toll gene product. Cell 42, 791–798. 
 
Anderson, K.V., Schneider, D.S., Morisato, D., Jin, Y., and Ferguson, E.L. 
(1992). Extracellular morphogens in Drosophila embryonic dorsal-ventral 
patterning. Cold Spring Harb. Symp. Quant. Biol. 57, 409–417. 
 
Beg, A.A., Finco, T.S., Nantermet, P.V., and Baldwin, A.S. (1993). Tumor 
necrosis factor and interleukin-1 lead to phosphorylation and loss of I kappa B 
alpha: a mechanism for NF-kappa B activation. Mol. Cell. Biol. 13, 3301–3310. 
 
Belvin, M.P., and Anderson, K.V. (1996). A conserved signaling pathway: the 
Drosophila toll-dorsal pathway. Annu. Rev. Cell Dev. Biol. 12, 393–416. 
 
Besse, F., and Ephrussi, A. (2008). Translational control of localized mRNAs: 
Restricting protein synthesis in space and time. Nature Reviews Mol. Cell Biol. 9, 
971–980. 
 
Boulay, J.L., Dennefeld, C., and Alberga, A. (1987). The Drosophila 
developmental gene snail encodes a protein with nucleic acid binding fingers. 
Nature 330, 395–398. 
 
Brand, A.H., and Perrimon, N. (1994). Raf acts downstream of the EGF receptor 
to determine dorsoventral polarity during Drosophila oogenesis. Genes Dev. 8, 
629–639. 
 
Chasan, R., Jin, Y., and Anderson, K.V. (1992). Activation of the easter zymogen 



 

 

96	
  

is regulated by five other genes to define dorsal-ventral polarity in the Drosophila 
embryo. Development 115, 607–616. 
 
Cody, N.A.L., Iampietro, C., and Lécuyer, E. (2013). The many functions of 
mRNA localization during normal development and disease: from pillar to post. 
Wiley Interdiscip Rev. Dev. Biol. 2, 781–796. 
 
Coleman, K.G., Poole, S.J., Weir, M.P., Soeller, W.C., and Kornberg, T. (1987). 
The invected gene of Drosophila: sequence analysis and expression studies 
reveal a close kinship to the engrailed gene. Genes Dev. 1, 19–28. 
 
Costa, M., Wilson, E.T., and Wieschaus, E. (1994). A putative cell signal 
encoded by the folded gastrulation gene coordinates cell shape changes during 
Drosophila gastrulation. Cell 76, 1075–1089. 
 
Dawes-Hoang, R.E., Parmar, K.M., Christiansen, A.E., Phelps, C.B., Brand, A.H., 
and Wieschaus, E.F. (2005). folded gastrulation, cell shape change and the 
control of myosin localization. Development 132, 4165–4178. 
 
DeLotto, Y., and DeLotto, R. (1998). Proteolytic processing of the Drosophila 
Spätzle protein by easter generates a dimeric NGF-like molecule with 
ventralising activity. Mech. Dev. 72, 141–148. 
 
Dubnicoff, T., Valentine, S.A., Chen, G., Shi, T., Lengyel, J.A., Paroush, Z., and 
Courey, A.J. (1997a). Conversion of dorsal from an activator to a repressor by 
the global corepressor Groucho. Genes Dev. 11, 2952–2957. 
 
Eberl, D.F., and Hilliker, A.J. (1988). Characterization of X-linked recessive lethal 
mutations affecting embryonic morphogenesis in Drosophila melanogaster. 
Genetics 118, 109–120. 
 
Ferguson, E.L. (1996). Conservation of dorsal-ventral patterning in arthropods 
and chordates. Curr. Opin. Genet. Dev. 6, 424–431. 
 
Ferguson, E.L., and Anderson, K.V. (1992a). Decapentaplegic acts as a 
morphogen to organize dorsal-ventral pattern in the Drosophila embryo. Cell 71, 
451–461. 

 
Ferguson, E.L., and Anderson, K.V. (1992c). Localized enhancement and 
repression of the activity of the TGF-beta family member, decapentaplegic, is 
necessary for dorsal-ventral pattern formation in the Drosophila embryo. 
Development 114, 583–597. 
 
Foe, V.E. (1989). Mitotic domains reveal early commitment of cells in Drosophila 
embryos. Development 107, 1–22. 
 



