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Abstract Space deformation has been proposed to model space-time varying
observation processes with non-stationary spatial covariance structure under the
hypothesis of temporal stationarity. In real applications, however, the temporal sta-
tionarity assumption is inappropriate and unrealistic. In this work we propose a spatial-
temporal model whose temporal trend is modeled through state space models and a
spatially varying anisotropy is modeled through spatial deformation, under the Bayes-
ian approach. A distinctive feature of our approach is the consideration of model
uncertainty in an unified framework. Our model has a clear advantage over the ones
proposed so far in the literature when the main objective of the study is to perform spa-
tial interpolation for fixed points in time. Approximations of the posterior distributions
of the model parameters are obtained via Markov chain Monte Carlo methods. This
allows for prediction of the process values in space and time as well as handling of
missing values. Two applications are presented: the first one to model concentrations
of sulfur dioxide in the eastern United States and the second one to model monthly
minimum temperatures in the State of Rio de Janeiro.
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1 Introduction

In geostatistics, the simplest models are the ones built under the assumption of sta-
tionarity and isotropy of the spatial covariance matrix. These assumptions, how-
ever, are not always realistic. When environmental processes are under study,
for example, the observations are usually affected by specific landscape and
topographic characteristics of the region of interest. In fact, in the analysis of
most spatial-temporal processes there is little reason to expect spatial covari-
ance structures to be stationary over the spatial scales of interest (Sampson et
al. 2001; Sampson and Guttorp 1992). Relaxing these assumptions, Sampson
and Guttorp (1992) proposed a nonparametric approach to global estimation of
the spatial covariance structure of a spatial-temporal process Y (si , t) observed
at a set of n locations in space {s1, . . . , sn} ∈ S and T points in time t =
1, . . . , T . In their model, they assume temporal stationarity, such that the obser-
vations can be thought of as repeated measurements of a random variable Y at
the fixed set of locations {s1, . . . , sn}. To deal with non-stationarity and anisot-
ropy in space, they work with a process of spatial deformation. The idea is
to map the geographic coordinates from the original space, G-space, into a
new latent space called D-space, where the hypotheses of isotropy and stationa-
rity hold. To obtain the location of sampled monitoring stations in D-space,
they made use of multidimensional scaling. After the locations are obtained in
D-space, Sampson and Guttorp (1992) apply thin-plate splines for interpolation
purposes.

One disadvantage of the model proposed by Sampson and Guttorp (1992) is that
it does not take into account the uncertainty associated with the estimation of the
spatial deformation. This problem was handled by Damian et al. (2001) and Schmidt
and O’Hagan (2003), who independently proposed Bayesian versions of the model
proposed by Sampson and Guttorp (1992), taking that uncertainty into consideration.
The main difference between the approaches of Damian et al. (2001) and Schmidt and
O’Hagan (2003) is in the specification of the prior distribution of the spatial defor-
mation. Damian et al. (2001) proposed the use of a prior suggested by Mardia et al.
(1991), which is based on the bending energy of the spline, being a natural prior for
thin-plate spline mapping. Schmidt and O’Hagan (2003), on the other hand, proposed
a Gaussian process as a prior for the function which maps the locations into the latent
D-space.

All the methodologies presented so far assume temporal stationarity of the spa-
tial-temporal process. This assumption can be appropriate for suitably short points in
time. In practice this is not feasible and stationarity is typically achieved for resid-
uals obtained after removing temporal trends for each monitoring station. One such
approach that allows the incorporation of a temporal trend in the model was proposed
by Bruno et al. (2008), extending the spatio-temporal model proposed by Bruno and
Cocchi (2004) to incorporate anisotropy via the spatial deformation of Sampson and
Guttorp (1992). They assume that the observation made at location si ∈ S, and time
t , denoted by Y (si , t), is defined by

Y (si , t) = μ(si , t)+ σt (si )Z(si , t)+ ξ(si , t),
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where μ(si , t) is the spatio-temporal mean trend, Z(si , t) denotes a zero mean
smoothed Gaussian spatiotemporal underlying process and ξ(si , t) is a Gaussian noise
process which represents measurement errors. σt (si ) is an extra variance component
incorporated to handle possible features of seasonal variability, and it represents the
part of the non-stationary temporal variability that, when removed, leaves separable
space and time correlation components. The main disadvantage of this approach is the
way the parameters are estimated, which consists of separate steps for preprocessing
the original data. Firstly, σt (si ) is estimated using a Box–Jenkins time series analysis
(Box and Jenkins 1976). The estimated values are used to standardize the data and
classical separable space-time correlation models are applied. After that, an analysis
of spatial non-stationarity is performed under the Damian et al. (2001) approach for
estimating heterogeneous spatial covariance.

In this work we propose a spatial-temporal model with a non-stationary spatial
covariance structure, which, as in Bruno et al. (2008), allows for the incorporation of
a temporal trend. However, this paper proposes a fully Bayesian approach for infer-
ence, with simultaneous estimation of all model components in a single step. We pro-
pose a model whose temporal trend is modeled through the state space models (West
and Harrison 1997) and corrects anisotropy via the spatial deformation (Sampson
and Guttorp 1992) under the Bayesian approach proposed by Schmidt and O’Hagan
(2003). In both applications that will be presented later in this paper, the temporal trend
include seasonal terms. Our model has a clear advantage over the ones proposed so far
in the literature when the main objective of the study is to perform spatial interpolation
for fixed points in time, as it has all the benefits shared by the models estimated under a
fully Bayesian approach, like Damian et al. (2001) and Schmidt and O’Hagan (2003),
but without the need of estimating the temporal trend independently from the spatial
structure.

