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ABSTRACT 

 The aim of this dissertation was to investigate potential mechanisms 

whereby nicotine (NIC) is neuroprotective to the dopamine (DA), serotonin (5-

HT), and memory systems. As early as 1939, clinical studies have indicated that 

tremors, or Parkinson’s disease (PD), are less likely to occur among tobacco 

smokers. More recent epidemiological studies have found an inverse correlation 

between tobacco smoking and PD risk. PD is the second most common 

neurodegenerative disorder characterized by death of DA and 5-HT neurons in 

the nigrostriatal pathway and is associated with motor and memory dysfunction. 

Extensive preclinical studies have since demonstrated that NIC is 

neuroprotective in models of PD. The mechanism by which NIC is 

neuroprotective is of particular interest in the field of neurodegeneration to 

understand disease risk and to develop better prevention and treatment 

strategies. Noteworthy, the abuse of methamphetamine (METH), a potent 

psychostimulant, causes long-term neurotoxic effects resembling some aspects 

of PD, including deficits to the DA, 5-HT and memory systems. The data 

presented in this dissertation indicate that long-term (56 d) oral NIC 

administration to rats starting in adolescence attenuates both the dopaminergic 

and memory deficits, but not the serotonergic deficits, caused by a high-dose 

METH regimen. The dopamine transporter (DAT) function and density in the 
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striatum and nucleus accumbens core were used as markers of dopaminergic 

integrity, and the novel object recognition (NOR) test was used as marker of 

memory function. NIC is also neuroprotective when given short-term (21 d) 

beginning in adolescence, but not when it is initiated during adulthood. However, 

neuroprotection occurs when the duration of NIC administration is extended to 39 

d beginning in adulthood. NIC pretreatment alone is sufficient for neuroprotection 

against METH-induced DAT deficits as well as NOR deficits. Furthermore, NIC 

ameliorates the NOR deficits caused by METH when given as posttreatment, 

suggesting that NIC has cognitive protection and cognitive enhancement 

properties. Lastly, the densities of α4β2 and α6β2 nicotinic acetylcholine 

receptors are upregulated and downregulated, respectively, after administration 

of NIC in combination with METH. These data suggest an involvement of these 

receptors in neuroprotection against METH-induced dopaminergic and memory 

deficits. 
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CHAPTER 1 

INTRODUCTION 

Overview 

Nicotine (NIC) has shown to be neuroprotective in preclinical models of 

neurodegenerative disorders such as Parkinson’s disease (PD) (Quik et al., 

2012) and Alzheimer’s disease (Gould et al., 2013) as well as psychiatric 

conditions such as depression (Tizabi et al., 2009) and schizophrenia (Jubelt et 

al., 2008). Several mechanisms underlying this neuroprotection have been 

proposed including increases in neurotrophic factors (Maggio et al., 1998; 

Takarada et al., 2012), antioxidant activities (Newman et al., 2002; Xie et al., 

2005) and alterations in the proteasome system (Kane et al., 2004), with one 

common feature being the involvement of nicotinic acetylcholine receptors 

(nAChRs). NIC affects many systems in the body including cardiovascular, 

respiratory, digestive, skeletal muscles, and the brain via these receptors.  One 

scientific area of interest is the understanding of nAChRs in health and disease, 

as these studies might lead to new therapeutics as well as new preventive 

strategies against neurological and psychiatric disorders. NIC is naturally present 

in many common vegetables, particularly bell peppers, eggplant, and tomatoes 

(Domino et al., 1993; Siegmund et al., 1999). Diets rich in these vegetables have 

shown to be protective against PD (Nielsen et al., 2013). This dissertation will 
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specifically assess the potential neuroprotective effect of NIC in the monoamine 

and memory systems of the striatal and hippocampal brain regions that are 

affected by the abuse of methamphetamine (METH), with particular focus in 

investigating the role of nAChRs in potential neuroprotection. Noteworthy, 

present studies investigated the ability of NIC to modify neuronal function and 

prevent damage; thus, the implications of these studies lie under preventive 

measures in contrast to treatment of neurodegenerative disorders. 

 
Striatum and hippocampus 

Striatum and related regions. In rodents, the striatum is the main input 

nucleus of the basal ganglia. The striatum is divided into two anatomical regions, 

the dorsal and the ventral striatum. The dorsal striatum or neostriatum (referred 

herein as “striatum”), which reflects the caudate and putamen in humans, is the 

forebrain region that regulates motor function as well as learning and behavioral 

reinforcements. Approximately 90–95% of the striatum is composed of mini spiny 

projection neurons consisted of inhibitory γ-aminobutyric acid (GABA) 

neurotransmitter, and they provide the striatal output network. The remaining 

neuronal population is comprised of GABAergic and cholinergic interneurons. 

The striatum is densely innervated by dopaminergic neuronal input from the 

substantia nigra pars compacta (referred herein to “substantia nigra”) and to a 

lesser extent from the ventral tegmental area. The striatum also receives 

glutamatergic input projections from cortical regions (Zhou et al., 2002).  

The ventral striatum, otherwise known as and referred to herein as 

“nucleus accumbens,” modulates motor and motivation action behavior and 
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participates in reward learning and addiction. It receives dopaminergic 

innervations mainly from the ventral tegmental area and to a lesser extent from 

the substantia nigra. The nucleus accumbens also receives extensive 

glutamatergic input from the hippocampus, prefrontal cortex, and amygdala. 

Additionally, the nucleus accumbens sends output GABAergic projections to 

basal forebrain cholinergic neurons.  The nucleus accumbens is subdivided into 

two anatomical regions, the “core” and the “shell.” The nucleus accumbens core 

maintains a similar circuitry to the striatum by sending inhibitory projections to the 

substantia nigra and subthalamic nucleus. In contrast, the shell of the nucleus 

accumbens has no connectivity with the substantia nigra and subthalamic 

nucleus. These anatomical differences between core and shell strongly impact 

their distinct functions in goal/behavior selection, being the core involved in 

general selection and the shell in outcome-specific selection (Mannella et al., 

2013). This dissertation focuses on the study of the nucleus accumbens core as 

opposed to the shell because of the involvement of the core, along with the 

striatum, in the dopaminergic disorders described herein. 

Hippocampus and perirhinal cortex (PRh). The hippocampal formation 

consists of three main subregions, the dentate gyrus formed by granule cells, the 

CA1 and CA3 fields formed by pyramidal cells, and the subiculum. The main 

afferents to the hippocampal formation arise in the entorhinal cortex. These 

efferents from entorhinal cortex are projected to the dentate gyrus, which is the 

entry of the hippocampal formation, forming the perforant pathway. The dentate 

gyrus then sends its efferents to the CA3 and CA1 fields. The efferents from 
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dentate gyrus to the CA3 region form the mossy fiber pathway. The CA3 region 

sends efferents to the CA1 region forming the Schaffer collateral pathway. The 

CA1 field then sends its efferents to the subiculum, the exit of the hippocampal 

formation, which project back to the entorhinal cortex closing a loop pathway. 

The main innervations of the entorhinal cortex come from the PRh and 

parahippocampal gyrus (Milner et al., 1998). 

 The hippocampal formation and the PRh are the regions that intimately 

regulate explicit memory, particularly episodic memory (Vargha-Khadem, 1997). 

Learning and memory can be divided by explicit or implicit memory. Implicit 

memory, also known as nondeclarative memory, relates to habitual and 

procedural tasks and is mediated by functions of the basal ganglia, cerebellum, 

and parts of the cerebral cortex. Explicit memory, also known as declarative 

memory, is dependent upon functions of the medial temporal lobe including the 

hippocampal formations and PRh. Explicit memory is further divided into three 

types: episodic memory, which concerns memories of events or episodes; 

semantic memory, which concerns memories of general knowledge; and 

autobiographic memory, which combines both episodic and semantic memories 

(Milner et al., 1998). This dissertation deals with the study of episodic memory 

only because relapse, an important social, economical, and health consequence 

of METH abuse, is particularly affected by deficits in episodic memory, but not 

other types of memory also disrupted among METH abusers (Simon et al., 

2004).  

Recent studies have identified the PRh and hippocampal formations as 
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the main regions responsible for episodic memory (Kinnavane, 2014). At least 

initially, episodic memory activity is encoded in the hippocampus. Once 

processed in hippocampus, episodic memories are consolidated and stored in 

the PRh. Because the functions of the striatum or nucleus accumbens are not 

associated with episodic memory, this dissertation consists in the evaluation of 

two distinct systems. In other words, this dissertation investigates the possibility 

that nicotine (NIC) is neuroprotective to the hippocampal/PRh and to the 

striatal/nucleus accumbens deficits caused by METH. 

 
Parkinson’s disease (PD) 

PD is the second most common neurodegenerative disease after 

Alzheimer’s disease, affecting over 6 million people worldwide >60 years old. PD 

consists of a progressive and typically slow degeneration of neurons starting at 

the brain stem (Goetz, 2011). At this early stage, patients will present with 

symptoms that are not exclusive to PD and thus are rarely diagnosed (Becker et 

al., 2002). When the degeneration process reaches the midbrain, particularly 

substantia nigra and striatum, dopamine (DA) neurons are damaged causing 

motor complications such as tremors, rigidity, and bradykinesia. Unfortunately, by 

the time patients present to their physicians with motor deficits, 60–70% of 

neurons in the substantia nigra have already degenerated, as shown by 

reductions in DA transporter (DAT) binding, and 80% of DA content in the 

striatum is reduced, making it difficult to treat (Broussolle et al., 1999; Becker et 

al., 2002). During more advanced stages, when degeneration reaches the cortex, 

patients might develop cognitive deficits (Dickson, 2012). Therefore, PD patients 
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form a heterogeneous population with a range of disease onset and symptoms 

making it difficult to diagnose, treat, and to understand its etiology. 

Etiology of PD. The etiology of PD is complex, and many genes plus 

environmental factors have been associated with its risk (Venderova and Park, 

2012). Until a few years ago, PD etiology was heavily attributed to environmental 

factors such as exposure to pesticides and older age, and it is classified as a 

sporadic disease, which comprise 80–85% of the cases (Baltazar et al., 2014). 

Recent studies have demonstrated that PD etiology is also associated with 

specific genetic traits that might interact with environmental exposure (Edwards 

et al., 2010; Venderova and Park, 2012). These studies consistently indicate that 

dysfunction of the proteasome system and mitochondria and aggregation of cell 

structure proteins might contribute to the extensive dopaminergic damage 

occurred in this disease in a multiple gene-environment interaction manner. 

PD genetics. Analyses of brain samples from postmortem PD patients 

have historically revealed overexpression and aggregation of alpha-synuclein 

protein in Lewy bodies (Spillantini et al., 1997). Lewy body formation has thus 

been the gold standard of PD pathology and known to cause neuronal death. 

However, Lewy bodies are not always present, and alpha-synuclein gene 

mutations or copy number variations have only been studied in rare familial 

cases that tend to manifest at very early age (Singleton et al., 2003). In addition, 

although the association of alpha-synuclein and PD is well established in studies 

of rare familial cases (Polymeropoulos et al., 1997; Kruger et al., 1998), 

functional studies of alpha-synuclein have only occurred within the last 5 years. 
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Alpha-synuclein importantly regulates dendritic arborization, neurogenesis, and 

cell membrane curvature (Cronin et al., 2009; Winner et al., 2012; Westphal and 

Chandra, 2013). In the hippocampus, the brain region in which neurons are 

constantly renewed, mutant alpha-synuclein impaired neuronal formation and 

survival (Winner et al., 2012). Lack of cell structure due to reduced arborization 

and loss of neuronal survival are key features of PD. Genome wide association 

studies (GWAS) recently provided the tool for researchers to find mutations 

associated with the sporadic cases. The alpha-synuclein gene, SNCA, has been 

now associated with sporadic PD cases through GWAS and meta-analyses 

studies (Simon-Sanchez et al., 2009; Edwards et al., 2010; Nalls et al., 2011; Lill 

et al., 2012).  

Environmental factors and PD susceptibility. Both genetic traits and 

environmental factors seem to explain PD susceptibility (Brighina et al., 2008; 

Bove and Perier, 2012; Chung et al., 2013). Particularly, exposure to pesticides 

is known to increase PD risk (Elbaz et al., 2009) and induces DA damage in the 

midbrain (Bove and Perier, 2012). Several studies have evaluated the potential 

for interaction between these and other environmental factors with candidate 

gene variants that could potentially explain a larger population of patients 

(Brighina et al., 2008; Venderova and Park, 2012). One of the studies showed 

that patients with PD were more likely than control subjects to have used 

pesticides (Brighina et al., 2008). Furthermore, in younger individuals, data 

indicated an association of pesticide exposures with PD and an association of 

SNCA REP1 genotype score with PD (Brighina et al., 2008). In addition, some 
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drugs of abuse, specifically amphetamines, known to disrupt DA function in the 

midbrain, have recently shown to increase PD risk (Callaghan et al., 2010; 

Callaghan et al., 2012). Preclinical studies evaluating amphetamines abuse and 

candidate PD genes demonstrated that METH causes an upregulation of the 

SNCA protein, alpha-synuclein, suggesting one mechanism by which this class 

of drugs can lead to increased PD risk (Liao et al., 2005). Overall, some 

environmental factors can interact with some gene variants to modify PD risk in 

specific groups of individuals such as young people. While genetic models try to 

recapitulate progressive degeneration, drug-induced models recapitulate the 

sporadic and most common cases of PD that affect the mitochondrial complex I 

and induce oxidative stress. These mimic the final molecular mechanism that is 

dopaminergic loss in the nigrostriatal pathway. 

The main treatment for PD is levodopa, which is associated with significant 

side effects such as dyskinesia, and anticholinergic drugs, which are associated 

with memory deficits. Nicotine (NIC) has shown to ameliorate dyskinesia and 

memory function. 

 
Methamphetamine (METH) 

METH is a small lipophilic molecule structurally similar to the endogenous 

neurotransmitter DA first synthesized by Nagai Nagayoshi in 1893 and later 

crystalized by Akira Ogata in 1919. METH has been approved for human use by 

the United States Food and Drug Administration (FDA) since November 2000, 

under the brand name Desoxyn®, for the treatment of attention deficit 

hyperactivity disorder (ADHD) and exogenous obesity. Due to its high abuse 



 9 

liability and potential for severe side effects, METH is also a schedule II 

substance as defined by the United States Controlled Substance Act under Title 

21 Code of Federal Regulations (CFR) 1308.12. 

During the 1990s, METH abuse was described as “an epidemic” in the 

U.S. with a significant increase in emergency room visits (54% across all ages 

and 88% for persons under 18) (Gaines, 2014) and continues to be a problem in 

the 2010s (SAMHSA, 2014). In 2005, the national economic burden caused by 

METH abuse was estimated to be over 23 billion dollars (Nicosia et al., 2009). 

Some examples of such high economic cost include the burden of addiction, 

premature deaths, aspects of lost productivity, health care costs, child 

endangerment issues, and involvement in the criminal justice system.  

Despite the incidence of abuse having declined steadily since 2000 

(Johnston et al., 2010),  METH abuse is still a significant problem in our society 

with an estimated abuse of over 1% among adolescents and young adults 

(Johnston et al., 2014) and high emergency room visits (SAMHSA, 2014). 

Despite evidence indicating that METH neurotoxicity might be partially reversible 

with time, this recovery is likely dependent on the amount and route of 

administration of METH exposure (Friedman et al., 1998; Harvey et al., 2000) 

and is likely incomplete (Woolverton et al., 1989). Furthermore, abuse of 

METH/amphetamine has been associated with brain abnormalities, including 

cerebrovascular damage such as arteritis (Rumbaugh et al., 1971), vasculitis 

(Bostwick, 1981), and intracranial hemorrhage (Cahill et al., 1981) and increased 

prevalence of ischemic stroke, particularly in the subcortical white matter and 
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basal ganglia (Yen et al., 1994). Particularly, and specifically discussed in this 

dissertation, METH abuse increases the likelihood to develop PD later in life, 

likely due to METH-induced deficits in the basal ganglia. Combined, these data 

suggest that although the incidence of METH abuse has dropped, millions of past 

METH addicts from the “epidemic” period might develop PD in the near future.  

METH abuse causes cognitive deficits. Extensive clinical literature has 

revealed that METH abusers display neurocognitive impairment as assessed by 

measures of attention, learning and memory, and/or executive functioning. These 

are associated with poor functional outcomes, such as relapse (Scott et al., 

2007). Moreover, neurocognitive deficits caused by METH abuse are long lasting 

and persist for at least 6 months after abstinence (Hoffman et al., 2006). Of 

particular interest of this dissertation is that METH dependence is associated with 

episodic memory deficits (Scott et al., 2007; Kalechstein et al., 2009; Casaletto et 

al., 2014). This is of importance because deficits in episodic memory, but not 

other kinds of cognitive function, are associated with relapse (Simon et al., 2004). 

In laboratory animals, both contingent and noncontingent administration of METH 

leads to episodic memory deficits (Belcher et al., 2008; Herring et al., 2008; 

Reichel et al., 2012) assessed by a spontaneous novel object recognition (NOR) 

test discussed below. 

METH and mechanisms of cognitive dysfunction. METH intake 

produces deficits in episodic memory as well as decreases in hippocampal 

volume that remain evident even after prolonged drug abstinence in humans and 

experimental animals (Orikabe et al., 2011; Akiyama et al., 2011; North 2012). 
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Several clinical studies have demonstrated that METH-induced neurocognitive 

deficits are correlated with hippocampal abnormalities. For instance, Thompson 

et al. (2004) showed that METH abusers have 7.8% smaller hippocampal 

volumes than subjects without a history of substance abuse, and these deficits 

correlated with memory performance as assessed by a word-recall test. 

Furthermore, Sekine et al. (2006) showed by positron emission tomography that 

serotonergic deficits as assessed by serotonin transporter (SERT) densities are 

significantly reduced in several brain regions of abstinent METH abusers. 

Although this former study showed that reductions in SERT densities were 

associated with aggressive behavior, it is unclear whether hippocampal and/or 

cortical serotonergic deficits are also associated with neurocognitive dysfunction. 

In laboratory animals, contingent or noncontingent METH administrations 

also cause significant memory deficits as assessed by NOR (Belcher et al., 2008; 

Reichel et al., 2012). These same METH regimens cause serotonergic deficits in 

the hippocampus and PRh as assessed by SERT density, function, and 

immunoreactivity and serotonin (5-hydroxytryptamine; 5-HT) content as well as 

deficits in the dopaminergic system of the striatum and nucleus accumbens as 

assessed by DAT density, function and immunoreactivity, and DA content 

(Belcher et al., 2005; Belcher et al., 2008; McFadden, Hunt, et al., 2012; Reichel 

et al., 2012). As discussed above, NOR memory is a declarative type of memory 

mediated by functions of the hippocampus and cortex as oppose to 

nondeclarative (habitual) memory mediated by the basal ganglia (Kinnavane et 

al., 2014). Thus, the studies performed in this dissertation assessed whether 
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NOR deficits caused by METH are associated with deficits in serotonergic 

markers in the hippocampus and PRh. 

Long-term potentiation (LTP) in hippocampal formations and PRh is a 

well-established synaptic plasticity mechanism by which learning and memory 

occurs (Bliss and Collingridge, 1993). Recently, exvivo studies showed that 

METH administration increases baseline synaptic transmission and reduces LTP 

in the CA1 region of the hippocampus (Hori et al., 2010; Swant et al., 2010). The 

CA1 hippocampal region is important for acquisition of episodic memory 

(Kinnavane et al., 2014). In vivo studies with mice showed that METH abstinence 

after chronic daily dosing reduced spatial memory and CA1 hippocampal LTP 

(North et al., 2012). Other preclinical studies demonstrated that chronic METH 

administration to young rats, as well as gestational exposure to METH, causes 

reduction in LTP in CA1 pyramidal neurons (Hori et al., 2010). These findings 

suggest that METH-induced deficits in episodic memory are caused by 

reductions in CA1 LTP. The effects of METH on LTP in the PRh are less studied. 

METH and dopaminergic neurotoxicity. In addition to neurocognitive 

impairment and serotonergic deficits in associated neuronal regions, METH 

abuse also causes significant reductions in dopaminergic markers in the striatum 

and nucleus accumbens core, as demonstrated in human, nonhuman primate, 

and rodent studies (Hotchkiss and Gibb, 1980; Woolverton et al., 1989; 

Daberkow et al., 2005; Kousik et al., 2014). Such deficits persist for at least 8 

months in rats and 3 years in humans (Bittner et al., 1981; McCann et al., 1998; 

McCann et al., 2008). Particularly, preclinical studies have demonstrated that 



 13 

METH preferentially damages the dopaminergic terminals in the nucleus 

accumbens core, rather than in the shell (Broening et al., 1997). Furthermore, the 

striatum is the forebrain region that intimately regulates motor function, and 

clinical and preclinical studies have demonstrated that METH-induced striatal 

dysfunction is associated with psychomotor impairment and motor learning 

deficits (Volkow et al., 2001; Daberkow et al., 2005).  

METH dosing. We chose to evaluate the binge model of METH because 

METH addicts undergo periods where they take large quantities of drug in a short 

period of time (0.7–3 g/d; approximately 12–50 mg/kg) (Simon et al., 2000; 

Semple et al., 2003; Hoffman et al., 2006). In the United States, arrest reports of 

drivers show METH blood levels can be above 300 µg/mL (Logan, 1996). To 

examine METH-induced neurotoxicity in animal models, various noncontingent, 

high doses of METH have been used. For example, 30 mg/kg/day (Cadet et al., 

2011) have been used to study the neurotoxic consequence of METH exposure. 

In this dissertation, 30/mg/kg/day (i.e., 4 x 7.5 mg/kg, 2-h apart) was used. These 

dosing regimens cause significant DA deficits in the striatum and nucleus 

accumbens core resembling some aspects of PD.  

METH and PD. An additional problem for METH abusers is the risk for 

developing PD later in life, as recent studies demonstrated that the risk for 

developing PD is 1.76-fold higher in abstinent METH abusers (Callaghan et al., 

2010; Callaghan et al., 2012; Curtin et al., 2014). Clinical and preclinical studies 

have shown overlapping neuropathologies between METH abuse and PD (Gibb 

et al., 1987; Woolverton et al., 1989; Kousik et al., 2014). For example, as 
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discussed above, PD is characterized by progressive degeneration of DA 

neurons in the substantia nigra leading to deficits in DA content and DAT density 

in the striatum and motor function impairment. Similarly, detoxified METH addicts 

show psychomotor impairment and deficits in DAT density (Volkow et al., 2001). 

Motor function impairment is less likely to occur among METH addicts because 

of the lack of degeneration of DA neuron cell bodies in the substantia nigra. In 

comparison to patients with PD, abstinent METH addicts present smaller 

reductions in DAT density in the striatum suggesting that METH abuse emulates 

early-stage PD (McCann et al., 1998; McCann et al., 2008). Furthermore, recent 

preclinical studies have demonstrated that METH administration causes 

upregulation of alpha-synuclein protein in the substantia nigra and striatum 

(Fornai et al., 2005; Liao et al., 2005). Such phenomenon might contribute to the 

increased risk of METH abusers in developing PD. 

METH mechanisms of neurotoxicity. The biological mechanisms by 

which METH induces dopaminergic neurotoxicity are complex, but have been 

extensively studied (Fleckenstein et al., 2007).  Briefly, METH is taken up by the 

plasmalemmal DAT or diffuses through the cellular membrane of presynaptic 

dopaminergic terminals. Once inside, METH can diffuse through vesicular 

membranes and changes the internal pH of cytoplasmic vesicles (Cubells et al., 

1994). The vesicular monoamine transporter-2 (VMAT-2) present on the 

membrane of these vesicles stops sequestering DA. The excess of cytoplasmic 

DA is released through DAT. METH is able to reverse the function of DAT from 

taking up synaptic DA to releasing DA. Particularly, DA released via either 
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reversal of transporters displays characteristics of tonic DA release. The excess 

cytoplasmic DA can also auto-oxidize, forming reactive oxygen species (ROS) 

that are believed to contribute to neuronal damage. The substantial release of 

DA could deplete DA stores and alter vesicle trafficking (Di Chiara and Imperato, 

1988). Recent evidence has revealed that METH augments both tonic and 

phasic DA release, but phasic DA release is the predominant event that likely 

contributes to the long-term dopaminergic deficits (Howard et al., 2011; Howard 

et al., 2013). These studies demonstrated that during METH administrations both 

phasic and tonic DA release are elevated. However, 4–7 weeks later phasic DA 

release is significantly reduced, whereas tonic DA release is unaffected, 

indicating that terminals that mediate phasic DA release are more susceptible to 

the toxic effects of METH. It has been suggested that METH-induced phasic DA 

release occurs through readily releasable pool of vesicles (i.e., membrane-

associated fraction) as opposed to tonic DA release that occurs from reversal of 

VMAT-2 from the reserve pool of vesicles leading to cytoplasmic DA (Cubells et 

al., 1994; Grace, 1995; Covey et al., 2013; Daberkow et al., 2013). In summary, 

DA levels, DAT function, and DAT and TH immunoreactivity are reduced in 

humans and laboratory animals that administered high doses of METH. Although 

in this dissertation VMAT-2 and phasic/tonic DA release are not directly 

assessed, some of the experiments were conducted based upon a hypothesis on 

VMAT-2 or phasic/tonic DA release mechanisms.  

