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Prediction of failure probability of oil wells
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Abstract. We consider parametric accelerated failure time models with ran-
dom effects to predict the probability of possibly correlated failures occur-
ring in oil wells. In this context, we first consider empirical Bayes predictors
(EBP) based on a Weibull distribution for the failure times and on a Gaussian
distribution for the random effects. We also obtain empirical best linear unbi-
ased predictors (EBLUP) using a linear mixed model for which the form of
the distribution of the random effects is not specified. We compare both ap-
proaches using data obtained from an oil-drilling company and suggest how
the results may be employed in designing a preventive maintenance program.

1 Introduction

The productivity of oil wells depends on the performance of a sub-surface equip-
ment system that may fail with the presence of sand, corrosion, internal pressure
variation, etc. One or more failures may occur during a well’s lifetime and in
these cases, losses may be large, since expensive corrective maintenance proce-
dures must be considered while production is interrupted. Preventive maintenance
programs (substitution of certain parts, cleaning, lubrication, etc.) may be imple-
mented to reduce such losses. These programs, however, depend on the selection
of wells with higher failure probabilities which may be estimated via statistical
models.

As an example, we consider a study of the time between failures of sub-surface
equipment of a sample of oil wells obtained from an oil-drilling company, between
January 2000 and December 2006. Failure is defined as the complete stop in the
operation of the well caused by any problem in the sub-surface equipment. Since
each well may have several failures, we expect the time intervals between them to
be correlated. Using a reliability terminology and considering each well as a com-
plex repairable system, we refer to recurrent events (failures) in repairable systems.
Furthermore, it is necessary to take into account the censoring that arises either be-
cause some wells are disabled from production or because of the termination of the
study. For interesting literature reviews on recurrent events in reliability, we refer
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to Ascher and Feingold (1984), Lawless and Thiagarajah (1996), Lugtigheid et al.
(2004) and Percy and Alkali (2007).

A convenient approach to handle this type of correlated survival data (see, e.g.,
Hougaard (2000)) is via models with random effects as in Robinson (1991). Some
authors recommend using accelerated failure time (AFT) models (see Hougaard et
al. (1994) and Keiding et al. (1997)) within each unit, assuming that the omission
of some important covariates may be the cause of the within-unit correlations and
that the inclusion of (nonobservable) random effects may take this omission into
account. In such models, the logarithm of the event times follows a linear regres-
sion on the covariate vector, so that the random effects act multiplicatively on the
event times. This approach is considered in Lambert et al. (2004) or in Bolfarine
and Valença (2005), for example. In this setup, a natural parametric approach, suc-
cessfully applied in a variety of disciplines is to use Weibull regression models,
perhaps the most widely used parametric model in survival analysis and reliability
experiments (see Lawless (2003)).

Lambert et al. (2004) employ empirical Bayes methods (see, e.g., Carlin and
Louis (1998)) to analyze kidney transplant data under such models and use the
mode of the posterior distribution of the realized random effects as the predictor.
In their analysis, different combinations of the distribution of the random effects
and lifetimes are considered. In this paper, assuming a Weibull distribution for the
time intervals between failures, we consider a linear mixed model approach, where
only the existence of the first two moments of the distribution of the random effects
is required and use empirical best linear unbiased predictors (EBLUP) as an alter-
native. We compare the conditional probabilities of failure obtained via empirical
Bayes and EBLUP approaches in an analysis of the oil well data described above.

The model and the two alternative prediction approaches are described in Sec-
tion 2. Data analysis is described in Section 3. Results are compared in Section 4
and a brief discussion is presented in Section 5.

2 Accelerated failure time model with random effects

Let ni observations be recorded on the ith of k units along the duration of the
study. Let Tij denote the time between the (j − 1)th and the j th failure of the ith
unit, i = 1, . . . , k, j = 1, . . . , ni , not including repair time. The accelerated failure
time model with random effects is

lnTij = bi + β�xij + σεij , (2.1)

where xij denotes a p × 1 vector of covariates with the first component equal to 1,
β represents a p × 1 vector of fixed (but unknown) parameters, σ is a scale param-
eter, bi , i = 1, . . . , k are independent and identically distributed unobserved ran-
dom variables (random effects) with null means and common variance σ 2

b and εij ,
i = 1, . . . , k, j = 1, . . . , ni are independent and identically distributed unobserved
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random errors with common and known mean and variance σ 2
ε . Furthermore, we

assume that Cov(bi, εij ) = 0, i = 1, . . . , k, j = 1, . . . , ni . This model reduces to
the usual accelerated failure time model when σ 2

b = 0 (see, e.g., Lawless (2003)).
Our objective is to estimate the conditional probability that a selected unit fails

in an interval of length �t given that it has functioned correctly for at least t units
of time, for example,

