
ORIGINAL RESEARCH
published: 22 November 2019

doi: 10.3389/fendo.2019.00816

Frontiers in Endocrinology | www.frontiersin.org 1 November 2019 | Volume 10 | Article 816

Edited by:

Oreste Gualillo,

Servicio Gallego de Salud, Spain

Reviewed by:

Miguel López,

University of Santiago de

Compostela, Spain

Claudio Esteban Perez-Leighton,

Pontifical Catholic University of

Chile, Chile

*Correspondence:

Caterina Squillacioti

csquilla@unina.it

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Translational Endocrinology,

a section of the journal

Frontiers in Endocrinology

Received: 14 June 2019

Accepted: 07 November 2019

Published: 22 November 2019

Citation:

Assisi L, Pelagalli A, Squillacioti C,

Liguori G, Annunziata C and

Mirabella N (2019) Orexin A-Mediated

Modulation of Reproductive Activities

in Testis of Normal and Cryptorchid

Dogs: Possible Model for Studying

Relationships Between Energy

Metabolism and Reproductive

Control. Front. Endocrinol. 10:816.

doi: 10.3389/fendo.2019.00816

Orexin A-Mediated Modulation of
Reproductive Activities in Testis of
Normal and Cryptorchid Dogs:
Possible Model for Studying
Relationships Between Energy
Metabolism and Reproductive
Control
Loredana Assisi 1†, Alessandra Pelagalli 2,3†, Caterina Squillacioti 4*, Giovanna Liguori 4,
Chiara Annunziata 5 and Nicola Mirabella 4

1 Department of Biological Sciences, University of Naples Federico II, Naples, Italy, 2 Department of Advanced Biomedical

Sciences, University of Naples Federico II, Naples, Italy, 3 Institute of Biostructures and Bioimages, National Research

Council, Naples, Italy, 4 Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples,

Italy, 5 Department of Pharmacy, University of Naples Federico II, Naples, Italy

Orexin A (OxA) is a neuropeptide produced in the lateral hypothalamus that performs

pleiotropic functions in different tissues, including involvement in energy homeostasis and

reproductive neuroendocrine functions. The role of OxA is particularly important given the

well-studied relationships between physiological mechanisms controlling energy balance

and reproduction. The enzyme P450 aromatase (ARO) helps convert androgens to

estrogens and has roles in steroidogenesis, spermatogenesis, and energy metabolism

in several organs. The goal of this study was thus to investigate the role of OxA in

ARO activity and the effects of this regulation on reproductive homeostasis in male

gonads from healthy and cryptorchid dogs. The cryptorchidism is a specific condition

characterized by altered reproductive and metabolic activities, the latter of which emerge

from impaired glycolysis. OxA helps to stimulate testosterone (T) synthesis in the dog

testis. We aimed to investigate OxA-mediated modulation of 17β-estradiol (17β-E)

synthesis, ARO expression and metabolic indicators in testis of normal and cryptorchid

dogs. Our results indicate putative effects of OxA on estrogen biosynthesis and ARO

activity based on western blotting analysis and immunohistochemistry for ARO detection

and in vitro tests. OxA triggered decrease in estrogen production and ARO activity

inhibition; reduced ARO activity thus prevented the conversion of T to estrogens and

increasing OxA-mediated synthesis of T. Furthermore, we characterized some metabolic

and oxidative modulations in normal and cryptorchid dog’s testis. The steroidogenic

regulation by OxA and its modulation of ARO activity led us to hypothesize that OxA

is a potential therapeutic target in pathological conditions associated with steroidogenic

alterations and OxA possible involvement in metabolic processes in the male gonad.
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INTRODUCTION