 

 

97	
  

Galindo, R.L., Edwards, D.N., Gillespie, S.K., and Wasserman, S.A. (1995). 
Interaction of the pelle kinase with the membrane-associated protein tube is 
required for transduction of the dorsoventral signal in Drosophila embryos. 
Development 121, 2209–2218. 
 
Gaspar, I. (2011). Microtubule-based motor-mediated mRNA localization in 
Drosophila oocytes and embryos. Biochem. Soc. Trans. 39, 1197–1201. 
Gay, N.J., and Keith, F.J. (1991). Drosophila Toll and IL-1 receptor. Nature 351, 
355–356. 
 
González-Gaitán, M., Rothe, M., Wimmer, E.A., Taubert, H., and Jäckle, H. 
(1994). Redundant functions of the genes knirps and knirps-related for the 
establishment of anterior Drosophila head structures. Proc. Natl. Acad. Sci. 
U.S.A. 91, 8567–8571. 
 
Hashimoto, C., Gerttula, S., and Anderson, K.V. (1991). Plasma membrane 
localization of the Toll protein in the syncytial Drosophila embryo: importance of 
transmembrane signaling for dorsal-ventral pattern formation. Development 111, 
1021–1028. 
 
Hirose, F., Yamaguchi, M., and Matsukage, A. (1994). Repression of regulatory 
factor for Drosophila DNA replication-related gene promoters by zerknüllt 
homeodomain protein. J. Biol. Chem. 269, 2937–2942. 
 
Hong, C.C., and Hashimoto, C. (1995). An unusual mosaic protein with a 
protease domain, encoded by the nudel gene, is involved in defining embryonic 
dorsoventral polarity in Drosophila. Cell 82, 785–794. 
 
Huang, A.M., Rusch, J., and Levine, M. (1997). An anteroposterior Dorsal 
gradient in the Drosophila embryo. Genes Dev. 11, 1963–1973. 
 
Ip, Y.T., Park, R.E., Kosman, D., Yazdanbakhsh, K., and Levine, M. (1992a). 
Dorsal-Twist interactions establish snail expression in the presumptive 
mesoderm of the Drosophila embryo. Genes Dev. 6, 1518–1530. 
 
Ip, Y.T., Park, R.E., Kosman, D., Bier, E., and Levine, M. (1992b). The dorsal 
gradient morphogen regulates stripes of rhomboid expression in the presumptive 
neuroectoderm of the Drosophila embryo. Genes Dev. 6, 1728–1739. 
Irish, V.F., and Gelbart, W.M. (1987). The decapentaplegic gene is required for 
dorsal-ventral patterning of the Drosophila embryo. Genes Dev. 1, 868–879. 
 
Jansen, R.-P., and Niessing, D. (2012). Assembly of mRNA-protein complexes 
for directional mRNA transport in eukaryotes—an overview. Curr. Protein Pept. 
Sci. 13, 284–293. 
 
Jiang, J., Kosman, D., Ip, Y.T., and Levine, M. (1991). The dorsal morphogen 



 

 

98	
  

gradient regulates the mesoderm determinant twist in early Drosophila embryos. 
Genes Dev. 5, 1881–1891. 
 
Jiang, J., Rushlow, C.A., Zhou, Q., Small, S., and Levine, M. (1992). Individual 
dorsal morphogen binding sites mediate activation and repression in the 
Drosophila embryo. EMBO J. 11, 3147–3154. 
 
Lécuyer, E., Yoshida, H., Parthasarathy, N., Alm, C., Babak, T., Cerovina, T., 
Hughes, T.R., Tomancak, P., and Krause, H.M. (2007). Global analysis of mRNA 
localization reveals a prominent role in organizing cellular architecture and 
function. Cell 131, 174–187. 
 
Leptin, M., Bogaert, T., Lehmann, R., and Wilcox, M. (1989). The function of PS 
integrins during Drosophila embryogenesis. Cell 56, 401–408. 
 
Letsou, A., Alexander, S., Orth, K., and Wasserman, S.A. (1991). Genetic and 
molecular characterization of tube, a Drosophila gene maternally required for 
embryonic dorsoventral polarity. Proc. Natl. Acad. Sci. U.S.A. 88, 810–814. 
 
Manseau, L.J., and Schüpbach, T. (1989a). cappuccino and spire: two unique 
maternal-effect loci required for both the anteroposterior and dorsoventral 
patterns of the Drosophila embryo. Genes Dev. 3, 1437–1452. 
 
