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ABSTRACT
Many domains, such as the Internet of Things and Social Media,

demand to combine data streams with background knowledge to

enable meaningful analysis in real-time. When background knowl-

edge takes the form of taxonomies and class hierarchies, Semantic

Web technologies are valuable tools and their extension to data

streams, namely RDF Stream processing (RSP), offers the opportu-

nity to integrate the background knowledge with RDF streams. In

particular, RSP Engines can continuously answer SPARQL queries

while performing reasoning. However, current RSP engines are at

risk of failing to perform reasoning at the required throughput.

In this paper, we formalize continuous hierarchical reasoning. We

propose an optimized algorithm, namely C-Sprite, that operates

in constant time and scales linearly in the number of continuous

queries (to be evaluated in parallel). We present two implementa-

tions of C-Sprite: one exploits a language feature often found in

existing Stream Processing engines while the other is an optimized

implementation. The empirical evaluation shows that the proposed

solution is at least twice as fast as current approaches.
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1 INTRODUCTION
Data stream intensive domains, such as the Internet of Things (IoT)

and social media, are still gaining popularity. Huge amounts of fre-

quently changing data are continuously produced [3, 7]. However,

to extract meaningful insights from multiple heterogeneous data
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streams, these streams should be combined and integrated with

domain knowledge [11].

For instance, industrial IoT is about deploying sensors on produc-

tion lines to continuously monitor temperature, pressure, vibrations

and hundreds of other types of observations about the production

tools deployed along the line
1
. On those industrial settings, it is

easy to observe throughputs of MB per second (which means GB

per hour)
2
. Both the observations and the tools are often classified

using taxonomies. For instance, a taxonomy may tell that a pneu-

matic drill is as a power drill, thus a drill, thus a tool, and thus an

instrumentation, etc. All this background knowledge is useful to

meaningfully analyze the time-series of observations at-rest, but

it challenges real-time analytics. A real-time analysis, willing to

aggregate observations about drills, implicitly requires to collect

also observations about power drills and pneumatic drills. Naïve

implementations may simply register multiple queries and union

the resulting stream, but this is a resource-aggressive and human-

intensive approach. It would be better when the user declares only
the most abstract query (e.g., observations about drills) and a system

takes care of efficiently solving the task (e.g., looking for all the

specific types of drills).

Semantic Web technologies are valuable tools to combine vari-

ous heterogeneous data and integrate it with the domain knowl-

edge [7, 19, 23]. Stream Reasoning (SR) is the research domain

that investigates how to infer implicit facts about rapidly changing

data through reasoning techniques, such as found in the Seman-

tic Web [10]. RDF Stream Processing (RSP), a sub-domain of SR,

focuses on the integration of highly volatile Resource Description

Framework (RDF) streams with background knowledge and can

continuously answer SPARQL Protocol and RDF Query Language

(SPARQL) queries while performing simple reasoning.

The need for SR is rising as data stream production increases

and the need for real-time analytics over heterogeneous streams

keeps growing. The current state-of-the-art in RSP has mainly fo-

cused on query answering over RDF streams [6, 18] while more

expressive incremental reasoners [22, 28] have focused on provid-

ing expressive reasoning capabilities over slower changing data.

However, to provide generic query answering, RSP engines should

1
Interested readers can learn more on https://opcdatahub.com/WhatIsOPC.html

2
A typical process industry deployment with 200 sensors, which record 20 measure-

ments in 32 bytes messages every 200 ms, generates 0.61 MB/sec (2 GB/hour) per

machine. In the oil & gas industry, the number of sensors can easily grow up to

hundreds of thousands considering all the machines.
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provide some reasoning capabilities [14]. Even hierarchical rea-

soning capabilities, such as subclass and subproperty reasoning

increase the expressivity of the query extensively and simplifies

data integration.

Currently, there are three approaches to perform reasoning, each

with their own drawbacks:

• Materialization: the process of computing all possible infer-

ences, such that the query can be evaluated without rea-

soning. Therefore, it also produces data that is not relevant

for the Query Answering (QA), resulting in many unneces-

sary computations and redundant statements. Incremental

approaches allow to maintain the materialization in a stream-

ing context, however, this can be very expensive depending

on the number of changes in the data [5]. The approach pays

off when multiple queries consume the materialized stream.

• Goal driven: relies on backward reasoning to infer only what

is relevant for the QA. However, backward chaining causes

the same intermediate results to be produced over and over

again, resulting in redundant computations [26]. Further-

more, in a streaming context, many recomputations occur

since there is no incremental approach possible over the data

stream.

• Query Rewriting: is the process of injecting the logic inside

the query. This results in a query with multiple UNION

clauses. However, UNION is not supported in most of the

Stream Processors on which RSP engines can rewrite. To

solve this problem,multiple parallel queries are registered [8].

However, empirical evidence shows that the throughput is

inversely proportional to the number of queries.

So even for simple reasoning tasks, such as instance checking

over hierarchies of classes and properties, each of these techniques

has some serious drawbacks. Furthermore, as data stream produc-

tion keeps rising, current RSP engines are at risk of failing to per-

form the reasoning at the required throughput
3
.

Information Flow Processors (IFPs), such as Complex Event

Processing (CEP) engines and Data Stream Management System

(DSMS), often support hierarchical reasoning as a standard lan-

guage feature. Note that the language feature defines hierarchies

over relational data and is not related to RDF. However, if the un-

derlying system inherently understands hierarchies, this could be

beneficial for each of the mentioned approaches. Namely, it would

result in less unnecessary statements, less recomputations and less

queries for the materialization, goal driven and query rewriting

approaches respectively.

This language feature was never before exploited in stream rea-

soning, since current approaches either pipelined the IFP with a

SPARQL engine [6] or integrated limited amount of stream pro-

cessing inside the reasoner [22]. Furthermore, even though this

feature seems very interesting to exploit, its semantics were never

formalized, only defined by implementation.