Tonic versus phasic DA signaling and METH neurotoxicity. Tonic DA 

release is measured in a timescale of minutes to hours and occurs in 



 16 

spontaneously active dopaminergic neurons to enhance performance of motor 

behavior (Floresco, 2007; Redgrave et al., 2010). Tonic DA release is also 

associated with perseverance in achieving goals (Salamone et al., 2003). Phasic 

DA release is measured in a timescale of milliseconds and occurs from excitation 

(primarily glutamatergic) of dopaminergic neurons. Phasic DA release is 

important for learning processes within the basal ganglia (Schultz, 2002). METH 

neurotoxicity disrupts mainly phasic DA release, suggesting that dopaminergic 

terminals that mediate phasic DA release are more sensitive to METH effects 

(Howard et al., 2011; Howard et al., 2013). In agreement with these 

neurochemical studies, behavioral studies have shown that METH 

administrations to rats causes persistent deficits in motor learning and as 

mentioned above, learning process in the basal ganglia is associated with phasic 

DA signaling (Daberkow et al., 2005).  

METH as a PD model. Clinical studies have shown that postmortem 

dopaminergic markers, including DAT expression, DA levels, and tyrosine-

hydroxylase (TH) immunoreactivity are reduced in the caudate and putamen of 

former METH abusers. Serotonergic deficits in the striatum, hippocampus, and 

frontal cortical regions have also been reported in postmortem human brains 

from former METH abusers. A typical model of METH-induced dopaminergic and 

serotonergic deficits in rats consists of repeated administrations of a high-dose 

METH regimen (typically 4–6 injections of 5–10 mg/kg/injection at 2–6-h 

intervals). One to 14 days after this high-dose METH regimen, markers of DA 

neurons integrity reveal significant deficits in TH immunoreactivity in the 
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substantia nigra and striatum, DA content in the striatum, and DAT function and 

immunoreactivity in the striatum and nucleus accumbens core that are detected 

up to 8 months later (Koda and Gibb, 1973; Sonsalla et al., 1996; Hirata and 

Cadet, 1997; Krasnova and Cadet, 2009; Yamamoto et al., 2010; Ares-Santos et 

al., 2012). Hippocampal serotonergic markers such as SERT function and 5-HT 

content are also detected within several days of METH abstinence with this 

model. This model consistently mimics the physiological deficits in dopaminergic 

and serotonergic markers observed in human METH abusers and PD patients. 

 
Nicotine (NIC) 

NIC is an alkaloid present in the nightshade family of plants (Green et al., 

2013). NIC is present in vegetables (Domino et al., 1993; Siegmund et al., 1999), 

however, at concentrations 500-fold less than second hand smoke (Henningfield, 

1993). However, these low levels of NIC found in diet taken long-term can be 

sufficient to reduce PD risk (Nielsen et al., 2013). Many other compounds 

naturally found in plants (Green et al., 2013) and in small organisms such as 

snails (McIntosh et al., 1999) affect nAChRs and these compounds are used in 

basic research as agonists and antagonists for nAChRs. 

 NIC is known to be the addictive substance in cigarettes, and its chronic 

administration has a profound impact in brain chemistry (Benowitz, 2010). NIC 

activates all subtypes of nAChRs located throughout the body thereby affecting 

various molecular and cellular mechanisms (Benowitz, 2010; Colombo et al., 

2013). Some of these mechanisms include desensitization and upregulation or 

downregulation of nAChRs function and expression (Perez et al., 2008; Perez et 



 18 

al., 2009). These receptors are pentameric; i.e., they are formed by an assembly 

of five subunits each coded by a distinct gene. Seventeen genes have so far 

been identified in vertebrates (α1-10, β1-4, γ, δ, ε). These receptors mediate a 

variety of functions depending on their localization, particularly allowing influx of 

Ca+ and Na+ and inducing neurotransmitter release (Yu and Wecker, 1994; 

Grady et al., 2001; Azam and McIntosh, 2006; Perez et al., 2009).  

NIC and nAChRs in the striatum. Three main subtypes of nAChRs are 

expressed in the striatum: the α4β2, α6β2, and α7 subtypes. The α4β2 and α6β2 

subtypes of nAChRs are highly found in dopaminergic terminals in the striatum 

and mediate DA release. Of note, the α4β2 subtype is expressed on 

interneurons, GABA neurons, and dopaminergic terminals, whereas the α6β2 

subtype is expressed predominantly on dopaminergic terminals (Quik and 

McIntosh, 2006; Nashmi et al., 2007; English et al., 2012; Luo et al., 2013). In 

contrast, the α7 subtype is localized on glutamatergic axons and mediates 

glutamate (Glu) release in the striatum (Zhou et al., 2002; Zoli et al., 2002; Quik 

et al., 2005). The effect of chronic NIC administration on the function and 

expression of these subtypes of nAChRs have been demonstrated in humans, 

nonhuman primates, and rodents (Perry et al., 1999; Perez et al., 2009). For 

example, chronic NIC administration to laboratory animals causes upregulation of 

α4β2, downregulation of α6β2, and upregulation of α7 nAChRs binding in the 

striatum (Slotkin et al., 2004; Doura et al., 2008; Perez et al., 2008).  

NIC and nAChRs in the nucleus accumbens. Ligand binding studies 

have shown that nucleus accumbens contain α4β2, α6β2, and α7 nAChRs 
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(Doura et al., 2008). In vivo and in vitro studies have shown that NIC 

administration reduces DA release in the nucleus accumbens core and shell via 

α6β2 nAChRs (Perez et al., 2012; Schilaty et al., 2014). Of particular interest for 

this dissertation, functional studies have shown that α6β2 nAChRs primarily 

mediate DA release in the core, whereas α4β2 nAChRs mediate DA release in 

the shell (Schilaty et al., 2014). These studies utilized α-conotoxin-MII (αCtxMII) 

ligand, a selective antagonist for α6β2 nAChRs, in which its application to brain 

slices inhibited the NIC-induced DA release in the core, but not in the shell 

(Schilaty et al., 2014). The application of dihydro-β-erythroidine (DHβE), a 

selective antagonist for the α4β2 subtype, inhibited NIC-induced DA release in 

the shell, but not in the core (Schilaty et al., 2014). In summary, chronic NIC 

administration downregulates α6β2 nAChRs, thereby reducing DA release in the 

nucleus accumbens. 

nAChRs regulation of tonic and phasic DA release. It has been 

demonstrated in striatal and nucleus accumbens core slices that α6β2 nAChRs 

mediate phasic DA release, whereas α4β2 nAChRs mediate tonic DA release 

(Meyer et al., 2008; Wickham et al., 2013). Additionally, the majority (~80%) of 

nAChR-modulated DA release in the striatum and nucleus accumbens is 

regulated by α6β2 nAChRs (Perez et al., 2008; Perez et al., 2009). As discussed 

above, METH neurotoxicity disrupts mostly phasic DA release, as opposed to 

tonic DA release. These findings suggest that (1) dopaminergic fibers that 

express α6β2 nAChRs fire DA in phasic patterns; (2) they are more susceptible 

to METH neurotoxicity; (3) reduction in phasic DA release during METH 
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administrations is neuroprotective. Thus, α6β2 nAChRs potentially serve as 

markers of dopaminergic terminals that are more susceptible to neurotoxicity. 

Furthermore, this suggests a mechanism by which persistent dopaminergic 

deficits could be attenuated. In other words, these data suggest that blockage of 

phasic DA release via inhibition of α6β2 nAChRs could potentially protect against 

METH-induced toxicity. Data presented in this dissertation indicate that α6β2 

nAChRs-containing dopaminergic terminals are susceptible to METH 

neurotoxicity. However, whether inhibition of α6β2 nAChRs attenuates METH-

induced dopaminergic deficits has yet to be tested. 

As noted above, long-term exposure to NIC causes upregulation of α4β2 

and downregulation of α6β2 nAChRs binding, indicating that phasic DA release 

is reduced and tonic DA release is augmented with chronic NIC administration. In 

preclinical studies, nAChR-stimulated striatal [3H]DA release was reduced after 

10 d NIC self-administration in mice, and data indicated that this reduction was 

mediated by α6β2 nAChRs. However, no increases in nAChR-stimulated [3H]DA 

release via α4β2 nAChRs were observed (Marks et al., 2014). In electrically 

stimulated endogenous DA release studies, several weeks of NIC administration 

to rodents significantly reduced DA release in the striatum and nucleus 

accumbens, and these effects were mediated by α6β2 nAChRs (Exley et al., 

2013). In contrast, others have shown that chronic NIC treatment to rodents 

increases electrically evoked endogenous DA release in the striatum likely via 

upregulation of α4β2 nAChRs (Perez et al., 2008). However, a single injection of 

NIC caused reductions in both tonic and phasic electrically stimulated DA 
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release, with a higher ratio of phasic bursts relative to tonic firing (Zhang et al., 

2009). Thus, results suggest that chronic, but not acute, NIC administration 

reduces phasic-like DA signaling via downregulation of α6β2 nAChRs and 

increases tonic-like DA release via upregulation of α4β2 nAChRs.  

NIC and nAChR in the hippocampus and PRh. Several subtypes of 

nAChRs have been found in the hippocampus and cortex (Sudweeks and Yakel, 

2000). For example, functional studies have found the presence of nAChRs 

containing α7 (Alkondon and Albuquerque, 1995; Jones and Yakel, 1997; Frazier 

et al., 1998; McQuiston and Madison, 1999), α4β2 (McQuiston and Madison, 

1999; Sudweeks and Yakel, 2000), α2 (McQuiston and Madison, 1999; 

Sudweeks and Yakel, 2000), or α3β4 subunits (Azam and McIntosh, 2006). The 

α3β4 nAChRs mediate norepinephrine release in the hippocampus (Azam and 

McIntosh, 2006). In vivo studies have demonstrated that norepinephrine does not 

mediate cognitive deficits induced by METH or by the simple process of aging 

(Schweizer et al., 2003; Rau et al., 2006; Reichel et al., 2012). On the other 

hand, extensive literature has pointed out that the α4β2 and α7 nAChRs impact 

memory formation in physiological and pathophysiological states (Felix and 

Levin, 1997; Levin and Simon, 1998; Nott and Levin, 2006). These two subtypes 

are expressed pre- and postsynaptically throughout the hippocampus and cortex 

modulating Ca2+ influx (Kenney and Gould, 2008). Both α4β2 and α7 subtypes 

modulate glutamatergic and GABAergic activities in the hippocampus and cortex 

(Alkondon and Albuquerque, 2004). Particularly, α4β2 subtypes are highly 

expressed in CA1 and the dentate gyrus, whereas α7 is mostly found in the 
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dentate gyrus. Presynaptically, α4β2 play a greater role in modulating GABA 

release than α7 subtypes (Freedman et al., 1993; Gray et al., 1996; Alkondon 

and Albuquerque, 2004; Yamazaki et al., 2005). Postsynaptically both subtypes 

modulate synaptic plasticity (Alkondon and Albuquerque, 2004; Yamazaki et al., 

2005; Kenney and Gould, 2008). Particularly, α4β2 and α7 nAChRs seem to 

mediate LTP in the CA1 hippocampus and cortex, an important process that 

underlies learning and memory (Kenney and Gould, 2008). NIC induces 5-HT 

release in the hippocampus and cortex, suggesting the presence of nAChRs in 

serotonergic terminals in these regions (Seth et al., 2002). The presence of α7 

nAChRs in serotonergic terminals in the hippocampus has been demonstrated 

(Aznar et al., 2005). The presence of α4β2 nAChRs has been shown in the 

nucleus raphe (which projects serotonergic innervations to the hippocampus) 

(Cucchiaro and Commons, 2003). It is unclear whether nAChRs are localized to 

a specific region of the hippocampus. 

nAChRs regulation of LTP. Several preclinical studies have investigated 

the mechanism by which NIC augments LTP in the Schaffer collateral pathway 

(CA3-CA1) of the hippocampus (Yamazaki et al., 2005; Yamazaki et al., 2006). 

These studies have demonstrated that NIC increases LTP by reducing 

GABAergic inhibition of CA1 (Alkondon et al., 1997; Yamazaki et al., 2005). In 

these studies, NIC reduced the amplitudes of IPSCs evoked by low intensity 

electrical stimulation (<200 µA) via α4β2 and by high intensity electrical 

stimulation (>300 µA) via α7 nAChRs. These findings indicate that both α4β2 and 

α7 nAChRs are expressed in the hippocampus and particularly important for 
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mediating NIC-induced LTP in CA1. Furthermore, NIC did not affect glutamate 

release, but rather repressed GABA release in the CA1 cells via α4β2 nAChRs. 

These data demonstrate that NIC mainly augments LTP via α4β2 nAChRs 

reduction in GABA release (Alkondon et al., 1997; Yamazaki et al., 2005). 

Chronic NIC exposure also increases α4β2 nAChRs expression on glutamatergic 

axons of the perforant pathway of the hippocampus (cortex-DG). In these studies 

chronic NIC augmented LTP in the perforant pathway, indicating that the 

upregulated α4β2 nAChRs are functional (Nashmi et al., 2007). 

 
NIC and dopaminergic neuroprotection 

For over 50 years, it has been known that the incidence of diseases 

associated with motor dysfunction is less likely to occur among tobacco smokers. 

A clinical study from 1938 reported that although tobacco smokers were more 

likely to develop diseases of the circulatory system (heart disease), 

gastrointestinal system (ulcers), respiratory system (lung cancer and asthma) 

and nervous system (anxiety), they were less likely to present tremors (Short, 

1938). Several epidemiological studies have since revealed an inverse 

correlation of tobacco smoking and the development of PD (Hernan et al., 2001; 

Chen et al., 2010).  

In recent epidemiological studies, data were stratified by smoking 

behavior, which provides detailed information on the impact of duration and 

intensity of cigarette smoking and PD risk (Chen et al., 2010).  Among current 

smokers, intensity of smoking (i.e., number of cigarettes smoked per day) did not 

affect the inverse association of smoking and PD risk. However, among past 
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smokers higher intensity (i.e., greater number of cigarettes smoked per day) was 

associated with greater protection against PD. These data indicate that the 

neuroprotective effect of tobacco smoking goes away with time and that intensity 

only matters when tobacco exposure has ceased. These data further suggest 

that neuroprotection is mediated by neurochemical changes occurring after long-

term exposure to tobacco, rather than an immediate effect of the neuroprotective 

substance present in tobacco. Additional relevant information from these studies 

concerns the fact that approximately 68% of the participants started smoking 

before the age of 20. Although the age covariate was not taken into account in 

data analysis, this information permits speculation that age of smoking initiation 

might also play a role in neuroprotection. 

NIC neuroprotection in clinical PD studies. Many investigators have 

studied whether NIC is the substance in cigarettes affording this neuroprotection. 

An observational study showed that consumption of NIC-containing food such as 

peppers and tomatoes is inversely associated with PD risk (Nielsen et al., 2013).  

Furthermore, clinical trials are already evaluating the potential use of NIC in PD 

therapy (Villafane et al., 2007; Itti et al., 2009). Villafane et al. (2007) showed that 

NIC treatment via NIC patch for 17 weeks ameliorates motor symptoms of PD in 

comparison to baseline as assessed by the Unified PD Rating Scale (UPDRS). In 

addition, NIC added to the first line PD therapy L-DOPA improved outcome as 

indicated by the reduction in the dose of the medication patients had to take 

overtime. Furthermore, positive effects of NIC only occurred after long-term 

treatment. Noteworthy, Itti et al. (2009) showed that not only motor symptoms 
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and efficacy improved over the long course of NIC treatment, but NIC also 

improved DA neurons integrity as assessed by neuronal imaging techniques. 

These findings suggest that NIC interacts with PD, affording neuroprotection to 

remaining terminals, and thus slowing disease progression.  

NIC neuroprotection in preclinical studies. Several preclinical studies 

have demonstrated that NIC is neuroprotective to DA neurons in drug-induced 

PD models (Quik et al., 2012). NIC protected in MPTP, paraquat, and 6-

hydroxydopamine lesion models in rodents and monkeys (Khwaja et al., 2007; 

Huang et al., 2009). For example, 7-week NIC administration via drinking water 

to rats starting at PND 30 protected against 6-hydroxydopamine lesions when 

assessed via 125I-RTI-121 autoradiography and DA content in the striatum. 

Similarly, a similar NIC administration via drinking water to mice for 6 weeks 

starting at young adulthood attenuated paraquat-induced dopaminergic deficits. 

Fewer studies have reported NIC neuroprotection after acute NIC administration 

(Maggio et al., 1998; Ryan et al., 2001).  

NIC neuroprotection and nAChRs signal pathway. NIC has shown to 

have antioxidant effects (Linert et al., 1999; Soto-Otero et al., 2002; Egea et al., 

2007), to reduce alpha-synuclein fibrillation (Hong et al., 2009), to increase 

neurotrophic factors (Maggio et al., 1998; Belluardo et al., 2008; Takarada et al., 

2012), to activate the function of the proteasome system (Chapman, 2009), and 

to enhance LTP in memory-related brain regions (Fujii et al., 1999; Kroker et al., 

2011). But the subtype of nAChR that mediates these neuroprotective effects is 

unknown. Chronic NIC administration causes upregulation in the density of α7 
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nAChRs, suggesting that activation of these receptors would afford protection. 

However, pretreatment with a selective α7 antagonist protects against METH-

induced neurotoxicity (Northrop et al., 2011). The α7 subtypes are located in 

glutamatergic terminals in the striatum and regulate glutamate release. Blockage 

of striatal glutamate release is neuroprotective. Thus, the potential NIC protection 

to dopaminergic neurons in the striatum is likely not mediated by α7 nAChRs. In 

contrast, studies have revealed a role for α4β2 and α6β2 subtypes of nAChRs in 

neuroprotection since they mediate DA function in the striatum (Perez and Quik, 

2011). However, whether selective agents for these receptors are also protective 

is unknown. 

Duration of NIC treatment, neuroprotection, and nAChRs.   Length of 

NIC exposure is known to influence the expression and function of selective 

subtypes of nAChRs and correlate with neuroprotection. In rodents, 6–7 weeks of 

NIC administration afforded dopaminergic neuroprotection against 6-

hydroxydopamine- or paraquat-induced damage (Khwaja et al., 2007; Huang et 

al., 2009). In these studies, NIC administration caused upregulation of α4β2 and 

downregulation of α6β2 nAChRs density when assessed via 125I-epibatidine and 

125I-CtxMII autoradiography. Several others have shown that chronic oral NIC 

administration to rodents causes upregulation of α4β2 and downregulation of 

α6β2 using either 125I-A-85380 (selective for α4β2 and α6β2) or 125I-epibatidine 

(selective for α4β2, α6β2, and α3β4) in combination with 125I-CtxMII (a selective 

ligand for α6β2). However, NIC administration not always induces upregulation of 

α4β2 and downregulation of α6β2 in the striatum. In Even et al. (2008) and 
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Nguyen et al. (2003), mice that received NIC via osmotic minipumps for 17–21 

days showed upregulation of α4β2 but no change in α6β2 expression when 

assessed via autoradiography with 125I-epibatidine in the presence or absence of 

cytosine or with α6-knockout mice. Pietila et al. (1998) showed that upregulation 

of α4β2 only occurs after at least 4 weeks of oral NIC administration when 

assessed via [3H]NIC binding. Inconsistency with expression of nAChRs after 

chronic NIC administration has been explained by two factors: (1) the form of NIC 

administration (i.e., continuous via minipumps or intermittent via drinking water) 

as withdrawal from NIC also affects nAChRs expression and is only achieved 

with intermittent administration protocols and (2) techniques used to assess the 

expression of nAChRs since selective ligands are necessary to distinguish α4β2 

to α6β2 subtypes (Govind et al., 2012).  

Age of NIC administration and nAChRs. Age of NIC administration 

affects not only the expression of nAChRs, but also dopaminergic function in the 

striatum. Collins et al. (2004) demonstrated that 7 days of NIC administration via 

intraperitoneal injections increased striatal DAT expression in periadolescents 

(PND 30), but not in young adult (PND 60) rats, when assessed via 125I-RTI 

autoradiography. Furthermore, the expression of α4β2 nAChRs was upregulated 

in young adults, but not in adolescents, when assessed via 125I-epibatidine 

(Doura et al., 2008). NIC metabolism and elimination appears to be increased in 

adolescent rats in comparison to young adults, as demonstrated by hepatic CYP 

enzyme expression (Yun et al., 2010) and brain NIC/metabolites disposition 

(Vieira-Brock et al., 2013). Since NIC withdrawal leads to upregulation of α4β2 
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and downregulation of α6β2 nAChRs (Pietila et al., 1998), adolescents might 

present a different pattern of nicotinic receptor expression/function than adults 

due to increased elimination of NIC. Doura et al. (2008) demonstrated that NIC-

induced changes in nAChRs expression differ between adolescent and adult rats 

with upregulation of α4β2 and downregulation of α6β2 in the striatum being more 

robust in adolescents. These data indicate that there are differences in the 

response to NIC between adolescents and young adult rats. However, whether 

these changes impact the potential neuroprotective effect of NIC in METH-

treated rats is unknown. 

α4β2 nAChRs and neuroprotection against METH-induced 

neurotoxicity. Upregulation of α4β2 nAChRs by chronic NIC exposure 

potentially mediates neuroprotection against METH-induced dopaminergic 

deficits. As noted above, these subtypes of nAChRs mediate tonic DA release in 

the striatum and nucleus accumbens. Part of the mechanism by which METH 

causes neurotoxicity is via reactive oxygen species (ROS) that are formed due to 

oxidized DA in the cytoplasm. Thus, reduction in cytoplasmic DA attenuates 

neurotoxicity. In fact, drugs that increase vesicular sequestration of DA by 

upregulating VMAT-2 function are protective. In similar ways, an increase in 

α4β2 nAChRs density might increase tonic DA release during METH 

administrations, consequently reducing cytoplasmic DA and ROS. These events 

would occur due to the fact that METH administrations induce acetylcholine 

release, which in turn bind to plasmalemmal α4β2 nAChRs, whereby tonic DA 

release would occur.  
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α6β2 nAChRs and neuroprotection against METH-induced 

neurotoxicity. Conversely, downregulation of α6β2 nAChRs by chronic NIC 

exposure potentially mediate protection by reducing phasic DA release. Studies 

with rodents and monkeys have shown that chronic NIC administration not only 

leads to decreases in α6β2 nAChRs density, but also a reduction in phasic DA 

release (Meyer et al., 2008; Perez et al., 2008; Exley et al., 2013). It has been 

also shown that METH-induced neurotoxicity is mainly mediated by exocytotic 

DA release and phasic DA signals (Daberkow et al., 2013). These events might 

cause neurotoxicity via downstream activation of D1/D2/D3 receptors by DA as 

indicated by findings that antagonists of D1/D2/D3 receptors protect against 

METH-induced neurotoxicity (Sonsalla et al., 1986; Broening et al., 2005; Gross 

et al., 2011). Thus, it can be speculated that reduction in phasic DA release 

during METH administrations would afford neuroprotection.  

Interestingly, the nucleus accumbens core, as opposed to the shell, 

express α6β2 nAChRs and mediate phasic DA release. METH administrations 

mainly damage phasic DA signaling and the core of the nucleus accumbens, 

suggesting that α6β2-containing dopaminergic terminals are more vulnerable to 

METH neurotoxicity than terminals that mediate tonic DA signaling, which do not 

contain α6β2 nAChRs. In addition, these data suggest that in the absence of 

phasic DA release, or absence of α6β2 nAChRs, METH would have lower 

toxicity potential. Interestingly, chronic NIC administration leads to a significant 

reduction in α6β2 nAChRs and protects against dopaminergic neurotoxins. One 

hypothesis of this dissertation is that NIC neuroprotection occurs via 
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downregulation of α6β2 nAChRs. 

NIC-induced exchange of α6 for α4 subunits. Previous studies have 

shown that NIC causes α4β2 nAChR upregulation by inducing higher assembly 

of β2 subunits with α4 subunits and consequently reducing assembly of β2 

subunits with α6 subunits (Kuryatov et al., 2005; Sallette et al., 2005; Colombo et 

al., 2013). In fact, α6 subunits are highly degraded during chronic NIC treatment, 

supporting the idea that chronic NIC treatment leads to a switch in subunits 

assembly. Thus, because α4β2 upregulation occurs at the cost of α6β2 

downregulation, chronic NIC exposure reduces α6β2-containing terminals and 

augments α4β2-containing terminals. In other words, terminals that would 

normally express α6β2 receptors after chronic NIC exposure express α4β2 

instead. Thus, chronic NIC reduction in α6β2-containing terminals and 

augmentation of α4β2-containing terminals, either individually or combined, 

potentially attenuate the neurotoxic effects of METH. Of note, studies conducted 

in cells expressing nAChRs showed that the upregulated receptors retain 

function (Kuryatov et al., 2005; Sallette et al., 2005; Nashmi et al., 2007). 