Manseau, L.J., and Schüpbach, T. (1989b). The egg came first, of course! 
Anterior-posterior pattern formation in Drosophila embryogenesis and oogenesis. 
Trends Genet. 5, 400–405. 
 
Morisato, D., and Anderson, K.V. (1995). Signaling pathways that establish the 
dorsal-ventral pattern of the Drosophila embryo. Annu. Rev. Genet. 29, 371–399. 
 
Myers, E.W., Sutton, G.G., Delcher, A.L., Dew, I.M., Fasulo, D.P., Flanigan, M.J., 
Kravitz, S.A., Mobarry, C.M., Reinert, K.H., Remington, K.A., et al. (2000). A 
whole-genome assembly of Drosophila. Science 287, 2196–2204. 
 
Neuman-Silberberg, F.S., and Schüpbach, T. (1993). The Drosophila 
dorsoventral patterning gene gurken produces a dorsally localized RNA and 
encodes a TGF alpha-like protein. Cell 75, 165–174. 
 
Norris, J.L., and Manley, J.L. (1992). Selective nuclear transport of the 
Drosophila morphogen dorsal can be established by a signaling pathway 
involving the transmembrane protein Toll and protein kinase A. Genes Dev. 6, 
1654–1667. 
 
Nüsslein-Volhard, C., and Wieschaus, E. (1980). Mutations affecting segment 
number and polarity in Drosophila. Nature 287, 795–801. 
 



 

 

99	
  

Pan, D.J., Huang, J.D., and Courey, A.J. (1991). Functional analysis of the 
Drosophila twist promoter reveals a dorsal-binding ventral activator region. 
Genes Dev. 5, 1892–1901. 
 
Perrimon, N., and Perkins, L.A. (1997). There must be 50 ways to rule the signal: 
the case of the Drosophila EGF receptor. Cell 89, 13–16. 
 
Roth, S., Stein, D., and Nüsslein-Volhard, C. (1989). A gradient of nuclear 
localization of the dorsal protein determines dorsoventral pattern in the 
Drosophila embryo. Cell 59, 1189–1202. 
 
Rubin, G.M. (2000). Biological annotation of the Drosophila genome sequence. 
Novartis Found. Symp. 229, 79–82; discussion 82–83. 
 
Rusch, J., and Levine, M. (1996). Threshold responses to the dorsal regulatory 
gradient and the subdivision of primary tissue territories in the Drosophila 
embryo. Curr. Opin. Genet. Dev. 6, 416–423. 
 
Rusch, J., and Levine, M. (1997). Regulation of a dpp target gene in the 
Drosophila embryo. Development 124, 303–311. 
 
Schejter, E.D., and Shilo, B.Z. (1989). The Drosophila EGF receptor homolog 
(DER) gene is allelic to faint little ball, a locus essential for embryonic 
development. Cell 56, 1093–1104. 
 
Schneider, D.S., Jin, Y., Morisato, D., and Anderson, K.V. (1994). A processed 
form of the Spätzle protein defines dorsal-ventral polarity in the Drosophila 
embryo. Development 120, 1243–1250. 
 
Schöck, F., Purnell, B.A., Wimmer, E.A., and Jäckle, H. (1999). Common and 
diverged functions of the Drosophila gene pair D-Sp1 and buttonhead. Mech. 
Dev. 89, 125–132. 
 
Schüpbach, T., and Roth, S. (1994). Dorsoventral patterning in Drosophila 
oogenesis. Curr. Opin. Genet. Dev. 4, 502–507. 
 
Scuderi, A., Simin, K., Kazuko, S.G., Metherall, J.E., and Letsou, A. (2006). 
scylla and charybde, homologues of the human apoptotic gene RTP801, are 
required for head involution in Drosophila. Dev. Biol. 291, 110–122. 
 
Sen, J., Goltz, J.S., Stevens, L., and Stein, D. (1998). Spatially restricted 
expression of pipe in the Drosophila egg chamber defines embryonic dorsal-
ventral polarity. Cell 95, 471–481. 
 
Shen, B., and Manley, J.L. (1998). Phosphorylation modulates direct interactions 
between the Toll receptor, Pelle kinase and Tube. Development 125, 4719–4728. 