Therefore, in this paper we formalize continuous hierarchical

reasoning and introduce C-Sprite, an optimized hierarchical rea-

soning algorithm that operates in constant time and scales linearly

3
In the industrial IoT example, each machine produces 20k measurements per second.

Each measurement is typically described by at least two RDF triples. In the evaluation,

we will see that current RSP engines have a maximum throughput of about 60k triples

per second.

Figure 1: Hierarchical structure of Wikipedia categories

in the number of continuous queries. We present two implemen-

tations of C-Sprite: one exploiting the hierarchical features found

in existing IFP and one fully optimized based on the theoretical

formalization.

In this paper we tackle the following Research Question:
(1) Can we formalize continuous hierarchical reasoning?

(2) Can we exploit the formalization to speed up continuous

RSP querying under hierarchical entailment?

We summarize the main Contributions as:
(1) Continuous Taxonomy-based Relational Algebra (C-TRA),

the continuous extension of the existing Taxonomy-based

Relational Algebra (TRA) [20] model. TRA is itself an ex-

tension of Relational Algebra and introduces taxonomies to

relax query answering in relational databases.

(2) The formalization of the hierarchical reasoning through the

means of C-TRA.

(3) An optimized hierarchical reasoning algorithm, i.e. C-Sprite.

(4) An empirical study that validates the approach.

Paper organization: Section 2 introduces an example that will

be used throughout the paper. In Section 3 all necessary background

is introduced to understand the remainder of the paper. Section 4

and 5 formalize the approach, while in Section 6 we provide a

possible data structure and algorithm to efficiently perform the

hierarchical reasoning in continuous query answering. Section 7

discusses the related work and in Section 8 we provide the empirical

study to show the feasibility of the approach. Section 9 discusses

the contributions and Section 10 elaborates on the limitations of

the approach and concludes the paper.

2 RUNNING EXAMPLE
Suppose we are interested in retrieving all Wikipedia changes in

creative work-related articles. Wikipedia exposes the changes that

are made as a data stream, detailing the changes to each article and

the category it is contained in
4
. These categories are very specific,

e.g. videogame, novel, article, etc. However, it is not straightforward

to target the categories that should be considered creative works.
By introducing a hierarchical description of the various cate-

gories, it is possible to define how the categories relate on a hierar-

chical level. Utilizing a system that understands this hierarchy, one

can query the change stream for changes in creative work-related ar-

ticles and retrieve the specific underlying changed articles, without

the need to query all the categories separately. Figure 1 visualizes

the hierarchy for the creative work categories.

4
As defined in https://www.mediawiki.org/wiki/API:Recent_changes_stream.

https://www.mediawiki.org/wiki/API:Recent_changes_stream
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Throughout the remainder of the paper, we will introduce exam-

ples based on this creative work taxonomy.

3 BACKGROUND
This section introduces the background material necessary to un-

derstand the remainder of the paper.

3.1 RDFS entailment
In our approach, we focus on hierarchical reasoning, i.e. reasoning

over hierarchies of classes and properties. RDF Schema (RDFS)

entailment defines 13 rules
5
to express, among others, hierarchical

reasoning but also domain/range reasoning and schema reasoning.

We focus specifically on the entailment rules rdfs7 and rdfs9 since

they specify the hierarchical reasoning we are interested in:

• rdfs7 states that if p is a subproperty of q and a and b are

connected through a property p, then the property q holds

between a and b:
rdfs7:

(p subProper tyOf q ) (a p b )
(a q b )

• rdfs9 states that if A is a subclass of B and a is of the type A,
then it holds that a is of the type B:

rdfs9:
(A subClassOf B ) (a type A)

(a type B )

We note that there exist rules with respect to the transitive prop-

erties of the subPropertyOf/subClassOf. However, they are not

important in instance checking as the transitivity can be obtained

by the execution of a sequence of rdfs7/9 rules.

Example 3.1. As shown in Figure 1 VideoGame is a subclass

of Software and Software is a subclass of CreativeWork. When we

have an instance, i.e. Doom, of the type VideoGame (Doom type
VideoGame) and execute the rdfs9 rule we obtain that Doom is also

a Software:
(V ideoGame subClassOf Sof tware ) (Doom type V ideoGame )

(Doom type Sof tware )
Since Software is also a subclass of CreativeWork and we now know

thatDoom is a Software, we obtain through similar means thatDoom
is also a CreativeWork:
(Sof tware subClassOf CreativeW ork ) (Doom type Sof tware )

(Doom type CreativeW ork )

Definition 3.2. The materialization of a knowledge base under

RDFS entailment is the process of computing and storing all the

inferred facts derived from the executing of the RDFS rules. The

materialization stops when no new facts can be derived from the

execution of the RDFS rules.

Example 3.3. (cont’d) The materialization of the knowledge base

containing only the triple (Doom type VideoGame ) and the rdfs9

rule, according to the schema depicted in Figure 1, results in the

triples: (Doom type VideoGame ), (Doom type So f tware ), (Doom
type CreativeWork ).

3.2 SPARQL under RDFS9 entailment
SPARQL is the query language for RDF data

6
, different from other

QA systems, it canmatch data that is not explicitly stated, but can be

derived under a certain entailment
7
. More specifically, implicit data

5https://www.w3.org/TR/rdf11-mt/#rdfs-entailment
6
https://www.w3.org/TR/rdf-sparql-query/

7
https://www.w3.org/TR/sparql11-entailment/

can be derived from the given data, the ontology and an ontological

language (or entailment).

Definition 3.4. We define the evaluation of SPARQL under RDFS9

entailment as eval (G,BGP ,O,RDFS9) with RDFS9 the entailment

regime, O the ontology, BGP the basic graph pattern used in the

SPARQL query and G the RDF dataset.

Example 3.5. Lets consider again our simple dataset containing

the single triple G = {(Doom type VideoGame )}. We are interested

in querying for all CreativeWork concepts, as defined in the on-

tology hierarchy in Figure 1. The BGP consists thus of "?w type

CreativeWork". The ontology O is the ontology represented by

the hierarchical definition of concepts as depicted in Figure 1 and

the entailment is the RDFS entailment consisting of the rdfs9 rule.