This paper is organized as follows: in Sect. 2 we introduce the proposed model; in
Sect. 3 aspects of inference are presented with the specification of the prior, likelihood
and posterior distributions as well as the predictive function used to perform interpola-
tion in space; in Sect. 4 simulation studies are presented and illustrate the advantages
of our approach; in Sect. 5 two applications with real data-sets are presented: one to
concentrations of sulfur dioxide in the eastern United States and the other to minimum
temperatures in the State of Rio de Janeiro. Finally, Sect. 6 presents the concluding
remarks.

2 Model definition

Suppose that observations are made at n monitoring stations in a certain geographic
region of interest G,G ⊂ �2, over T distinct points in time. Define si = (xi1, xi2)

′ as
the geographic coordinates corresponding to the i th monitoring station, i = 1, . . . , n,
and denote by Y (si , t) the observed value in time t at the geographic location si . We
propose a space-time process for the observations Y t = (Y (s1, t), . . . , Y (sn, t))′, t =
1, . . . , T , specified by the sum of a mean process μt and a zero mean Gaussian noise
process εt . The mean process μt is specified as a state space model (West and Harrison
1997, chapter 4). It is written as a linear combination of explanatory variables, as in
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a linear regression model, but the regression coefficients are allowed to vary in time.
This model is composed of three parts: an observation equation, a structural equation
and a system equation, which are given below:

Observation equation: Y t = μt + εt , (1)

Structural equation: μt = F ′
tβ t , (2)

System equation: β t = Gtβ t−1 + ωt , ωt ∼ Np(0p,�), (3)

for t = 1, . . . , T . Np(μ,�) denotes the p-variate normal distribution with mean
vector μ and variance-covariance matrix �,F t is an n × p matrix of covariates,
β t = (β0t , . . . , β(p−1)t )

′ is the vector of regression coefficients, Gt is a known p × p
evolution matrix, 0p denotes a vector of zeros of size p and � is the covariance matrix
of ωt .

The above formulation includes much more than allowing for time-varying regres-
sion coefficients. It includes many components usually encountered in standard time
series analysis such as time trends, seasonality and cycles and includes ARMA model
specifications. The reader is referred to Harvey (1989) and West and Harrison (1997)
for details.

The model is completed with the specification of a multivariate normal prior dis-
tribution for β0 and an Inverted Wishart prior distribution for the covariance matrix
�, denoted by

β0 ∼ Np(m0,C0), (4)

� ∼ W −1
n0
(S0), (5)

where S0 is the mean and n0 is the degrees of freedom of the Inverted Wishart prior.
A spatial structure is incorporated in the model via the noise process εt =

(ε(s1, t), . . . , ε(sn, t))′, through the specification of a spatially structured vari-
ance-covariance matrix. Assume that the covariance between elements ε(si , t) and
ε(s j , t), si �= s j , si , s j ∈ G, do not depend on the time t , and ωt and εt are indepen-
dent, for all t . We define the covariance function for εt by

Cov(ε(si , t), ε(s j , t)) = √
viv jρb(| d(si )− d(s j ) |), (6)

where vi is the variance of ε(si , t), which is assumed constant for every period of
time t , for i = 1, . . . , n; ρb is a valid isotropic correlation function, which depends
on parameter b.

The function d(·) maps the original geographic coordinates in G-space to coordi-
nates in the new latent space D.

Note that to model observations under the hypothesis of isotropy, the function d(·)
must be specified as the identity function. In this work we do not assume isotropy and
apply the space deformation idea of Sampson and Guttorp with a Gaussian Process
prior distribution for d(·), as proposed by Schmidt and O’Hagan (2003):

d(·) ∼ G P(g(·), σ 2
d , ρφ), (7)
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where

• g(·) is the prior mean function, which can take any form that reflects the prior
beliefs about the mapping from spaces G to D. Note that this is a function of
the spatial coordinates of the locations in space G. In this paper we assume that
g(x) = x, which is a reasonable assumption when there are no prior beliefs about
how D should differ from G.

• σ 2
d is a matrix of variances which, for G ∈ �2, have dimension 2 × 2. Here we

define σ 2
d as the diagonal matrix σ 2

d = diag(σ 2
d11
, σ 2

d22
), as suggested by Schmidt

and O’Hagan (2003) to avoid unidentifiability of the model. Larger elements of
σ 2

d allow greater distortions from G to D space.
• ρφ is any valid correlation function which measures the prior correlation between

locations in D-space, and φ is a known set of parameter, such that

Cor(d(si ), d(s j )) =
{
ρφ(| si − s j |), if i �= j,
1, if i = j.

In particular, let dG = (d1, . . . , dn), where d i = d(si ), be the 2 × n matrix of the
coordinates of the gauged locations in D-space; define g = (g(s1), . . . , g(sn)); and
let RG

d be the n × n matrix of correlations such that RG
d [i, j] = Cor(d(si ), d(s j )).