 

 

100	
  

Shimell, M.J., Ferguson, E.L., Childs, S.R., and O’Connor, M.B. (1991). The 
Drosophila dorsal-ventral patterning gene tolloid is related to human bone 
morphogenetic protein 1. Cell 67, 469–481. 
 
Simin, K., Scuderi, A., Reamey, J., Dunn, D., Weiss, R., Metherall, J.E., and 
Letsou, A. (2002). Profiling patterned transcripts in Drosophila embryos. Genome 
Res. 12, 1040–1047. 
 
Smith, C.L., and DeLotto, R. (1994). Ventralizing signal determined by protease 
activation in Drosophila embryogenesis. Nature 368, 548–551. 
 
Steward, R. (1987). Dorsal, an embryonic polarity gene in Drosophila, is 
homologous to the vertebrate proto-oncogene, c-rel. Science 238, 692–694. 
 
Tatei, K., Cai, H., Ip, Y.T., and Levine, M. (1995). Race: a Drosophila homologue 
of the angiotensin converting enzyme. Mech. Dev. 51, 157–168. 
 
Tautz, D., and Pfeifle, C. (1989). A non-radioactive in situ hybridization method 
for the localization of specific RNAs in Drosophila embryos reveals translational 
control of the segmentation gene hunchback. Chromosoma 98, 81–85. 
 
Thisse, B., el Messal, M., and Perrin-Schmitt, F. (1987). The twist gene: isolation 
of a Drosophila zygotic gene necessary for the establishment of dorsoventral 
pattern. Nucleic Acids Res. 15, 3439–3453. 
 
Thisse, B., Stoetzel, C., Gorostiza-Thisse, C., and Perrin-Schmitt, F. (1988). 
Sequence of the twist gene and nuclear localization of its protein in 
endomesodermal cells of early Drosophila embryos. EMBO J. 7, 2175–2183. 
 
Thisse, C., Perrin-Schmitt, F., Stoetzel, C., and Thisse, B. (1991). Sequence-
specific transactivation of the Drosophila twist gene by the dorsal gene product. 
Cell 65, 1191–1201. 
 
Towb, P., Galindo, R.L., and Wasserman, S.A. (1998). Recruitment of Tube and 
Pelle to signaling sites at the surface of the Drosophila embryo. Development 
125, 2443–2450. 
 
Valentine, S.A., Chen, G., Shandala, T., Fernandez, J., Mische, S., Saint, R., and 
Courey, A.J. (1998). Dorsal-mediated repression requires the formation of a 
multiprotein repression complex at the ventral silencer. Mol. Cell. Biol. 18, 6584–
6594. 
 
Wakimoto, B.T., Turner, F.R., and Kaufman, T.C. (1984). Defects in 
embryogenesis in mutants associated with the antennapedia gene complex of 
Drosophila melanogaster. Dev. Biol. 102, 147–172. 
 



 

 

101	
  

Wall, N.A., and Hogan, B.L. (1994). TGF-beta related genes in development. 
Curr. Opin. Genet. Dev. 4, 517–522. 
 
Wharton, K.A., Ray, R.P., and Gelbart, W.M. (1993). An activity gradient of 
decapentaplegic is necessary for the specification of dorsal pattern elements in 
the Drosophila embryo. Development 117, 807–822. 
 
Wieschaus, E. (1996). Embryonic transcription and the control of developmental 
pathways. Genetics 142, 5–10. 
 
Wieschaus, E., Nusslein-Volhard, C., and Kluding, H. (1984). Krüppel, a gene 
whose activity is required early in the zygotic genome for normal embryonic 
segmentation. Dev. Biol. 104, 172–186. 
 
Wozney, J.M., Rosen, V., Celeste, A.J., Mitsock, L.M., Whitters, M.J., Kriz, R.W., 
Hewick, R.M., and Wang, E.A. (1988). Novel regulators of bone formation: 
molecular clones and activities. Science 242, 1528–1534. 
 
Xiao, T., Towb, P., Wasserman, S.A., and Sprang, S.R. (1999). Three-
dimensional structure of a complex between the death domains of Pelle and 
Tube. Cell 99, 545–555. 
 
  

	
  



CHAPTER 4 

 

DROSOPHILA ACYL CoA SYNTHASE MUTANTS DISPLAY MOTOR 
 

 DISABILITIES DUE TO PROGRESSIVE NEURODEGENERATION 

	
   	
  

Introduction 

 Defects in fatty acid synthesis or distribution can have widespread effects 

on an organism. One specific tissue that is particularly susceptible to these 

defects is the nervous system.  Potentially fatal human neurodegenerative 

diseases such as Tay Sachs, Zelweger Syndrome, and Adrenoleukodystrophy 

(ALD) exemplify this (Moser, 1997; Schmitt et al., 2014). 