When evaluating the query without the ontology and the entail-

ment regime only the explicit data can be queried and no matches

are found: eval (G,BGP , ∅, ∅) = ∅
When considering the ontology and the entailment regime, we can

find a match through the derivation of the implicit data as described

in Example 3.1 (we derive that Doom is a CreativeWork) while ex-
ecuting the query: eval (G,BGP ,O,RDFS9) = {?w : Doom}
Another option is to first materialize the dataset and then eval-

uate the query without the need for the entailment regime dur-

ing the query evaluation. First, we obtain the materialize dataset:

(Grdf s9={(Doom type VideoGame ), (Doom type So f tware ), (Doom
type CreativeWork )}). Then we can evaluate the query without the

entailment regime: eval (Grdf s9,BGP , ∅, ∅) = {?w : Doom}

3.3 Stream Processing
We introduce a window operator to be able to process the content in

the stream, based on the definitions from CQL [2] and RSP-QL [13].

Definition 3.6. A windowW (S ) is a set of data extracted from

a stream S . A time-based window is defined based on two time

instances o and c , respectively the opening and closing time instant,

such that:W (S ) = {d |(d, t ) ∈ S ∧ t ∈ (o, c]}. With d all data in S at

a specific time instant.

The window operator allows us to extract defined and process-

able chunks of data from the unbounded data stream. A time-based

window defines the content of a window based on a certain amount

of time that passes. A time-based sliding window extends this no-

tion in such a way that the window slides through time, to have

overlapping windows.

Definition 3.7. A time-based sliding window operatorW is

defined based on three parameters (α , β , t0), such thatα is the width

of the window, β is the slide and t0 is the time instant on whichW

starts to operate. The sliding window operator produces a sequence

of time-based windowsW1,W2, ... such that: 1) the opening of the

first window (W1) is t
0
; 2) each window has width α , i.e. window

Wi is defined through (oi , ci ) with ci −oi = α ; 3) β is the differences

between the opening times of two consecutive windows, i.e., the

difference between the opening time oi+1 ofWi+1 and oi ofWi is β .
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Figure 2: T-relation, t-schema and upward extension TRA
example.

3.4 Hierarchical Stream Processing Languages
IFP often include a hierarchical feature in their language [15]. For

instance, the Event Processing Language (EPL) used in Esper
8
al-

lows to define the hierarchies of events in its language. Listing 1

shows an example of defining a small part of the category taxonomy

from Figure 1 in EPL.

Listing 1: Hierarchical definition in EPL
c r e a t e schema Creat iveWork ( i d s t r i n g , t s doub le ) ;

c r e a t e schema So f tware ( ) i n h e r i t s Creat iveWork ;

For other examples, we direct the reader to Eckert et al. [15].

3.5 TRA
The Taxonomy-based Relational Algebra (TRA) [20] introduces

taxonomies to relax query answering in relational databases. We

introduce some of the key concepts of TRA, since they will be used

later in the formalization of C-Sprite.

First, we define an h-domain which defines hierarchies and tax-

onomies.

Definition 3.8. An h-domain h is composed of:

• a finite set L = {l1, ..., lk } of levels, each associated with a set

of values, i.e. the members of the level and denoted byM (l );
• a partial order ≤L on L having a bottom (⊥L) and a top

element (⊤L).

• a family of functions LMAP l2l1
: M (l1) → M (l2), called level

mappings.

A taxonomy is a set of h-domains.

Example 3.9. In our running example from Section 2 we can

create a set of levels L = {creativework,дeneral , speci f ic, ...} with
M (creativework ) = {CreativeWork },

M (дeneral ) = {So f tware,WrittenWork, ...},
M (speci f ic ) = {VideoGame,Article,Book, ...}.

Besides ordering between levels, there is also an ordering be-

tween members:

Definition 3.10. Let h be an h-domain andm1 andm2 are mem-

bers of respectively l1 and l2. There exists an ordering on the
membersm1 ≤M m2 if l1 ≤L l2 and LMAP l2l1

(m1) =m2.

8
http://www.espertech.com/esper/

We can now define a schema over taxonomies and t-relations,

as the natural extension of a relation table built over taxonomy

defined values:

Definition 3.11. Let T be a taxonomy. A t-schema (schema over

taxonomies) for T, is denoted by S = {A1 : l1, ...,Ak : lk }, with
Ai the attribute name of the h-domain and li the level of some

h-domain in T.

Example 3.12. Figure 2 depicts the t-schema S1 = {Time : day,Cat :
speci f ic}.

We can now define a tuple and relation over a taxonomy:

Definition 3.13. A t-tuple over a t-schema S = {A1 : l1, ...,Ak :

lk } for a taxonomy T is a function mapping each attribute Ai to a

member of li . A t-relation r over S is a set of t-tuples over S.

Example 3.14. In Figure 2 we can see the t-tuples t1a & t1b in

the t-relation r1.

Last but not least, we introduce the upward extension operator

that allows to take the taxonomy into account:

Definition 3.15 (upward extension). Let r be a t-relation over S,
A an attribute in S defined over a level l , and l ′ a level such that

l ≤L l ′. The upward extension of r to l ′, denoted by εA:l
′

A:l (r ), is the

t-relation over S ∪ {A : l ′} defined as:

εA:l
′

A:l (r ) = {t |∃t ∈ r : t[S] = t ′, t[A : l] = LMAP l
′

l (t
′
[A : l])

Example 3.16. Figure 2 depicts the upwards extensions
ε
дeneral
specif ic (r1) in r2.

Besides the upward extension, TRA also provide downward ex-

tension, upward/downward selections, projections, unions, differ-

ences and joins, which are omitted because they are not relevant for

the remainder of the paper. We note that the TRA upward extension

and the rdfs9 rule are alternative formalisms to capture the same

idea.