P(t < Tij ≤ t + �t |Tij > t, bi,xij ) = S(t |bi,xij ) − S(t + �t |bi,xij )

S(t |bi,xij )
, (2.2)

where S(t |bi,xij ) = P(Tij > t |bi,xij ) is the conditional survival function of Tij

given bi . We assume a Weibull distribution for the failure time and therefore

S(t |bi,xij ) = exp
{− exp

[−σ−1(
bi + x�

ijβ
)]

tσ
−1}

. (2.3)

Note that in this case the variance of random errors of model (2.1) is known (σ 2
ε =

π2/6).
Empirical Bayes methods can be employed to estimate (2.3); the reader is

referred to Aalen and Husebye (1991) or Lambert et al. (2004) for details. To
describe the procedure, we first note that because of censoring, we do not ob-
serve lnTij in all cases; instead, we observe Yij = min(lnTij , lnCij ), i = 1, . . . , k,
j = 1, . . . , ni , where Cij denotes the censoring time for the j th observation of the
ith unit. Therefore, the responses are represented by (Yij , δij ), where δij = I (Tij ≤
Cij ) is an indicator of failure.

The method considers the estimation of the unknown parameters of model (2.1),
namely, λ = (β�, σ, σ 2

b )�, via the maximization of the marginal distribution of the
responses (Yij , δij ), i = 1, . . . , k, j = 1, . . . , ni ,

L(λ) =
k∏

i=1

∫
Li(β, σ |bi)g

(
bi;σ 2

b

)
dbi, (2.4)

where g(bi;σ 2
b ) is the prior density function of bi and

Li(β, σ |bi) =
ni∏

j=1

f (yij |bi,xij )
δij S(yij |bi,xij )

(1−δij ) (2.5)

is the conditional likelihood function for the response of the ith unit given bi , with
f and S, respectively denoting the conditional density function and the conditional
survival function of lnTij given bi . Given the Weibull assumption for Tij , this has
an extreme value distribution, where for j = 1, . . . , ni , i = 1, . . . , k

f (yij |bi,xij ) = 1

σ
exp

[
yij − (bi + β�xij )

σ
− exp

(
yij − (bi + β�xij )

σ

)]
and

S(yij |bi,xij ) = exp
[
− exp

(
yij − (bi + β�xij )

σ

)]
.
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Letting λ̂ denote the maximum likelihood estimator of λ, the Bayes empirical
predictor of b = (b1, . . . , bk)

� is the mode of the posterior distribution

π(b|y, λ̂) =
∏k

i=1 Li(β̂, σ̂ |bi)g(bi; σ̂ 2
b )

L(λ̂)
. (2.6)

Given that π(b|y, λ̂) depends on b only through Li(β̂, σ̂ |bi) and g(bi; σ̂ 2
b ), the

Bayes empirical predictor of bi corresponds to the point that maximizes

Li(β̂, σ̂ |bi)g
(
bi; σ̂ 2

b

)
.

Depending on the form of the distribution assumed for the random effects, the
integral in (2.4) may not be analytically tractable. This is the case when the as-
sumption of normality, commonly employed for the random effects, is adopted.
In such cases, several approaches have been used (see Aitkin (1999) or Breslow
and Clayton (1993), e.g.). Here, an adapted Gaussian quadrature algorithm is used
to approximate the integral and the maximization of the likelihood is based on an
iterative method. For details, the reader is referred to Liu and Pierce (1994).