Then the prior for dG is a Matrix Normal distribution with mean g, row covariance
matrix σ 2

d and column covariance matrix RG
d , denoted by:

dG ∼ N(2×n)(g, σ
2
d ,R

G
d ). (8)

It is also important to notice that the function d(·) is unidentifiable, as all the trans-
formations of the coordinates in D-space which keep the same distances between loca-
tions are observationally equivalent. Besides that, any transformation that multiplies
all distances in D-space by a constant is equivalent. To guarantee the identifiability
of function d(·) we fix the location of two sites in D-space. This restriction plays
the role of an anchor, guaranteeing that d(·) will not rotate or translate. In applica-
tions, it is recommended to set that the two known locations in D-space equal their
corresponding geographic locations in G-space.

3 Inference

3.1 Prior distributions

Under the Bayesian point of view, the model specified in the previous section must be
completed with the prior specification of the parameters v = (v1, . . . , vn) and b (in 7)
and σ 2

d (in 9). Here we consider the same prior distributions proposed by Schmidt and
O’Hagan (2003) for the parameters v and σ 2

d , and the one proposed by Schmidt and
Gelfand (2003) for the parameter b. These priors distributions are given as follows:
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• Assuming that v = (v1, . . . , vn) are exchangeable, an Inverted Gamma prior
distribution for vi , i = 1, . . . , n, is specified as:

vi | τ 2, f ∼ IG( f, τ 2( f − 2)),

where f is the number of degrees of freedom, considered known, and τ 2 is the
mean of the distribution, which has a non-informative prior distribution given by:

π(τ 2) ∝ (τ 2)−1

• We assume that the elements of the main diagonal of σ 2
d are independent with an

Inverted Gamma prior distribution for each element, given by

σ 2
dii

∼ IG(ηi , ψi ), for i = 1, 2.

• The prior distribution for b depends on the choice of correlation function for the
observational error structure. When b is a scalar representing the range, as in
the exponential correlation function ρb(x) = exp{−bx}, an informative Gamma
distribution

b ∼ G(b∗η, η),

where b∗ = −2 log(0.05)/max(| si − s j |) was specified.

That specification assumes that a priori the correlation of observations in two remote
locations in the region of study is close to 0.

Note that the prior distributions for the parameters β = (β0, . . . ,βT )
′, dG and �

were previously specified in (4), (5), (6) and (7). The prior distribution for the set of
all of the unknown parameters of the model θ = {β, dG, v, b, τ 2, σ 2

d ,�}, under the
hypothesis of independence between them, is given by

π(θ) =
⎧⎨
⎩

T∏
t=1

π(βt | βt−1,�)

⎫⎬
⎭π(β0)π(�)π(d

G)

⎧⎨
⎩

n∏
i=1

π(vi | τ2)

⎫⎬
⎭π(τ2)π(b)π(σ 2

d ).

(9)

3.2 Posterior distribution

Suppose that observations yt from the model in (1)–(3) were made for t = 1, . . . , T .
Define a matrix of observations y as y = (y1, . . . , yT )

′. The likelihood function of θ

given y is

L(θ | y) ∝| � |− T
2 exp

{
−1

2

T∑
t=1

(yt − F ′
tβ t )

′�−1(yt − F ′
tβ t )

}
. (10)
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The combination of the likelihood function in (10) with the prior distribution for θ ,
given in (9), gives via Bayes theorem the posterior distribution of θ

π(θ | y) ∝ L(θ | y)

{
T∏

t=1

π(β t | β t−1,�)

}
π(β0)π(�)π(d

G)

×
{

n∏
i=1

π(vi | τ 2)

}
π(τ 2)π(b)π(σ 2

d). (11)

The posterior distribution in (11) does not have a closed form and we use MCMC
methods to obtain approximations for this distribution. The algorithm used to obtain
samples from the posterior distribution in (11) is a hybrid algorithm, with the use
of Gibbs sampling for the parameters whose full conditional density is known, and
Metropolis-Hastings (Metropolis et al. 1953; Hastings 1970) steps to sample from the
other parameters. The computational aspects of this work can be found in details in
Castro (2010). More details about MCMC methods can be seen in Gamerman and
Lopes (2006) and Robert and Casella (2004).

3.3 Interpolation

One of the main interests in geostatistics is to perform interpolation, which means to
obtain predictions of the process under study for non monitored (or ungauged) loca-
tions in space. In the proposed model, to interpolate the response variable Y t for a
fixed period of time t , one must first interpolate the deformations of the geographic
locations of interest. In this section we show how to add additional steps in the MCMC
algorithm to interpolate the deformations and then interpolate Y t .

• Interpolation of the deformations of the geographic locations

Let sG = (s1, . . . , sn) be the matrix of coordinates of the gauged geographic
locations and sU G = (sn+1, . . . , sn+m) be a matrix of coordinates of m ungauged
geographic locations. dG = (d1, . . . , dn), as previously specified, is the matrix of
coordinates of the gauged locations in D-space. Define dU G = (dn+1, . . . , dn+m)

as the matrix of coordinates of the ungauged locations in D-space, and d =
(dG, dU G). Denote by vU G = (vn+1, . . . , vn+m) the vector of variances in the
process at ungauged locations. Noting that d follows a Gaussian process as speci-
fied in (7), we have that the prior distribution for d is a Matrix Normal distribution
analogous to (8):

(
dG , dU G

)
| Rd , σ

2
d ∼ N(2×(n+m))

((
sG , sU G

)
, σ 2

d ,

(
RG

d R∗′
d

R∗
d RU G

d

))
, (12)

where RG
d is the matrix of correlations between the gauged locations; RU G

d is
the matrix of correlations between the ungauged locations; R∗

d is the matrix of

correlations between gauged and ungauged locations; and Rd =
(

RG
d R∗′

d
R∗

d RU G
d

)
.
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That way, using properties of the Multivariate Normal distribution we have that,

vec(dU G) | dG,Rd , σ
2
d ∼ N2m(A,B), (13)

where A = vec(sU G) + (I 2 ⊗ R∗
d(R

G
d )