 Adrenoleukodystrophy (ALD) is a rare but oftentimes fatal progressive 

neurodegenerative disease. The most common form of the disease is X-linked 

(X-ALD); it occurs equally in all ethnic groups with an estimated incidence of 

1:17,000. X-ALD is a clinically heterogeneous disorder, exhibiting incomplete 

penetrance and variable expressivity (Moser et al., 2005). The most severe form 

of X-ALD is cerebral ALD, which affects about 45% of all patients (Moser, 1997). 

Demyelination in the central nervous system (CNS) constitutes the major burden 

of cerebral ALD accompanied by a treatable adrenal dysfunction—Addison’s 

disease. The disorder is diagnosed as progressive neurological dysfunction in 

previously healthy boys most commonly between the ages of 4 and 8 years old. 
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Affected children often present with school failure, hyperactivity, visual and 

hearing loss, cognitive impairment, and finally progression to paralysis and 

death. A less severe form of the disease, Adrenomyeloneuropathy [AMN], occurs 

in ~35% of X-ALD patients. In AMN patients, demyelination is confined to the 

peripheral nervous system (PNS). The gene responsible for X-ALD encodes a 

peroxisomal ATP-binding transporter (ABCD1) (Mosser et al., 1993). The ABCD1 

protein localizes to the peroxisomal membrane, where it functions to transport 

very long chain fatty acids (VLCFAs) into peroxisomes for their degradation. 

Indeed all X-ALD patients, including asymptomatic carriers, show elevated levels 

of VLCFAs in plasma, brain, and adrenal glands4, but whether this accumulation 

is causal to the neurodegeneration seen in ALD patients is not clear (Igarashi et 

al., 1976; Moser, 1997). Attempts to resolve the mechanism of 

neurodegeneration as well as the clinical heterogeneity of ALD in animal models 

have met with very limited success. 

 Acyl-CoA synthetases (ACSs) function immediately upstream of ABCD 

transporters and have been thought to be involved in ALD disease pathology. 

bubblegum (bgm), a Drosophila long chain acyl-CoA synthetase (ACSL), was 

isolated in a genetic screen for neurodegenerative mutants (Min and Benzer, 

1999). bgm mutant males exhibit neurodegeneration and elevated levels of 

certain VLCFAs indicative of a link between the bgm phenotype in flies and ALD 

in humans (Min and Benzer, 1999). However, bgm mutant flies recapitulate only 

some aspects of ALD and thus are far from perfect as an ALD disease model. 

Most of the ABC transporter or ACSVL synthetase gene studies in fly or mouse 
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models have not contemplated the huge potential for redundancy within both 

gene families. We have shown that a far more profound phenotype, and thus a 

better ALD disease model, is found in animals harboring mutations both in Bgm 

and its close homolog, Double bubble (Dbb), encoded by the dbb gene 

(unpublished from Anna Sivachenko). The high degree of conservation of 

fundamental biological processes in humans and flies, coupled with a broad 

repertoire of fly genetic approaches, makes Drosophila a powerful model system 

for understanding the molecular and cellular pathology of the nervous system 

(Celotto and Palladino, 2005; Kretzschmar, 2005; Nichols, 2006).  

 To study the functional relationship between bgm and its homologue dbb in 

the maintenance of adult CNS integrity, Sivatchenko et al., (Sivachenko and 

Letsou, in prep) analyzed brain morphologies in 18-day old wild type, single and 

double mutant flies. Histological and statistical analyses, of bgm1, dbbKO (both 

phenotypic nulls) and bgm1 dbbKO brain sections revealed optic lobe and retinal 

degeneration. Degenerative changes were much stronger in the bgm1 mutant 

than in the dbbKO mutant; however, the double mutant had a significantly worse 

phenotype compared to the wt and both single mutant flies. Our analysis 

indicates that these abnormalities occur after retinal differentiation is complete, 

and this is reminiscent of the human ALD phenotype where neurodegeneration 

affects previously normal children.  