Definition 3.17. TRA- is the subset of TRA without the down-

ward extension, join and difference operators.

In the remainder of the paper, we will assume the usage of TRA-.

4 FROM TRA TO SPARQL UNDER
ENTAILMENT

In our approach, we want to formalize the semantics of the hier-

archical reasoning inside the IFP, which is built upon Relational

Algebra (RA). This can be achieved by extending the RA inside

the IFP to include hierarchies, which is exactly what TRA does.

Therefore, in this section, we align our approach with TRA.

4.1 TRA for Ontologies
We first describe how we can align TRA with ontologies, we limit

the ontological language to the definition of classes and properties

w.r.t. RDFS rules 7 and 9, thus the hierarchical definitions of classes

and properties.
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Figure 3: Example ontology and taxonomy alignment

4.1.1 Alignment of taxonomies with ontologies. Since ontologies
and TRA have a different data model, we first describe how they can

be aligned. TRA starts from the assumption of levels and members
that is missing in ontologies. However, we can introduce the notion

of levels by visualizing the ontology classes as one or more trees

and assigning all classes that have the same path length from the

root to the same level in an h-domain. Themembers of the levels are
the ontology classes themselves. The ordering between the classes

is maintained by the ordering between the levels and the members.

This is depicted in Figure 3. Note that when multiple inheritance oc-

curs in the ontology, multiple h-domains are created. For example,

RSP is a subclass of both the Semantic Web and Stream Processing.
This results in two h-domains, one with RSP in a sublevel of Se-
mantic Web, and one with RSP in the sublevel of Stream Processing.
The alignment for the ontology properties is similar.

4.1.2 Alignment of triples with Relational Data. Since we focus

on hierarchical reasoning, we limit our discussion to two types

of triples, i.e. class assertions and object property assertions. We

utilize the Manchester syntax
9
for this purpose: class assertions

(i.e. ClassAssertion(C,s), with C an ontology class and s an individ-

ual) and object property assertions (ObjectPropertyAssertion(s,P,o),

with P an object property and s and o individuals). For simplicity

we focus on the class assertions, however, the definitions for object

property assertions are straightforward.

Definition 4.1. We define the function T2R: {triples} → R that

maps a set of triples to relational data through the use of mappings.

Each class assertion triple (i.e. ClassAssertion(Ci ,x )) has a rela-

tional presentation where the schema consists of S = {Subject ,Aj :

9
https://www.w3.org/TR/owl2-manchester-syntax/

Figure 4: Alignment of a) triples with relation data and b)
back to triples.

lk } with Subject the individual name, Aj the taxonomy attribute of

Ci and lk the level of Ci in the taxonomy. Adding a new class as-

sertion (e.g. ClassAssertion(Cq ,x )) results in updating the schema

by adding a new column to store the additional type.

Example 4.2. The class assertion (ClassAssertion(Article, editx ))
translates to the first row (t1a ) of Figure 4 a).

4.1.3 Alignment of Relational Data with triples. We can now going

in the other direction and align the relational data with triples.

Definition 4.3. We define a function R2T: R → {triples} that
maps relational data (obtained by T2R) to triples through the use

of mappings. Each tuple in S = {Subject ,Aj : lk } results in a triple

(ClassAssertion(Ci ,x )) with t[Aj : lk ] = Ci . When the schema

contains multiple columns (e,g, S2 = {Subject ,Aj : lk ,Ap : lq })
then multiple triples are generated.

Example 4.4. The first row (after extending the table through

the upward extension ε
дeneral
specif ic ) (t2a ) of Figure 4 b) translates to

the class assertions:

ClassAssertion(Article, editx ),ClassAssertion(WrittenWork, editx ).

The functions R2T and T2R are also known as direct mappings
and its inverse application.We refer the interested reader to Sequeda

et al. [27] for more a more detailed description.

https://www.w3.org/TR/owl2-manchester-syntax/
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4.2 Alignment of SPARQL under RDFS
entailment with TRA

Now that we have aligned ontologies with TRA, we can further

formalize our approach by aligning with SPARQL under entailment.

Theorem 4.5. The SPARQL evaluation of a dataset under RDFS9
entailment and a dataset under upward extension are equal.

Proof. As the evaluation of SPARQL under entailment can be

implemented as first materializing the dataset and then evaluating

the query, we need to prove:

eval (Grdf s9,BGP ,∅,∅) = eval (Gε ,BGP ,∅,∅) (1)

Through the materialization, we can further limit the proof to

the alignment of the dataset under RDFS9 entailment and upward

extension: Grdf s9 = Gε .

Figure 5 shows how the use of TRA’s upwards extension com-

pares to RDFS9.

Assumptions:
(1) We assume that the ontology O contains a hierarchy of

a certain number of subclasses: ∃C0, ..,Ck+1 ∈ O : Ci ⊑
Ci+1 ∧ level (Ci ) ⩽ level (Ci+1) with i <= k and level (Cj )
the mapping of each ontology class to a certain level in the

h-domain.

(2) There is a function T2R (R2T ) that maps triples to relation

data (relation data to triples), as described in Section 4.1.2.

(3) There is a function rd f s9i ..j that applies the sequence of

RDFS9 rules
10

(Ci subclassO f Ci+1), .., (Cj−1 subclassO f Cj )
(4) n is the depth of the hierarchy used in the reasoning.

Since RDFS9 entailment over a dataset equals the union of the

entailment on each triple in the dataset [29], we can simplify the

proof for a single triple.

We prove that rd f s9(x ∈ Ci ) = R2T (ε (T2R (x ∈ Ci ))) for a certain
ontology O , with x ∈ Ci = ClassAssertion(Ci ,x ):

Base case (n=1): In this case we apply one hierarchical reason-

ing step. This means that C0 ⊑ C1 ∧ level (C0) ⩽ level (C1) while
its known that x ∈ C0. For readability we show the base case for

C0 ⊑ C1 but it holds for every i such that Ci ⊑ Ci+1.