Spermatogenesis is a biological process in animals that
requires additional energy stores for performance. An important
prerequisite for the success of spermatogenesis is that Sertoli
and germ cells cooperate for metabolic pathway activation to
ensure adequate lactate concentrations inside testis tubule lumen
(1), as confirmed by studying the etio-pathogenesis of different
diseases. For example, diabetes characterized by a hyperglycemic
condition is associated with male infertility (2). Numerous
additional studies have demonstrated direct interactions between
spermatogenesis anomalies, infertility disorders, and high
estradiol (E) levels. In addition, androgens, estrogens, and other
testicular factors appear to have important roles in metabolic
process control of testis. Among these factors, 17β-estradiol
(17β-E) plays a key role in testis function-related mechanisms
(3) including spermatogonia division, spermatid differentiation,
acrosome biogenesis, sperm motility (4, 5), and Sertoli cells
(SCs) metabolism through modulation of glucose metabolism
(6). Moreover, estrogens are involved in negative feedback of
the pituitary gland to control gonadotropin secretion, hence a
lack of estrogen and inappropriate estrogen exposure disturbs
the delicate metabolic balance of the hypothalamic—pituitary—
testis axis (4). The P450 enzyme aromatase (ARO) plays a pivotal
role in these processes by irreversibly aromatizing androgens into
estrogens that directly interact with cell surface receptors (4, 7–
9). ARO is an enzymatic complex composed of a ubiquitous
NADPH-cytochrome P450 reductase and a cytochrome P450
aromatase, which contains the steroid-binding site (9). This
enzyme complex is localized to the endoplasmic reticulum of
many different areas of the body, including the testis (10),
in which its distribution changes during development, being
primarily located within Sertoli cells in immature animals and
in Leydig and germ cells of mature animals (7, 9, 11, 12). The
presence of ARO in the testes has been reported for numerous
animal species (9, 12–18). ARO also regulates glucosemetabolism
(19), which is critical for spermatogenesis. Thus, in light of its
importance, ARO activity must be finely regulated (3, 20).

Orexin A (OxA) also appears to play a role in spermatogenesis
control and glucose homeostasis by modulating glucose
transporter 3 (Glut3), as demonstrated using in vitro and ex vivo
studies of neonatal mice (21, 22). OxA is a hypothalamic
neuropeptide and specifically regulates portions of the
reproductive axis. The peptides OxA and orexin B (OxB)
are derived from the proteolytic cleavage of a prepro-orexin
precursor and bind the receptors orexin receptor 1 (OX1R)
and orexin receptor 2 (OX2R). Prepro-orexin, OxA, and OX1R
have been identified in rat testis and epididymis (23–27), alpacas
(Vicugna pacos) (28, 29), mouse testis (21, 30), the normal
and cryptorchid male gonads (31), and the urethro-prostatic
complex of cattle (32), and in the normal, hyperplastic, and
neoplastic prostate of human males (33–35). The effects of
OxA on testis function and glucose homeostasis may find
useful extrapolations by considering male infertility conditions
like cryptorchidism (36). Cryptorchidism is characterized
by the failure of one (unilateral) or both (bilateral) testis to
descended into the scrotum (37–39) and occurs at particularly

high frequencies in dogs, stallion and boars (38, 40). This
disorder is accompanied by serious structural and functional
alterations of tubular and interstitial components of testis
(41, 42) as well as clear alteration of Sertoli cell metabolism
accompanied by intracellular lipid accumulation (43). Much
recent research has focused on regulatory processes governing
the hormonal and metabolic basis of cryptorchidism and
their consequences for testis tumor development (44–46).
Moreover, cryptorchidism could be considered a representative
in vivo model of spermatogenesis failure for analyzing complex
regulatory mechanisms and testing drug-driven regenerative
effects of spermatogenesis (47).

We recently demonstrated a possible relationship between
OxA and ARO expression in alpaca testis (48), thus it is evident
that OxA, is able to significantly decrease basal 17β-E secretion
and OxA acts through decreasing ARO activity. This motivated
us to better investigate the possible interaction of OxA and ARO
in a disease such as cryptorchidism. In this study we explored
ARO expression in normal and cryptorchid canine testis and
the effects of OxA stimulation on ARO and 17β-E biosynthesis.
Moreover, we characterized metabolic modifications in order to
investigate the possible relationship between energy metabolism
and reproductive control in cryptorchid condition.

MATERIALS AND METHODS

Antibodies and Chemicals
Rabbit polyclonal anti-cytochrome P450 (aromatase) antibody
(ABIN3023082) was purchased from antibodies-online.com
(Aachen, Germany). Rabbit anti-glucose transporters (Glut)
3 antibody (sc-74399) was from Santa Cruz Biotechnology
(Santa Cruz, CA, United States); anti-rabbit phopsho
AKT (Ser473) (#4060), anti-mouse AKT (#2920) and anti-
rabbit superoxide dismutase (SOD)2 (D3X8F) (#13141)
antibodies were from Cell Signaling Technology (Danvers, MA,
United States), biotinylated goat anti-rabbit (BA-1000) secondary
antibody, peroxidase-conjugated rabbit anti-goat (PI-9500) IgG,
VECTASTAIN ABC kit (PK-6105), and 3,3′-diaminobenzidine
tetra-hydrochloride (DAB) solution were obtained from Vector
Laboratories (Burlingame, CA, USA); peroxidase-conjugated
goat anti-rabbit IgG (111-035-003) and peroxidase-conjugated
goat anti-mouse IgG (115-035-003) were purchased form
Jackson ImmunoResearch Laboratories Inc. (West Grove, PA,
United States).