 
NIC and cognitive function 

Several clinical (Freedman et al., 1994; Adler et al., 1998; Jubelt et al., 

2008; Newhouse et al., 2012) and preclinical (Levin and Torry, 1996; Aleisa et 

al., 2011; Mizoguchi et al., 2011; Gould et al., 2013) studies have indicated that 

NIC and other agonists of nAChRs have cognitive-enhancing properties and/or 

cognitive neuroprotective effects. For example, treatment with transdermal NIC 

(or nAChR agonists) ameliorates different aspects of neurocognition in patients 
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with schizophrenia (Freedman et al., 1994; Levin et al., 1996; Adler et al., 1998; 

Olincy et al., 2006; Jubelt et al., 2008). In patients with dementia, long-term 

treatment with transdermal NIC improved attention, memory, and psychomotor 

speed (Newhouse et al., 2012). In rhesus monkeys, acute administration of 

varenicline, an α4β2 nAChR partial agonist, or PNU-282987, an α7 nAChR full 

agonist, significantly improved working memory in both cocaine-naive and 

cocaine-treated monkeys (Gould et al., 2013). 

NIC mechanisms for cognitive protection. Chronic NIC administration 

to healthy individuals (Perry et al., 1999) or nonlesioned rodents (Abdulla et al., 

1996; Melichercik et al., 2012; Kruk-Slomka et al., 2014) increases nAChRs 

binding, leading to increases in LTP, a widely accepted process of memory 

formation (Fujii et al., 1999; Fujii et al., 2000; Welsby et al., 2006, 2009) and 

improves various types of memory in normal rats (Abdulla et al., 1996; 

Melichercik et al., 2012; Kruk-Slomka et al., 2014). Additionally, these positive 

effects of NIC on memory seem to last several days after NIC removal (Abdulla 

et al., 1996; Levin and Torry, 1996) perhaps due to long-lasting increases in 

nAChRs and LTP (Abdulla et al., 1996; Yamazaki et al., 2006; Huang et al., 

2008). In previous studies, in vivo NIC pretreatment prevented LTP deficits in 

area CA1 of the hippocampus in parallel with attenuation of memory deficits 

induced by cholinergic lesion, chronic stress, or beta-amyloid infusion (Yamazaki 

et al., 2002; Alkadhi, 2011; Srivareerat et al., 2011). Furthermore, α4β2 nAChRs 

have also been correlated with cognitive deficits associated with aging and 

Alzheimer's disease (Perry et al., 2000). Overall, these data suggest that 
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reductions in α4β2 nAChRs lead to cognitive deficits, and NIC administration 

either protects against memory deficits or improves memory by increasing α4β2 

nAChRs and LTP. 

NIC neuroprotection against METH-induced memory deficits. METH 

abuse is associated with episodic memory deficits (Scott et al., 2007; Casaletto 

et al., 2014). In these individuals that abuse METH, both acquisition (or learning) 

and retrieval (or recall) of memory are impaired. As discussed above, METH 

reduces LTP in the CA1 (Swant et al., 2010), a hippocampal region important for 

episodic memory acquisition (Kinnavane et al., 2014). Both α4β2 and α7 nAChR 

stimulation increase LTP in CA1 (Kroker et al., 2011). Specifically, α4β2 

mediates excitatory postsynaptic current (EPSC) in the CA1 region of the 

hippocampus (Bell et al., 2011). 

Some clinical studies have shown the potential benefit of nicotinic drugs in 

ameliorating memory deficits among METH abusers. Among METH-dependent 

participants, 5 d oral administration of varenicline (a nicotinic receptor agonist) 

improved working memory in comparison to placebo-treated participants. Of 

note, previous work has shown that short-term low-dose administration of 

varenicline and rivastigmine, two agonists of nAChRs, were not efficacious in 

improving episodic memory in METH addicts (Kalechstein et al., 2011; 

Kalechstein et al., 2014). Two possible explanations suggested by the authors 

were that the dose and/or duration of treatment might have to be increased. 

Another possible reason for the lack of efficacy might be that the function of 

nAChRs is reduced in METH addicts. Thus, dose and duration studies as well as 
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functional studies of nAChRs are needed in order to confirm the utility of nAChR 

agonists in treating cognitive deficits in METH abusers. 

Assessment of episodic memory in rodents. Episodic memory is a type 

of explicit memory mediated by hippocampal and cortical functions. In rats, 

episodic memory is commonly assessed by NOR (Kinnavane et al., 2014). NOR 

is a simple, but powerful, test for assessment of episodic memory in rats and 

mice that has been used and studied extensively since its description by 

Ennaceur and Delacour (1988). NOR relies on the instinct of rodents to explore 

novel objects more than familiar objects. In other words, when rodents are given 

enough time to spend exploring an object, this same object becomes familiar to 

them when presented again sometime later. At this later time, it has been 

observed that rodents would spend more time exploring an object that they have 

not been presented before over that familiar object. Consequently, when episodic 

memory function is defective, rodents would not discriminate which object is 

familiar and which object is novel and hence would explore both objects at similar 

amounts of time.  

Contribution of hippocampal formations and PRh to NOR. Both, the 

hippocampus and the PRh are important for NOR. Particularly, the PRh is 

important for every aspect of recognition memory, i.e., acquisition of memory 

during the familiarization phase to retrieval of memory during recognition testing. 

The subregions of the hippocampus play different roles in recognition memory. 

CA1 is important for acquisition of memory during familiarization, whereas CA3 

and dentate gyrus seem to participate in the recognition phase when memory 
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has to be retrieved (Kinnavane et al., 2014). Furthermore, preclinical studies with 

systemic or local infusion of NIC indicated the important role of α4β2 and α7 

subtypes of nAChRs and the hippocampus and PRh in NOR (Melichercik et al., 

2012). 

 
Research hypotheses 

NIC has shown to be neuroprotective to the dopaminergic and episodic 

memory system. Several mechanisms have been proposed. NIC has shown to 

have antioxidant effects, to reduce alpha-synuclein fibrillation, to increase 

neurotrophic factors, to activate the function of the proteasome system and to 

enhance LTP in memory-related brain regions. However, the subtype of nAChR 

that mediates these neuroprotective effects is unknown. Revealing the 

mechanisms by which NIC protects, including the nAChR subtypes involved, is of 

clinical importance because selective preventive and/or treatment strategies are 

necessary considering that NIC per se is associated with multiple side effects. 

As discussed above, chronic NIC administration leads to upregulation of 

α4β2 subtype of nAChRs in several brain regions including the striatum, nucleus 

accumbens core, hippocampus, and PRh. In parallel, chronic NIC administration 

leads to downregulation of α6β2 nAChRs in the striatum and nucleus accumbens 

core (this subtype is not expressed in the hippocampus and cortex). The α4β2 

and α6β2 nAChRs subtypes mediate tonic and phasic DA release in the striatum 

and nucleus accumbens core, respectively. In the hippocampus and PRh, α4β2 

nAChRs mediate LTP.  

The neuroprotection strategies for METH-induced dopaminergic 
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neurotoxicity proposed and investigated in this dissertation are (1) reduction of 

cytoplasmic DA in order to decrease ROS formation and (2) reduction in 

exocytotic DA release whereby postsynaptic DA receptors are activated, which 

contribute to long-term neurotoxicity. Chronic NIC administration might fulfill 

these two strategies by (1) augmenting tonic DA release and thus causing 

reduction of cytoplasmic DA through upregulation of α4β2 nAChRs sites and (2) 

reducing phasic DA release, thus causing reduction in exocytotic DA release 

through downregulation of α6β2 nAChRs sites.  Of note, DA release per se was 

not investigated in this dissertation work, but rather, the density of α4β2 and 

α6β2 nAChRs in the striatum and nucleus accumbens core and their association 

with dopaminergic function in rats treated with METH alone or in combination 

with NIC was explored. This proposed working hypothesis is presented as a 

diagram in Figure 1.1. 

The neuroprotection strategy for METH-induced episodic memory deficits 

proposed and investigated in this dissertation is an augmentation of LTP in the 

hippocampus and PRh. NIC administration might fulfill this strategy by increasing 

LTP via upregulation α4β2 nAChRs sites. LTP per se was not investigated in this 

dissertation work, but rather the density of α4β2 nAChRs in the hippocampus 

and PRh and their association with memory function in rats treated with METH 

alone or in combination with NIC. This proposed working hypothesis is presented 

as a diagram in Figure 1.2. 
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Figure 1.1 Working hypothesis for the mechanism of NIC dopaminergic 
neuroprotection in the striatum. METH reduces the reserve DA pool and 
increases the readily releasable DA pool leading to cytosolic DA accumulation 
and excitotoxicity, respectively. NIC-induced upregulation of α4β2 nicotinic 
receptors potentially decreases excess of cytosolic DA via augmentation of tonic 
DA release, and NIC-induced downregulation of α6β2 nicotinic receptors 
potentially reduces excitotoxicity via reduction of phasic DA release to offset 
METH effects and afford protection. 
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Figure 1.2 Working hypothesis for the mechanism of NIC memory 
neuroprotection in the hippocampus. NIC-induced upregulation of α4β2 nicotinic 
receptors in the hippocampus and PRh potentially increases LTP to protect 
against NOR deficits caused by METH. 



 

CHAPTER 2 

CHRONIC NICOTINE ADMINISTRATION ATTENUATES 

METHAMPHETAMINE-INDUCED DOPAMINERGIC  

DEFICITS: IMPACT OF AGE OF  

NICOTINE EXPOSURE 

Introduction 

Methamphetamine (METH) is a potent psychostimulant abused among 

adolescents and young adults (Grant et al., 2007; Johnston et al., 2014). 

Repeated METH administrations in humans (Sekine et al., 2001; Volkow et al., 

2001; McCann et al., 2008) and rodents (McFadden, Hadlock, et al., 2012; 

Kousik et al., 2014) cause long-term impairment of striatal dopaminergic 

neuronal function resembling some aspects of Parkinson’s disease (PD) 

(McCann et al., 1998; Lotharius and Brundin, 2002; Kish et al., 2008). Recent 

clinical studies from others and us have shown that abstinent 

amphetamine/METH abusers have an increased risk for developing PD later in 

life (Callaghan et al., 2010; Callaghan et al., 2012; Curtin et al., 2014) and 

although the majority of PD patients have never abused METH, overlapping 

neuropathologies appear to underlie the degenerative processes involving these 

two conditions (Granado et al., 2013, for review; Kousik et al., 2014). Preclinical 

studies indicate that aberrant dopamine (DA) sequestration and release leading
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to oxidative stress might be one of the mechanisms that likely contribute to this 

dopaminergic damage (Fleckenstein et al., 1997; Lotharius and Brundin, 2002; 

Riddle et al., 2006, for review).  

Clinical evidence suggests that PD is less likely to occur among cigarette 

smokers (Hernan et al., 2001; Hernan et al., 2002; Chen et al., 2010), and 

preclinical research has indicated that nicotine (NIC) is neuroprotective in the 

nigrostriatal dopaminergic system (Huang et al., 2009; Garcia-Montes et al., 

2012; Quik et al., 2012, for review). Despite the fact that the majority of METH 

abusers smoke cigarettes (~80%; McCann et al., 2008), and thus self-administer 

NIC, only a few studies have specifically assessed the potential neuroprotective 

effect of NIC in the METH model of dopaminergic deficits (Maggio et al., 1998; 

Ryan et al., 2001). These studies have demonstrated that acute NIC injections 

are neuroprotective against METH-induced striatal dopaminergic deficits; 

however, the circumstances under which in vivo NIC is neuroprotective in 

preclinical models (i.e., duration of NIC exposure and age of NIC initiation) 

warrant further investigation.  

In order to provide further insights into the mechanism whereby NIC is 

neuroprotective, it is important to note that the majority of human adults addicted 

to cigarettes started smoking during adolescence (Kandel and Logan, 1984; 

Chen and Kandel, 1995; Breslau and Peterson, 1996). Furthermore, 

adolescence is a vulnerable time period for drug abuse and associated with 

significant brain development; thus, NIC-induced neurochemical changes 

potentially influence several aspects of the adult brain functioning (Spear, 2000; 
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Barron et al., 2005). For example, epidemiological NIC neuroprotection studies 

indicated that 68% of the participants who demonstrated protection started 

smoking before the age of 20 (Chen et al., 2010). These clinical data suggest 

that cigarette smoking (and thus NIC exposure) starting at a young age may play 

a role in neuroprotection. However, whether age of NIC initiation is a factor in 

neuroprotection is unknown. 

The present series of studies were aimed to investigate any potential age-

related effect on NIC neuroprotection in the METH model of striatal dopaminergic 

dysfunction. Furthermore, in order to more closely mimic the intermittent and 

chronic nature of NIC exposure in smoking, NIC was given long-term via drinking 

water as opposed to acute injections. The data described herein demonstrate 

that chronic oral NIC administration attenuates the persistent striatal deficits 

caused by METH, as assessed by evaluating dopamine transporter (DAT) 

function and expression in rats. In addition, longer NIC administration is 

necessary for neuroprotection to occur in adults, suggesting that both age of 

onset and duration of exposure play a role in neuroprotection. 

 
Methods 

Animals. Male Sprague-Dawley rats (Charles River Breeding 

Laboratories, Raleigh, NC) initially weighing 125–150 g (corresponding to 

postnatal day (PND) 40) or 245–270 g (corresponding to PND 60) (Spear, 2000; 

Tirelli et al., 2003) were housed 2–3 rats per cage and maintained under a 

controlled light/dark cycle (14:10 h) and in an ambient environment of 20 °C (with 

the exception of the 6-h period during which METH or saline vehicle was 
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administered during which the ambient environment was maintained at 24 °C). 

Food and water were available ad libitum. During METH or saline 

administrations, core body (rectal) temperatures were measured using a digital 

thermometer (Physitemp Instruments, Clifton, NJ) every 1 h beginning 30 min 

before the first saline or METH administration and continuing until 30 min after 

the final saline or METH administration. Rats were placed on a cooler 

environment if their body temperature exceeded 40.5 °C and returned to their 

home cage once their body temperature dropped to 40 °C. All experiments were 

approved by the University of Utah Institutional Animal Care and Use Committee, 

in accordance with the National Institutes of Health Guide for the Care and Use 

of Laboratory Animals 8th Edition (Institute of Laboratory Animal Resources, 

2011). 

Drug treatments. METH hydrochloride was provided by the National 

Institute on Drug Abuse (Research Triangle Institute; Research Triangle Park, 

NC) and administered at 4 x 7.5 mg/kg/s.c, 2-h intervals calculated as free-base. 

(-) NIC (1.010 g/ml; Sigma-Aldrich Co. LLC) was administered ad libitum p.o. at 

concentrations of 10, 20, 50, or 75 µg/ml via the water bottles as delineated in 

Figure 2.1. To increase palatability, 1% saccharin (Sweet & Low, Cumberland 

Packing Corp., NY) was added to the animals’ drinking water only in experiments 

in which the initial NIC concentration was 75 µg/ml (i.e., experiments delineated 

in Figure 2.1B, 2.1C, and 2.1D), or during the highest escalating rate (i.e., 

experiment delineated in Figure 2.1E). In our current studies, NIC water 

consumption was ~30 ml/rat/day, tap water consumption was ~45 ml/rat/day, and 
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saccharin water consumption was ~60 ml/rat/day, similarly to previous reports 

(Bordia et al., 2008). These NIC doses in rats yield plasma concentrations similar 

to plasma NIC and cotinine concentrations typically found in human smokers 

(10–50 ng/ml for NIC and 300 ng/ml for cotinine) (Benowitz, 1994; Matta et al., 

2007). 

Tissue preparation. Rats were decapitated 7 d after METH treatment. 

Both striata were dissected out on ice, placed in cold sucrose buffer (0.32 M 

sucrose, 3.8 mM NaH2PO4, and 12.7 mM Na2HPO4) and used for [3H]DA uptake 

and western blotting as described below. Brains of experiments PND 40–61 and 

PND 61–100 were hemisected and the right contralateral tissues were analyzed 

as described in Chapter 3. Hippocampal and perirhinal cortex tissues were also 

analyzed and data were reported in Chapter 5.  

[3H]DA uptake assay. Striatal synaptosomes were prepared as previously 

described (Hanson et al., 2009). Following decapitation, the striatum was quickly 

dissected out and homogenized in ice-cold sucrose buffer (0.32 M sucrose, 3.8 

mM NaH2PO4, and 12.7 mM Na2HPO4).  [3H]DA uptake assays were conducted 

according to Hanson et al. (2009). For plasmalemmal uptake of [3H]DA, striatal 

synaptosomes were prepared accordingly and resuspended in ice-cold Krebs’ 

buffer (126 nM NaCl, 4.8 mM KCl, 1.3 mM CaCl2, 16 mM sodium phosphate, 1.4 

mM MgSO4, 11 mM dextrose, 1 mM ascorbic acid, pH 7.4).  Assay tubes 

containing 1.5 mg striatal tissue and 1 µM pargyline were incubated for 3 min at 

37 °C with [7,8-3H]DA (0.5 nM final concentration, Perkin Elmer, Boston, MA). 

Nonspecific values were ascertained in the presence of 10 µM cocaine. Samples 
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were filtered using a filtering manifold (Brandel, Inc Gaithersburg, MD) through 

Whatman GF/B filters (Whatman International LTD, Maidstone, England) soaked 

previously in 0.05% polyethylenimine and washed three times with 3 ml of ice-

cold 0.32 M sucrose. Protein concentration was used for normalization and 

determined by the Bradford Protein Assay. 

DAT western blotting. Western blotting was conducted according to our 

previous method (Hadlock et al., 2009). Equal quantities of protein (8 µg) were 

loaded into each well of a 4 to 12% NuPAGE Novex Bis-Tris Midi gradient gel 

(Invitrogen, Carlsbad, CA) and electrophoresed by using a XCell4 Surelock Midi-

Cell (Invitrogen). Membranes were blocked for 30 min with Starting Block 

Blocking Buffer (Thermo Fisher Scientific, Waltham, MA) and incubated for 1 h at 

room temperature with a DAT antibody (a generous gift from Dr. Roxanne 

Vaughan, University of North Dakota, Grand Forks, ND). The polyvinylidene 

difluoride membrane was then washed five times in Tris-buffered saline with 

Tween (250 mM NaCl, 50 mM Tris, pH 7.4, and 0.05% Tween 20). The 

membranes were then incubated for 1 h with a horseradish peroxidase-

conjugated secondary antibody (BioSource International, Camarillo, CA). After 

five washes in Tris-buffered saline with Tween, the bands were visualized by 

using Western Lightning Chemiluminescence Reagents Plus (PerkinElmer Life 

and Analytical Sciences, Waltham, MA) and quantified by densitometry using a 

FluorChem SP Imaging System (Alpha Innotech, San Leandro, CA). Protein 

concentrations were determined by using the Bradford Protein Assay.  

Brain METH and amphetamine concentrations. Brain METH and its 
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metabolite, amphetamine, concentrations were measured by liquid 

chromatography-tandem mass spectrometry as described previously (Truong et 

al., 2005). The whole brains (except for the striatum) were weighed and 

homogenized separately in 10 ml of water. A VibraCell homogenizer (Sonics, 

Newton, CT) was used for the homogenization. A 0.5-ml volume of the 

homogenate was used for the analysis. An Agilent liquid chromatograph (Agilent 

Technologies, Santa Clara, CA) coupled to a ThermoQuest Finnigan TSQ 7000 

tandem mass spectrometer (Thermo Fisher Scientific) was used for the analysis. 

Electrospray ionization was used. The lower limit of quantification (LOQ) was 1 

ng/ml in the homogenates.  

Data analyses. Statistical analyses were conducted using GraphPad 

Prism 5.01 software (La Jolla, CA). Mean concentrations + standard error of the 

mean (SEM) were analyzed using one-way analysis of variance followed by 

Newman-Keuls post hoc test. Differences among groups were considered 

significant if the probability of error was less than 5% (p < 0.05). Sample sizes 

are indicated in figure legends. 

 
Results 

Figure 2.1 depicts the experimental design of the studies presented 

herein. In panel A, rats received NIC for a total of 56 d throughout the entire 

experiment from adolescence (PND 40) to adulthood (PND 96) and METH 

administration 7 d before the end of the experiment at PND 89. In order to 

investigate whether the effects of NIC on METH-induced dopaminergic deficits 

remain with shorter NIC administration, in panel B NIC administration was 
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shortened to 21 d beginning in adolescence. In panel C, rats also received NIC 

for 21 d beginning in adolescence, but METH administrations were given only 

after 21 d that NIC was stopped (i.e., during adulthood) to evaluate how long NIC 

effects last. Next, in panel D, rats received NIC for 21 d, but beginning in young 

adulthood (PND 61). Lastly, in panel E, we extended NIC administration to 39 d 

beginning at PND 61 to further investigated whether the effects of NIC on METH-

induced dopaminergic deficits are solely dependent on the age of NIC initiation, 

or if they are also dependent the length of NIC administration. 

Results presented in Figure 2.2 demonstrate that ad libitum exposure to 

an escalating-dose regimen of NIC (10–75 µg/ml; p.o.; see Methods and Figure 

2.1, panel A for details) from PND 40–PND 96 attenuated the persistent (e.g., 7-

d) METH-induced decrease in striatal DAT [3H]DA uptake (F3,30 = 39.61, p < 0.05) 

and immunoreactivity (F3,30 = 38.13, p < 0.05) when METH (4 x 7.5 

mg/kg/injection, s.c.) was administered on PND 89 (panels A and B). In other 

words, 56 d of NIC exposure via drinking water afforded protection when 

exposure was initiated on PND 40. This NIC regimen did not attenuate METH-

induced hyperthermia (panel C). 

Results presented in Figure 2.3 demonstrate that ad libitum exposure of 

NIC (75 µg/ml; p.o.; see Methods and Figure 2.1, panel B for details) from PND 

40–PND 61 attenuated the persistent (e.g., 7-d) METH-induced decrease in 

[3H]DA uptake when METH (4 x 7.5 mg/kg/injection, s.c.) was administered on 

PND 54 (F3,31 = 18.81, p < 0.05). In other words, 21 d of NIC exposure afforded 

protection when, as was accomplished for Figure 2.2, exposure was initiated on 
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PND 40. This NIC regimen did not attenuate METH-induced hyperthermia (data 

not shown). 

It is noteworthy that the protection afforded by 21 d NIC exposure (i.e., 

Figure 2.3) does not persist when NIC exposure is initiated on PND 40, but 

terminated on PND 61 (Figure 2.4). In particular, this NIC exposure regimen (75 

µg/ml; p.o.; see Methods and Figure 2.1 panel C for details) did not attenuate the 

METH (4 x 7.5 mg/kg/injection, s.c.)-induced decrease in [3H]DA uptake when 

METH is subsequently administered on PND 82, and as assessed 7 d later on 

PND 89 (F3,34 = 43.52, ns). This NIC regimen did not attenuate METH-induced 

hyperthermia (data not shown). 

In contrast to Figure 2.3, 21 d of NIC exposure was not sufficient to 

attenuate the persistent (7-d) METH-induced decrease in striatal [3H]DA uptake 

when NIC exposure was initiated on PND 61 (Figure 2.5). In particular, ad libitum 

exposure of NIC (75 µg/ml; p.o.; see Methods and Figure 2.1 panel D for details) 

from PND 61–PND 82 did not attenuate the persistent (e.g., 7-d) METH-induced 

decrease in [3H]DA uptake when METH (4 x 7.5 mg/kg/injection, s.c.) was 

administered on PND 75 (F3,21 = 25.79, ns). This NIC regimen did not attenuate 

METH-induced hyperthermia (data not shown). 

Results presented in Figure 2.6 demonstrate that ad libitum exposure to 

an escalating-dose regimen of NIC (10–75 µg/ml; p.o.; see Methods and Figure 

2.1 panel E for details) from PND 61–PND 100 attenuated the persistent (e.g., 7-

d) METH-induced decrease in striatal [3H]DA uptake (F3,34 = 13.12, p < 0.05) 

when METH (4 x 7.5 mg/kg/injection, s.c.) was administered on PND 93. In other 



 47 

words, 39 d of NIC exposure afforded protection when exposure was initiated on 

PND 61. This NIC regimen did not attenuate METH-induced hyperthermia (data 

not shown). 

Finally, we assessed the concentration of METH and metabolite in the 

brain of METH-treated rats chronically pretreated with oral NIC in order to 

investigate whether NIC neuroprotection in the METH model occurs because of 

changes in the pharmacokinetics of METH. PND 40 rats received increasing 

concentrations of NIC via drinking water (10–75 µg/ml) for 49 d. METH or saline 

administrations occurred at PND 89 followed by a 1-h sacrifice. METH and the 

metabolite amphetamine concentrations were not statistically different between 

METH-treated rats pre-exposed to tap water or NIC water (9.7 + 0.6 ng/mg and 

8.4 + 0.8 ng/mg, respectively, p = 0.23). METH and amphetamine were not 

detected in the saline-treated rats pre-exposed to tap water or NIC water (<LOQ). 