We need to prove that: rd f s90..1 (x ∈ C0) = R2T (εl1l0
(T 2R (x ∈ C0)))

Applying the RDF9 entailment we obtain that x ∈ C1:

(x type C0) (C0 subclassO f C1)

(x type C1)
rd f s9 (2)

Through the upward extension we maintain a table with an addi-

tional column:

εl1l0
(r ) = r ∩T 2R ((x type C1)) (3)

By the definition of R2T andT 2R we can conclude that the result

of (2) equals R2T(3).

Inductive hypothesis (n=k):We assume that the theoremholds

for all values of n up to some k,k ≥ 0. With k the difference in

hierarchy level.

rd f s9
0..k (x ∈ C0) = R2T (ε

lk
l0
(T 2R (x ∈ C0)))

10
The semantics of the transitive property of subclassof is the same as the sequental

excecution of RDFS9.

Inductive step (n=k+1): Lets assume that the hierarchy is of

size k + 1.

rd f s9
0..k+1 (x ∈ C0)

= R2T (ε
lk+1
l0

(T 2R (x ∈ C0)))

= R2T (ε
lk+1
lk

(ε
lk
l0
(T 2R (x ∈ C0)))) def ε

= R2T (ε
lk+1
k (T 2R (rd f s9

0..k (x ∈ C0))) inductive step

= rd f s9k ..k+1 (rd f s90..k (x ∈ C0)) base case

= rd f s9
0..k+1 (x ∈ C0) def transitivity rdfs9

Q .E.D.

□

The proof for rdfs7 was omitted, as it is similar to the proof

for rdfs9. In Figure 5 we have windowed the data and used the

RStream function to assign timestamps to the resulting solution

mappings. The RStream function allows you to stream out the

obtained answers. We refer the interested reader to Arasu et al. [2]

for more information. The incorporation of the streaming operators

is further detailed in Section 5.

5 C-TRA: CONTINUOUS TRA
Now that we have aligned our approach in a rather static context, we

formalize the applicability in a streaming environment. Therefore,

we extend TRA, which has been build for static environments, to

Continuous TRA (C-TRA).

To extend TRA to C-TRA, we rely on the “black box” compo-

nents of CQL [2] that state that instead of integrating the streaming

operators in the algebra, it is possible to convert the stream to a

relational form through a Stream-to-Relation (S2R) operator. The

remaining operations can be performed in relational form, allowing

to exploit well-understood relational semantics. CQL can be com-

posed of a S2R operator, followed by well-known relation algebra

operations and a Relation-to-Stream (R2S) operator to stream out

the results:

CQL = S2R + RA + R2S (4)

Defining a Stream-to-Stream (S2S) operator in CQL is done by

combining a S2R operator with a Relation-to-Relation (R2R) opera-

tor that exploits relation algebra and an R2S operator:

S2SCQL = S2R + R2RRA + R2S (5)

5.1 A continuous taxonomy query language
A continuous taxonomic query language (CTQL) that takes tax-

onomies into account can be defined as standard CQL, but operating

on TRA instead of standard RA:

CTQL = S2R +TRA + R2S (6)

The S2S operator over CTQL can then be defined as
11
:

S2SCTQL = S2R + R2RTRA + R2S (7)

=W(α , β , t0) + R2RTRA + RStream (8)

11
Note that there are many options to perform the S2R operation. We opted for a

sliding window and leave the further generalization for future work.
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Figure 5: Flow of using TRA’s upward extension compared to RDFS9.

Figure 6: Window sequence timeline of a) TRA and b) ε (RA).
In a) events e1 and e2 need to wait for the shifting of the win-
dow (W2) to be taken into account, while in b) this period is
used to perform the upward extension.

We can further decompose this formula since TRA = ε (RA).
Figure 6 a) visualizes a timeline that illustrates the usage of TRA

and Figure 6 b) its further decomposition. The figure shows that

the events e1 and e2, arriving between the shifting of the window,

can be upward extended in an additional window, exploiting the

wait time in between windows. The decoupling of the upwards

extension form the RA allows to perform the upward extension in

between window shifts while the RA is executed upon the window.

We define this decoupling more formally:

S2SCTQL =W(α , β , t0) + R2RTRA + RStream (9)

=W(α , β , t0) + R2Rε (R2RRA ) + RStream (10)

=W0 (β , β , t0) + R2Rε + RStream

+W1 (α , β , t0) + R2RRA + RStream (11)

withW0 (β , β , t
0) opening at the previous evaluation ofW1 (α , β, t0)

and closes on the next evaluation. This enforces that each window’s

t0, i.e. the time instant on which each windowWi
starts to operate,

are synchronized.
12

This shows that we can extract the extension and execute it

before the rest of the processing, while we can rely on RA for the

further processing steps. Furthermore, it allows to eliminate data

early on, when they do not meet the hierarchical conditions.

5.2 C-TRA for Stream Reasoning
Since IFP operate on RA,we extended the use of RA to TRA.We have

shown that TRA aligns with ontologies and that C-TRA can be used

in a streaming fashion. Furthermore, the decomposition described

in C-TRA allows to perform the hierarchical reasoning before the

RA. This means that we can perform our triple based hierarchical

reasoning inside a IFP and perform the reasoning before other

operations such as joins or aggregations. This allows to eliminate

triples early on based on the hierarchical requirements in the query.

6 EFFICIENT HIERARCHICAL REASONING
This section discusses how we can efficiently store and retrieve

the hierarchy for QA. We begin by describing a data structure for

storing the data and the queries and then we discuss the algorithm

for querying and study its complexity.

6.1 Data structure
A possible data structure for efficient lookup of the parent classes

for a specific class in the hierarchy is by saturating the hierarchy

and storing for each class a list of all the parents, as visualized in

Figure 7 a). By storing the list of parents in a hashmap, using the

class name as the key and storing the list of parents as the value,

one can look up the parents for a specific class in constant time

(O (1)).
Since we need a way to efficiently query the data, we create

a new instance of the hierarchy that only contains the concepts

12
In the remainder of the paper we will focus on a windowW0 (1, 1, t 0 ) without

losing generality, but relaxing the need for synchronizing t 0 .