−1
)(vec(dG) − vec(sG)),B = σ 2

d ⊗
(Im − R∗

d(R
G
d )

−1
R∗′

d ), vec(X) denotes the vectorization form of the matrix X

and I n denotes the identity matrix of order n.
Samples of the posterior distribution of dU G and vU G can be easily obtained

by adding steps in the MCMC algorithm. For the kth iteration of the algorithm,
given the sampled values for θ , say θ (k), the parameters vU G(k) and dU G(k) are
sampled from

v j | θ (k) ∼ I G(τ 2(k)( f − 2), f ), (14)

for j = n + 1, . . . , n + m and

vec(dU G(k)) | θ (k) ∼ N2m(A
(k),B(k)), (15)

where A = vec(sU G) + (I 2 ⊗ R∗
d(R

G
d )

−1
)(vec(dG(k)) − vec(sG)) and B =

σ
2(k)
d ⊗ (Im − R∗

d(R
G
d )

−1
R∗′

d ).

• Interpolation of Y

Denote by YU G
t = (Y (s(n+1), t), . . . ,Y (s(n+m), t)) the vector of response vari-

ables in time t, t = 1, . . . , T , for the ungauged geographic locations, and Y A
t =

(Y t ,Y
U G
t ) the vector of response variable at gauged and ungauged locations for

a fixed period of time t . Defining θ A = (θ , vU G, dU G) we have that

(
Y t

YU G
t

)
| θ A ∼ N

[(
F ′

tβ t
F ′U G

t β t

)
,

(
� �∗
�∗ �U G

)]
,

where F ′
t is the dynamic regression matrix for the gauged locations, F ′U G

t is the
dynamic regression matrix for the ungauged locations, � is the covariance matrix
for the gauged locations, �U G is the covariance matrix for the ungauged locations
and �∗ is the covariance matrix between gauged and ungauged locations. Using
basic properties of the Multivariate Normal distribution, we have that:

YU G
t | θ A, yt ∼ N (F

′U G
t β t + �∗′

(�)−1(yt − F
′
tβ t ),�

U G − �∗′
(�)−1�∗).

The density of the predictive distribution of YU G
t given the observations y is given

by

π(yU G
t | y) =

∫

θ A

π(yU G
t | yt , θ

A)π(θ A | y)dθ A. (16)
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Note that the integral in (16) is not analytically tractable. We use Monte Carlo
methods to obtain an approximation of (16) as follows:

π j (y
U G
t | y) =

∫

θ A

π(yU G
t | yt , θ

A)π(θ A | y)dθ A,

=
∫

θ A

π(yU G
t | yt , θ

A)π(vU G , dU G | θ)π(θ | y)dθ A,

≈ 1

K

K∑
k=1

π(yU G
t | θ A(k), yt ),

where θ A is sampled from its prior distribution π(θ A | y) in the following way:
firstly, θ (k) is sampled from π(θ | y), then vU G(k) and dU G(k) are sampled from
π(vU G(k), dU G(k)|θ (k)), for k = 1, . . . , K .

4 Simulation studies

In this section we investigate properties of the proposed methodology through the use
of an artificial data-set simulated over n = 15 locations in space and T = 100 points
in time. The data was simulated from a dynamic model which takes into account a
seasonal effect and the effect of an artificial 0–1 covariate x, fixed in time. The model
is given as follows:

Y t = F ′
tβ t + εt , εt ∼ Nn(0n,�),

β t = Gtβ t−1 + ωt , ωt ∼ Np(0p,�),

where, β t = (βt0, βt1, βt2, βt3)
′,F ′

t = (1n, x, 1n, 0n), x = (010, 117)
′,Gt =(

I 2 02
02 G2

)
,G2 =

(
cos(π)/25 sin(π)/25

−sin(π)/25 cos(π)/25

)
,� = diag(0.01, 0.02, 0.06, 0.06)

and β0 = (0.01, 3, 5, 1). The 15 locations d i ’s were simulated from (8) with a
Gaussian correlation function ρφ with parameter φ = 3.28 (φ = −2 log(0.05)/
maxi, j=1,...,n(| si − s j |)2) and σ 2

dii
= 0.015, i = 1, 2. An exponential correlation

function with b = 6 was assumed for the observation errors.

4.1 Sensitivity study for prior specifications

In this section a sensitivity analysis of the model was performed to assess the impact
of different prior specifications for the parameters b and σ 2

d . Three different prior
distributions for b and for σ 2

dii
, i = 1, 2 were considered. For the parameter b, Gamma

prior distributions were specified with the same mean (equal to the true value), and
different variances, aiming to compare different degrees of information in the prior
distribution. The three specifications are given below:
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b1. b ∼ G(52 × 6, 52),

b2. b ∼ G(10 × 6, 10),

b3. b ∼ G(1 × 6, 1).

For the parameters σ 2
dii
, i = 1, 2, three Inverted Gamma prior specifications were

made:

sg1. σ 2
dii

∼ I G(66.7 × 10, 10), i = 1, 2,

sg2. σ 2
dii

∼ I G(66.7 × 0.02 + 1, 0.02), i = 1, 2,

sg3. σ 2
dii

∼ I G(0.01, 0.01), i = 1, 2.