 
Discussion 

These current studies demonstrate that long-term (i.e., 56 d) oral NIC 

administration to rats, beginning during a time period corresponding to 

adolescence (Spear, 2000; Tirelli et al., 2003), attenuates METH-induced 

persistent striatal dopaminergic deficits when assessed during adulthood. NIC 

also affords striatal dopaminergic neuroprotection when short-term oral NIC (i.e., 

21 d) is initiated during adolescence. In contrast, short-term oral NIC 

administration (i.e., 21 d) commenced in young adulthood does not attenuate 

METH-induced striatal dopaminergic deficits. However, NIC is neuroprotective 

when administered for 39 d during adulthood. These data indicate that both age 
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of NIC initiation and duration of NIC exposure play a role in the neuroprotective 

effect of NIC to striatal dopaminergic deficits caused by METH. 

The current studies showed that 21 d, 39 d, or 56 d oral NIC 

administration per se did not induce changes in striatal DAT function and/or 

expression when assessed during adulthood. These data are consistent with 

previous findings demonstrating that chronic NIC administration via drinking 

water beginning in adolescence did not affect striatal DAT expression when 

assessed in adulthood (Huang et al., 2009). Similarly, 7 d of NIC via osmotic 

minipumps had no effect on striatal DAT function and expression in adult rats 

(Izenwasser and Cox, 1992; Collins et al., 2004). 

Consistent with similar NIC neuroprotection studies utilizing dopaminergic 

neurotoxins other than METH, current data demonstrate that chronic oral NIC 

administration is neuroprotective against striatal dopaminergic deficits caused by 

a high-dose METH regimen. For example, previous studies have shown that NIC 

administration via drinking water at an escalating dose of 12.5 µg/ml to 50 µg/ml 

for 7 weeks to rats beginning in adolescence attenuates declines in striatal DAT 

densities caused by 6-hydroxy-DA lesion (Huang et al., 2009). In a different 

study, 6 weeks NIC administration via drinking water to mice attenuated 

paraquat-induced striatal DAT densities deficits when NIC was initiated during 

adulthood (Khwaja et al., 2007). 

It is well established that attenuation of METH-induced hyperthermia 

protects the persistent dopaminergic deficits caused by the stimulant. For 

example, exposure of animals to a low ambient temperature attenuates METH-
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induced hyperthermia and neurotoxicity (Bowyer et al., 1994; Ali et al., 1995). 

Prevention of METH-induced hyperthermia attenuates reactive species formation 

as well (Fleckenstein et al., 1997). Furthermore, selective inhibition of 

dopaminergic receptors by various agents also attenuates METH-induced 

hyperthermia and affords dopaminergic neuroprotection (Sonsalla et al., 1986). 

However, dopaminergic receptor antagonism fails to afford neuroprotection when 

animals receive METH in a high-temperature environment, indicating that 

protection is lost when the degree of dopaminergic damage is high (Broening et 

al., 2005). Current data indicate that METH administrations induce significant 

hyperthermia in animals pretreated with tap water or NIC water (Figure 2.2C). 

Furthermore, METH-induced hyperthermia was not different between rats 

pretreated with tap water (SM) and NIC water (NM), thus indicating that the NIC 

neuroprotection is not mediated by attenuation in METH-induced hyperthermia.  

One possible explanation for NIC neuroprotection involves fundamental 

alterations in the nicotinic acetylcholine receptor (nAChR) system. The 

hypothesis is based on the findings that chronic NIC administration alters the 

expression and function of striatal nAChRs (Perez et al., 2008; Huang et al., 

2009). Furthermore, NIC-induced changes in nAChRs differ between adolescent 

and adult rats; particularly, upregulation of the α4β2 subtypes and 

downregulation of the α6β2 subtypes of nAChRs are more robust in adolescent 

rats in comparison to adult rats (Doura et al., 2008). Assuming that these 

alterations in nAChRs contribute to protection, then the protection observed in 

current studies would be affected by age and could explain the shorter NIC 



 50 

exposure necessary for neuroprotection to occur in adolescent versus adult rats. 

In other words, higher expression of α4β2 nAChR and/or lower expression of 

α6β2 nAChR potentially attenuate METH-induced neurotoxicity and in 

adolescents, NIC induction of this optimal balance is achieved sooner. 

Alterations in the nAChR system could also explain the absence of NIC 

neuroprotection when NIC was removed 3 weeks prior to METH administration 

as seen in the present study shown in Figure 2.4. For instance, studies by Pietila 

et al. (1998) demonstrated that in mice exposed to NIC via drinking water for 4 or 

7 weeks, NIC-induced upregulation of nAChRs in the midbrain remained for 48–

72 h, but it returned to baseline levels after 7 d of NIC removal. These findings 

suggest that if NIC-induced alterations in nAChRs play a role in neuroprotection, 

then the lack of change of nAChRs contribute to the lack of neuroprotection.  

In summary, the present results demonstrate that long-term NIC 

administration, given to rats as to mimic cigarette smoking (Matta et al., 2007), 

attenuates the striatal dopaminergic deficits caused by METH. The relevance of 

these findings is at least three fold. First, since most METH abusers are exposed 

to NIC via cigarette smoking (~80%; McCann et al., 2008), preclinical studies 

such as these are clinically relevant. Secondly, the fact that chronic NIC 

administration attenuated the dopaminergic deficits caused by METH suggest 

that PD risk among METH abusers would be greater if most METH abusers were 

not cigarette smokers. These findings also suggest that METH abusers that are 

nonsmokers have higher indices of dopaminergic deficits than those who are 

cigarette smokers. Lastly, current data provide insights into the mechanism by 
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which NIC is neuroprotective to the dopamine system. Specifically, our findings 

indicate that age of NIC initiation and length of NIC exposure both play a role in 

this neuroprotection and that these neuroprotective effects go away after three 

weeks of NIC removal. 
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Figure 2.1 Experimental designs. A. Experiment A: rats received tap water or NIC 
water (10–75 µg/ml) from PND 40 to 96 and METH (4 x 7.5 mg/kg/injection, s.c., 
2h-apart) or saline (1ml/kg/injection) at PND 89. B. Experiment B: rats received 
tap water containing 1% saccharin or NIC water (at 75 µg/ml) containing 1% 
saccharin from PND 40 to 61 and METH (4 x 7.5 mg/kg/injection, s.c., 2h-apart) 
or saline (1ml/kg/injection) at PND 54. C. Experiment C: rats received tap water 
containing 1% saccharin or NIC water (at 75 µg/ml) containing 1% saccharin 
from PND 40 to 61 and METH (4 x 7.5 mg/kg/injection, s.c., 2h-apart) or saline 
(1ml/kg/injection) at PND 82. D. Experiment D: rats received tap water containing 
1% saccharin or NIC water (at 75 µg/ml) containing 1% saccharin from PND 61 
to 82 and METH (4 x 7.5 mg/kg/injection, s.c., 2h-apart) or saline 
(1ml/kg/injection) at PND 75. E. Experiment E: rats received tap water containing 
1% saccharin or NIC water (10–75 µg/ml) containing 1% saccharin from PND 61 
to 100 and METH (4 x 7.5 mg/kg/injection, s.c., 2h-apart) or saline 
(1ml/kg/injection) at PND 93. 
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Figure 2.2 Chronic NIC administration attenuates METH-induced deficits in 
striatal DAT function and expression with no change in METH-induced 
hyperthermia. This is experiment A described in Figure 2.1A. Data are expressed 
as mean values + S.E.M. of n = 6–10 determinations. *Values that are 
significantly different from saline control. #Values that are significantly different 
from SM (p < 0.05). Legend: SS = tap water/saline injections; NS = NIC 
water/saline injections; SM = tap water/METH injections; NM = NIC water/METH 
injections. 
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Figure 2.3 Short-term (i.e., 21 d) NIC administration starting in adolescence 
attenuates METH-induced deficits in striatal DAT function. This is experiment B 
described in Figure 2.1B. Data are expressed as mean values + S.E.M. of n = 8–
10 determinations.  *Values that are significantly different from saline control. 
#Values that are significantly different from SM (p < 0.05). Legend: SS = tap 
water/saline injections; NS = NIC water/saline injections; SM = tap water/METH 
injections; NM = NIC water/METH injections. 

SS SM NS NM
0

1

2

3

4

*

*

St
ria

ta
l [

3 H
]D

A
 u

pt
ak

e
(f

m
ol

/µ
g 

pr
ot

ei
n)

#



 57 

Figure 2.4 NIC neuroprotective effects on METH-induced deficits in striatal DAT 
function do not persist for 4 weeks. This is experiment C described in Figure 
2.1C. Data are expressed as mean values + S.E.M. of n = 8–11 determinations. 
*Values that are significantly different from saline control. Legend: SS = tap 
water/saline injections; NS = NIC water/saline injections; SM = tap water/METH 
injections; NM = NIC water/METH injections. 
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Figure 2.5 Short-term (i.e., 21 d) NIC administration starting in adulthood does 
not attenuate METH-induced deficits in striatal DAT function. This is experiment 
D described in Figure 2.1D. Data are expressed as mean values + S.E.M. of n = 
6–7 determinations. *Values that are significantly different from saline control. 
Legend: SS = tap water/saline injections; NS = NIC water/saline injections; SM = 
tap water/METH injections; NM = NIC water/METH injections. 
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Figure 2.6 Long-term (i.e., 39 d) NIC administration starting in adulthood 
attenuates METH-induced deficits in striatal DAT function. This is experiment E 
described in Figure 2.1E. Data are expressed as mean values + S.E.M. of n = 9–
10 determinations. *Values that are significantly different from saline control. 
#Values that are significantly different from SM (p < 0.05). Legend: SS = tap 
water/saline injections; NS = NIC water/saline injections; SM = tap water/METH 
injections; NM = NIC water/METH injections. 
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CHAPTER 3 

EFFECTS OF CHRONIC NICOTINE ADMINISTRATION ON 

METHAMPHETAMINE-INDUCED DOPAMINERGIC 

DEFICITS: ROLE OF α4β2 AND α6β2  

NICOTINIC RECEPTOR  

SUBTYPES 

Introduction 

Repeated methamphetamine (METH) administrations in humans and 

laboratory animals cause long-term dopaminergic deficits in the striatum and 

nucleus accumbens and psychomotor impairment resembling some aspects of 

Parkinson’s disease (PD) (Broening et al., 1997; McCann et al., 1998; Sekine et 

al., 2001; Volkow et al., 2001; Kousik et al., 2014). Recent clinical studies from 

others and us have indicated that METH/amphetamine abusers have a higher 

risk for developing PD (Callaghan et al., 2010; Callaghan et al., 2012; Curtin et 

al., 2014), and preclinical studies have shown similarities between these two 

neuropathologies, including reductions in tyrosine-hydroxylase and dopamine 

transporter (DAT) neurons in the striatum and nucleus accumbens core (Kousik 

et al., 2014). Furthermore, preclinical studies suggest that aberrant dopamine 

(DA) accumulation and release likely contribute to METH-induced dopaminergic 

deficits (Broening et al., 1997; Fleckenstein et al., 2007, for review).  
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Clinical and preclinical studies have demonstrated a neuroprotective effect 

of nicotine (NIC) on dopaminergic neurons in PD models (Ryan et al., 2001; 

Khwaja et al., 2007; Villafane et al., 2007; Huang et al., 2009; Takeuchi et al., 

2009). For example, Vieira-Brock et al. (our companion manuscript) found that 

chronic NIC administration attenuates the persistent dopaminergic deficits 

caused by high-dose METH treatment as assessed by evaluating DAT function 

and immunoreactivity. Previous studies have suggested that α4β2 and α6β2 

subtypes of nicotinic acetylcholine receptors (nAChRs) mediate this protection 

although other nicotinic subunits might also contribute (Ryan et al., 2001; Khwaja 

et al., 2007; Takeuchi et al., 2009; Quik et al., 2011). For example, the 

neuroprotective effect of NIC in rotenone-treated mice was inhibited when an 

α4β2 antagonist was administered (Takeuchi et al., 2009). Furthermore, the 

neuroprotective effect of chronic NIC was lost in α4-knockout mice lesioned with 

6-hydroxy-DA, suggesting that α4β2 nAChRs might be crucial for protection 

(Ryan et al., 2001). However, other studies demonstrated that α6β2 nAChR 

binding is significantly increased in α4-knockout mice, suggesting that the loss of 

neuroprotection in α4-knockout mice could have occurred because of the 

increase in α6β2, as opposed to the loss of α4β2 nAChR sites (Perez et al., 

2008). Similarly, others have suggested that NIC-induced reduction in α6β2 

nAChRs mediate neuroprotection against paraquat-induced dopaminergic 

neurotoxicity (Khwaja et al., 2007). Overall, these studies suggest that α4β2 

and/or α6β2 nAChRs mediate the neuroprotective effect of NIC to dopaminergic 

neurons. 



 62 

The α4β2 and α6β2 nAChR subtypes are highly expressed on 

dopaminergic projections and regulate DA release in the striatum and nucleus 

accumbens (Champtiaux et al., 2002; Perez et al., 2012; Marks et al., 2014). Of 

relevance, chronic NIC administration increases the density of α4β2 nAChRs in 

human smokers (Benwell et al., 1988) and in experimental animal models (Marks 

et al., 1992; McCallum et al., 2006; Perez et al., 2008). In animal models, this 

upregulation is accompanied by an increase in electrically stimulated tonic DA 

release (Buisson and Bertrand, 2002, for review; Meyer et al., 2008; Perez et al., 

2008). On the other hand, α6β2 nAChR expression is downregulated after 

chronic NIC administration (Lai et al., 2005; Perez et al., 2008), and this 

correlates with significant declines in phasic DA release in the striatum and 

nucleus accumbens (Lai et al., 2005; Perez et al., 2012; Exley et al., 2013). 

Given the role of aberrant DA accumulation and release in METH-induced 

dopaminergic deficits, the purpose of the present study was to investigate the 

potential role of these nAChR subtypes in the neuroprotection afforded by 

chronic NIC. The effect of age of onset of NIC exposure was also evaluated as it 

impacts the expression of nAChRs (Doura et al., 2008). Results revealed that 

chronic NIC exposure, independently of age of onset, differentially affects α4β2 

and α6β2 nAChRs in METH-treated rats. Further, we speculate that increased 

α4β2 and/or decreased α6β2 nAChR levels may contribute to the protection 

against METH-induced dopaminergic deficits afforded by chronic NIC exposure. 
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Methods 

Animals. Male Sprague-Dawley rats (Charles River Breeding 

Laboratories, Raleigh, NC) initially weighing 125–150 g (corresponding to 

postnatal day (PND) 40) or 245–270 g (corresponding to PND 60) (Spear, 2000; 

Tirelli et al., 2003) were housed 2–3 rats per cage and maintained under a 

controlled light/dark cycle (14:10 h) and in an ambient environment of 20 °C (with 

the exception of the 6-h period during which METH or saline vehicle was 

administered during which the ambient environment was maintained at 24 °C). 

During METH or saline administrations, core body (rectal) temperatures were 

measured using a digital thermometer (Physitemp Instruments, Clifton, NJ) every 

1 h beginning 30 min before the first saline or METH administration and 

continuing until 30 min after the final saline or METH administration. Rats were 

placed on a cooler environment if their body temperature exceeded 40.5 °C and 

returned to their home cage once their body temperature dropped to 40 °C. Food 

and water were available ad libitum. All experiments were approved by the 

University of Utah Institutional Animal Care and Use Committee, in accordance 

with the National Institutes of Health Guide for the Care and Use of Laboratory 

Animals 8th Edition (Institute of Laboratory Animal Resources, 2011). 

Drug treatments. METH hydrochloride was provided by the National 

Institute on Drug Abuse (Research Triangle Institute; Research Triangle Park, 

NC) and administered at 4 x 7.5 mg/kg/s.c, 2-h intervals calculated as free-base. 

(-) NIC (1.010 g/ml; Sigma-Aldrich Co. LLC) was administered ad libitum p.o. at 

concentrations of 10, 20, 50, or 75 µg/ml via the water bottles. These dosing 
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protocols are delineated in Figure 2.1 of Chapter 2 (panels A, B, and E), and the 

same rats were utilized to generate the data presented in the current chapter. 

Briefly, for experiments in which NIC was given from PND 40–96, NIC 

concentrations were the following: 10 µg/ml from PND 40 to 46, 20 µg/ml from 

PND 47–53, 50 µg/ml from PND 54–74, and 75 µg/ml from PND 75–96. For 

experiments in which NIC was given from PND 40–61, NIC was given at 75 

µg/ml for the entire time. For the experiment in which NIC was given from PND 

61–100, NIC concentrations were the following: 10 µg/ml on PND 61, 20 µg/ml 

from PND 62–64, 50 µg/ml from PND 65–71 and 75 µg/ml from PND 72–100. To 

increase palatability, saccharin (Sweet & Low; Cumberland Packing Corporation, 

New York, 1%) was added to the animals’ drinking water only in experiments in 

which the initial NIC concentration was 75 µg/ml, or during the highest escalating 

rate. These NIC doses in rats yield plasma concentrations similar to plasma NIC 

and cotinine concentrations typically found in human smokers (10–50 ng/ml for 

NIC and 300 ng/ml for cotinine) (Benowitz, 1994; Matta et al., 2007). 

Tissue preparation. Rats were decapitated 7 d after METH treatment.  

Brains were hemisected, and the right side rapidly removed and frozen in 

isopentane on dry ice and stored at -80 °C. Frozen right hemisected brains were 

sliced at 12 µm thick at the level of the anterior striatum and nucleus accumbens 

(1.5 mm from bregma, Paxinos and Watson 6th edition) using a cryostat. Eight 

slices (four per rat) were mounted on each Superfrost® Plus glass micro slides 

(VWR International, Radnor, PA) and stored at -80 °C for subsequent use in 

autoradiography assays. The contralateral tissues of experiments PND 40–61 
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and PND 61–100 were analyzed as described in Chapter 2. Experiment PND 

40–96 was a separate experiment from the one described in Chapter 2. 

Hippocampal and perirhinal cortex tissues were also analyzed and data reported 

in Chapter 5. 

125I-RTI-55 autoradiography. DAT density was used as a marker of 

dopaminergic integrity and assessed via 125I-RTI-55 binding to striatal and 

nucleus accumbens core slices as previously described (O'Dell et al., 2012). 

Briefly, slides were thawed on a slide warmer (5–10 min) and preincubated in 

buffer-sucrose (10 mM sodium phosphate, 120 mM sodium chloride, 320 mM 

sucrose, pH 7.4) containing 100 nM fluoxetine at room temperature for 5 min, 

followed by a 2-h incubation in buffer-sucrose containing 25 pM 125I-RTI-55 (2200 

Ci/mmol, PerkinElmer, Watham, MA). Nonspecific binding was determined by 

slides incubated in buffer-sucrose containing 25 pM 125I-RTI-55 and 100 nM 

fluoxetine plus 100 µM nomifensine. Slides were rinsed twice in ice-cold buffer 

and distilled water for 2 min and air-dried. Sample slides and standard 125I 

microscale slides (American Radiolabeled Chemicals, St. Louis, MO) were 

placed on one cassette and exposed to the same Kodak MR film (Eastman 

Kodak Co., Rochester, NY, USA) for 24 h to keep variables constant. 

125I-epibatidine autoradiography. α4β2 nAChR density was assessed 

via 125I-epibatidine binding to striatal and nucleus accumbens core slices as 

previously described (Lai et al., 2005; Huang et al., 2009). Briefly, slides were 

thawed on a slide warmer (5–10 min) and preincubated in binding buffer (50 mM 

Tris, 120 mM NaCl, 5 mM KCl, 2.5 mM CaCl2, 1.0 mM MgCl2, pH 7.5) plus 100 
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nM αCtxMII at room temperature for 30 min. The nonradiolabeled αCtxMII was 

used to inhibit epibatidine binding to α6β2 nAChR, followed by a 40-min 

incubation in binding buffer containing 0.015 nM 125I-epibatidine (2200 Ci/mmol, 

PerkinElmer, Watham, MA) in the presence of 100 nM αCtxMII. Nonspecific 

binding was determined by slides incubated in binding buffer containing 0.015 

nM 125I-epibatidine plus 0.1 mM nicotine. Slides were rinsed twice in ice-cold 

buffer for 5 min followed by a 10 s rinse in distilled water. Slides were air-dried. 

Sample slides and standard 125I microscale slides (American Radiolabeled 

Chemicals, St. Louis, MO) were placed on one cassette and exposed to the 

same Kodak MR film (Eastman Kodak Co., Rochester, NY, USA) for 24 h to keep 

variables constant. 

125I-αConotoxinMII (αCtxMII) autoradiography. α6β2 nAChR density 

was assessed via 125I-αCtxMII binding to striatal and nucleus accumbens core 

slices as previously described (Lai et al., 2005; Huang et al., 2009). Briefly, slides 

were thawed on a slide warmer (5–10 min) and preincubated in buffer A (pH 7.5, 

20 nM HEPES, 144 mM NaCl, 1.5 mM KCl, 2 mM CaCl2, 1 mM MgSO4, 0.1% 

BSA, and 1 mM phenylmethylsulfonyl fluoride) at room temperature for 2 x 15 

min, followed by a 1-h incubation in buffer B (pH 7.5, 20 nM HEPES, 144 mM 

NaCl, 1.5 mM KCl, 2 mM CaCl2, 1 mM MgSO4, 0.2% BSA, 5 mM EDTA, 5 mM 

EGTA, and 10 µg/ml each of aprotinin, leupeptin, and pepstatin A) containing 0.5 

nM 125I-αCtxMII (~2200 Ci/mmol that was synthesized as previously described) 

(Whiteaker et al., 2000). Nonspecific binding was determined by slides incubated 

in 0.5 nM 125I-αCtxMII buffer B also containing 0.1 mM nicotine (Sigma-Aldrich, 
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St. Louis, MO). Slides were rinsed in room temperature buffer A for 10 min, then 

in ice-cold buffer A for another 10 min, followed by 2 x 10 min in 0.1x ice-cold 

buffer A, and finally in 4º C distilled water for 2 x 10 s. Slides were air-dried. 

Sample slides and standard 125I microscale slides (American Radiolabeled 

Chemicals, St. Louis, MO) were placed on one cassette and exposed to same 

Kodak MR film (Eastman Kodak Co., Rochester, NY, USA) for 4 d to keep 

variables constant. 

Data quantitation and statistical analyses. Optical densities from four 

replicate slices per rat were quantified using ImageJ software (National Institutes 

of Health, USA). Specific binding was obtained by subtracting film background 

from mean density values and converted to fmol/mg using the standard curve 

generated from 125I standards. The optical densities of the samples were within 

the linear range of the standards. Statistical analyses were conducted using 

GraphPad Prism 5.01 software (La Jolla, CA). Mean concentrations + standard 

error of the mean (SEM) were analyzed using one-way analysis of variance 

followed by a Newman-Keuls post hoc test. Differences among groups were 

considered significant if the probability of error was less than 5% (p < 0.05). 

Sample sizes are indicated in figure legends. 

 
Results 

Results presented in Figure 3.1 demonstrate that ad libitum exposure to 

NIC from PND 40–PND 96 (10–75 µg/ml; p.o; panel A), PND 40–PND 61 (75 

µg/ml; p.o; panel B), or PND 61–PND 100 (10–75 µg/ml; p.o; panel C) attenuated 

the persistent METH (4 x 7.5 mg/kg/injection, s.c.)-induced striatal deficits in 125I-
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RTI-55 binding when METH was administered on PND 89, 54, and 93, 

respectively (F3,37 = 39.54 #p < 0.05, F3,31 = 36.93 #p < 0.05, and F3,35 = 23.73 #p 

< 0.05, respectively). In other words, and in agreement with Chapter 2, long-term 

NIC administration attenuated the persistent METH-induced striatal loss of DAT 

under these conditions. These NIC regimens did not attenuate METH-induced 

hyperthermia (panel D for PND 40–96 regimen; hyperthermia data for PND 40–

61 and PND 61–100 regimens are not shown). Likewise, ad libitum exposure to 

NIC from PND 40–PND 96 (F3,33 = 24.46, #p < 0.05), PND 40–PND 61 (F3,31 = 

16.28, #p < 0.05) or PND 61–PND 100 (F3,34 = 8.12, #p < 0.05) attenuated the 

METH-induced deficits in 125I-RTI-55 binding in the nucleus accumbens core in 

these tissues (Table 3.1). 

Using the same tissues described in Figure 3.1, results presented in 

Figure 3.2A demonstrate that ad libitum exposure to an escalating-dose of NIC 

from PND 40–PND 96 attenuated the persistent (e.g., 7-d) METH-induced 

deficits in striatal 125I-epibatidine binding (F3,36 = 20.98 #p < 0.05) when METH 

was administered at PND 89. METH did not alter striatal 125I-epibatidine binding 

when administered at PND 54 or 93 (panels B and C, respectively). In each 

experiment, NIC administration per se increased striatal 125I-epibatidine binding 

in both saline- and METH-treated rats (panel A, F3,36 = 20.98 *p < 0.05; panel B, 

F3,31 = 16.14 *p < 0.05; panel C, F3,36 = 25.42 *p < 0.05). Likewise, in the nucleus 

accumbens core, ad libitum exposure to NIC from PND 40–PND 96 attenuated 

METH-induced deficits in 125I-epibatidine binding (F3,34 = 19.71, #p < 0.05), and 

NIC administration per se increased 125I-epibatidine binding in both saline- and 
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METH-treated rats (PND 40–96, F3, 34 = 19.71 *p < 0.05; PND 40–61, F3,30 = 

19.90 *p < 0.05; PND 61–100, F3,35 = 34.43 *p < 0.05) (Table 3.2).  