 One of the major focal points of our research is identification of potential 

routes for therapy. This can be addressed either by diet intervention or by 

identification of potential drug therapies to target the ACS biochemical pathway. 
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For this, we need to conduct large-scale diet and drug screens and thus require a 

phenotype that is more easily scored than brain morphology. Also importantly, 

having documented severe eye abnormalities in bgm dbb double mutants, we 

seek to determine if the neurodegeneration is global or whether it is restricted to 

the eye. In order to address these questions, I used three different behavioral 

assays that have been previously reported to be optimally representative of 

neuronal abilities in the fruit fly.  

 

Materials and Methods 

Negative geotaxis assay  

 Flies are singly placed in an empty fly vial and tapped to the bottom. The 

time taken by each fly to reach a marked position at the top of the vial is 

measured. The experiment is repeated thrice for each animal.  

 

CO2 recovery assay 

 Flies are exposed to a specific dose of CO2 while placed on the diffuser, 

and the time taken to recover, i.e., to move and climb the vial is measured. The 

experiment is done with single flies and is performed only once/day with each 

animal due to the increased recovery times upon repeated exposures.  

 

Results 

 In both, a negative geotaxis (climbing ability) and CO2 recovery assays, we 

observed significantly reduced abilities in 15-day old bgm dbb and bgm flies 
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compared to similarly aged wt flies (Figure 4.1). These differences in behavior 

between the wild type and mutant flies were only observed at a higher 

temperature of 25 C and not at 22 C. Thus these phenotypes are indicative of a 

temperature sensitive motor dysfunction. The Dbb ACSL does not seem to 

significantly contribute to this phenotype. Thus these data demonstrate that  

there is widespread neurodegeneration in the bgm and bgm dbb ACSL mutants 

which affects the motor behavior of these animals. Additionally, the behavioral 

defects in bgm dbb double mutant flies are comparable to those seen in bgm 

flies, suggestive of the fact that loss of bgm accounts for the behavioral defects in 

the double mutants and dbb has an accessory role. Hence, only bgm or bgm dbb 

flies will be accessed for the treatment of neurodegeneration in drug screens.  

 In order to further validate the behavioral phenotypes of our ACSL mutants 

in terms of neurodegeneration we assessed whether the progressive pattern of 

neurodegeneration observed in the eye and brain phenotypes, is also evident in 

the behavior of bgm dbb double mutant flies. As a first step we performed these 

studies only in wild type and bgm dbb mutant flies because the double mutants 

are comparable to bgm mutant flies in terms of the behavioral phenotypes and 

dbb mutants have no significant behavioral defects.  We used the Negative 

Geotaxis assay to determine if progressive neurodegeneration affects behavior. 

We find that wild type flies perform consistently well starting from day 0 to day 15 

in our behavioral assays. However, while bgm dbb mutants are comparable to 

wild type flies from day 0 to Day 7, they begin showing signs of motor dysfunction 

starting at day 7 or 8 approximately. We also see significantly more death in the  
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Figure 4.1:Behavioral defects in 15-day old  bgm  and bgm dbb  
adult flies at 25 C.   

A. Graphical representation of time taken(seconds) to climb a vial 25 C 
by wild type, bgm, dbb, and  bgm dbb 15-day old flies during the 
Negative Geotaxis assay.   

B. Graphical representation of time taken(minutes) to recover at 25 C 
by wild type, bgm, dbb, and  bgm dbb 15-day old flies during the CO2  
recover assay. 

C. Temperature sensitive negative geotaxis behavior of bgm dbb 
mutants.	
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double mutant flies compared to wild type starting at day 7. The behavioral 

phenotype however, does not worsen from day 8 to day 15. It is known that the 

development of the adult Drosophila nervous system is complete at the time of 

eclosion.  Since the bgm dbb flies appear comparable to wild type for the first 6 

days posteclosion and show behavioral abnormalities starting at day 8, these 

phenotypes are suggestive of the onset of neurodegeneration at day 8 (Figure 

4.2). Significantly, the results suggest that neurodegeneration in the bgm dbb 

flies begins at day 8 at the latest, as opposed to the previously reported retinal 

neurodegeneration occurring at day 18.  