Alternatively, we may consider a linear mixed model for the analysis of the data.
However, because of censoring, each component Yij of the response vector Y has
the form

Yij = δij lnTij + (1 − δij ) lnCij , (2.7)

inducing an underestimation of the true logarithm of time between failures. To
bypass this problem under a nonparametric approach, we propose an adaptation
of the method considered in Ageel (2002) to impute censored observations in
Weibull-regression models. The idea is to replace Cij in (2.7) with an estimate
Ĉij of E(Tij |Tij > Cij ,xij ), and take

Y ∗
ij = δij lnTij + (1 − δij ) ln Ĉij

as the response variable.
Letting Y∗ = (Y∗�

1 , . . . ,Y∗�
k )�, with Y∗

i = (Y ∗
i1, . . . , Y

∗
ini

)�, i = 1, . . . , k, the
linear mixed model is

Y∗ = Xβ + Zb + e, (2.8)

where X = (X�
1 , . . . ,X�

k )�, Xi = (xi1, xi2, . . . , xini
)�, Z = ⊕k

i=1 1ni
, b = (b1,

. . . , bk)
�, E(b) = 0, Var(b) = σ 2

b Ik , with Ik denoting the identity matrix of di-
mension k and

⊕k
i=1 ai representing the direct sum of the vectors ai . Further-

more, e is a n × 1 vector of random errors, with n = ∑k
i=1 ni , e = σ [ε − E(ε)],

Var(e) = (σ 2π2/6)In and uncorrelated with b. These definitions imply

E
(
Y∗) = Xβ, (2.9)

Var
(
Y∗) = V = σ 2

b ZZ� + (σ 2π2/6)In (2.10)

Cov
(
b,Y∗�) = C = σ 2

b Z�. (2.11)
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When C and V are known, the best linear unbiased estimator (BLUE) of β and
the best linear unbiased predictor (BLUP) of b are obtained as the solutions to the
well known Henderson equations (Henderson (1975)) and are respectively given
by

β̂ = (
X�V−1X

)−1X�V−1Y∗ and b̃ = CV−1(
Y∗ − Xβ̂

)
. (2.12)

In practice, σ 2
b and σ 2 are unknown and must be replaced by estimates in (2.12),

generating the empirical best linear unbiased estimator (EBLUE) and the empirical
best linear unbiased predictor (EBLUP). The most common methods of estimation
of the variance components are maximum likelihood and restricted maximum like-
lihood, but this requires the specification of the form of the distribution of e and b.
For details, the reader is referred to Jiang (1997) among others. Non-parametric es-
timators based on quadratic functions of the data, like the minimum norm quadratic
unbiased estimator (MINQUE) or the minimum variance quadratic unbiased esti-
mator (MIVQUE) considered in Rao (1970, 1971a, 1971b) may be employed when
the form of the underlying distribution is not specified. Other methods of estima-
tion are described in Searle et al. (1992) or Demidenko (2004). The analysis of
mixed linear models with censored observations in a parametric setup is consid-
ered in Hughes (1999) and Pettitt (1986), among others.

In our context, prediction of random effects under accelerated failure time mod-
els is particularly appealing; it is computationally simpler than the empirical Bayes
approach and does not require an assumption on the form of the distribution of the
random effects.

3 Data analysis

To identify the oil wells with the highest probabilities of failure, a total of 2374
failure times, of which 563 (23.7%) were censored, was recorded for 616 oil wells.
For the purpose of this study, five covariates were included, namely,

• Production (PROD) in m3/day;
• Elevation method: mechanical pumping (MP) or progressive cavity (PC);
• Age at failure (AGE) in years;
• Region: RA, RB, RC and RD;
• Depth of the oil pump (DEPTH) in m.

Note that regions and elevation methods are represented by dummy variables in
the model. An initial exploratory analysis (not shown) followed by the variable
selection strategy recommended by Collett (1994) based on likelihood ratio tests
suggested the model

lnTij = bi + β0 + βprodPRODij + βbmMP + βageAGEij + βrbRB + βrcRC

+ βrdRD + βdepthDEPTHi + βprod∗rbPRODij ∗ RB
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+ βprod∗rcPRODij ∗ RC + βprod∗rdPRODij ∗ RD

+ βdepth∗rbDEPTHi ∗ RB + βdepth∗rcDEPTHi ∗ RC

+ βdepth∗rdDEPTHi ∗ RD + σεij ,

where bi ∼ N(0, σ 2
b ), and Tij follows a Weibull distribution conditionally on bi ,

i = 1, . . . ,616, j = 1, . . . , ni .
The model was fitted via empirical Bayes methods using PROC NLMIXED in

SAS (SAS Institute (2009), version 9.1). Initial values for β and σ were obtained
from fitting a standard accelerated failure time model, for example, in which no
random effects are included and the initial value for σ 2

b was set to 0.1.
The EBLUE of the parameters and the EBLUP of the random effects were ob-

tained from (2.12) with the variance components estimated via MINQUE meth-
ods. Computations were conducted in R (R Development Core Team (2010), ver-
sion 2.12.0). The EBLUEs with corresponding standard errors are displayed in
Table 1, both for the complete data (2000–2006) and for the data corresponding to
the period 2000–2005. This last option was considered with the purpose of model
validation.