Again using the same tissues obtained in experiments presented for 

Figure 3.1, results presented in Figure 3.3 demonstrate that both METH and NIC 

treatments per se decreased striatal 125I-αCtxMII binding (panel A, F3,34 = 11.98 

*p < 0.05; panel B, F3,31 = 13.73 *p < 0.05; and panel C, F3,36 = 16.96, *p < 0.05). 

However, NIC treatment did not alter α6β2 nAChR binding in METH-treated rats 

(i.e., 125I-αCtxMII binding was not statistically different between METH-treated 

rats exposed to tap water or NIC water). Similarly, in the nucleus accumbens 

core, METH per se decreased 125I-αCtxMII binding (PND 40–96, F3,31 = 4.54, *p < 

0.05; PND 40–61, F3,32 = 11.68 ,*p < 0.05; and PND 61–100, F3,35 = 7.63, *p < 

0.05) (Table 3.3). In contrast to the striatal data, NIC per se did not consistently 

downregulate α6β2 nAChR binding in the nucleus accumbens core. Furthermore, 

NIC did not alter α6β2 nAChR binding in the presence of METH when given from 

PND 40–96 or PND 61–100 (i.e., 125I-αCtxMII binding was not statistically 

different between METH-treated rats exposed to tap water or NIC water). 

However, NIC attenuated METH-induced deficits in α6β2 nAChR binding when 

given from PND 40–61 (SM vs. NM, #p < 0.05). In other words, METH per se 

consistently decreased α6β2 nAChR binding in the striatum in the presence or 

absence of NIC. But in the nucleus accumbens core, METH per se only reduced 

α6β2 nAChR binding in the absence of NIC. Representative autoradiograms 

associated with Figures 3.1–3.3 are presented in Figure 3.4. 
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Discussion 

The current studies demonstrate that long-term oral NIC administration, 

when available during adolescence or adulthood to rats, attenuates METH-

induced dopaminergic deficits in the striatum and nucleus accumbens core. 

Furthermore, high-dose METH administration causes a persistent reduction in 

α6β2 nAChR binding sites in the striatum and nucleus accumbens core. These 

data are consistent with previous studies that showed that lesioning with the 

dopaminergic neurotoxins 6-hydroxy-DA or MPTP in rodents reduced striatal 

α6β2 nAChR density (Quik et al., 2003; Huang et al., 2009). Likewise, NIC 

administration per se reduced striatal α6β2 nAChR density as previously 

reported (Lai et al., 2005; Khwaja et al., 2007). The combination of NIC and 

METH did not further reduce α6β2 nAChR density in the striatum and nucleus 

accumbens. Conversely, high-dose METH administration caused either a 

reduction or no change in α4β2 nAChR density in both regions. These effects are 

similar to previous studies involving paraquat-induced damage in rodents in 

which striatal α4β2 nAChR density was unchanged (Khwaja et al., 2007) and in 

studies with 6-hydroxy-DA or MPTP administration to rodents in which striatal 

α4β2 nAChR density was reduced (Quik et al., 2003; Huang et al., 2009). Finally, 

chronic NIC administration increased α4β2 nAChR density in the striatum and 

nucleus accumbens core in both saline-treated rats and METH-treated rats. 

Overall, these data suggest that terminals containing α6β2 nAChRs are 

susceptible to the long-term deficits caused by METH and that either increasing 

α4β2 nAChRs and/or reducing α6β2 nAChRs sites may protect DA terminals 
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from neurotoxicity. 

The present data are consistent with previous preclinical studies linking 

NIC-induced protection of dopaminergic neurons to alterations in nAChR 

expression (Pietila et al., 1998; Slotkin et al., 2004; Lai et al., 2005; Khwaja et al., 

2007; Even et al., 2008; Perez et al., 2008; Huang et al., 2009). For example, 

long-term NIC pretreatment via drinking water to rats (i.e., at least 3 weeks) 

starting at PND 30 attenuated the dopaminergic deficits caused by 6-hydroxy-DA 

lesion when assessed by 125I-RTI-121 autoradiography (Huang et al., 2009). In 

these studies, chronic NIC per se did not affect the density of α4β2 and α6β2 

nAChRs, but rather attenuated the declines in the density of α4β2 and α6β2 

nAChRs caused by 6-hydroxy-DA. Similarly, NIC administration via drinking 

water to mice for 6 weeks starting during adulthood attenuated paraquat-induced 

dopaminergic deficits (Khwaja et al., 2007). In these latter studies, NIC per se 

caused an upregulation of α4β2 and a downregulation of α6β2 nAChRs when 

assessed via 125I-epibatidine and 125I-CtxMII autoradiography, respectively 

(Khwaja et al., 2007).  

Our current data indicate that chronic NIC reduces α6β2 nAChR density, 

suggesting that chronic NIC administration protects dopaminergic neurons 

against METH-induced toxicity via downregulation of α6β2 nAChRs. In other 

words, whenever downregulation of α6β2 nAChRs occurred, as seen in animals 

pretreated with NIC alone (i.e., NS) or in combination with METH (i.e., NM), 

dopaminergic neuroprotection was observed. The mechanism whereby 

downregulation of α6β2 nAChRs might protect dopaminergic neurons potentially 



 72 

involves the role of this receptor subtype in mediating phasic DA release (Meyer 

et al., 2008; Perez et al., 2008; Perez et al., 2009; Exley et al., 2013). 

Particularly, chronic NIC administration reduces phasic DA signaling via 

downregulation of α6β2 nAChRs in the striatum and nucleus accumbens (Perez 

et al., 2008; Perez et al., 2009; Perez et al., 2012; Exley et al., 2013). Of note, in 

the striatum, the α6β2 nAChR subtypes are selectively located on dopaminergic 

terminals (see review by Quik and McIntosh, 2006). Previous findings have 

demonstrated that amphetamine/METH administration mainly disrupts DA 

signaling by significantly augmenting phasic DA release (Howard et al., 2011; 

Covey et al., 2013; Daberkow et al., 2013; Howard et al., 2013). These studies 

have demonstrated that these immediate increases in phasic DA release during 

amphetamine/METH administration lead to exocytotic events that likely 

contribute to the long-term dopaminergic damage. In fact, our current data 

demonstrate that METH consistently reduces α6β2 nAChR density 7 days after 

last administration. Thus, in line with previous evidence, our data reveal that 

dopaminergic terminals containing α6β2 nAChRs, which mediate phasic DA 

release, are more susceptible to the neurotoxic effects of METH. Overall, these 

findings suggest that the NIC-induced reduction in dopaminergic terminals that 

mediate phasic DA release (i.e., reduction in α6β2 nAChR density) might afford 

neuroprotection by offsetting the METH-induced increases in phasic DA release.  

Another possible mechanism by which NIC affords neuroprotection might 

be because of upregulation of α4β2 nAChRs. As current and previous studies 

have shown, chronic NIC administration to rodents upregulates α4β2 nAChRs 
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binding sites (and upregulation was accompanied by increase in function; see 

Buisson and Bertrand, 2002, for review). The α4β2 nAChRs are located on 

dopaminergic terminals as well as in GABAergic neurons in the striatum (Quik 

and McIntosh, 2006, for review; English et al., 2012; Luo et al., 2013). In contrast 

to α6β2 nAChRs, the α4β2 subtypes in dopaminergic terminals mediate tonic DA 

release (Meyer et al., 2008). Chronic NIC could protect against METH-induced 

dopaminergic deficits through increased release of tonic DA (or basal firing). 

Activation of α4β2 nAChRs by acetylcholine or NIC causes tonic DA release 

(Buisson and Bertrand, 2002, for review; Meyer et al., 2008). Another accepted 

mechanism by which METH causes long-term dopaminergic deficits is through 

accumulation of cytoplasmic DA that readily oxidizes and forms reactive species 

(Cubells et al., 1994; Fleckenstein et al., 2007, for review). Thus, activation of 

α4β2 nAChRs could lead to elimination of the excess of intracellular DA caused 

by METH and consequent reduction in reactive species formation. In fact, 

activation of α4β2 nAChRs by NIC has been shown to have antioxidant 

properties (Linert et al., 1999), and its administration to rats has specifically 

shown to suppress the formation of dihydrobenzoacetic acid (DHBA) (Obata et 

al., 2002) (DHBA; an index of hydroxyl radical formation that is increased after 

high-dose METH treatment) (Fleckenstein et al., 1997). Furthermore, others have 

suggested that NIC-mediated neuroprotection against paraquat-induced 

dopaminergic damage might occur via an increase of DA release, whereby 

reactive oxygen species might be reduced (Khwaja et al., 2007). Of note, METH 

administration causes acetylcholine release providing evidence that METH 
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indirectly activates nAChRs (Tsai and Chen, 1994; Taguchi et al., 1998; Dobbs 

and Mark, 2008). In case of α4β2 nAChRs located on GABAergic neurons, 

previous findings have demonstrated that chronic NIC administration increases 

basal firing of GABA neurons, thereby increasing inhibition of postsynaptic 

events (Nashmi et al., 2007). Thus, NIC neuroprotection via upregulation of α4β2 

nAChRs could potentially occur by offsetting METH-induced postsynaptic 

excitotoxicity events. Present data showed that NIC water intake increased α4β2 

nAChR density, suggesting that at the time of METH injections, more tonic DA 

release and basal firing of GABA neurons potentially occurred in the NIC-treated 

METH group in comparison to rats that drank tap water (i.e., NIC-naïve METH 

group). Furthermore, data also showed that DAT density was greater in the NIC-

treated METH group in comparison to the NIC-naïve METH group. These data 

are consistent with the hypothesis that increases in α4β2 contributed to 

dopaminergic neuroprotection. 

Previous studies have shown that NIC causes α4β2 nAChR upregulation 

by inducing higher assembly of β2 subunits with α4 subunits and consequently 

reducing assembly of β2 subunits with α6 subunits (Kuryatov et al., 2005; 

Sallette et al., 2005; Colombo et al., 2013). In fact, α6 subunits are highly 

degraded during chronic NIC treatment, supporting the idea that chronic NIC 

treatment alters subunit assembly. Thus, because α4β2 upregulation occurs at 

the cost of α6β2 downregulation, chronic NIC exposure reduces α6β2-containing 

terminals and augments α4β2-containing terminals. At the time of METH 

administration, animals that were pre-exposed to NIC presumably had fewer DA 
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terminals expressing α6β2 nAChRs and more DA terminals expressing α4β2 

nAChRs. Furthermore, previous studies have provided evidence of distinct 

populations of dopaminergic terminals in the striatum, i.e., some expressing α4β2 

and others expressing α6β2 nAChRs (Meyer et al., 2008). Current data show 

greater α4β2 nAChR density (or α4β2-containing terminals) in METH-treated rats 

pre-exposed to NIC in comparison to METH-treated rats not exposed to NIC, 

supporting the hypothesis that α4β2-containing terminals are protected. Of note, 

not all dopaminergic terminals express nAChRs, demonstrated in studies 

showing that mecamylamine (a nonselective nAChR antagonist) does not inhibit 

100% of electrically stimulated DA release (Quik et al., 2011). Thus, the 60–70% 

METH-induced DAT density deficits showed in current studies are greater than 

any effect of METH on α6β2 or α4β2 nAChRs. These findings support current 

and previous data demonstrating that NIC neuroprotection is a small effect 

(~35%); thus, terminals not expressing nAChRs are likely not involved in NIC 

neuroprotection. In summary, as shown in Figure 3.5, the proposed model for 

NIC neuroprotection is that either adding α4β2 or removing α6β2 nAChRs from 

dopaminergic terminals protect these terminals against METH toxicity, and these 

effects can be induced by long-term NIC exposure. 



 76 

Figure 3.1 Long-term NIC administration attenuates METH-induced deficits in 
striatal 125I-RTI-55 binding. A. Rats received tap water or NIC water (10–75 
µg/ml) from PND 40 to 96 and METH (4 x 7.5 mg/kg/injection, s.c., 2h-apart) or 
saline (1ml/kg/injection) at PND 89. B. Rats received tap water or NIC water (75 
µg/ml) from PND 40 to 61 and METH (4 x 7.5 mg/kg/injection, s.c., 2h-apart) or 
saline (1ml/kg/injection) at PND 54. C. Rats received tap water or NIC water (10–
75 µg/ml) from PND 61 to 100 and METH (4 x 7.5 mg/kg/injection, s.c., 2h-apart) 
or saline (1ml/kg/injection) at PND 93. Brains were harvested 7 d after METH 
and DAT density was assessed via 125I-RTI-55 autoradiography. Data are 
expressed as mean values + S.E.M. of A. n = 8–12 determinations, B. n = 8–10 
determinations, C. n = 9–10 determinations. *Values that are significantly 
different from SS (p < 0.05). #Values that are significantly different from SM (p < 
0.05). ^Values that are significantly different from NS (p < 0.05). Legend: SS = 
tap water/saline injections; SM = tap water/METH injections; NS = NIC 
water/saline injections; NM = NIC water/METH injections. 
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Table 3.1 Long-term NIC administration attenuates METH-induced deficits in 125I-
RTI-55 binding to nucleus accumbens core. 
 

125I-RTI-55 binding to nucleus accumbens core (fmol/mg) 
__________________________________________________________ 

 
Experiment  SS      SM       NS   NM         
______________________________________________________________________ 
 
PND 40–96  2.53 + 0.07    1.37 + 0.17*  2.46 + 0.11 1.85 + 0.13*^# 
 
PND 40–61  2.61 + 0.08    1.22 + 0.10*  2.50 + 0.11 2.18 + 0.11# 
 
PND 61–100  2.65 + 0.08    1.74 + 0.21*  2.58 + 0.10 2.19 + 0.14# 
______________________________________________________________________ 
Rats received NIC in drinking water from PND 40–96 (10–75 µg/ml), PND 40–61 (75 
µg/ml) or PND 61–100 (10–75 µg/ml). Brains were harvested 7 d after METH treatment. 
125-RTI-55 binding to nucleus accumbens core was performed as described in methods. 
Data are expressed as mean values + S.E.M. *Values significant different from SS (p < 
0.05). ^Values significant different from NS (p < 0.05). #Values significant different from 
SM (p < 0.05). Legend: SS = tap water/saline injections; SM = tap water/METH 
injections; NS = NIC water/saline injections; NM = NIC water/METH injections. 
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Figure 3.2 Long-term NIC administration increases striatal α4β2 nAChR binding 
in saline-treated and METH-treated rats. A. Rats received tap water or NIC water 
(10–75 µg/ml) from PND 40 to 96 and METH (4 x 7.5 mg/kg/injection, s.c., 2h-
apart) or saline (1ml/kg/injection) at PND 89. B. Rats received tap water or NIC 
water (75 µg/ml) from PND 40 to 61 and METH (4 x 7.5 mg/kg/injection, s.c., 2h-
apart) or saline (1ml/kg/injection) at PND 54. C. Rats received tap water or NIC 
water (10–75 µg/ml) from PND 61 to 100 and METH (4 x 7.5 mg/kg/injection, 
s.c., 2h-apart) or saline (1ml/kg/injection) at PND 93. Brains were harvested 7 d 
after METH and α4β2 density was assessed via 125I-epibatidine autoradiography. 
Data are expressed as mean values + S.E.M. of A. n = 8–12 determinations, B. n 
= 8–10 determinations, C. n = 10 determinations. *Values that are significantly 
different from SS (p < 0.05). #Values that are significantly different from SM (p < 
0.05). Legend: SS = tap water/saline injections; SM = tap water/METH injections; 
NS = NIC water/saline injections; NM = NIC water/METH injections. 
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Table 3.2 Long-term NIC administration increases 125I-epibatidine binding to 
nucleus accumbens core. 
 

125I-epibatidine binding to nucleus accumbens core (fmol/mg) 
__________________________________________________________ 

 
Experiment  SS      SM       NS   NM         
______________________________________________________________________ 
 
PND 40–96  2.65 + 0.07    2.37 + 0.06*  2.94 + 0.11* 3.17 + 0.09*# 
 
PND 40–61  2.35 + 0.04    2.24 + 0.05  2.79 + 0.06* 2.65 + 0.06*# 
 
PND 61–100  1.66 + 0.05    1.57 + 0.06  2.16 + 0.07* 2.16 + 0.04*# 
______________________________________________________________________ 
Rats received NIC in drinking water from PND 40–96 (10–75 µg/ml), PND 40–61 (75 
µg/ml) or PND 61–100 (10–75 µg/ml). Brains were harvested 7 d after METH treatment. 
125-epibatidine binding to nucleus accumbens was performed as described in methods. 
Data are expressed as mean values + S.E.M. *Values significant different from SS (p < 
0.05). #Values significant different from SM (p < 0.05). Legend: SS = normal 
water/saline injections; SM = normal water/METH injections; NS = NIC water/saline 
injections; NM = NIC water/METH injections. 
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Figure 3.3 NIC or METH administration reduces striatal α6β2 nAChR binding. A. 
Rats received tap water or NIC water (10–75 µg/ml) from PND 40 to 96 and 
METH (4 x 7.5 mg/kg/injection, s.c., 2h-apart) or saline (1ml/kg/injection) at PND 
89. B. Rats received tap water or NIC water (75 µg/ml) from PND 40 to 61 and 
METH (4 x 7.5 mg/kg/injection, s.c., 2h-apart) or saline (1ml/kg/injection) at PND 
54. C. Rats received tap water or NIC water (10–75 µg/ml) from PND 61 to 100 
and METH (4 x 7.5 mg/kg/injection, s.c., 2h-apart) or saline (1ml/kg/injection) at 
PND 93. Brains were harvested 7 d after METH and α6β2 density was assessed 
via 125I-αCtxMII autoradiography. Data are expressed as mean values + S.E.M. 
of A. n = 8–12 determinations, B. n = 8–10 determinations, C. n = 10 
determinations. *Values that are significantly different from SS (p < 0.05). 
#Values that are significantly different from SM (p < 0.05). ^Values that are 
significantly different from NS (p < 0.05). Legend: SS = tap water/saline 
injections; SM = tap water/METH injections; NS = NIC water/saline injections; 
NM = NIC water/METH injections. 
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Table 3.3 NIC or METH administration reduces 125I-αCtxMII binding to nucleus 
accumbens core. 
 

125I-αCtxMII binding to nucleus accumbens core (fmol/mg) 
__________________________________________________________ 

 
Experiment  SS      SM       NS   NM         
______________________________________________________________________ 
 
PND 40–96  0.73 + 0.03    0.56 + 0.02*  0.61 + 0.06* 0.58 + 0.03* 
 
PND 40–61  0.87 + 0.04    0.58 + 0.04*  0.84 + 0.05 0.72 + 0.04*^# 
 
PND 61–100  0.53 + 0.02    0.38 + 0.03*  0.49 + 0.02 0.38 + 0.04*^ 
______________________________________________________________________ 
Rats received NIC in drinking water from PND 40–96 (10–75 µg/ml), PND 40–61 (75 
µg/ml) or PND 61–100 (10–75 µg/ml). Brains were harvested 7 d after METH treatment. 
125-αCtxMI binding to nucleus accumbens core was performed as described in methods. 
Data are expressed as mean values + S.E.M. *Values significant different from SS (p < 
0.05). ^Values significant different from NS (p < 0.05). #Values significant different from 
SM (p < 0.05). Legend: SS = normal water/saline injections; SM = normal water/METH 
injections; NS = NIC water/saline injections; NM = NIC water/METH injections. 
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Figure 3.4 Representative autoradiographs depicting the effects of NIC and 
METH treatments on striatal and nucleus accumbens. A. DAT (125I-RTI-55 
binding), B. α4β2 nAChR (125I-epibatidine binding) and C. α6β2 nAChR (125I-
αCtxMII) densities. Legend: SS = tap water/saline injections; SM = tap 
water/METH injections; NS = NIC water/saline injections; NM = NIC water/METH 
injections; Blank = nonspecific binding. 
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Figure 3.5 Schematic diagram illustrating a proposed model for NIC 
neuroprotection to METH-induced dopaminergic deficits. Dopaminergic terminals 
are represented in white (α4β2-containing terminals), light gray (terminals 
containing α4β2 and α6β2), dark gray (α6β2-containing terminals), or white 
shaded (non-nAChRs terminals). The arrows represent possible exchange of 
nAChR subunits.  
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CHAPTER 4 

CHRONIC NICOTINE ADMINISTRATION PRIOR TO METHAMPHETAMINE 

PROTECTS AGAINST DEFICITS IN DOPAMINE TRANSPORTER  

AND α4β2 NICOTINIC RECEPTORS IN THE STRIATUM 

Introduction 

Methamphetamine (METH) is a psychostimulant, and its abuse can lead 

to long-lasting dopaminergic deficits (Volkow et al., 2001). Recent clinical 

evidence from others and us indicates that METH abusers are at greater risk for 

developing dopaminergic neurodegenerative disorders such as Parkinson’s 

disease (PD) (Callaghan et al., 2012; Curtin et al., 2014). Epidemiological studies 

demonstrate that lifetime exposure to cigarette smoking is inversely associated 

with PD risk (Chen et al., 2010). Furthermore, the duration (years of smoking) 

rather than intensity (daily number of cigarettes) of smoking is correlated with this 

lower PD risk, suggesting that neuroprotection comes from neuroadaptations 

induced by long-term, rather than the direct effects of, smoking (Chen et al., 

2010). As reviewed by Ritz and Rhodes (2010), it is unclear whether smoking is 

suppressing/delaying the development of PD or slowing its progression. Thus, it 

is of relevance to investigate whether smoking exposure before or after disease 

onset is important for neuroprotection. 

One likely neuroprotective agent in smoking is nicotine (NIC), as extensive 
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preclinical research has indicated that NIC protects against nigrostriatal 

dopaminergic deficits (for review, see Quik et al., 2009). Specifically, NIC 

protects when given chronically before and after, but not when given only after 

lesion with the dopaminergic neurotoxins 6-hydroxydopamine (6-OHDA) or 1-

methyl-4-phenyl-1,2,3,6-tetrahydro pyridine (MPTP) to rats or monkeys, 

respectively (Huang et al., 2009). These findings suggest that posttreatment 

alone is not sufficient for neuroprotection. Thus, since others have demonstrated 

that posttreatment alone is not sufficient for NIC neuroprotection, one of the 

hypotheses tested herein is that pretreatment alone is sufficient to afford 

dopaminergic neuroprotection against METH-induced deficits.  

NIC modulates nigrostriatal dopaminergic function via nicotinic 

acetylcholine receptors (nAChRs) (Zhou et al., 2002; Quik and McIntosh, 2006; 

Grady et al., 2007; Colombo et al., 2013). Our previous preclinical data 

demonstrate that chronic NIC exposure, beginning during adolescence (i.e., the 

corresponding age in humans at which cigarette smoking is generally initiated 

(Kandel and Logan, 1984; Chen and Kandel, 1995; Breslau and Peterson, 1996), 

protects against the persistent dopamine transporter (DAT) density and function 

deficits caused by METH. This neuroprotection was accompanied by increased 

α4β2 and reduced α6β2 nAChRs densities. However, in these studies, rats were 

exposed to NIC before and after METH treatment (see Chapter 3). The purpose 

of the present study was to determine if NIC must be present during and after 

METH exposure in order to afford protection. Results revealed that long-term NIC 

pretreatment per se is sufficient and that NIC does not need to be present at the 
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time of METH treatment to afford protection. The current data also suggest that 

NIC-induced increases in α4β2 and decreases in α6β2 nAChR levels may 

contribute to this protection.  

 
Methods 

Animals. Male Sprague-Dawley rats (Charles River Breeding 

Laboratories, Raleigh, NC) initially weighing 125–180 g (corresponding to 

postnatal day (PND) 40) (Tirelli et al., 2003) were housed 2–3 rats per cage and 

maintained under a controlled light/dark cycle (14:10 h) and in an ambient 

environment of 20 °C (with the exception of the 6-h period during which METH or 

saline vehicle was administered during which the ambient environment was 

maintained at 24 °C). During METH or saline administrations, core body (rectal) 

temperatures were measured using a digital thermometer (Physitemp 

Instruments, Clifton, NJ) every 1 h beginning 30 min before the first saline or 

METH administration and continuing until 30 min after the final saline or METH 

administration. Rats were placed on a cooler environment if their body 

temperature exceeded 40.5 °C and returned to their home cage once their body 

temperature dropped to 40 °C. Food and water were available ad libitum. All 

experiments were approved by the University of Utah Institutional Animal Care 

and Use Committee, in accordance with the National Institutes of Health Guide 

for the Care and Use of Laboratory Animals 8th Edition (Institute of Laboratory 

Animal Resources, 2011). 