In the first two specifications for σ 2
dii
, i = 1, 2, the mean is equal to the true variance

(approximately equal to 0.015) with different degrees of precision (the prior variances
are, respectively 3.39×107 and 0.00067). The third specification is a reasonably vague
prior distribution (Berger et al. 2001; Gelman 2006). That way, we considered nine dif-
ferent models obtained by the combination of the three prior specifications suggested
for the parameter b and the three prior specifications suggested for the parameter σ 2

d .
Figure 1 shows the comparison between the different prior specifications for the

parameters b and σ 2
dii
, i = 1, 2. The different amount of information provided by each

specification is clear from the figure, with the first specification in both cases, being
highly informative, the third being vaguely informative, and the second, in between.
A graphical representation of the posterior distribution for b and σ 2

dii
, i = 1, 2, under

each one of the nine combinations of prior distribution, can be seen, respectively in
Figs. 2 and 3. It can be seen that the posterior densities for σ 2

d11
and b are rather insen-

sitive to changes in the prior specification. The only exception is when using the more
informative prior specification for σ 2

d11
, which does affect the form of the posterior

distribution of this parameter.
Figure 4 compares the true deformation and the estimated deformation (posterior

mean) under all the combinations of prior distributions for the parameters σ 2
d11

and b.
It can be seen that the estimated deformation remains almost the same regardless of
the choice of priors, showing that the estimation of the deformation is not sensitive to
the changes in the priors for σ 2

d11
and b.

Fig. 1 Prior distributions for the parameter b (on the left hand side) and the parameters σ 2
dii
, i = 1, 2 (on

the right hand side)
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Fig. 2 Posterior distribution (solid line) and prior distribution (dashed line) for the parameter σ 2
d11

under

all the combinations of prior distributions for σ 2
d11

(varying by column) and b (varying by row)

Fig. 3 Posterior distribution (solid line) and prior distribution (dashed line) for the parameter b under all
the combinations of prior distributions for σ 2

d11
(varying by column) and b (varying by row)

We use the DI C statistics (Spiegelhalter et al. 2002) to compare the nine fitted mod-
els. The DI C is a Bayesian version of the AI C (Akaike Information Criterion), and
like other widely used model comparison methods (such as AI C and B I C—Bayesian
Information Criterion), the DI C can be thought of a goodness of fit measurement
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Fig. 4 True deformation (solid line) and estimated deformation (dashed line) under all the combinations
of prior distributions for σ 2

d11
(varying by column) and b (varying by row)

Table 1 DIC statistics for
models with different prior
specifications for the parameters
b and σ 2

d

sg1 sg2 sg3

b1 542.55 544.41 545.64

b2 543.92 547.60 545.76

b3 545.04 546.23 547.11

which is penalized by the effective number of parameters in the model. Models with
smaller DI C should be preferred. Table 1 presents the DI C statistics for the fit-
ted models. The gain obtained by using more informative priors for the parameters
σ 2

dii
, i = 1, 2 and b is small. Even when using vaguely informative priors the model

can estimate the true values of these parameters well, as seen by Figs. 2 and 3. There-
fore, the main conclusion taken from this sensitivity study is that when the true spatial
deformation is smooth, the posterior distribution of θ is similar when using vague and
informative priors for σ 2

dii
, i = 1, 2, and b centered around their true value.

4.2 Study of the uncertainty of the spatial deformation

The inference procedure performed for the spatial deformation is based on the poster-
ior distribution of θ , which does not have a closed form. In this section, we propose
an approximate credibility region for d i based on asymptotic theory (Gamerman and
Migon 1999; Casella and Berger 2001), and we perform a study about the uncertainty
of the estimation of this deformation for the simulated data-set.

The proposed approximation uses the fact that [d i | y] is approximately distributed
as N (d̂ i ,J

−1(d̂i)), for large T where
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J−1(d̂i) = −∂
2π(θ | y)

∂d id
′
i

.

That way, the 100(1 − α)% asymptotic credibility region C ⊂ �2 is such that

P
[
(d i − d̂ i )J

−1(d̂i)(d i − d̂ i ) ∈ C
]

≥ 1 − α. (17)

It is quite complicated to obtain an analytical expression for d̂ i or J−1(d̂i). Fortu-
nately, these quantities can be well approximated by

d̂ i ≈ 1

K

K∑
j=1

d
( j)
i , and J−1(d̂i) ≈ 1

K − 1

K∑
j=1

(d
( j)
i − d̂ i )(d

( j)
i − d̂ i )

′,

where d
( j)
i are posterior samples from d i obtained via MCMC.

Figure 5 shows the estimated 95 % credibility regions for each d i , i = 1, . . . , 15,
with T = 100 and T = 500. It can be seen that the credibility regions are larger when
working with T = 100, showing that when we increase the sample size the precision
in the estimation of the parameters improves.

4.3 Comparison against existing models

In this section we aim to compare, through simulation, the performance of our model
(call it model A) against other models proposed in the literature, when the observed
process presents anisotropy. The first comparison is made with a simplified version of
the proposed model, considering the same dynamic structure but assuming the defor-
mation d(·) to be fixed as the identity (call it model B). Model B would be appropriate

Fig. 5 Approximate 95 % credibility region for the parameters di , i = 1, . . . , 15. The posterior mean of
the parameters di , i = 1, . . . , 15, represented by the symbol �, was estimated with a T = 100; b T = 500.
The symbol ◦ represents the original geographic coordinates
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to model isotropic processes, and it is interesting to compare how it performs against
the proposed model under anisotropy.