DEBS ’19, June 24–28, 2019, Darmstadt, Germany Bonte, et al.

Figure 7: Flow of the algorithm

(keys) that have the queried type in their list of parent concepts.

When the concepts have been filtered, we link each concept to the

query. When multiple queries are added, each concept contains

a list of queries it matches according to the hierarchy. We focus

specifically on queries asking for specific type instances (queried

types). In Figure 7, query Q1 asks for all instances of CreativeWork
related categories. The concepts that are not CreativeWorks, such
as Concept andWork, are dropped and a direct link is made to the

query.

When new data arrives, such as an Article in Figure 7, a simple

lookup in the hashmap allows us to detect that query Q1 matches.

6.2 Algorithm
Let us define an algorithm to query hierarchical classes encoded

on the data structures introduced above. Algorithm 1 shows the

pseudo-code that describes how the data structure is constructed

to efficiently perform the querying. First, we convert the ontology

hierarchy in a hashmap H containing for each class all its parents.

Each time a query is registered, a copy of the hierarchy is pruned

such that it only contains the concepts that have the queried type in

their list of parents. The selected concepts are then directly linked

to the queries. This allows to perform the hierarchical reasoning as

a lookup in a hashmap.

Algorithm 2 is executed on the ingestion of a new triple . When a

new triple is received, the system executes theCheckHierarchyMatch
function that takes the triple and the pruned hierarchy hashmap

as arguments. By looking up the asserted types of the triple in the

hashmap, it detects which queries the triples match.

6.2.1 Complexity study: Let’s assume that the number of queried

classes in all the queries is m (i.e. m =
∑len (Q )
i=0 len(Qi )). Thus,

the complexity of first looking up in the pruned hashmap if the

triple’s type matches any queries and then iterating over them

is O (1) +O (m)). The complexity only depends on the number of

queries, which is typically low. Indeed, for each triple in the stream

the execution is performed in constant time.

Algorithm 1 Query registering

Precondition: Q a collection of queries, each interested in one or

more types.

1 H ← ConvertToHierarchy (O ) ▷ Stores parents for each class

in the Ontology O
2 function PrepareHierarchy(H ,Q)
3 H ′← []

4 for q ∈ Q do
5 for (concept ,parents ) ∈ H do
6 if q ∈ parents then
7 H ′[concept].append (q)
8 end if
9 end for
10 end for
11 return H ′

12 end function

Algorithm 2 Calculate the query matches on a hierarchical level

Precondition: Q a collection of queries, each interested in one or

more types.

1 H ← ConvertToHierarchy (O ) ▷ Stores parents for each class

in the Ontology O (preprocessing step)

2 H ′← PrepareHierarchy (H ,Q ) ▷ (preprocessing step)

3 triple ← ClassAssertion(type,subject)

4 function CheckHierarchyMatch(H ′, triple)
5 QueryMatches ← H ′(types (triple )) ▷ types extracts the

type assertions of a triple

6 return QueryMatches
7 end function

6.3 Definition in EPL
If we want to exploit the hierarchical reasoning inside the IFPs,

we need to align the triples with the IFPs events. One possible

way to achieve this is by defining the class and property names

as event definitions. For example, the class assertion triple (Clas-
sAssertion(Article,edit)) becomes Article(edit), (with Article an event

definition and edit a parameter) and similar for the property asser-

tions. This way Article is an event definition that can exploit the

hierarchy.

7 RELATEDWORK
In this section, we elaborate on the related approaches in the lit-

erature that are able to perform hierarchical reasoning (or more)

and describe how they compare to C-Sprite. Table 1 summarizes

the related work.

Compared to C-Sprite, current approaches suffer from the prob-

lems that accompany materialization, backward chaining or query

rewriting. Either they infer too many triples, perform redundant

computations or suffer from a large number of queries.
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The C-SPARQL engine [6] builds on existing IFP and SPARQL

engines to respectively perform the windowing of the streams and

the querying of the data captured in the window. C-SPARQL sup-

ports reasoning and querying through the use of Jena
13
. However,

C-SPARQL is pluggable, allowing the support of other reasoners.

EP-SPARQL (JTalis)[1] is an event processing enabled SPARQL

engine that builds on top of logic programming. To perform rea-

soning EP-SPARQL supports event-driven backward chaining by

relying on Prolog.

SPARKWAVE[17] exploits the Rete algorithm [16] to materialize

the RDF streams through an adaption of Rete that also incorporates

the query answering. Even though it exploits Rete in a smart way,

it is prone to the usual materialization problems, i.e. the inference

of many unnecessary triples.

StreamQR [8] enables the execution of continuous queries under

entailment by rewriting the queries in multiple parallel queries.

CQELS [18] is utilized to execute the rewritten queries. It is a very

promising technique, however, the query rewriting easily results

in a high number of rewritten queries, drastically lowering the

engine’s performance.

LiteMat [9] uses an encoding scheme to encode the hierarchies

to improve materialization and query rewriting in time and space

complexity. The encodings allow to translate the entailment prob-

lem to a rewriting problem in terms of filtering the hierarchical

entailment as numbers. However, due to the used encoding scheme,

LiteMat is not able to encode multiple inheritance. C-Sprite does not

encode the hierarchies in a numerical representation, but exploits

the hierarchical support of the underlying IFP.

Strider [25] is a distributed RSP engine that exploits distributions

techniques to efficiently execute and dynamically update query

plans. It focuses specifically on query answering. In an extension,

i.e. Strider-R [25], it exploits LiteMat to perform the reasoning.

RDFox [22] is the fastest incremental reasoner currently available,

utilizing an optimized version of the Delete and Rederive (DReD)

algorithm [30] for efficient incremental reasoning. However, it does

not provide anymechanisms to deal with high-volatile data streams.