Drug treatments. METH hydrochloride was provided by the National 

Institute on Drug Abuse (Research Triangle Institute; Research Triangle Park, 
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NC) and administered (s.c.) at 4 x 7.5 mg/kg/injection, (2-h intervals) calculated 

as free-base. (-) NIC (1.010 g/ml; Sigma-Aldrich Co. LLC) was administered ad 

libitum p.o. via the water bottles. NIC dose began at a low concentration of 10 

µg/ml for the first week and was raised to 20 µg/ml for the second week, 50 µg/ml 

for the third and fourth weeks, and 75 µg/ml for the remaining period, a dose that 

corresponds to moderate-heavy human smoking (Matta et al., 2007) and 

previously used in rats and known to affect nAChRs (Huang et al., 2009). NIC 

was maintained throughout the entire testing period (i.e., from PND 40 to 96) in 

only one group of animals, the NM(1) group. In order to test whether NIC 

preadministration is sufficient to afford neuroprotection, but without the potential 

confounder of NIC withdrawal during METH administrations, NIC water was 

replaced with tap water 2 h prior to saline or METH administrations in the NS and 

NM(2) groups, respectively. In order to test whether the absence of NIC during 

METH administrations impacts neuroprotection, NIC water was replaced with tap 

water 24 h prior to METH administrations in the NM(3) group. Of note, in the NS, 

NM(2) and NM(3) groups, NIC was not administered during the weeklong after 

METH. 

Tissue preparation. Rats were decapitated 7 d after METH treatment.  

Brains were hemisected, and the right side rapidly removed and frozen in 

isopentane on dry ice and stored at -80°C. Frozen right hemisected brains were 

sliced at 12 µm thick at the level of the anterior striatum (1.5 mm from bregma, 

Paxinos and Watson 6th edition) using a cryostat. Eight slices (four per rat) were 

mounted on each Superfrost® Plus glass micro slides (VWR International, 
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Radnor, PA) and stored at -80°C for subsequent use in autoradiography assays 

as described below. The hippocampal and cortex tissues from these animals 

were also processed and data were reported in Chapter 5. 

125I-RTI-55 autoradiography. DAT density was used as a marker of 

dopaminergic integrity and assessed via 125I-RTI-55 binding to striatal slices as 

previously described (O'Dell et al., 2012). Briefly, slides were thawed on a slide 

warmer (5–10 min) and preincubated in buffer-sucrose (10 mM sodium 

phosphate, 120 mM sodium chloride, 320 mM sucrose, pH 7.4) containing 100 

nM fluoxetine at room temperature for 5 min followed by a 2-h incubation in 

buffer-sucrose containing 25 pM 125I-RTI-55 (2200 Ci/mmol, PerkinElmer, 

Watham, MA). Slides were rinsed twice in ice-cold buffer and distilled water for 2 

min and air-dried. Sample slides and standard 125I microscale slides (American 

Radiolabeled Chemicals, St. Louis, MO) were placed on one cassette and 

exposed to the same Kodak MR film (Eastman Kodak Co., Rochester, NY, USA) 

for 24 h to keep variables constant.  

125I-epibatidine autoradiography. α4β2 nAChR density was assessed 

via 125I-epibatidine binding to striatal slices as previously described (Huang et al., 

2009). Briefly, slides were thawed on a slide warmer (5–10 min) and 

preincubated in binding buffer (50 mM Tris, 120 mM NaCl, 5 mM KCl, 2.5 mM 

CaCl2, 1.0 mM MgCl2, pH 7.5) plus 100 nM αCtxMII at room temperature for 30 

min. The nonradiolabeled αCtxMII was used to inhibit epibatidine binding to α6β2 

nAChRs followed by a 40-min incubation in binding buffer containing 0.015 nM 

125I-epibatidine (2200 Ci/mmol, PerkinElmer, Watham, MA) in the presence of 
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100 nM αCtxMII. Slides were rinsed twice in ice-cold buffer for 5 min followed by 

a 10 s rinse in distilled water. Slides were air-dried. Sample slides and standard 

125I microscale slides (American Radiolabeled Chemicals, St. Louis, MO) were 

placed on one cassette and exposed to the same Kodak MR film (Eastman 

Kodak Co., Rochester, NY, USA) for 24 h to keep variables constant. 

125I-αConotoxinMII (αCtxMII) autoradiography. α6β2 nAChR density 

was assessed via 125I-αCtxMII binding to striatal slices as previously described 

(Huang et al., 2009). Briefly, slides were thawed on a slide warmer (5–10 min) 

and preincubated in buffer A (pH 7.5, 20 nM HEPES, 144 mM NaCl, 1.5 mM KCl, 

2 mM CaCl2, 1 mM MgSO4, 0.1% BSA, and 1 mM phenylmethylsulfonyl fluoride) 

at room temperature for 2 x 15 min followed by a 1-h incubation in buffer B (pH 

7.5, 20 nM HEPES, 144 mM NaCl, 1.5 mM KCl, 2 mM CaCl2, 1 mM MgSO4, 

0.2% BSA, 5 mM EDTA, 5 mM EGTA, and 10 µg/ml each of aprotinin, leupeptin, 

and pepstatin A) containing 0.5 nM 125I-αCtxMII (~2200 Ci/mmol that was 

synthesized as previously described by Whiteaker et al. (2000). Slides were 

rinsed in room temperature buffer A for 10 min, then in ice-cold buffer A for 

another 10 min, followed by 2 x 10 min in 0.1x ice-cold buffer A, and finally in 4  

ºC distilled water for 2 x 10 s. Slides were air-dried. Sample slides and standard 

125I microscale slides (American Radiolabeled Chemicals, St. Louis, MO) were 

placed on one cassette and exposed to the same Kodak MR film (Eastman 

Kodak Co., Rochester, NY, USA) for 4 days to keep variables constant. 

NIC and cotinine concentration. NIC and cotinine (COT) were assessed 

using a liquid chromatography tandem mass spectrometry method previously 
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developed and validated (Miller et al., 2010; Vieira-Brock et al., 2013). Briefly, 

trunk blood was collected in sodium heparin-containing tubes and centrifuged at 

3000 × g for 15 min to obtain plasma. One ml of test samples or analyte-free 

plasma for standards and quality controls were used. Standards were fortified 

with NIC (Sigma-Aldrich Co. LLC) and COT (Toronto Research Chemicals, 

Canada), making concentrations ranging from 1 ng/ml to 100 ng/ml. Quality 

controls contained a low (2 ng/ml), a medium (10 ng/ml), and a high (80 ng/ml) 

concentration of NIC and COT. Analytes extraction was performed using 

preconditioned Oasis® MCX cartridges (3 cm3, 60 mg; Waters®, Millford, MA). 

Analytes were eluted with 2 ml methanol containing 5% (v/v) concentrated 

aqueous ammonium hydroxide and reconstituted with 150 µl of 10 mM 

ammonium acetate (pH 5.0) + 0.001 % formic acid/HPLC grade methanol (85:15 

v/v). Analytes were resolved on a Discovery® HS F5 HPLC column (10 cm × 4 

mm x 3 µm, Supelco®, Bellefonte, PA) and Acquity UPLC® system (Waters®, 

Millford, MA) with a flow rate of 0.6 ml/min. The mobile phase consisted of a 

gradient elution of 10 mM ammonium acetate with 0.001% formic acid at pH 5.0 

(aqueous) and methanol (organic). The lower limit of quantification (LOQ) of this 

analysis was 1.0 ng/ml for NIC and 2.5 ng/ml for COT. 

Data quantitation and statistical analyses. Optical densities from four 

replicate slices per rat were quantified using ImageJ software (National Institutes 

of Health, USA). Specific binding was obtained by subtracting film background 

from mean density values and converted to fmol/mg using the standard curve 

generated from 125I standards. The optical densities of the samples were within 
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the linear range of the standards. Statistical analyses were conducted using 

GraphPad Prism 5.01 software (La Jolla, CA). Mean concentrations + the 

standard error of the mean (SEM) were analyzed using an one-way analysis of 

variance followed by a Newman-Keuls post hoc test. Differences among groups 

were considered significant if the probability of error was less than 5% (p < 0.05). 

Sample sizes are indicated in figure legends. 

 
Results 

Results presented in Table 4.1 demonstrate that the oral NIC doses used 

in our rat studies yield plasma NIC and COT concentrations similar to plasma 

NIC and COT concentrations typically found in human smokers (5–50 ng/ml for 

NIC and ~300 ng/ml for COT) (Benowitz, 1994; Matta et al., 2007). NIC and COT 

were <LOQ in plasma from NIC-naïve rats and from NIC-treated rats in which 

NIC was removed 7–8 d prior to blood collection.  

Results presented in Figure 4.1 demonstrate that ad libitum exposure to 

an escalating-dose regimen of NIC (see Methods for details) from PND 40–96 

attenuated the persistent (i.e., 7-d) METH-induced decrease in striatal DAT 

density as assessed by 125I-RTI-55 binding (F5,43 = 23.00, #p < 0.05) when METH 

was administered on PND 89. This same escalating-dose regimen of oral NIC 

also attenuated the persistent METH-induced decrease in striatal DAT density as 

assessed by 125I-RTI-55 binding when NIC was administered from PND 40–89 

and METH at PND 89, with NIC exposure ending 2 h prior to the first METH 

injection (#p < 0.05). Similarly, oral NIC attenuated the persistent METH-induced 

decrease in striatal DAT density as assessed by 125I-RTI-55 binding when NIC 
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was administered from PND 40–88 and METH at PND 89 (i.e., NIC exposure 

ended 24 h prior to the first METH injection; #p < 0.05).  

Using the same tissues described in Figure 4.1, results presented in 

Figure 4.2 demonstrate that NIC exposure from PND 40–PND 96 attenuated the 

persistent (e.g., 7-d) METH-induced deficits in striatal 125I-epibatidine binding 

when METH was administered at PND 89 (F5,44 = 6.78, #p < 0.05). NIC also 

attenuated the persistent (e.g., 7-d) METH-induced decrease in striatal 125I-

epibatidine binding when NIC was administered from PND 40–89 and METH at 

PND 89, with NIC exposure ending 2 h prior to the first METH exposure (#p < 

0.05). Similarly, NIC attenuated the persistent (e.g., 7-d) METH-induced 

decrease in striatal 125I-epibatidine binding when NIC was administered from 

PND 40–88 and METH at PND 89, with NIC exposure ending 24 h prior to the 

first METH exposure (#p < 0.05). NIC treatment per se increased striatal 125I-

epibatidine binding when given throughout (as seen in NM(1) group; *p<0.05), 

but this effect did not persist after 7 or 8 d of NIC abstinence (as seen in NS, 

NM(2), and NM(3) groups; ns in comparison to SS). 

Again using the same tissues obtained in experiments presented for 

Figure 4.1, results presented in Figure 4.3 demonstrate ad libitum exposure to an 

escalating-dose of NIC from PND 40–PND 96 did not attenuate the persistent 

(e.g., 7-d) METH-induced deficits in striatal 125I-αCtxMII binding when METH was 

administered at PND 89 (F5,43 = 3.33, SM vs NM(1) ns). This same escalating-

dose regimen of oral NIC also did not attenuate the persistent (e.g., 7-d) METH-

induced decrease in striatal 125I-αCtxMII binding when NIC was administered 
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from PND 40–89 and METH at PND 89 (SM vs NM(2), ns). Similarly, oral NIC did 

not attenuate the persistent (e.g., 7-d) METH-induced decrease in striatal 125I-

αCtxMII binding when NIC was administered from PND 40–88 and METH at PND 

89 (SM vs NM(3), ns). Seven days of NIC abstinence per se did not decrease 

striatal 125I-αCtxMII binding (SS vs NS, ns). 

Representative autoradiograms associated with Figures 4.1–4.3 are 

presented in Figure 4.4.  

 
Discussion 

NIC activates nAChRs affecting several downstream pathways that might 

be involved in NIC neuroprotection, including regulation of DA release (Zhou et 

al., 2001; Marks et al., 2014), reduction of oxidative stress (Linert et al., 1999; 

Soto-Otero et al., 2002; Egea et al., 2007), modulation of mitochondrial complex I 

function (Xie et al., 2005), and augmentation of neurotrophic factors (Maggio et 

al., 1998; Belluardo et al., 1999; Belluardo et al., 2008; Takarada et al., 2012). 

However, the specific NIC-induced change in nAChRs that mediates this 

neuroprotection and timing in which this effect occurs are unknown. Previously, 

we have shown that long-term NIC pre- plus posttreatment attenuates the 

persistent striatal dopaminergic deficits caused by METH administrations. NIC 

neuroprotection was accompanied by an increase in α4β2 and a decrease in 

α6β2 nAChR density. These data suggested that NIC-induced upregulation in 

α4β2 and downregulation of α6β2 nAChR affords neuroprotection. Furthermore, 

because others have shown that these effects of NIC on nAChRs levels occur via 

exchange of α4 for α6 subunits (for review, see Colombo et al., 2013), data also 
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suggested that α4β2-, but not α6β2-, containing dopaminergic terminals are 

protected. However, the effects on nAChRs seen 7 d after METH administration 

could have occurred due to the effects of NIC per se on the trafficking of these 

receptors as opposed to protection of dopaminergic terminals. In order to exclude 

this potential problem, in current experiments NIC was absent during the 

weeklong period after METH. Overall, current studies demonstrate that long-term 

NIC preadministration via drinking water attenuates the striatal dopaminergic 

deficits caused by a subsequent high-dose METH administration; particularly, 

NIC protects α4β2-containing, but not α6β2-containing, striatal neurons.  

It is of clinical and scientific interest to understand whether any potential 

NIC neuroprotection occurs when NIC is given before or after dopaminergic 

lesion (reviewed by Ritz and Rhodes, 2010). Previous preclinical studies showed 

that pre- plus posttreatment with NIC for several weeks attenuate dopaminergic 

deficits caused by 6-hydroxydopamine or MPTP (Huang et al., 2009). However, 

long-term NIC posttreatment alone did not attenuate dopaminergic deficits, 

suggesting that pretreatment is necessary for NIC neuroprotection (Huang et al., 

2009). The present results reveal that 49 d pretreatment with NIC beginning in 

adolescence and terminated 2 or 24 h before METH administrations attenuates 

the persistent METH-induced dopaminergic deficits as assessed by 125I-RTI-55 

binding in the striatum. These data indicate that NIC pretreatment, as opposed to 

posttreatment, is responsible for dopaminergic neuroprotection afforded by NIC 

in the METH model of dopaminergic dysfunction. Furthermore, data suggest that 

the presence of NIC during METH administrations is not necessary for 
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neuroprotection since the plasma half-life of NIC in rats is approximately 1 h 

(Ghosheh et al., 1999; Vieira-Brock et al., 2013), and in current studies NIC was 

removed 24 h prior to METH. Additionally, current data showed that plasma NIC 

and metabolites were lower than LOQ in these animals 7–8 d abstinent from NIC, 

indicating that the observed effects in DAT and nAChRs density are reflective of 

persistent effects, as opposed to temporary effects, of NIC.  

As observed in current studies, chronic NIC administration afforded 

dopaminergic neuroprotection even when NIC was removed 24-h prior to METH 

administrations. Studies from others have demonstrated that 24 h NIC 

abstinence after chronic dosing to rats increases vesicular monoamine 

transporter-2 (VMAT-2) mRNA and protein expression in the substantia nigra and 

striatum, respectively (Duchemin et al., 2009), and these effects have been 

implicated in NIC neuroprotection against MPTP-induced damage in mice (Singh 

et al., 2008). VMAT-2 mediates the sequestration of DA from the cytosol into 

synaptic vesicles. In laboratory animals, METH administrations reduce VMAT-2 

function, which is thought to contribute to METH neurotoxicity via accumulation of 

cytosolic DA and formation of reactive species (for review, see Fleckenstein et 

al., 2009; Chu et al., 2010). Thus, the current observation that NIC 

neuroprotection remained even after 24-h NIC abstinence before METH 

administrations could have occurred because of increases in VMAT-2.  

Extensive clinical and preclinical evidence demonstrates that chronic NIC 

exposure causes upregulation of β2-containing nAChRs sites (Perez et al., 2008; 

Cosgrove et al., 2012; Marks et al., 2014). In rodents, NIC-induced upregulation 
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of nAChRs density in the striatum after several weeks of administration via 

drinking water remained elevated up to 72 h after NIC administration was 

stopped and returned to baseline after 7 d (Pietila and Ahtee, 2000; Natividad et 

al., 2010). Similarly, our current data demonstrate that chronic NIC administration 

leads to upregulation in striatal nAChRs density, particularly the α4β2 subtype, 

as assessed by 125I-epibatidine binding as seen in rats that received NIC 

continuously for 56 d. After 7 d NIC abstinence, α4β2 nAChR density returned to 

baseline levels. Nevertheless, the density of striatal α4β2 nAChR is statistically 

greater in METH-treated rats 7 or 8 d abstinent from chronic NIC administration 

in comparison to METH-treated rats that had never received NIC. In other words, 

data suggest that striatal neurons expressing α4β2 nAChRs were protected from 

METH-induced neurotoxicity by chronic NIC preadministration. 

In contrast to α4β2 nAChRs, long-term NIC administration leads to 

downregulation of α6β2 nAChRs in the striatum as shown by others (Perez et al., 

2008; Marks et al., 2014) and us (see Chapter 3). In the striatum, the α6β2 

subtype is expressed predominantly in dopaminergic terminals that innervate the 

striatum (for review, see Quik and McIntosh, 2006). Similar to our previous 

studies, in current studies striatal α6β2 nAChRs density was reduced in METH-

treated rats naïve to NIC, suggesting that α6β2-containig terminals are damaged 

by METH. Current data also reveal that NIC preadministration for 49 d lead to 

significant deficits in α6β2 nAChRs density in METH-treated rats. These deficits 

persisted even after 7–8 d NIC administration was stopped, suggesting that 

these reductions in α6β2 density reflect a loss of dopaminergic terminals 
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expressing α6β2 as opposed to NIC-induced downregulation of α6β2. 

Previously we proposed a model for NIC neuroprotection against METH-

induced striatal dopaminergic deficits that consisted of increasing α4β2 and 

reducing α6β2 nAChRs sites (see Chapter 3). Previous studies have 

demonstrated that upregulation of α4 and downregulation of α6 nAChR subunits 

occur due to NIC-induced modulation of β2 subunits assembly in the 

endoplasmic reticulum (Kuryatov et al., 2005; Sallette et al., 2005; for review, see 

Colombo et al., 2013; Srinivasan et al., 2014).  A substitution of α6β2 by α4β2 

induced by NIC might afford protection via modulation of a diverse system 

including phasic/tonic DA release (Meyer et al., 2008; Howard et al., 2011), 

glutamate release (Xiao et al., 2009; Northrop et al., 2011) and GABAergic 

inhibition (Nashmi et al., 2007). Specifically, NIC-induced exchange of α6β2 by 

α4β2 potentially lead to reduction in phasic and increase in tonic DA release, 

reduction in glutamate release and augmentation in GABAergic inhibition of 

excitotoxicity. All of these effects would likely lead to attenuation of METH-

induced neurotoxicity based upon evidence indicating that METH causes phasic, 

more than tonic, DA release (Howard et al., 2013) and METH increases 

glutamate release and causes excitotoxicity (Mark et al., 2004; Halpin et al., 

2014, for review). In summary, current studies indicate that long-term NIC 

pretreatment is sufficient to afford dopaminergic neuroprotection against METH-

induced neurotoxicity, and NIC might do so by increasing α4β2-containing and 

reducing α6β2-containing striatal neurons. 
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Table 4.1 Plasma NIC and COT concentrations from rats exposed to tap or NIC 
water and treated with saline or METH. 
 

Mean Concentration (ng/ml plasma) 
 (SEM) 

________________________________________________________________ 
 
Analyte  SS      SM          NS  NM(1)  NM(2)  NM(3)     
_____________________________________________________________________________ 
 
NIC              <LOQ    <LOQ  <LOQ   25.4  <LOQ  <LOQ 
         (8.2)     
_____________________________________________________________________________ 
 
COT  <LOQ    <LOQ          <LOQ  369.3  <LOQ  <LOQ 
              (41.3)   
_____________________________________________________________________________ 
Nicotine (NIC) and cotinine (COT) were measured from rat plasma collected at the end of 
experiment as described in Methods. Legend: LOQ = lower limit of quantification; SS = tap 
water/saline injections; SM = tap water/METH injections; NS = NIC water/saline injections; NM = 
NIC water/METH injections. 
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Figure 4.1 Long-term NIC preadministration protects dopaminergic terminals. 
Rats received oral NIC (N) or tap water (S) from PND 40 to 96 (NM(1)), PND 40 
to 89 (NM(2)) or PND 40 to 88 (NM(3)) and either saline (S) or METH (M) 
administrations at PND 89 as delineated in Methods. Striatal 125I-RTI-55 binding 
was assessed 7 d after METH or saline injections. Data are expressed as mean 
+ S.E.M. of n = 7–9 determinations. *Represent values statistically different from 
saline-controls (p < 0.05). # Represent values statistically different from SM (p < 
0.05). Legend: SS = tap water/saline injections; SM = tap water/METH injections; 
NS = NIC water/saline injections; NM = NIC water/METH injections. 
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Figure 4.2 Long-term NIC preadministration protects α4β2-containing 
dopaminergic terminals. Rats received NIC (N) or tap water (S) from PND 40 to 
96 (NM(1)), PND 40 to 89 (NM(2)), or PND 40 to 88 (NM(3)) and either saline (S) 
or METH (M) administrations at PND 89 as delineated in Methods. Striatal 125I-
epibatidine binding was assessed 7 d after METH or saline injections. Data are 
expressed as mean + S.E.M. of n = 7–9 determinations. *Represent values 
statistically different from SS (p < 0.05). # Represent values statistically different 
from SM (p < 0.05). Legend: SS = tap water/saline injections; SM = tap 
water/METH injections; NS = NIC water/saline injections; NM = NIC water/METH 
injections. 
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Figure 4.3 Long-term NIC preadministration does not protect α6β2-containing 
dopaminergic terminals. Rats received oral NIC (N) or tap water (S) from PND 40 
to 96 (NM(1)), PND 40 to 89 (NM(2)), or PND 40 to 88 (NM(3)) and either saline 
(S) or METH (M) administrations at PND 89 as delineated in Methods. Striatal 
125I-αCtxMII binding was assessed 7 d after METH or saline injections. Data are 
expressed as mean + S.E.M. of n = 7–9 determinations. *Represent values 
statistically different from SS (p < 0.05). Legend: SS = tap water/saline injections; 
SM = tap water/METH injections; NS = NIC water/saline injections; NM = NIC 
water/METH injections. 
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Figure 4.4 Representative autoradiographs depicting the effects of NIC and 
METH treatments on the striatum. A. DAT (125I-RTI-55 binding), B. α4β2 nAChR 
(125I-epibatidine binding) and C. α6β2 nAChR (125I-αCtxMII) densities. Legend: 
SS = tap water/saline injections; SM = tap water/METH injections; NS = NIC 
water/saline injections; NM = NIC water/METH injections. 
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CHAPTER 5 

NICOTINE ADMINISTRATION ATTENUATES METHAMPHETAMINE- 

INDUCED NOVEL OBJECT RECOGNITION  

DEFICITS 

Introduction 

Methamphetamine (METH) abuse is a significant public health problem 

with annual prevalence rate of abuse in 2013 over 1% among adolescents and 

young adults (Johnston et al., 2014). Extensive clinical evidence indicates that 

METH abuse causes significant neurocognitive deficits (Kalechstein et al., 2003; 

Gonzalez et al., 2004; Hoffman et al., 2006; Kalechstein et al., 2009; Cherner et 

al., 2010; Casaletto et al., 2014). For example, episodic memory is reduced 

among participants with a history of METH abuse (~11 years), as assessed by 

performance in learning and recall tests (Casaletto et al., 2014). METH users 

also present with deficits in learning, motor ability, and working memory tests 

(Cherner et al., 2010). Neurocognitive deficits occur not only in individuals 

currently using METH (Simon et al., 2000), but can also persist long after METH 

is discontinued (4 d–7 months) (Kalechstein et al., 2003; Gonzalez et al., 2004; 

Hoffman et al., 2006; Kalechstein et al., 2009; Cherner et al., 2010; Casaletto et 

al., 2014). Among the different types of neurocognitive deficits caused by METH 

abuse, METH-associated neurocognitive deficits are greater for episodic 
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memory, executive functions, information processing speed and motor skills, and 

lesser for attention, working memory and verbal fluency (Scott et al., 2007). 

Notably, relapse is associated with episodic memory deficits, but not other types 

of cognitive dysfunction among METH abusers (Simon et al., 2004).  

In addition to its impact on cognition, METH abuse causes brain 

abnormalities in areas important for episodic memory, such as the hippocampus 

and cortex. For example, Thompson et al. (2004) reported that METH abusers 

have 7.8% smaller hippocampal volumes than control subjects as assessed by 

MRI, and these deficits correlated with deficits in episodic memory. The integrity 

of hippocampal and cortical neurons can also be assessed by the binding of the 

serotonin transporter (SERT), a marker highly expressed in these neuronal 

regions (Lawrence et al., 1993; Meneses et al., 2011, for review). Loss of 

presynaptic serotonergic markers, such as SERT, indicates loss of this 

population of neurons. Studies have reported significant loss of serotonergic 

markers in the hippocampus and cortex of individuals with cognitive dysfunction, 

such as in METH abuse or Alzheimer’s disease (Chen et al., 1996; Sekine et al., 

2006; Ouchi et al., 2009). For example, positron emission tomography scan 

revealed that SERT densities are reduced in several brain regions of abstinent 

METH abusers (Sekine et al., 2006). 