We work with the same simulated data-set used in the previous exercises but also use
other simulations, varying the number of observations in time (T = 100 or T = 500)
and space (n = 15 or n = 30). Table 2 shows the DI C statistics obtained under each
simulated data-set under models A and B. The comparison shows a clear advantage
of model A, as expected, specially when using n = 30. This result shows that with the
increase of information in space, and consequently the better estimation of the spatial
deformation under model A, the advantage of using a model which takes anisotropy
into account, when the observed process is actually anisotropic, increases.

The second comparison is made between the proposed model A and the model
proposed by Schmidt and O’Hagan (2003). As Schmidt and O’Hagan’s model assume
independent observation in time, for a fair comparison the model was applied to the
residuals of a dynamic model with the same temporal structure as model A, but with
no spatial structure at all. We named it model C .

Both methodologies take anisotropy into account. Figure 6 compares the true and
estimated deformation surfaces under models A and C , and visually the estimated sur-
face under Model A appears to be closer to the true deformation surface. To confirm
this result, we compare the two models through the smaller Riemann distance (Kendall

Table 2 Comparison of Models
A and B, through the DI C
statistics, under simulated
data-sets with different
specifications for n and T

Model A Model B

T = 100

n = 15 542.55 590.32

n = 30 110.31 228.33

T = 500

n = 15 2,832.48 3,021.33

n = 30 618.72 1,218.72

Fig. 6 True deformation (solid line) and estimated deformation (dashed line) under Models C (a) and A
(b)
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Table 3 Comparison of the
estimation of the spatial
deformation through Models A
and C using the Riemann
distance

Model A Model C

T = 100

n = 15 0.1148 0.1300

n = 30 0.0725 0.1321

T = 500

n = 15 0.1112 0.1484

n = 30 0.0744 0.0911

1984) between the true spatial deformation and the ones estimated by each one of the
two models. Table 3 shows the Riemann distance calculated under each simulated
data-set and model, and it shows an advantage of model A, which leads to smaller
distances under all scenarios. This result indicates that our model (model A) would
have provided better interpolation in space than the model proposed by Schmidt and
O’Hagan (2003) (model C) under the simulated examples presented here. It is impor-
tant to notice, however, as already mentioned before, that the main advantage of the
model proposed by us when compared to the model proposed by Schmidt and O’Hagan
(2003) is methodological, as here we jointly estimate the mean of the process and the
spatial covariance structure.

5 Applications

5.1 Concentrations of sulfur dioxide in the eastern United States

In this section the proposed model is applied to concentration levels of sulfur dioxide
(SO2) measured in the eastern United States. The region of study comprises the states
of Indiana, Ohio, Tennessee, Kentucky, North Carolina, Virginia, West Virginia, Penn-
sylvania, Maryland, New Jersey and New York. Levels of SO2 (in µg/m3) are weekly
measured at 23 monitoring stations (see Fig. 9a), from the year 2000 to 2003, for a
total of T = 208 observations per monitoring station. To validate the performance of
the proposed model, the model was fit to n = 22 monitoring stations (s1, . . . , s22),
and predictions were made for station s23 over time, and compared to the observed
values. The data-set was made available by the Clean Air Status and Trends Network
(CASTNet), which belongs to the Environmental Protection Agency (EPA) United
States, through the URL http://www.epa.gov/castnet/.

In this example we propose a model for the logarithm of the concentrations of SO2,
using as explanatory variables latitude (LAT), longitude (LONG), and a seasonal fac-
tor with a period of 52 weeks, corresponding to one year. The proposed model allows
the regression coefficients to change smoothly over time, so that the effects of latitude
and longitude are not forced to be fixed. This model is given by

Y t = F ′
tβ t + εt , εt ,∼ Nn(0n,�),

β t = Gtβ t−1 + ωt , ωt ∼ Np(0p,�),

β0 ∼ Np(0p, 5I p),

� ∼ W −1
10 (0.01I p),
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where t = 1, . . . , 208,F ′
t = (1n,LONG,LAT, 1n, 0n) is a matrix of dimension

n × p, where 1n denotes a vector of 1’s of size n,β t = (β0, . . . , β4)
′
t and LONG

and LAT are the vectors of latitude and longitude corresponding to the n monitoring

locations. Gt =
(

I 3 02,2
03,3 G2

)
,G2 =

(
cos π

26 sin π
26− sin π

26 cos π
26

)
, and 0k,l denotes a k × p

matrix of 0’s. The last two columns of F ′
t are required for the representation of the

time-varying seasonal component β3,t .
Here, the elements of the matrix � are defined by

Cov(ε(si , t), ε(s j , t)) = √
viv jρb(| d(si )− d(s j ) |),

d(·) ∼ PG(g(·), σ 2
d , ρφ),

where g is the identity function and ρφ is a Gaussian correlation function, with φ =
4.39 (φ = −2 log(0.05)/maxi, j=1,...,22(| si − s j |)2). The model is completed with
the specification of the prior distributions for the parameters v, τ 2, b and σ 2

dii
i = 1, 2.

We specified vaguely informative priors for the parameters v, τ 2 and informative priors
for b and σ 2

dii
, i = 1, 2.

The prior distribution for b was chosen to be of the form G(ηb∗, η), where b∗ =
−2 log(0.05)/maxi, j=1,...,22(| si − s j |), giving a prior expectation of b∗ = 6. η was
chosen to be equal to 52 such that the prior variance is 2ηb∗/η2 = 0.12.