The peptide OxA (003-30) was obtained from Phoenix
Pharmaceuticals Inc. (Karlsruhe, Germany) and the OX1R
antagonist SB-408124 was obtained from Sigma Aldrich
(Saint Louis, MO, United States). Luteinizing hormone (LH)
from sheep pituitary (L5269), monoclonal anti-actin antibody
(A4700) and bovine serum albumin (BSA) were purchased
from Sigma Chemical Co. (St. Louis, MO, United States).
Qproteome formalin-fixed paraffin-embedded (FFPE) tissue
kits were purchased from Qiagen (Hilden, Germany). DC
protein assay kit was purchased from Bio-Rad Laboratories
(Hercules, CA, United States). The enhanced chemiluminescence
kit (RPN 2109) was bought from ECL Amersham (Little
Chalfont, Buckinghamshire, UK), the marker proteins obtained
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from Prosieve quadcolor (London, United Kingdom), and
the estradiol ELISA kit (DKO003) purchased from Diametra
(Perugia, Italy).

Animals and Tissue Collection
A total of 10 sexually mature dogs with normal testes (n =

5) and unilateral cryptorchid testes (n = 5) were enrolled in
the study. Contralateral descended testes were recovered from
each animal. For our experiments tissue samples were divided
in three groups: normal testis (testis from normal dogs) (NT),
contralateral testis (scrotal testis from dogs affected by unilateral
cryptorchidism) (CLT), and cryptic testis (retained testis from
dogs affected by unilateral cryptorchidism) (CT). All dogs were
mixed-breed, medium-sized, and aged 2–8 years. Obese dogs
were excluded from the study. Dogs affected by unilateral
cryptorchidism were obtained from the surgery unit of the
Department of Veterinary Medicine and Animal Productions
of the University of Naples Federico II. Animal care was
maintained during surgical procedures and the experimental
research protocols were approved by the Ethical Animal Care
and Use Committee of the University of Naples Federico II,
Department of Veterinary Medicine and Animal Production,
Naples, Italy (no. 0005275). Testes were collected immediately
after bilateral orchiectomy via surgery. For immunodetection
studies, fresh segments of testis were immediately fixed in Bouin’s
solution containing formaldehyde, picric acid (saturated), and
glacial acetic acid, which is preferred for small biopsies (49).
For in vitro and aromatase activity tests, fresh segments
of testis were immediately used or frozen on dry ice and
stored at−80◦C.

Immunohistochemistry
After fixation in Bouin’s solution, samples were dehydrated in a
series of ascending alcohol concentrations, embedded in Paraffin,
and cut into 3–6µm sections for immunohistochemistry and
into 15-µm sections forWestern blotting. After deparaffinization
and hydration, sections were immersed in citric buffer (pH
6.0) for antigen retrieval (50). Tissue sections were then
stained using the ABC method as described elsewhere (51,
52). Rabbit polyclonal anti-ARO (1:200) and anti-Glut3 (1:250)
antibodies were used as the primary antibody. Sections
were incubated with DAB solution until desired intensity of
staining was reached then counterstained with hematoxylin
for improved identification of cytotypes. Finally, sections were
dehydrated with ascending alcohols and mounted with Eukitt.
Slides were observed using a Leica DMRA2 microscope and
negative controls obtained by omitting the primary antiserum
used. To ensure that the immunohistochemical data from
control, cryptorchid, and contralateral testis could be compared,
sections were processed under same conditions. In addition,
immunohistochemistry reactions were performed in triplicate to
confirm results.

Protein Extraction and Western Blotting
Analysis
For western blot analysis of ARO, proteins were extracted
from tissue sections that had been paraffin-embedded using a

Qproteome FFPE tissue kit, which creates optimized conditions
for intact total protein extraction from FFPE tissues (53).
Briefly, 12 tissue sections (each 15-µm thick) were deparaffinized
in xylene, rehydrated in a graded alcohol series and mixed
with 100 µl of extraction buffer supplemented with β-
mercaptoethanol and 1x Protease and Phosphatase Inhibitors
Cocktail (Sigma). To evaluate the expression of Glut3, SOD2,
phospho-AKT and total AKT, frozen testis from normal
and cryptorchid dogs were used to obtain other protein
samples. After homogenization, testis were lysed in lysis
buffer according to the method previously described (54).
Then, the protein samples were cooled on ice for 5min,
with continuous shaking, and incubated at 100◦C for 20min
followed by incubation at 80◦C for 2 h on a heating block. The
samples were centrifuged at 14,000 × g at 4◦C for 15min to
collect total proteins, whose concentrations were determined
with the Bradford protein assay performed according to the
manufacturer’s protocol.