Novel object recognition (NOR) is an established preclinical model for 

evaluating episodic memory (see review by Kinnavane et al., 2014). This test 

relies on the instinct of rats to preferentially explore novel objects over familiar 

objects thus, requiring the animals to remember which object is familiar. The 
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perirhinal cortex (PRh) and the hippocampal regions CA1 and CA3 and dentate 

gyrus (DG) are important mediators of NOR (Melichercik et al., 2012; Kinnavane 

et al., 2014, for review). Specifically, the PRh-CA1 pathway is important for 

familiarization of objects, and the PRh-DG-CA3 pathway is important during 

exploration of novel objects (Kinnavane et al., 2014, for review). Overall, intact 

functions of these regions are required for NOR. 

In preclinical studies, both contingent and/or noncontingent METH 

administrations have been shown to impair NOR (McCabe et al., 1987; Belcher 

et al., 2008; Herring et al., 2008; Tellez et al., 2010; Reichel et al., 2011; Reichel 

et al., 2012). Besides deficits in NOR, these studies in rats revealed significant 

deficits in SERT density in the hippocampus and PRh (Belcher et al., 2008; 

Reichel et al., 2012). Both clinical and preclinical evidence suggest that cortical 

and hippocampal SERT sites are important for learning and memory (Meneses et 

al., 2011, for review). Furthermore, preclinical evidence suggests a link between 

SERT sites and NOR. For example, significant NOR deficits occurred in SERT 

knockout mice (Olivier et al., 2008). Similarly, pretreatment with a selective SERT 

inhibitor, such as fluoxetine, attenuated both NOR deficits and 

hippocampal/cortical SERT density deficits in METH-treated rats (Tellez et al., 

2010). These data suggest that abnormalities in SERT density in the 

hippocampus and/or PRh might mediate NOR deficits in rats. Overall, METH-

induced NOR deficits might be related to abnormalities to the hippocampus, and 

PRh and these can be assessed via SERT densities. 

Extensive evidence from clinical (Jubelt et al., 2008; Newhouse et al., 
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2012; Sofuoglu et al., 2013; Kalechstein et al., 2014) and preclinical studies 

(Mizoguchi et al., 2011; Gould et al., 2013) has revealed that nicotinic 

acetylcholine receptor (nAChR) agonists have cognitive-enhancing properties. 

This is of importance because many METH abusers smoke cigarettes (~80%; 

Thompson et al., 2004; McCann et al., 2008) and are thus exposed to nicotine 

(NIC), a nAChR agonist; however, few studies have investigated the impact of 

NIC exposure onto METH-induced episodic memory deficits. Among these, in 

clinical trials, NIC patch application improved episodic memory or attention in 

patients with schizophrenia or Alzheimer’s disease in comparison to placebo-

treated patients (Jubelt et al., 2008; Newhouse et al., 2012). Activation of α4β2 

subtypes of nAChRs also improved working memory in rhesus monkeys that self-

administered cocaine (Gould et al., 2013). Further, preclinical studies with 

systemic or local infusion of NIC indicate the important role of α4β2 subtypes of 

nAChRs and the hippocampus and PRh in NOR (Melichercik et al., 2012).  

The aim of current studies was three-fold. First, we investigated whether 

NIC impacts the episodic memory deficits caused by METH in rats chronically 

pre- or posttreated with NIC. Second, we investigated whether any potential 

cognitive neuroprotection afforded by NIC is mediated by protection of 

hippocampal and/or PRh serotonergic neurons. Finally, we explored whether 

α4β2 nAChRs contribute to the impact of NIC on cognitive performance in the 

NOR test. Results revealed that both NIC pre- and posttreatment attenuates 

METH-induced episodic memory deficits as assessed by NOR. This protection 

was accompanied by an increase in α4β2 nAChR binding, but not an attenuation 
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of METH-induced SERT density deficits in the hippocampus and PRh. These 

findings suggest that NIC-induced increases in α4β2 nAChR binding in the 

hippocampus and PRh may contribute to the NIC-induced attenuation of episodic 

memory deficits caused by METH. 

 
Methods 

Animals. Male Sprague-Dawley rats (Charles River Breeding 

Laboratories, Raleigh, NC), initially weighing 125–150 g (corresponding to 

postnatal day (PND) 40), 245–270 g (corresponding to PND 60) (Spear, 2000; 

Tirelli et al., 2003), or 350–415 g (corresponding to PND 89) were housed 2–3 

rats per cage and maintained under a controlled light/dark cycle (14:10 h) and in 

an ambient environment of 20 °C (with the exception of the 6-h period during 

which METH or saline vehicle was administered during which the ambient 

environment was maintained at 24 °C). During METH or saline administrations, 

core body (rectal) temperatures were measured using a digital thermometer 

(Physitemp Instruments, Clifton, NJ) every 1 h beginning 30 min before the first 

saline or METH administration and continuing until 30 min after the final saline or 

METH administration. Rats were placed on a cooler environment if their body 

temperature exceeded 40.5 °C and returned to their home cage once their body 

temperature dropped to 40 °C. Food and water were available ad libitum. All 

experiments were approved by the University of Utah Institutional Animal Care 

and Use Committee, in accordance with the National Institutes of Health Guide 

for the Care and Use of Laboratory Animals 8th Edition (Institute of Laboratory 

Animal Resources, 2011). 
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Drug treatments. METH hydrochloride was provided by the National 

Institute on Drug Abuse (Research Triangle Institute; Research Triangle Park, 

NC) and administered at 4 x 7.5 mg/kg/injection, s.c, 2-h intervals, with doses 

calculated as free-base. (-) NIC (1.010 g/ml; Sigma-Aldrich Co. LLC) was 

administered ad libitum p.o. at concentrations of 10, 20, 50, or 75 µg/ml via the 

water bottles. Dosing protocols are delineated in the figures. To increase 

palatability, saccharin (Sweet & Low; Cumberland Packing Corporation, New 

York, 1%) was added to the animals’ drinking water only in experiments in which 

the initial NIC concentration was 75 µg/ml, or during the highest escalating rate 

(i.e., Figures 5.1B and C and Figure 5.2B). In our current studies, NIC water 

consumption was ~34 ml/rat/day, and tap water consumption was ~47 ml/rat/day, 

similarly to previous reports (Bordia et al., 2008). These NIC doses in rats yield 

plasma concentrations similar to plasma NIC and cotinine concentrations 

typically found in human smokers (10–50 ng/ml for NIC and 300 ng/ml for 

cotinine) (Benowitz, 1994; Matta et al., 2007). 

NOR. After 3 days of recovery from METH or saline administrations, rats 

underwent a 5-min habituation session in test apparatus (clear plexiglas open 

field 45-cm wide x 26-cm height) in which they were allowed to explore the 

environment without the objects. On the following day (i.e., 5 d after METH) and 

during the familiarization phase, the rats explored two identical objects (plastic 

water bottles 12 cm tall) for 3 min. NOR test was conducted 90 min later by 

allowing rats to explore an object from the familiarization phase and a novel 

object for 3 min (polyvinyl chloride (PVC) pipe, 9 cm tall x 5 cm wide). The 
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position of the objects was counterbalanced between morning and afternoon 

sessions. The selection of these objects is based upon previously published 

research (Besheer and Bevins, 2000; Reichel et al., 2012) in which no difference 

in novel-object preference was observed with this pair of objects. The apparatus 

and objects were cleaned with CaviCide™ (Metrex Research, LLC, California) 

between each rat session. Each session was video recorded for later analysis by 

experimenters blinded to group treatment. Exploration was defined as sniffing or 

touching the object with the nose; sitting on or leaning against the object was not 

counted as exploration. 

Tissue preparation. Rats were decapitated 7 d after METH treatment.  

Brains were hemisected, and the right side rapidly removed and frozen in 

isopentane on dry ice and stored at -80 °C. Frozen right hemisected brains were 

sliced at 12 µm thick at the level of the dorsal hippocampus/PRh (3.5 mm from 

bregma, Paxinos and Watson 6th edition) using a cryostat. Eight slices (four per 

rat) were mounted on each Superfrost® Plus glass micro slides (VWR 

International, Radnor, PA) and stored at -80 °C for subsequent use in 

autoradiography assays. The left hippocampus was dissected out on ice, placed 

in cold sucrose buffer (0.32 M sucrose, 3.8 mM NaH2PO4, and 12.7 mM 

Na2HPO4) and used for [3H]5-HT uptake as described below. The striatal tissues 

from these animals were also processed, and data are presented in Chapters 3 

and 4. 

[125I]RTI-55 autoradiography. SERT density was assessed via [125I]RTI-

55 binding to dorsal hippocampus and PRh slices as previously described (O'Dell 
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et al., 2012). Briefly, slides were thawed on a slide warmer (5–10 min) and 

incubated in sucrose buffer (10 mM sodium phosphate, 120 mM sodium chloride, 

320 mM sucrose, pH 7.4) containing 21 pM [125I]RTI-55 (2200 Ci/mmol, 

PerkinElmer, Watham, MA). Nonspecific binding was determined by slides 

incubated in sucrose buffer containing 21 pM [125I]RTI-55 and 100 nM fluoxetine. 

Slides were rinsed twice in ice-cold buffer and distilled water for 2 min and air-

dried. Sample slides and standard 125I microscale slides (American Radiolabeled 

Chemicals, St. Louis, MO) were placed on one cassette and exposed to the 

same Kodak MR film (Eastman Kodak Co., Rochester, NY, USA) for 24 h to keep 

variables constant. 

[125I]-Epibatidine autoradiography. α4β2 nAChR density was assessed 

via [125I]-epibatidine binding to dorsal hippocampus and perirhinal cortex (PRh) 

slices as previously described (Lai et al., 2005; Huang et al., 2009). Briefly, slides 

were thawed on a slide warmer (5–10 min) and preincubated in binding buffer 

(50 mM Tris, 120 mM NaCl, 5 mM KCl, 2.5 mM CaCl2, 1.0 mM MgCl2, pH 7.5) at 

room temperature for 30 min, followed by a 40-min incubation in binding buffer 

containing 0.015 nM [125I]-epibatidine (2200 Ci/mmol, PerkinElmer, Watham, MA) 

in the presence of 100 nM αCtxMII. Nonspecific binding was determined by 

slides incubated in binding buffer containing 0.015 nM [125I]-epibatidine plus 0.1 

mM nicotine. Slides were rinsed twice in ice-cold buffer for 5 min followed by a 10 

s rinse in distilled water. Slides were air-dried. Sample slides and standard 125I 

microscale slides (American Radiolabeled Chemicals, St. Louis, MO) were 

placed on one cassette and exposed to same Kodak MR film (Eastman Kodak 
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Co., Rochester, NY, USA) for 24 h to keep variables constant. 

Synaptosomal [3H]5-HT uptake.  Hippocampal [3H]5-HT uptake was 

determined using rat hippocampal synaptosomes prepared as previously 

described (McFadden, Hunt, et al., 2012). Briefly, synaptosomes were prepared 

by homogenizing freshly dissected hippocampal tissue in ice-cold 0.32 M 

sucrose buffer (pH 7.4) and centrifuged (800 g, 12 min; 4 °C). The supernatants 

were centrifuged (22 000 g, 15 min; 4 °C) and the resulting pellets were 

resuspended in ice-cold assay buffer (in mM: 126 NaCl, 4.8 KCl, 1.3 CaCl2, 16 

sodium phosphate, 1.4 MgSO4, 11 glucose and 1 ascorbic acid; pH 7.4) and 1 

µM pargyline. Samples were incubated for 10 min at 37 °C, and the assays were 

initiated by the addition of [3H]5-HT (5 nM final concentration). Following 

incubation for 3 min, samples were placed on ice to stop the reaction. Samples 

were then filtered through GF/B filters (Whatman, USA) soaked previously in 

0.05% polyethylenimine. Filters were rapidly washed three times with 3 ml of ice-

cold 0.32 M sucrose buffer using a filtering manifold (Brandel, USA). Nonspecific 

values were determined in the presence of 10 µM fluoxetine. Radioactivity 

trapped in filters was counted using a liquid scintillation counter. Protein 

concentrations were determined using the Bio-Rad Protein Assay (Bio-Rad 

Laboratories Inc., USA). 

Data quantitation and statistical analyses. The recognition index (i.e., 

the ratio of the time rats spend exploring the novel object divided by the time rats 

spend exploring both objects) was used as the dependent variable for episodic 

memory. Two independent, blinded raters scored each behavioral test with a 
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reliability correlation of >0.94 for the recognition index. For autoradiography, 

optical densities from four replicate slices per rat were quantified using ImageJ 

software (National Institutes of Health, USA). Specific binding was obtained by 

subtracting film background from mean density values and converting to fmol/mg 

using the standard curve generated from 125I standards. The optical densities of 

the samples were within the linear range of the standards. Statistical analyses 

were conducted using GraphPad Prism 5.01 software (La Jolla, CA). The 

recognition index was first compared to the chance exploration value of 0.5 in 

each group. Values above 0.5 indicate higher preference for the novel object; 

thus, confirming occurrence of episodic memory. Mean concentrations + 

standard error of the mean (SEM) were analyzed using one-way analysis of 

variance followed by Newman-Keuls post hoc test for determination of 

significance among groups. Correlation analysis of recognition index and either 

nAChR or SERT density was achieved by using Pearson correlation coefficient. 

Differences among groups were considered significant if the probability of error 

was less than 5% (p < 0.05).  

 
Results  

NIC administration via drinking water from adolescence to adulthood (i.e., 

PND 40–96) attenuated the NOR deficits caused by repeated high-dose METH 

injections when administered at PND 89 and with NOR testing performed on 

PND 94 (Figure 5.1A) (F3,34 = 10.01, p < 0.0001). Similarly, ad libitum exposure 

to an escalating-dose regimen of NIC attenuated METH-induced deficits in NOR 

when NIC was administered from PND 61 to 100 and METH at PND 93, with 
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NOR testing on PND 98 (Figure 5.1B) (F3,30 = 3.698, p = 0.0224).  METH per se 

did not induce deficits in NOR when administered at PND 54 (Figure 5.1C) (F3,31 

= 1.273, p = 0.3009). 

Results presented in Figure 5.2A demonstrate that NIC pretreatment via 

drinking water from adolescence to adulthood (i.e., PND 40–89), but 

discontinued during and after METH, attenuated the NOR deficits caused by 

METH when METH was administered 2 h after NIC removal at PND 89 and NOR 

testing performed at PND 94 (F5,38 = 2.342, p < 0.05). NIC pretreatment from 

PND 40–88, and discontinued during and after METH, also attenuated METH-

induced NOR deficits when METH was given 24 h after NIC removal on PND 89 

and NOR testing performed at PND 94 (F5,38 = 2.342, p < 0.05). Furthermore, 

data presented in Figure 5.2B demonstrate that NIC posttreatment given from 

PND 89–96 initiated 2 h after the last METH injection also attenuated the NOR 

deficits caused by METH when assessed at PND 94 (F3,35 = 3.296, p = 0.0316) 

Using the same tissues described in Figure 5.1A, data presented in Figure 

5.3 indicate that NIC administration from PND 40–96 does not protect against the 

persistent (i.e., 7 d) METH-induced deficits in SERT density as assessed by 

[125I]RTI-55 binding to hippocampal CA1 (panel A, F3,34 = 59.53), CA3 (panel B, 

F3,34 = 35.51), DG (panel C, F3,34 = 61.90) and PRh (panel D, F3,33 = 56.32) slices. 

Similarly, using tissues from the same animals described in Figures 5.1 and 5.2, 

data presented in Table 5.1 indicate that oral NIC administration does not protect 

against the persistent (i.e., 7 d) METH-induced deficits in SERT function as 

assessed by [3H]5-HT uptake from hippocampal synaptosomes when NIC was 
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given from PND 40–96 (F3,32 = 87.68), PND 61–100 (F3,35 = 15.08), PND 40– 

88/89/96 (F5,42 = 14.43), or PND 89–96 (F3,34 = 40.04) and METH administered to 

adult rats (>PND 89). When METH was administered to young adults at PND 54, 

NIC treatment from PND 40–61 attenuated the persistent (i.e., 7 d) METH-

induced SERT function deficits (F3,31 = 20.82) (Table 5.1). 

Again, using the same tissues described in Figure 5.1A, data presented in 

Figure 5.4 reveal that binge METH administration per se causes long-lasting (i.e., 

7 d) reduction in α4β2 nAChR density as assessed by [125I]-epibatidine binding to 

CA1 (panel A) but has no effect on [125I]-epibatidine binding in CA3 (panel B), DG 

(panel C), or PRh (panel D). NIC per se increased [125I]-epibatidine binding to 

CA1 (F3,35 = 97.71, p < 0.0001), CA3 (F3,35 = 80.58, p < 0.0001), DG (F3,35 = 

18.57, p < 0.0001), and PRh (F3,34 = 38.46, p < 0.0001) in both METH- and 

saline-treated rats (Figure 5.4).  

Correlation analysis of data presented in Figures 5.3 and 5.4 was 

performed in order to evaluate possible association of NOR and SERT density 

(right y-axis) or NOR and α4β2 nAChR density (left y-axis). These data are 

presented in Figure 5.5 and demonstrate that NOR does not correlate with SERT 

density in the CA1 (r(10) = 0.04, p = 0.556, panel A), CA3 (r(10) = 0.02, p = 

0.648, panel B), DG (r(10) = 0.05, p = 0.507, panel C) or PRh (r(10) = 0.03, p = 

0.590, panel D) in rats treated with oral NIC from PND 40–96 and METH 

administrations at PND 89. Conversely, NOR and α4β2 nAChR density were 

positively correlated in the CA1 (r(10) = 0.66, p = 0.002), CA3 (r(10) = 0.59, p = 

0.006), DG (r(10) = 0.63, p = 0.006), and PRh (r(10) = 0.55, p = 0.009) in these 
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same animals. No correlation between NOR and SERT density or NOR and 

α4β2 nAChR was found in METH-naïve rats or in NIC-naïve METH-treated rats 

(data not shown). 

Representative autoradiograms of [125I]RTI-55  and [125I]-epibatidine 

binding are presented in Figure 5.6. 

 
Discussion 

To date, extensive literature has demonstrated that NIC administration 

improves memory function in patients with schizophrenia or dementia (Jubelt et 

al., 2008; Newhouse et al., 2012) or attenuates memory deficits in laboratory 

animals induced by sleep deprivation, chronic stress, beta-amyloid infusion, 

cholinergic lesion, or METH administrations (Yamazaki et al., 2002; Aleisa et al., 

2011; Alkadhi, 2011; Mizoguchi et al., 2011; Kruk-Slomka et al., 2014). However, 

despite evidence indicating that METH abuse is associated with memory 

impairment (Kalechstein et al., 2003; Scott et al., 2007; Kalechstein et al., 2009; 

Casaletto et al., 2014) and that many METH addicts are exposed to NIC via 

cigarette smoking (McCann et al., 2008), few studies have investigated the 

effects of NIC on the METH-associated memory deficits (Mizoguchi et al., 2011). 

The present study reveals that long-term oral NIC treatment beginning during 

either adolescence or adulthood attenuates METH-induced episodic memory 

deficits as assessed by NOR, suggesting that NIC affords cognitive 

neuroprotection. This neuroprotective effect of NIC persisted even when NIC was 

removed 2 or 24 h prior to METH administrations. Furthermore, oral NIC 

treatment also attenuated NOR deficits when administered after METH 
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treatment. It is unlikely that the NIC effects on NOR are mediated by serotonergic 

neurons in the hippocampus and/or PRh because NIC did not attenuate METH-

induced serotonergic deficits. In contrast, NIC increased the density of α4β2 

nAChRs in CA1, CA3, DG and PRh in both, saline- and METH-treated rats.  

Many studies have demonstrated that NIC prevents memory deficits when 

administered before a lesion (Yamazaki et al., 2002; Aleisa et al., 2011; Alkadhi, 

2011; Srivareerat et al., 2011) or improved memory when administered after a 

lesion (Jubelt et al., 2008; Mizoguchi et al., 2011; Newhouse et al., 2012). 

Similarly, the current data indicate that both pre- and/or posttreatment with NIC 

attenuates METH-induced episodic memory deficits. These data suggest that the 

neuroprotective effect of NIC achieved via pretreatment might occur by 

neuroadaptations caused by NIC in a nondamaged system that can ultimately 

mitigate injury-induced memory loss. This hypothesis is based on findings that 

chronic NIC administration to healthy individuals (Perry et al., 1999) or 

nonlesioned rodents (Melichercik et al., 2012; Kruk-Slomka et al., 2014) 

increases nAChRs binding, leading to increases in long-term potentiation (LTP), 

a widely accepted process of memory formation (Fujii et al., 1999; Fujii et al., 

2000; Welsby et al., 2006, 2009), and improves object recognition memory in 

normal rats (Melichercik et al., 2012; Kruk-Slomka et al., 2014). Additionally, 

these positive effects of NIC on memory seem to last several days after NIC 

removal (Levin and Torry, 1996) perhaps due to long-lasting increases in LTP 

(Yamazaki et al., 2006; Huang et al., 2008). In previous studies, in vivo NIC 

pretreatment prevented LTP deficits in area CA1 of the hippocampus in parallel 
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with attenuation of memory deficits induced by cholinergic lesion, chronic stress 

or beta-amyloid infusion (Yamazaki et al., 2002; Alkadhi, 2011; Srivareerat et al., 

2011).  

The neuroprotective effect of NIC achieved via posttreatment might occur 

via effects of NIC on brain derived nuclear factor (BDNF) as well as LTP, which 

ameliorate memory deficits in a damaged system (Yamazaki et al., 2002; 

Srivareerat et al., 2011). In support of this hypothesis, in laboratory animals, NIC 

reversed memory deficits induced by cholinergic lesion by augmenting NMDA 

receptors function and LTP in the CA1 region (Yamazaki et al., 2002). Some 

clinical studies have shown that NIC treatment improves episodic memory and 

attention in patients with schizophrenia or dementia, which demonstrates that 

NIC can ameliorate memory deficits in damaged systems (Levin et al., 1996; 

Jubelt et al., 2008; Newhouse et al., 2012).  

To explore a possible mechanism underlying NIC-induced cognitive 

neuroprotection, we examined α4β2 nAChRs density in hippocampal and PRh 

slices. Previous studies have shown that the increases in hippocampal LTP by 

NIC administration are mediated by α4β2 nAChRs (Fujii et al., 2000; Jia et al., 

2010; Nakauchi and Sumikawa, 2012). In fact, patients with dementia display 

significant reductions in α4β2 nAChRs binding in neocortical and hippocampal 

regions, and these seem to correlate with progressive cognitive declines (Perry 

et al., 2000). Particularly, in patients with Alzheimer’s disease, there is a loss of 

α4β2 nAChRs binding, but not of α3 or α7 nAChR subtypes (Perry et al., 2000). 

The present findings revealed that chronic oral NIC administration attenuates 
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METH-induced deficits in α4β2 nAChRs binding to CA1 region of the 

hippocampus and augments α4β2 nAChRs binding to CA3, DG, and PRh. 

Furthermore, α4β2 nAChR density correlated with NOR performance in animals 

treated with NIC and METH. In other words, rat performance at the NOR test was 

directly proportional to α4β2 nAChR density. This specific subtype of nAChR was 

selected for study because despite evidence that synaptic plasticity can also be 

mediated by α7 nAChRs (Halff et al., 2014), studies have demonstrated that 

α4β2 nAChRs mediate excitatory postsynaptic potentials in the CA1 

hippocampus (Bliss and Collingridge, 1993; Bell et al., 2011; Nakauchi and 

Sumikawa, 2012). Furthermore, in vitro studies by Swant et al. (2010) 

demonstrated that METH reduces LTP in the CA1 hippocampus, suggesting that, 

in combination with present data, METH reduces α4β2 nAChRs, whereby LTP is 

reduced in the CA1 region. The mechanism by which METH causes deficits in 

α4β2 nAChRs is unknown, but evidence indicates that METH damages 

hippocampal and cortical neurons integrity, including serotonergic neurons 

(McFadden, Hunt, et al., 2012; Reichel et al., 2012), where α4β2 nAChRs are 

expressed (Seth et al., 2002; Cucchiaro and Commons, 2003), which might lead 

to reductions in nAChRs density.  Overall, these data suggest that NIC protection 

to METH-induced memory deficits might be mediated by upregulation of α4β2 

nAChRs. 

The effects of NIC abstinence on METH-induced NOR deficits were also 

evaluated in order to investigate how long NIC neuroprotection persists. As 

demonstrated in the NIC/saline group in Figure 5.2A, 5-d abstinence from NIC 
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had no effect on NOR as reported previously (Kenney et al., 2011). 