 

Discussion 

 In summary, we have shown that bgm and bgm dbb mutants exhibit 

widespread neurodegeneration, as shown earlier by Sivachenko et 

al.(Sivachenko and Letsou, in prep) in the retina and as evidenced by behavioral 

abnormalities discussed in the current study. The behavioral phenotypes are also 

temperature sensitive. This is suggestive of a role of the Bgm ACSL  or their fatty 

acid products in neuronal or glial membranes, and increased temperatures 

presumably make these membranes more susceptible to damage thus leading to 

behavioral abnormalities (Sepp and Auld, 2003). Lastly, neurodegeneration, as 

assessed from the behavioral phenotypes, appears to begin much earlier than 

the previously reported retinal degeneration. We begin to see behavioral 

abnormalities in bgm dbb flies at day 7/8 posteclosion, whereas retinal 

degeneration in our laboratory, as well as by Min and Benzer (Min and Benzer,  
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Figure 4.2: Neurodegeneration starts at Day 8 in bgm dbb mutants. 

Graphical representation of the performance of Day 1, Day 8, and Day 
15 wild type and bgm dbb flies in a Negative Geotaxis assay at 25 C. 
Mutant flies show signs of neurodegeneration starting at Day 8 post 
eclosion. 
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1999), has been reported only at day 18. It will be interesting to see if the 

neurodegeneration that presumably results in behavioral abnormalities at day 7/8 

also affects eye and brain tissues.  

 Lastly, we have shown that behavioral abnormalities indicative of 

widespread neurodegeneration do occur in the bgm and bgm dbb flies and these 

phenotypes can be used to assess effects of remedial treatments in drug screens  

and diet studies. When taking up large scale drug screens or diet studies, it will 

be helpful, however, to automate the process and access the effects of diet and 

drugs on a large number of flies under highly controlled conditions. Automation 

will help us reduce environmental and experimental variations, which can 

drastically affect behavior. Additionally, the phenotypes observed in our ACSL 

mutants are variably expressed and are reminiscent of human ALD patients. 

Automation will help us assess phenotypes and treatment effects in a large 

number of flies, thus providing high statistical power and will allow us to focus on 

the most promising treatment alternatives.  
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CHAPTER 5 

 

SUMMARY AND PERSPECTIVES 

	
  

	
   In Chapter 2 of the present study we have demonstrated the requirement of 

maternally deposited bgm transcripts for the processes of cellularization and 

neurogenesis. Specifically, bgm is required for the proper subcellular targeting of 

Rab 5 endocytic vesicles that are critical to furrow extension during Drosophila 

cellularization. The extension of furrow canals during cellularization requires 

enormous amounts of membrane addition, which in most part is supplied by 

endocytic vesicles (Strickland and Burgess, 2004). However, it is unclear as to 

how these vesicles are targeted to specific subcellular compartments that finally 

lead to membrane addition at the growing furrow canal. Data presented in the 

current study demonstrate the requirement of the Bgm Long chain Acyl CoA 

synthase for the proper targeting of Rab-5 vesicles during cellularization. This is 

significant, as the search for identifier signals for subcellular targeting has 

continued for long and our research is an important  first step towards the 

discovery of such molecules. Based on the data presented in this study, we 

hypothesize that activated long chain fatty acids themselves or via interaction 

with specific proteins provide the identifier signal that directs Rab5 vesicles to the 

recycling endosome and Rab 11 vesicles to the growing furrow canals. In the 
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absence of the Bgm ACS, these activated LCFAs are missing and so is the 

identifier signal.  

 Importantly, ours is only the second  study to show the requirement  of an 

Acyl CoA synthase in a specific developmental process. Kniazeva et al. have 

demonstrated the requirement of C.elegans Acsl-1 in cytokinetic processes 

during mitotic cell divisions in C.elegans embryogenesis. Additionally, a few 

studies in Drosophila have implicated enzymes required for lipid biogenesis and 

modification in cytokinesis of spermatocytes (Routt and Bankaitis, 2004). Thus 

there is emerging evidence for the role of Long chain fatty acids and enzymes 

required for their biogenesis in cytogenetic processes. This is intriguing, because 

thus far, in spite of lipids being important structural molecules within a cell, only 

proteins have been implicated in a majority of processes relating to cytokinesis. 

Thus, ours is one of the first few studies in an emerging field to study the role of 

lipids and long chain fatty acids in cytogenetic processes. These studies can 

have far reaching developmental implications because cell divisions in early 

embryogenesis define the embryonic and finally, the organismal body plan. 