IMARS[5, 12] keeps an incremental maintenance of the material-

ized knowledge that is valid within a given window of time. It

adapts DReD for its applicability in SR. Even though incremental

maintenance of the materialization is more efficient than remateri-

alizing each window, its efficiency is dependent on the percentage

of changes in the stream.

G-ToPSS [24] is a subgraph matching algorithm that also exploits

hashmaps to efficiently match subgraphs. Taxonomy matching is

supported, however, in contrast to C-Sprite, it requires to iterate

over all the parents a concept has.

8 EVALUATION
To evaluate the feasibility of C-Sprite, we compared C-Sprite’s

maximum throughput with other engines when increasing the

window size and the size of the ontology used to perform the

reasoning. Before jumping to these evaluations, we first describe

the used dataset and we explain how we selected the engines we

compare against.

13
https://jena.apache.org/

The evaluation itself was conducted on a 16 core Intel Xeon

E5520 @ 2.27GHz CPU with 12GB of RAM running on Ubuntu

16.04 and utilizing Esper 6.1.0.

8.1 Dataset
DBpedia [4] is Wikipedia content represented as a Semantic Web.

DBpedia live [21] provides the Wikipedia changes as structured

data, conform to the DBpedia ontology
14
. We have used these

changes to re-stream the wikipedia changes as structured data,

such that we can control the stream rate in orde to evaluate the

throughput of C-Sprite. The evaluation thus consists of querying

all the changes to creative works that are happening to DBpedia.

The RSP-QL query used within the evaluation is shown in Listing 2.

We loaded all the additions made between November 2013 and

May 2018. As we are only interested in querying the types of the

concepts, we filtered the triples in the data that did not describe a

type assertion. Furthermore, when multiple types have been pro-

vided in the data, we only keep the most specific type assertions,

such that the hierarchical reasoning is necessary to discover the

different Creative Works in the data. The final dataset contains more

than 3 million triples, of which more than 56 thousand describing

Creative Works. Table 2 summarizes the characteristics of the used

dataset.

8.2 Engines Selected as Terms of Comparison
We have selected C-SPARQL, StreamQR and SPARKWAVE as they

are the most prominent RDF stream processors currently avail-

able. We also added StreamFox, i.e. a C-SPARQL approach utilizing

RDFox instead of Jena. We note that we did not take LiteMat or

Strider-R into account as these approaches are not complete due

to their encoding scheme and at the time of writing the publicly

available code of these tools is incomplete
15
. As some of these

approaches can perform more advance reasoning than the hier-

archical reasoning discussed in this paper, we carefully adapted

their configuration such that the reasoning tasks only consists of

hierarchical reasoning such that it is a fair comparison.

Esper implements a similar algorithm as the one we discussed

in Section 6. Therefore, we build upon Esper to perform the evalua-

tion. Note that we convert the ontology to EPL rules that can be

interpreted by Esper and convert the triples in the stream to Esper

events. The approach exploiting Esper’s internals is further denoted

as C-SpriteEsper. As Esper provides more functionality than needed

to efficiently perform hierarchical reasoning over data streams and

the algorithm is not as optimized as the one described in Section 6,

i.e. it does not prune the list of parents based on the registered

queries. Therefore, in this evaluation we have added our own al-

gorithm as an upper bound. The latter is denoted as C-SpriteOpt16

and provides the implementation of the optimized algorithm de-

scribed in Section 6. We can thus consider C-SpriteEsper as a lower
bound and C-SpriteOpt as an upper bound of the possible C-Sprite

performance.

14
https://wiki.dbpedia.org/services-resources/ontology

15
We tried to contact the authors but the main contributor left the research facility.

16
The source code of CSprite together with the experiment data can be found on

https://github.com/pbonte/C-Sprite
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Table 1: Comparison C-Sprite and related approaches

Reasoning Components Problems
C-SPARQL Materialization IFP + SPARQL engine Unnecessary triples

EP-SPARQL Backward Chaining Prolog Redundant computations

IMARS

Incremental

IFP + SPARQL engine Dependent on changes

Materialization

SPARKWAVE Materialization Rule engine Unnecessary triples

StreamQR Query rewriting Rewriter + CQELS Many Queries

LiteMat Encodings encoding + SPARQL engine Vector representation

C-Sprite Hierarchies inside IFP Simple entailment

Table 2: Dataset statistics

Absolute Number Relative Number

all triples 3.511.629 100%

Creative Works 56.581 1,61%

Top 5 Creative Works:

MusicalWork 21.438 0,61%

Film 13.890 0,40%

WrittenWork 6.814 0,19%

TelevisionShow 4.579 0,13%

Software 4.493 0,13%

Listing 2: High level query in RSP-QL utilized in the evalua-
tion
REGISTER QUERY <h t t p : / / s t r e amrea son ing . org / c s p r i t e / s1 > AS

PREFIX : < h t t p : / / s t r e amrea son ing . org / c s p r i t e / >

PREFIX r d f : < h t t p : / /www. w3 . org / 1999 / 02 / 22 − rd f −syntax−ns#>

PREFIX dbped ia : < h t t p : / / dbped i a . org / on to logy / >

SELECT ∗

FROM NAMED WINDOW : win1 [RANGE 1s , SLIDE 1 s ]

ON STREAM : dbpediaChanges

WHERE {

WINDOW ?w {

? change r d f : type dbped i a : Creat iveWork .

}

}

8.3 Throughput Evaluation
First, we evaluate the maximum throughput by streaming the DB-

pedia changes at the highest possible rate. This is done by setting

up a websocket such that each engine can consume the stream

at the highest possible rate. Figure 8 shows the throughput for

each of the engines with increasing window sizes. As there are no

joins, the window has no significant influence on most engines.

C-SPARQL and StreamFox show limited influence as their query en-

gine processes the whole content of the window when the window

shifts. The other approaches process each triples as it is injected.