Nevertheless, NIC neuroprotection against METH-induced NOR deficits 

remained even 5–6 d after the cessation of NIC exposure (e.g., NM(2) and NM(3) 

Figure 5.2A) indicating that the neuroprotective effect of NIC lasts for at least 6 d 

of NIC abstinence. Others have demonstrated that NIC-induced augmentation in 

α4β2 nAChRs in the hippocampus remains after 6 d of NIC removal (Gould et al., 

2012), suggesting that the potential neuroprotective mechanism of NIC parallels 

NOR protection. Furthermore, previous studies revealed that chronic NIC 

pretreatment improved working memory in rats even after 2 weeks of NIC 

abstinence (Levin and Torry, 1996). In the amygdala, 7 d oral NIC to mice 

facilitated LTP induced by high-frequency stimulation, and this facilitation of LTP 

lasted for at least 72 h after NIC was stopped (Huang et al., 2008). Similarly, 

increased NMDA receptors function induced by 10 d NIC in rats lasted for 8 d 

after NIC removal (Yamazaki et al., 2006). Others have suggested that the longer 

the NIC exposure, the longer synaptic facilitation lasts (Huang et al., 2008). 

Another principal finding of current experiments is that long-term NIC 

treatment does not attenuate METH-induced serotonergic deficits in the 

hippocampus and PRh, despite affording protection against memory deficits. 

Previous studies have indicated that METH administrations to rats cause deficits 

in SERT density in the hippocampus and PRh as well as deficits in the NOR test, 

suggesting a possible relationship between hippocampal/PRh SERT neurons 

and NOR (Belcher et al., 2005; Belcher et al., 2008; Reichel et al., 2012). 

However, the present data suggest that such a relationship is unlikely as 
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indicated by data presented in Figure 5.1C and Table 5.1, in which METH 

administration caused significant whole hippocampal SERT deficits, but not NOR 

deficits when given to PND 54 rats. Of note, NOR is strongly mediated by PRh 

functions, and thus it is possible that these animals had no SERT deficits in the 

PRh, which could explain the lack of NOR deficits. Secondly, several NIC 

treatment paradigms attenuated METH-induced NOR deficits independently of 

attenuation of SERT density deficits. Lastly, our correlation analysis 

demonstrates that performance in the NOR test is not correlated with SERT 

density in hippocampal or PRh regions. In agreement with these data, previous 

studies have indicated that SERT loss correlates with either depression or 

anxiety in individuals with memory dysfunction, such Alzheimer’s disease or 

METH dependence (Chen et al., 1996; Sekine et al., 2006; Ouchi et al., 2009). 

For example, NIC increases 5-HT release, which activates 5-HT(1A) receptors 

and induces anxiogenic effects (see review by Seth et al., 2002). Thus, current 

data suggesting that NIC neuroprotection to METH-induced memory deficits is 

not mediated by protection of serotonergic neurons in the hippocampus or PRh 

cortex are in agreement with previous findings demonstrating that the 

serotonergic effects of NIC in the hippocampus and cortex are associated with 

anxiety or aggression, as opposed to memory deficits. 

Notably, current data also revealed that NIC administration beginning in 

adolescence attenuates METH-induced hippocampal SERT function deficits 

when METH was administered to young rats (i.e., PND 54), but not older rats 

(>PND 89) (Table 5.1). A possible mechanism by which NIC attenuates METH-
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induced deficits in SERT function in young, but not older, rats might involve 

nAChRs. The α4β2 and α7 nAChRs play a role in 5-HT release in the 

hippocampus, as demonstrated by findings that they are expressed either in the 

nucleus raphe or in serotonergic terminals in the hippocampus (Cucchiaro and 

Commons, 2003; Aznar et al., 2005). Furthermore, age-differences in nAChRs 

density in the hippocampus and cortex have been reported (Doura et al., 2008). 

Specifically, these studies found that adolescent rats have a higher density of 

nAChRs than adult rats. Thus, NIC binding to nAChRs potentially may lead to a 

5-HT release in the hippocampus/cortex that might differ between adolescents 

and adults. 

Clinical studies with adolescent METH abusers have demonstrated that 

executive function is only mildly compromised and verbal memory is not affected, 

despite several domains of cognitive function being impaired (psychomotor 

speed, fine motor speed, verbal intelligence, and spatial organization) (King et 

al., 2010). In line with these findings, previous preclinical studies with adolescent 

mice showed that 7 or 14 d of noncontingent METH administrations did not 

impact NOR and synaptic plasticity (North et al., 2012). Of note, METH 

administrations to PND 51–60 do not induce long-term deficits in spatial memory 

in the Morris water maze (Vorhees et al., 2005). These previous findings are in 

agreement with current data shown in Figure 5.1C in which METH administration 

per se given to PND 54 rats does not impact episodic memory as assessed by 

NOR. 

In summary, NIC has cognitive neuroprotection and cognitive enhancing 
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properties, and several mechanisms underlying this phenomenon have been 

suggested including increases in LTP and BDNF levels and reduction in oxidative 

stress (Soto-Otero et al., 2002; Srivareerat et al., 2011). METH abuse is 

associated with significant cognitive impairment and, despite the fact that many 

METH abusers smoke cigarettes and are thus exposed to NIC (McCann et al., 

2008), few studies have evaluated the effects of NIC on METH-induced cognitive 

deficits (Mizoguchi et al., 2011). The findings of the present studies demonstrate 

that NIC pretreatment as well as posttreatment attenuate METH-induced 

episodic memory deficits as assessed by NOR in rats. Furthermore, NIC did not 

attenuate the serotonergic deficits caused by METH, but augmented α4β2 

nAChRs density in CA1, CA3, and DG hippocampal regions as well as in PRh.  
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Figure 5.1 Chronic NIC administration via drinking water initiated during 
adolescence or adulthood attenuates NOR deficits caused by METH. A. Rats 
received oral NIC (N) at increasing concentrations via drinking water at doses 
delineated in figure inset or tap water (S) from PND 40 to 96 and either saline (S) 
or METH (M) administrations (4 x 7.5 mg/kg/injection, s.c., 2 h apart) at PND 89. 
B. Rats received oral NIC (N) at increasing concentrations via drinking water at 
doses delineated in figure inset or tap water (S) from PND 61 to 100 and either 
saline (S) or METH (M) administrations (4 x 7.5 mg/kg/injection, s.c., 2 h apart) at 
PND 93. C. Rats received oral NIC (N) at increasing concentrations via drinking 
water at doses delineated in figure inset or tap water (S) from PND 40 to 61 and 
either saline (S) or METH (M) administrations (4 x 7.5 mg/kg/injection, s.c., 2 h 
apart) at PND 54. NOR was assessed 5 days after METH. Data are expressed 
as mean + S.E.M. of (A) n = 8–10, (B) n = 8–11 or (C) n = 7–10 determinations. 
*Represent values statistically different from saline-controls (p < 0.05) as well as 
values not different from the chance exploration of 0.5 illustrated by the dashed 
line (p < 0.05). Legend: SS = tap water/saline injections; SM = tap water/METH 
injections; NS = NIC water/saline injections; NM = NIC water/METH injections. 
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Figure 5.2 Chronic NIC administration via drinking water given either as 
pretreatment or posttreatment attenuates METH-induced deficits in NOR. A. PND 
40 rats received either tap water (SS and SM groups) or NIC water (10–75 µg/ml) 
until PND 88 (NM(3) group), PND 89 (NS and NM(2) group) or PND 96 (NM(1) 
group). METH (4 x 7.5 mg/kg/injection, s.c., 2 h apart) or saline (1ml/kg/injection) 
was given at PND 89. In NM(3) group NIC water was replaced by tap water 24 h 
prior to the first METH injection. In NS and NM(2) groups NIC water was 
replaced by tap water 2 h prior to the first METH or saline injection. B. PND 89 
rats received either METH (4 x 7.5 mg/kg/injection, s.c., 2 h apart) or saline 
(1ml/kg/injection) injections, and 2 h after the last injection they received either 
tap water (SS and SM groups) or NIC water (75 µg/ml) until PND 96 (NS and NM 
groups). NOR testing was initiated 3 d after METH or saline injections. Data are 
expressed as mean + S.E.M. of n = 6–11 determinations. *Represent values 
statistically different from saline-controls (p < 0.05) as well as values that are not 
statistically different from the chance exploration of 0.5 illustrated by the dashed 
line (p < 0.05). Legend: SS = tap water/saline injections; SM = tap water/METH 
injections; NS = NIC water/saline injections; NM = NIC water/METH injections. 
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Figure 5.3 NIC neuroprotection of METH-induced memory deficits is not 
mediated by attenuation of serotonergic deficits. Rats were treated as described 
in Figure 5.1. panel A. Brains were harvested 7 d after METH or saline injections 
and SERT binding to A. Hippocampal CA1 region B. Hippocampal CA3 region C. 
Hippocampal DG region and C. PRh was assessed via [125I]RTI-55 
autoradiography. Data are expressed as mean values + S.E.M. of n = 8–12 
determinations. *Represent values that are statistically different from saline-
controls (p < 0.05). Legend: SS = tap water/saline injections; SM = tap 
water/METH injections; NS = NIC water/saline injections; NM = NIC water/METH 
injections. 
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Table 5.1 Long-term NIC administration does not attenuate METH-induced 
deficits in [3H]5-HT uptake from hippocampal synaptosomes. 
 

[3H]5-HT uptake from hippocampal synaptosomes (fmol/mg) 
(SEM) 

____________________________________________________________________________ 
 
Experiment     Treatment Group 

______________________________________________________  
SS      SM  NS     NM(1) NM(2)       NM(3) 

  
____________________________________________________________________________ 
 
PND 40–96  1.467     0.296* 1.393     0.308*           
(Figure 5.1A)  (0.061)     (0.061) (0.101)     (0.055) 
     
PND 61–100  0.547     0.251* 0.611     0.291*  
(Figure 5.1B)  (0.045)     (0.048) (0.050)     (0.042) 
 
PND 40–61  1.048     0.286* 1.293     0.611*# 
(Figure 5.1C)  (0.097)     (0.057) (0.145)     (0.079) 
 
PND 40–88/89/96 0.611     0.160* 0.599     0.286* 0.313*     0.336*       
(Figure 5.2A)  (0.026)     (0.024) (0.041)     (0.063) (0.065)     (0.047)  
 
PND 89–96  1.455     0.542* 1.528     0.653* 
(Figure 5.2B)  (0.058)     (0.070) (0.094)     (0.095) 
_____________________________________________________________________________ 
Rats received oral NIC (N) via drinking water or tap water (S) from PND40–96, PND61–100, 
PND40–61, PND40–88 (NM(3)), 89 (NM(2)), or 96 (NM(1)) or from PND89–96 and either saline 
(S) or METH (M) injections at doses and ages delineated in figures 5.1 and 5.2 insets and 
methods. Hippocampal tissues were harvested 7 d after last METH or saline injection. [3H]5-HT 
uptake was performed as described in methods. Data are expressed as mean values + S.E.M. 
*Values significant different from METH-naïve controls (p < 0.05). #Values significant different 
from SM.  
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Figure 5.4 Long-term NIC administration increases hippocampal and PRh α4β2 
nAChRs density in METH-treated rats. Rats were treated as described in Figure 
5.1 panel A. Brains were harvested 7 d after METH or saline injections and α4β2 
density to A. Hippocampal CA1 region B. Hippocampal CA3 region C. 
Hippocampal DG region and D. PRh was assessed via [125I]-epibatidine 
autoradiography. Data are expressed as mean values + S.E.M. of n = 8–12 
determinations. *Represent values that are statistically different from SS (p < 
0.05). #Represent values that are statistically different from SM (p < 0.05). 
Legend: SS = tap water/saline injections; SM = tap water/METH injections; NS = 
NIC water/saline injections; NM = NIC water/METH injections. 
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Figure 5.5 Performance in NOR test correlates with α4β2 nAChRs density, but 
not with SERT density, in rats treated with NIC and METH. Data from NM group 
presented in Figures 5.3 and 5.4 were used for this correlation analysis. 
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Figure 5.6 Representative autoradiographs depicting the effects of NIC and 
METH treatments on hippocampus and PRh. A. SERT ([125I]RTI-55 binding), B. 
α4β2 nAChR ([125I]-epibatidine binding) Legend: SS = tap water/saline injections; 
SM = tap water/METH injections; NS = NIC water/saline injections; NM = NIC 
water/METH injections; Blank = nonspecific binding. 
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CHAPTER 6 

CONCLUDING REMARKS AND FUTURE DIRECTIONS 

This dissertation consisted of three aims. The first aim was to investigate 

whether nicotine (NIC) administration affords neuroprotection to the 

dopaminergic, serotonergic, and episodic memory deficits caused by 

methamphetamine (METH). The second aim was to determine the impact of age 

of NIC onset, duration of NIC treatment, and NIC withdrawal on METH-induced 

dopaminergic, serotonergic, and memory deficits. Lastly, the third aim consisted 

of investigating the involvement of β2-containing nicotinic receptors in the 

neuroprotection afforded by NIC. The overall hypothesis tested in this 

dissertation was that long-term NIC treatment protects against METH-induced 

dopaminergic and memory deficits through actions involving β2-nicotinic 

receptors-associated systems. 

Results presented in this dissertation demonstrated that chronic NIC pre 

plus postadministration or preadministration only to rats, given intermittently via 

drinking water as to mimic the human smoking condition, attenuated the 

persistent (i.e., 7-d) METH-induced dopaminergic deficits in striatal and nucleus 

accumbens core when NIC was initiated either during adolescence (postnatal 

date (PND) 40) or young adulthood (PND 61) and METH administered during 

adulthood (PND 89–100). However, a longer duration of NIC administration was 
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necessary for dopaminergic protection to occur when NIC was initiated during 

young adulthood (PND 61). Notably, dopaminergic neuroprotection remained 

even when NIC was removed 2h or 24h before METH administrations (i.e., when 

NIC was absent during and the 7 d after METH).  These data indicated that 

chronic NIC preadministration affords neuroprotection to the dopaminergic 

deficits caused by METH and that both, age of onset and duration of NIC 

treatment are important for neuroprotection, but 24 h NIC withdrawal does not 

interfere with neuroprotection. 

Data presented in this dissertation also revealed that chronic NIC pre- plus 

postadministration, preadministration only, or postadministration only to rats, also 

via drinking water, attenuated METH-induced episodic memory deficits when NIC 

was initiated either during adolescence (PND 40) or young adulthood (PND 61) 

and METH administered either during youth (PND 54) or adulthood (89–100). 

Furthermore, memory neuroprotection remained even when NIC was removed 2 

h or 24 h before METH administrations. In other words, in every experiment 

tested, NIC afforded memory neuroprotection indicating that none, age of NIC 

onset, duration of NIC treatment, or NIC withdrawal interfere with memory 

neuroprotection. However, oral NIC treatment only afforded serotonergic 

neuroprotection when given from PND 40 to 61 with METH administrations at 

PND 54. These data indicated that NIC memory neuroprotection is not mediated 

by protecting the integrity of serotonergic neurons in the hippocampus or 

perirhinal cortex (PRh). 

Lastly, this dissertation presented several findings on the involvement of 
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β2-nicotinic receptors in NIC dopaminergic and memory neuroprotection. First, 

METH administrations per se caused persistent major deficits in α6β2 nicotinic 

acetylcholine receptors (nAChRs) (~25%) and minor deficits in α4β2 nAChRs 

(~10%) density in the striatum and nucleus accumbens core. Second, in METH-

treated rats pre-exposed to NIC, α4β2 nAChR density was increased. These 

effects persisted even when NIC was removed 7–8 d prior to assay. However, 

exposure to NIC did not attenuate METH-induced deficits in α6β2 nAChRs, 

suggesting that dopaminergic terminals expressing α6β2 receptors are more 

vulnerable to METH neurotoxicity. Lastly, chronic NIC administration per se 

caused upregulation of α4β2 and downregulation in α6β2 nAChRs density. 

Previous evidence demonstrated that chronic NIC administration leads to 

upregulation of α4β2 with concomitant downregulation of α6β2 because of 

exchange in α6 for α4 subunits. Thus, data suggest that by the time rats received 

METH administrations, those rats pre-exposed to chronic NIC had more 

terminals expressing α4β2 and fewer terminals expressing α6β2 nAChRs. These 

findings lead to the speculation that replacing α6β2 by α4β2 nAChRs in 

dopaminergic terminals is neuroprotective. In the hippocampus, METH 

administrations per se caused persistent deficits in α4β2 nAChR density in the 

CA1 region, and chronic NIC exposure not only attenuated these deficits, but 

also increased α4β2 density in the CA3, dentate gyrus and PRh. Furthermore, 

α4β2 nAChRs density was positively correlated with episodic memory in METH-

treated rats pre-exposed to NIC, suggesting that NIC memory neuroprotection is 

mediated by increases in α4β2 receptors in these regions. 
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As noted above and presented in this dissertation, high-dose METH 

administration per se caused persistent deficits in nAChRs density in the 

striatum, nucleus accumbens core and hippocampus. However, the mechanisms 

by which METH causes deficits in nAChRs in these regions are unknown. 

Previous in vitro studies demonstrated that METH directly binds to nAChRs and 

alters their trafficking (Garcia-Rates et al., 2007; Chipana et al., 2008). Data from 

these studies further indicated that METH binding to nAChRs causes calcium 

release and oxidative stress. However, it is unclear whether these phenomena 

occur in vivo, as well as whether these potential METH-induced alterations in 

nAChRs are persistent and contribute to neurotoxicity. These present findings 

will provide further insights into the mechanism of NIC neuroprotection as well as 

potential targets for remedies for the neurotoxic consequences of METH since, 

as presented in this dissertation, nAChRs might be involved in neuroprotection. 

As shown in this dissertation, METH reduced α4β2 nAChRs density in the 

striatum and hippocampus. These receptors are located throughout these 

regions, i.e., α4β2 nAChRs are found in dopaminergic or serotonergic, 

glutamatergic, GABAergic and cholinergic neurons in the striatum and 

hippocampus. It is unknown whether only a specific population of these neurons 

expressing α4β2 nAChRs is susceptible to METH neurotoxicity. In other words, is 

METH leading to α4β2 nAChRs reductions in dopaminergic, glutamatergic, 

GABAergic, and cholinergic neurons or only in dopaminergic neurons? Future 

studies with double-labeling techniques investigating the colocalization of α4β2 

nAChRs, and either dopamine (DA) transporter (DAT) or serotonin transporter 
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(SERT) will provide answers to which neurons are being affected by METH and 

consequently which neurons are being protected by NIC. Data presented herein 

showed that NIC administration did not protect against METH-induced SERT 

deficits, but still attenuated both memory deficits and α4β2 nAChRs density 

deficits. These data suggest that NIC-induced upregulation of α4β2 nAChRs 

located in serotonergic neurons are not mediating episodic memory protection 

afforded by NIC. Data suggest that the NIC-induced upregulation in α4β2 

nAChRs that mediate memory neuroprotection are located in neurons other than 

serotonergic. 

Another important consideration from studies presented in this dissertation 

is that observations on nAChRs, DAT, and NIC/metabolites levels were 

evaluated 7 d after METH administrations. In order to further study the 

mechanism of NIC neuroprotection, these outcome measures (nAChRs, DAT, 

NIC/metabolites) should be assessed shortly after METH or NIC administrations. 

For example, is NIC altering the acute effects of METH on DAT and SERT 

function? Do METH administrations acutely cause alterations in nAChRs density 

and is NIC affecting this mechanism? Are NIC/metabolites absent 2 or 24 h after 

NIC removal from drinking water?  

As discussed above, the proposed model of NIC dopaminergic 

neuroprotection is that NIC has increased α4β2 nAChR and decreased α6β2 

nAChR expression by the time rats receive METH administrations, as seen in 

data from rats treated chronically with NIC via drinking water and saline 

injections. These effects potentially lead to reduction in phasic (vesicular) DA 
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release and increase in tonic (nonvesicular/DAT reversal) DA release, which 

potentially leads to reduction in cytosolic reactive species, increased vesicular 

DA sequestration, and reduction in postsynaptic DA receptor activation. If pre-

exposure to NIC decreases METH-induced vesicular DA release, both vesicular 

DA content and potassium-stimulated DA release should be greater in METH-

treated rats pre-exposed to NIC in comparison to METH-treated rats naïve to 

NIC. Postsynaptic events could be assessed by the downstream effect of DA 

receptor activation, such as neurotensin levels. For example, high-dose METH 

administration acutely increases neurotensin tissue levels in the striatum, and 

this effect is blocked by D1, but not D2, antagonist administration (Hanson et al., 

1992; Wagstaff et al., 1996). These findings indicate that METH causes DA 

release, which activates D1 receptors and leads to increased neurotensin tissue 

levels. If NIC pre-exposure acutely reduces METH-induced vesicular DA release 

and hence DA receptor activation, METH-treated rats pre-exposed to NIC should 

have a lower neurotensin tissue level than METH-treated rats naïve to NIC 1-h 

after the last METH administration. In fact, our unpublished data not included in 

this dissertation revealed that 7 d after METH administrations pre-exposure to 

chronic oral NIC blocked METH-induced increases in neurotensin content.  

The function of nAChRs was not assessed in this dissertation. In order to 

investigate whether α4β2 and α6β2 receptors mediate NIC neuroprotection, 

pharmacological studies with activation or inhibition of these receptors prior to 

METH administrations are needed. For example, data presented in this 

dissertation suggest that upregulation of α4β2 nAChRs might mediate the 
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dopaminergic and memory NIC neuroprotective effect in METH abuse models. 

However, it is not clear whether selectively increasing the function of α4β2 

nAChRs during METH administrations is the mechanism of NIC neuroprotection, 

which in this case, could be achieved by administering a α4β2 agonist acutely 

prior to METH. The most selective α4β2 agonist, A85380, is also an agonist to 

α6β2 nAChRs. Thus, dopaminergic neuroprotection studies should be designed 

to evaluate administration of A85380 (i.p.) alone or in combination with the α6β2 

antagonist α-conotoxin-MII (i.c.v.). Of note, α6β2 nAChRs are not expressed in 

the hippocampus and PRh; thus, A85380 administration alone would be sufficient 

to test the hypothesis that α4β2 nAChRs activation protects against METH-

induced novel object recognition (NOR) deficits. Another way to test this 

hypothesis is to treat rats chronically with NIC (via drinking water as performed in 

this dissertation) and administer the α4β2 antagonist dihydro-beta-erythroidine 

just prior to METH administrations. In case NIC is affording protection by 

increasing α4β2 function, then the α4β2 antagonist should inhibit NIC 

neuroprotection against the persistent METH-induced DAT and NOR deficits. On 

the other hand, this dissertation also suggests that NIC is affording dopaminergic 

neuroprotection by reducing α6β2 nAChRs function. In this case, it is expected 

that a selective α6β2 antagonist given just prior to METH should afford 

neuroprotection as well.  

Other nAChRs might be involved in NIC neuroprotection against METH-

induced dopaminergic deficits. The α7 nAChR subtype mediates glutamate 

release in the striatum, and its antagonism protects against METH-induced 



 149 

striatal dopaminergic deficits (Escubedo et al., 2009; Northrop et al., 2011). 

However, it is not known whether METH administrations cause acute and/or 

persistent deficits in α7 nAChR density. Furthermore, it is unclear whether α7 

nAChRs play a role in NIC dopaminergic neuroprotection. For example, chronic 

NIC administration to rodents either upregulates or has no effect on α7 nAChR 

expression (Buisson and Bertrand, 2002; Slotkin et al., 2004), suggesting that 

either activation of α7 mediates neuroprotection or that α7 does not play a role in 

neuroprotection. Thus, assessing striatal α7 receptors expression in METH-

treated rats, as well as assessing DAT function/density in METH-treated rats pre-

exposed acutely to α7 agonist (PNU 282987; i.p.) or antagonist 

(methyllycaconitine (MLA); 5 mg/kg, i.p.) would provide insights into the role of 

this receptor subtype in neurotoxicity and neuroprotection. 

The α7 nAChR subtype is also involved in memory function, and its 

activation has been shown to attenuate memory deficits in models other than 

METH. This dissertation did not assess the role of α7 receptors in METH-induced 

episodic memory deficits, nor assessed the potential involvement of this receptor 

in NIC memory neuroprotection. Furthermore, it is not known whether METH 

administrations acutely and/or persistently affect α7 density in the hippocampus 

and PRh. Future studies should compare α7 expression in the hippocampus and 

cortex of METH-treated rats naïve to NIC and METH-treated rats chronically 

pretreated with NIC, then possibly test whether selective activation of α7 (with 

PNU 282987; i.p.) attenuates METH-induced NOR deficits as well as whether 

selective antagonism of α7 (with α-bungarotoxin; i.c.v.) during METH 
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administrations inhibits memory neuroprotection afforded by chronic NIC pre-

exposure.  

 Lastly, other future studies could investigate the potential role of nAChRs 

among other neuroprotective agents, as well as whether other agents known to 

modulate nAChRs are also neuroprotective. In other words, is NIC the substance 

that affords neuroprotection, or are the changes in nAChRs induced by NIC that 

afford neuroprotection? For example, physical activity protects against the 

persistent METH neurotoxicity in rats as shown by a running wheel exercise 

(O'Dell et al., 2012). Several studies have shown that physical activity modulates 

nAChRs (Desaulniers et al., 1998). For example, exercise training altered 

nAChRs in the skeletal muscle improving recovery from spasticity in rats (Tsai et 

al., 2013). Thus, in this case whether running wheel exercise modulated nAChRs 

in the striatum of METH–treated rats to afford dopaminergic neuroprotection is 

unknown. 
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