Two distinct Inverted Gamma prior distributions were proposed, for comparison,
to the parameters σ 2

dii
i = 1, 2. The hyperparameters of the prior distributions were

chosen according to the scale used to measure distances between locations. In this
example, the scale of measurement is kilometer per 1,000 (km/1,000), so that 0.001
is equivalent to 1 km. In the first prior specification for the parameters σ 2

d11
= σ 2

d22
,

the mean was set to be equal to 0.001, with square root equal to 0.032. This means
that a priori the original location can move in either direction between 0 km and
3 × 0.032 × 1000 = 96 km, with 0.997 probability. The second prior specification for
σ 2

dii
, i = 1, 2, was chosen to be less informative, with the prior mean being equal to

0.01. The two specifications are presented below:

1. σ 2
dii

∼ I G(1000 × 100, 100), i = 1, 2,

2. σ 2
dii

∼ I G(100 × 0.01 + 1, 0.01), i = 1, 2.

Figure 7 shows that the posterior distribution of b is not affected by changing the
prior specification of σ 2

dii
, i = 1, 2. The posterior distribution of σ 2

dii
, i = 1, 2, how-

ever, changes significantly when changing its prior, as can be seen in Fig. 8. The
posterior distribution for σ 2

dii
, i = 1, 2, is similar to its prior distribution when the

first prior specification is used. This effect is not observed when the second prior
specification is used.

Figure 9 shows the monitoring stations in the eastern United States, with latitude and
longitude converted to UTM and divided by 1,000. It also shows the estimated poster-
ior mean of d and the mapping of a regular grid of 121 points in the geographic region
of study (G-space) to D-space under the first prior specifications for σ 2

dii
, i = 1, 2.

The MCMC chains do not seem to achieve convergence when the second prior speci-
fication is used, emphasizing the need for informative distributions for the parameters
b and σ 2

dii
, i = 1, 2, when it is required to account for anisotropy.
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Fig. 7 Posterior distribution (solid line) and prior distribution (dashed line) for the parameters b, using
the prior distributions b ∼ G(6 × 52, 52), σ 2

dii
∼ I G(1000 × 100, 100), i = 1, 2 (left hand side) and

σ 2
dii

∼ I G(100 × 0.01 + 1, 0.01) (right hand side)

Fig. 8 Posterior distribution (solid line) and prior distribution (dashed line) for the parameter σ 2
d11

using

the prior distribution b ∼ G(6 × 52, 52), and the prior distribution σ 2
dii

∼ I G(1000 × 100, 100), i = 1, 2

(left hand side); σ 2
dii

∼ I G(100 × 0.01 + 1, 0.01) (right hand side)

Fig. 9 a Monitoring stations in eastern United States; b estimated spatial deformation under b ∼ G
(6 × 52, 52), σ 2

dii
∼ I G(1000 × 100, 100), i = 1, 2

We proceed with the analysis of the fitted model using the first prior specification
for the parameters σ 2

dii
, i = 1, 2. This application clearly shows how geographic char-

acteristics of the region of study can influence the correlation structure of the spatial
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process. Figure 9 shows the spatial deformation obtained in this application. An inter-
esting characteristic of the obtained deformation is that it approximates monitoring
stations which are located in the Appalachian mountains, producing the visual effect
of a shrinkage in the middle of the map, in a diagonal direction.

Table 4 presents the estimated posterior mean and 95 % credibility intervals for
the parameters σ 2

d11
, σ 2

d22
, b, τ 2, and the elements of the main diagonal of matrix �,

denoted by �i i , i = 1, . . . , 5. Figure 10 illustrates the 95 % credibility intervals and
the estimated mean of the variances vi , i = 1, . . . , 22, showing higher variability in
the monitoring stations 9 and 22.

Figure 11 presents the estimated mean and 95 % credibility intervals for the dynamic
regression coefficients. It can be seen that the coefficients of the intercept and of the
seasonal component vary significantly over time, justifying the use of the dynamic
specification for these components.

Figure 12 presents the observed time series for some monitoring stations, with their
estimated values and credibility intervals. It can be seen that the fitted model leads to
good predictions in general.

Table 4 Posterior mean and credibility intervals of the parameters σ 2
dii
, i = 1, 2, b, τ2, and the elements

of the main diagonal of matrix �

Parameter Posterior mean 2.5 % 97.5 %

σ 2
d11

0.00101 0.00090 0.00101

σ 2
d22

0.00100 0.00099 0.00101

b 6.11 5.61 6.64

τ2 0.20 0.24 0.28

�11 0.0153 0.0092 0.0239

�22 0.0011 0.0005 0.0023

�33 0.0017 0.0005 0.0039

�44 0.000463 0.000054 0.001386

�55 0.000205 0.000045 0.000663

Fig. 10 Estimated mean and 95 % credibility intervals for the variances vi , i = 1, . . . , 22

123



Environ Ecol Stat (2013) 20:191–214 209

Fig. 11 Estimated mean (solid line) and 95 % credibility intervals (dashed line) for βt

Fig. 12 True values (in bold), estimated mean (solid line) and 95 % credibility intervals (dashed line) of
the response variable log(SO2) for the monitoring stations in locations s2, s3, s5, s14, s18 and s19

Figure 13 shows the observed time series at station s23, which was not used to fit
the model, and the estimated values and credibility intervals obtained for that station.
The figure shows a good fit of the model to the observed data, which indicates that the
proposed model is able to produce good predictions for ungauged locations.