Subtle defects or alterations in the properties of membranes may be overlooked 

during embryogenesis but may be manifested as developmental disorders at 

later stages, when cellular demands in terms of signaling and energy 

requirements are much more complex. Such a model of a developmental scar 

probably explains the neuronal abnormalities that we see in bgm  mutant embryos 

and may provide a model for genetic predisposition to neurodevelopmental 

disorders.  What follows is a discussion of the role long chain fatty acids in 
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neuronal development.  

 In Chapter 2, we also provide evidence for the role of the Bgm ACSL in 

neurogenesis. Loss of maternal bgm transcript leads to reduced number of 

neuroblasts as well as defects in  axonogenesis. In addition to bgm embryos, 

which suffer a complete failure in cellularization and thus suffer lethality, we also 

observe the presence of partially cellularized bgm embryos that do not suffer 

lethality. These data, along with a maternal requirement of bgm for neuroblast 

formation,  suggest that the neurogenesis defects in bgm  embryos may arise 

from a partial failure in cellularization. It is possible that partial failure in 

cellularization leads to a failure in proper cell fate specification, thus leading to 

defects in neurogenesis. However, experiments to obtain direct evidence proving 

this hypothesis are currently underway. It is also possible that there is an 

independent requirement for LCFAs and the Bgm ACS for neurogenesis and 

axonogenesis. In either case, our findings are significant in light of the many 

clinical studies suggestive of a requirement of LCFAs and VLCFAs in  neuronal 

development. Several studies have implicated an imbalance in LCFAs and 

VLCFAs in neurodevelopmental disorders like Dyslexia, Dyspraxia, 

Schizoaffective disorder, and Autism Spectrum Disorders(ASD) (Das, 2013; 

Schuchardt et al., 2010). Most of these disorders have overlapping neurological 

symptoms accompanied by a dysfunctional immune response (Ward, 2000). 

Neuronal and glial membranes are very rich in LCFAs and VLCFAs and hence, 

the nervous system is very sensitive to any changes in fatty acid metabolism 

(Laycock et al., 2007). In addition, a large number of signaling molecules 
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required by the immune system are lipid based (Mendelson et al., 2014). These 

findings, in association with clinical studies,  are very suggestive of a suboptimal 

lipid metabolism in patients with neurodevelopmental disorders. Our findings are 

a significant first step towards a successful genetic model to understand the 

mechanistic role of LCFAs/VLCFAs and ACSLs in neuronal development. 

Further research in this direction will provide promising avenues for targeted 

treatment strategies, which are unavailable at the moment.  

 In Chapter 3, our studies of the developmental expression patterns of the 

homologous bgm  and dbb  ACSL genes provide interesting perspectives 

regarding the duplication of these genes. In addition, the transcriptional 

regulation of this gene pair by the dorsoventral patterning genes of the Dorsal 

pathway makes them interesting candidates as effectors of Dorsoventral 

signaling. In addition, the specific localization of the dbb transcript at apical 

margins of invaginating ventral furrow cells may be indicative of its role in rapid 

membrane remodeling required, first for the apical constriction of invaginating 

ventral furrow cells and later for cell movements driving morphogenesis in the 

Drosophila embryo. The absence of a strong phenotype, associated with the 

apical localization of dbb mRNA, could be due to the presence of a yet 

unidentified ACSL, which functions redundantly along with Dbb. However, as 

potential effectors of dorsoventral patterning, it is not surprising that bgm and dbb 

mutants present with no phenotypic manifestations with regards to their ventrally 

restricted expression pattern in the prospective mesoderm. The absence of a 

phenotype could be due to an unidentified redundancy or the possibility of a very 
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subtle unidentified phenotype itself. Both of these possibilities are worth 

pursuing, and experiments in the lab are underway to further explore these 

venues of investigation.  

 In Chapter 4 we have presented preliminary evidence of behavioral defects 

in Drosophila mutants of Bgm and Dbb ACSs.  These data provide a segue 

towards easily scored phenotypes to be used for drug screens and nutritional 

intervention aimed at finding potential therapies for neurodegenerative diseases.  

 Overall, we present a comprehensive study of the developmental regulation 

and roles of long chain acyl CoA synthases in Drosophila. We have provided 

compelling evidence for the role of Bgm ACS as a key developmental regulator 

during Drosophila embryonic development. Given the high degree of 

conservation between the Drosophila and mammalian ACSs, including Bgm and 

Dbb, our studies will play a significant role in uncovering the role of ACSs and 

their associated long and very long chain fatty acids in human development and 

disease.  
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