Histograms for the predicted random effects along with kernel density estimates
(see, e.g., Scott (1992)) are presented in Figure 1. They suggest that the distribution
of the random effects is asymmetric, so that the Gaussian assumption may not be
appropriate. In this sense, the EBLUP might be a better option since their deriva-

Table 1 Estimates and standard errors of the parameters of model

2000 to 2006 2000 to 2005

Empirical Bayes EBLUE Empirical Bayes EBLUE

Parameter Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.

β0 7.4698 0.2572 7.1274 0.2480 7.2389 0.2071 6.5580 0.2679
βprod −0.0498 0.0091 −0.0298 0.0115 −0.0228 0.0087 −0.0056 0.0121
βbm 0.5271 0.1284 0.2804 0.1278 0.4970 0.1057 0.4048 0.1384
βage 0.0787 0.0077 0.0514 0.0071 0.0465 0.0064 0.0425 0.0082
βrb 1.3428 0.3071 0.8513 0.2994 1.3649 0.2825 1.4458 0.3486
βrc 0.9589 0.2275 0.8952 0.2182 0.9511 0.1744 1.2200 0.2260
βrd 1.8259 0.3279 1.3441 0.3188 1.1991 0.2685 1.0125 0.3454
βdepth 0.0021 0.0004 0.0014 0.0004 0.0019 0.0003 0.0018 0.0004
βprod∗rb 0.0323 0.0153 0.0347 0.0184 0.0171 0.0153 0.0008 0.0200
βprod∗rc 0.0189 0.0139 0.0002 0.0174 0.0073 0.0132 −0.0102 0.0181
βprod∗rd −0.0407 0.0188 −0.0467 0.0225 −0.0308 0.0177 −0.0384 0.0237
βrb∗depth −0.0020 0.0004 −0.0013 0.0005 −0.0017 0.0005 −0.0016 0.0006
βrc∗depth −0.0028 0.0005 −0.0022 0.0005 −0.0025 0.0004 −0.0029 0.0006
βrd∗depth −0.0028 0.0006 −0.0020 0.0006 −0.0022 0.0005 −0.0019 0.0007
σ 1.2001 0.0253 1.1592 – 1.1320 0.0258 1.1789 –
σ 2
b 0.4369 0.0582 0.3587 – 0.1292 0.0311 0.2160 –
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Figure 1 Histograms for the Bayes empirical predicted random effects and EBLUP.

tion only requires the existence of the first and second moments of the underlying
random variables.

To evaluate the appropriateness of the conditional Weibull distribution assump-
tion, we fitted Weibull models for 20 wells that experienced twelve or more fail-
ures during the study period. The fitted model as well as the Kaplan Meyer sur-
vival curve for one of these wells along with the corresponding QQ plot are pre-
sented in Figure 2. Similar plots were constructed for all the selected wells and are
not shown because they exhibit the same type of behaviour. Although the analy-
ses were based on a small number of observations, they show no strong evidence
against the Weibull assumption.

4 Comparison of empirical Bayes and EBLUP

Based on the ideas of Harrell Jr. and Frank (2001), we fitted the model using the
2000–2005 data (see Table 1) and used it to predict the conditional failure proba-
bilities in �t hours. These quantities were computed according to (2.2)–(2.3) using
either the empirical Bayes approach or the linear mixed model approach to obtain
the predicted random effects. The value considered for t in the expression for the
conditional failure probabilities, was the actual operation time (in hours) between
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Figure 2 Diagnostics to evaluate the appropriateness of the Weibull model.

the last repair in 2005, and 12/31/2005. We evaluated the ability of the model in
indicating right decisions with respect to preventive maintenance in a given �t

time interval. We considered the following steps to validate the model.

(i) We predicted the conditional failure probabilities for �t = 2000 h, 3000 h
and 5000 h, for 105 wells that failed in 2006. The corresponding box-plots
are displayed in Figure 3. These plots suggest that the failure probabilities
increase nonlinearly with time and may help to develop a preventive mainte-
nance policy based on the identification of the wells with the largest predicted
conditional failure probabilities in �t hours.