5.2 Minimum temperature in the State of Rio de Janeiro

In this example we worked with the minimum monthly temperature (measured in
Celsius degrees) observed at n = 15 monitoring stations in locations {s1, . . . , s15} in
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Fig. 13 True values (in bold), estimated mean (solid line) and 95 % credibility intervals (dashed line) of
the response variable log(SO2) for the monitoring station s23, which was not used to fit the model

Fig. 14 a Monitoring Stations of temperature in the State of Rio de Janeiro, b estimated spatial deformation
in the geographic region of study (G-space) to D-space

the State of Rio de Janeiro (see Fig. 14). This data-set was made available by Instituto
Nacional de Meteorologia (INMET) and the observations correspond to n time series
observed between January 1961 and December 2000.

Latitude (X1), longitude (X2) and altitude (X3) of the monitoring stations were
used as explanatory variables. Also, a exploratory analysis showed that the size of the
early seasonal cycle varies with the altitude. Taking that into account, the monitoring
stations were divided into five groups. Variables δi , i = 1, . . . , 15, indicating to each
group each station belongs, were created as below

δi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1 0 0 0 0 0 0 0 0 0), if x3i ∈ (0, 100],
(0 0 1 0 0 0 0 0 0 0), if x3i ∈ (100, 350],
(0 0 0 0 1 0 0 0 0 0), if x3i ∈ (350, 450],
(0 0 0 0 0 0 1 0 0 0), if x3i ∈ (450, 650],
(0 0 0 0 0 0 0 0 1 0), if x3i > 650,
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where δ = (δ1, . . . , δ15)
′, and xki = (xk1, . . . , xk,15)

′, k = 1, 2, 3, are vectors corre-
sponding to the latitude, longitude and altitude at the monitoring stations.

The proposed model is specified as in (1)–(7). The mean of the process was modeled
assuming a second order dynamic linear structure, which is a structure that incorporates
an extra time-varying parameter representing a growth in the level of the series. We
define F ′

t = (115, 015, x1, x2, x3, δ), and the coefficients associated to F t are allowed
to vary in time, so that the effects of the covariates may change over time. This evo-

lution is defined through Gt =
⎛
⎝ G1 02×3 02×2

03×2 I 3 03×2
010×2 010×3 15 ⊗ G2

⎞
⎠ , with G1 =

(
1 1
0 1

)
and

G2 =
(

cos π6 sin π
6− sin π

6 cos π6

)
.

The model is completed with the specification of prior distributions for the param-
eters v and b. The use of non informative priors for the parameters σ 2

dii
, i = 1, 2 led

again to convergence problems in the MCMC chains. A number of informative prior
specifications were tested to correct the anisotropy in the model. The prior distribution
for the parameter σ 2

dii
, i = 1, 2, was chosen to be a I G(220 × 1000, 1000) based on

these preliminary trials.
Figure 14 shows the State of Rio de Janeiro with monitoring stations in the original

geographic space and also the estimated spatial deformation. The spatial deformation
shows a compression in the mountain region. Figure 15 shows the estimated mean
and the 95 % credibility intervals of β i , i = 1, . . . , 5, showing a significant variation
of most regression coefficients in time, and justifying the use of dynamic models.
Figure 16 shows the estimated mean and the 95 % credibility intervals of the variances
vi , i = 1, . . . , 22, and it shows that the monitoring station at location s4 shows greater
variability than all the others.

6 Final remarks

In this paper we proposed a model for nonstationary space time observations, which
models the mean of the process based on the approach of State Space models (West
and Harrison 1997) and corrects anisotropy through spatial deformation (Sampson and
Guttorp 1992) under the Bayesian point of view (Schmidt and O’Hagan 2003). In this
model all of the parameters, including the parameters of the mean, are estimated via the
Bayes paradigm. This new approach allows, in a simple way, to model the anisotropic
covariance structure, perform predictions of the process for non-monitored locations
and treat missing observations. It also shows an advantage over other existing models
in the literature, specially on the grounds of interpolation performance, as exemplified
through simulation studies.

One disadvantage of the proposed approach is that when a strong spatial deforma-
tion is needed to correct the anisotropy, informative priors must be specified for the
parameters σ 2

dii
, i = 1, 2. Gelman (2006) recommends using prior distributions in the

semi-Cauchy family when the scale parameter σ presents values close to zero, instead
of using the noninformative priors G(ς, ς) with ς → 0, as the estimation of the
parameters of interest can be sensitive to the choice of ς . Future work could include a
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Fig. 15 Estimated mean (solid line) and 95 % credibility intervals (dashed line) for the coefficients
β0, . . . ,β7

Fig. 16 Estimated mean and 95 % credibility intervals of the variances vi , i = 1, . . . , 15

sensibility study of the proposed model, using prior specifications in the semi-Cauchy
family, in cases when strong deformations are needed to correct the anisotropy.

Gamerman et al. (2007) suggest that the spatial-temporal covariance structure could
be affected by space and time. They also suggest that a natural candidate to introduce
this dependence is given by dynamic Gaussian processes. Another future work is to
propose a spatial-temporal approach for nonstationary Gaussian processes, where the
mean of the process is modeled via dynamic models (West and Harrison 1997) and the
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spatial covariance structure via a dynamic generalization of the spatial deformation.
Partial results of this new methodology can be seen in Castro (2010).
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