We can see that both C-Sprite implementations (i.e., C-SpriteOpt
and C-SpriteEsper) clearly outperform all the other approaches.

Figure 9 depicts thememory consumption during the same exper-

iment. It is clear that the materialization approaches, i.e. C-SPARQL

and StreamFox, have an increasing memory footprint when the win-

dow increases. This can be expected as more and more triples need

to be maintained inside the window. The other approaches are less

prone to the memory increase. We see that the memory footprint
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Figure 8: Evaluation of the maximum throughput (more is
better) of C-Sprite when increasing the window size, com-
pared to StreamQR, C-SPARQL, StreamFox and SparkWave.

of SPARKWAVE is even lower than the one of C-SpriteEsper but
similar to C-SpriteOpt. This is due to encoding techniques specially

incorporated in SPARKWAVE to lower the memory footprint. Said

techniques have not yet been incorporated in C-Sprite. However,

themost important message is that C-Sprite’s memory consumption

is not increasing as with the materialization approaches.

8.4 Ontology depth Evaluation
The complexity study in Section 6 clearly shows that the number of

parents which a class has, should not influence the complexity of

the approach. Therefore we made the DBpedia ontology artificially

deeper. This is done by adding artificial subclasses between the Cre-
ativeWork class and the specific classes usedwithin the stream.With

the ontology depth, we mean the length of the path from the root

to the classes without children if we visualize the ontology as a tree.

Figure 10 shows the influence of increasing ontology depth on the

throughput. We can clearly see that the materialization approaches

become less performant when the ontology depth increases. This

is due to the fact that more triples need to be inferred.

Figure 11 shows the consumed memory while increasing the

ontology depth. Almost all the approaches are influenced by the

increase in depth. C-Sprite stays rather constant as it is not mate-

rializing all the triples. StreamQR and SPARKWAVE show a small

increase in memory consumption.
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Figure 9: Evaluation of thememory consumption (less is bet-
ter) of C-Sprite when increasing the window size, compared
to StreamQR, C-SPARQL, StreamFox and SparkWave.
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Figure 10: Evaluation of the maximum throughput (more is
better) of C-Sprite when increasing the ontology depth, com-
pared to StreamQR, C-SPARQL, StreamFox and SparkWave.

We also evaluated the correctness when increasing the ontol-

ogy depth of the various approaches. Also in this scenario, all the

engines produced the correct results.

8.5 Conclusion
It is clear that both C-Sprite implementations outperform the other

approaches in terms of maximum throughput. Only SPARKWAVE

has a smaller memory footprint than C-SpriteEsper due to its special
encoding scheme, but similar to it is C-SpriteOpt. C-SpriteOpt sets a
realistic upper bound for the performance while C-SpriteEsper sets a
possible lower bound. Even if the performance of C-SpriteOpt is too
optimistic as it currently focuses only on the hierarchical reasoning

functionality, the lower bound performance set by C-SpriteEsper
still clearly outperforms current approaches.
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Figure 11: Evaluation of the memory consumption (less is
better) of C-Sprite when increasing the ontology depth, com-
pared to StreamQR, C-SPARQL, StreamFox and SparkWave.

9 DISCUSSION
In this section, we discuss how the approach is positioned in terms

of traditional reasoning techniques and we discuss if the approach

is feasible for non-streaming situations. As we stated in the intro-

duction there are three approaches to perform reasoning. However,

our approach does not naturally fit in any of those. We now discuss

each of the approaches and how they relate to C-Sprite:

• Materialization: It is clear that C-Sprite does not perform

materialization since it does not populate the Assertion Box

(ABox) with new facts. However, it precomputes the hier-

archy and when a new triple arrives, it links (in a memory

efficient way) the triple to its parents. In this sense, C-Sprite

is an efficient way of performing materialization.

• Query Rewriting: C-Sprite does not perform query rewriting

since it does not rewrite any queries to contain Terminologi-

cal Box (TBox) information. However, it builds a specialized

data structure to create references between the queried types

and the hierarchies. In this sense, C-Sprite rewrites the hier-

archy in a specialized data structure.

• Goal driven: C-Sprite is not goal driven since it does not per-

form backward reasoning from the goals (the queried types)

to the data. However, it maintains the relations between the

queried types and the hierarchies in the underlying data

structure. In this sense, C-Sprite proposes an efficient data

structure that starts from the queried types (the goal) and

goes back to the data.

It is clear that the C-Sprite does not fit into one specific category.

We can conclude that it is a hybrid approach that allows to optimize

the underlying data structures for a specific entailment that can be

modeled in the form of hierarchies.

The power of the approach lies in the fact that we can check for

each triple in the stream directly if it is needed for further processing.

The question remains if this approach is feasible for non-streaming

approaches. We argue that the approach is beneficial in situations

where the data needs to be read from file, in this case we can process

triple by triple and start answering the query while reading the
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data from file. In other cases, the approach is still feasible, but it will

not result in the speed-up as in the streaming or reading from file

cases. In Section 5, we formalized that the hierarchical reasoning

can be performed before the rest of the processing, justifying that

we can process triple by triple.

C-Sprite is an algorithm for efficient hierarchical reasoning, how-

ever, it can be more generally used by combining it with a query

engine. C-Sprite can do the hierarchical reasoning, and filter un-

needed triples while doing so, and the query engine can take care

of the joins.

10 CONCLUSION
In this paper, we proposed an Stream Reasoning approach that

exploits hierarchical language features from the underlying IFP.

We have formalized the approach and shown in the evaluation that

C-Sprite outperforms existing RSP engines for simple hierarchical

reasoning tasks. We have focused on two types of triples only:

class assertions and object property assertions. Furthermore, we

formalized the approach for reasoning over the classes and did not

take joining into account. We argue that the joins can be done at a

later stage by utilizing, for example, a left-linear tree.

In future work, we wish to further formalize the approach, i.e.

further generalize certain assumptions such as the sliding window

of size 1 in Section 5. We also wish to exploit the hierarchy to enable

more expressive reasoning.
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