(ii) We assumed that a well should undergo preventive maintenance when the
conditional failure probability predicted was greater than an arbitrary but
fixed cut-off point p0. The optimum cut-off point may be obtained from a
ROC curve (see, e.g., Zweig and Campbell (1993)). ROC curves based on
failure probabilities in �t = 3000 h (median time of failure) predicted via
EBP and EBLUP are presented in Figure 4, with several cut-off points in-
dicated in the main diagonal. The optimum cut-off point is the one located
closest to the point with coordinates (0, 1). With the available data, it is diffi-
cult to decide for an optimal cut-off point since the corresponding ROC curve
is close to the no-discrimination line.
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Figure 3 Box plots for the conditional failure probabilities (EBP and EBLUP).

(iii) We predicted the failure probability within �t = 3000 h from January 1, 2006
for each of the selected wells using cut-off points p0 = 0.4 and p0 = 0.3 and
compared the results with the observed failure status in 2006. We evaluated
whether the decision based on (ii) was correct (if preventive maintenance was
indicated and a failure occurred or preventive maintenance was not indicated
and in fact no failure was observed) or not (if preventive maintenance was
indicated and no failure occurred or preventive maintenance was not indicated
and in fact a failure was observed).

(iv) In each case, we computed the sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV) and accuracy of the procedure (see,
e.g., Hosmer and Lemeshow (2000)). The results are summarized in Tables 2
and 3.

Accuracy, NPV and PPV of the decision rule are similar under both procedures,
while EBP shows better specificity and EBLUP, better sensitivity.

5 Discussion

We considered two approaches to predict conditional failure probabilities of oil
wells based on possibly correlated data. Both consider an accelerated failure time
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Figure 4 ROC curves for the conditional failure probabilities via EBP (a) and EBLUP (b).

Table 2 Decisions and true failure status for wells in 2006

Preventive maintenance decision

Empirical Bayes EBLUP

p0 Failure in 3000 h yes no yes no

0.3 yes 15 38 34 19
no 8 44 29 23

0.4 yes 7 46 20 33
no 3 49 16 36

model with random effects and assume a Weibull distribution for the time between
failures. While the empirical Bayes approach is usually based on a Gausssian dis-
tribution for the random effects, the linear mixed model approach is based only on
the existence of the second moment of that distribution and is computationally sim-
pler. A full hierarchical Bayesian model could be considered instead; although it
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Table 3 Accuracy of decision approaches

p0 Accuracy measure Empirical Bayes EBLUP

0.3 Sensitivity 0.28 0.64
Specificity 0.85 0.44

PPV 0.65 0.54
NPV 0.54 0.55

Accuracy 0.56 0.54

0.4 Sensitivity 0.13 0.38
Specificity 0.94 0.69

PPV 0.70 0.56
NPV 0.52 0.52

Accuracy 0.53 0.53

may be derived under different assumptions for the random effects distribution, it is
computationally more intensive than the empirical Bayesian approach we adopted.
Furthermore, to take advantage of the Bayesian paradigm, it would require the
elicitation of the prior distribution of λ which would require information that, for
confidential reasons, we could not access.

The linear mixed model accommodates censored observations by imputing the
mean time of failure. However, according to simulations in Ageel (2002), the pro-
cedure has no significant gain with respect to the analysis based on the original data
if censoring affects less than 30% of the observations. In fact, in Section 3, we have
not obtained significant changes in predictions via EBLUP when we adopted this
procedure in data analysis in which 23% of the observations were censored in the
complete data and only 5% were censored in the period 2000 to 2005.

Our intent here was to outline statistical methodology that may be employed to
obtain predictors of failure probabilities. Unfortunately we did not have access to
other covariates that could have been useful to generate more accurate results.

The predicted conditional failure probabilities may be employed in the imple-
mentation of a preventive maintenance policy. This, however depends on the cut-
off point p0 that in turn, depends on the relative costs of corrective and preventive
measures. Given such costs, we may optimize the choice of this cut-off point.

Future research in this area may be directed to (i) relaxing the Weibull assump-
tion and adopting a Cox regression approach, (ii) improvement of the imputation
procedure required in the linear mixed model approach, (iii) developing residual
analysis for the linear mixed model in this setup, (iv) considering a full hierarchical
Bayes approach to obtain the predictors and (v) considering linear mixed models
under elliptically symmetric or skew normal distributions.
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