Western blotting was performed as described elsewhere
(55). Briefly, the same total amount of protein per lane was
loaded for each sample then separated using 10% SDS-PAGE
gels and NuPage Bis-Tris 4–12% gradient gels (Invitrogen,
Carlsbad, CA, United States) under reducing conditions. Proteins
were transferred onto nitrocellulose membranes using the iBlot
system from Invitrogen (Carlsbad, CA, United States). Blots
were then probed with rabbit polyclonal anti-ARO antibody
(1:4,000), anti-Glut3 antibody, anti-SOD2, anti- phopsho AKT
and AKT (all diluted 1:1,000) and then with secondary anti-
rabbit and anti-mouse IgG antibodies (1:2,000). Western blot for
β-actin was performed to ensure equal sample loading. Protein
detection was performed with the ECL Plus Western blotting
detection system according to the manufacturer’s instructions.
Band intensities were quantified using ImageJ software (NIH,
Bethesda, United States) as needed.

In vitro Determination of 17β-Estradiol
Levels
Fresh testis samples of each type were de-capsulated, cut into
small pieces (250 mg/piece) and distributed into sample tubes
(one piece per well). After the addition of 2ml KRB buffer
(10mM glucose, 100µM bacitracin, 0.1% ascorbic acid, 0.1%
BSA), tubes were incubated for 60min at 37◦C, 95% oxygen,
and 5% CO2 with shaking at 60 cycles/min. Media was then
replaced with 2ml fresh KRB buffer and 1 nM of test substance.
The test substance for the first group was the KRB buffer-only
control, for the second group was OxA, and for the last group
the OX1R antagonist, SB-408124 (specific for OxA), and OxA
were added. All sample tubes were incubated at 37◦C for 12 h.
After incubation, ethyl ether was added to each sample and tubes
shaken vigorously. The samples were left 4◦C for 10min and
supernatant collected. Supernatant-containing tubes were dried
overnight at room temperature then the residue in each tube
dissolved in 0.5ml 0.05M PBS, pH 7.5, containing 10 mg/ml
BSA. The 17β-estradiol levels were determined using the 17β-
estradiol ELISA kit according to the manufacturer’s instructions.
The following limits of detection were used: sensitivity 4 pg,
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intra-assay variability 4.9%, inter-assay variability 6.8%. The rate
of E recovery from testis was about 85%.

Aromatase Activity Assay
ARO activity was evaluated by measuring the in vitro conversion
rate of testosterone to 17β-estradiol using fresh tissue. One piece
of testis sample was placed in each well of a multi-well plate
and the above reported substances was added. Testosterone at a
concentration of 35µM dissolved in 100 µl of 3 mg/ml NADPH
solution was then added to each well. Suspensions were then
incubated in a shaking bath as previously described (48) and then
rapidly frozen. Well contents were then extracted three times
using ether. Solvents were pooled and air-dried and 17β-E levels
determined in extracted residues using ELISA, as previously
reported (48). Results are expressed as the 17β-E concentration
produced per g of tissue and per hour.

Statistical Analysis
Data from in vitro tests were compared by two-way ANOVA
followed by Duncan’s test for multi-group comparison. All data
were expressed as mean ± S.D. (standard deviation) of at least
three different experiments and each experiment performed
either in duplicate or triplicate. The level of significance was set
at p < 0.01.

RESULTS

ARO-immunohistochemistry results are described in Figure 1.
The reactive material showed a granular aspect and cytoplasmic
localization in the Leydig cells from normal and cryptic gonads
(Figures 1a,c). These cell types were numerous and often
organized in small groups composed of cells with different
degrees of staining.

For NT, ARO-immunoreactivity (IR) was observed in
the basement membrane of the seminiferous tubule of
spermatogonia (Figure 1b). Seminiferous tubules of the CT
were composed of mostly Sertoli cells, in which perinuclear
expression of ARO was observed. ARO-IR in the CLT was
similar to that in NT (data not shown).

The results of western blot analysis are shown in Figure 2.
Testicular extracts from dogs showed reactions with the
anti-cytochrome P450 (ARO) antibody, which yielded
a strong band of 51–53 kDa and a weaker band at 49
kDa (Figure 2). Similar banding profiles were observed in
protein extracts from rat testis, although the band at 51–53
kDa from these samples showed relatively weaker signals
(49 kDa).

Figure 3 shows results from in vitro experiments in which
normal, controlateral, cryptorchid dog testis slices were
incubated with medium containing OxA alone or both OxA
and the OX1R antagonist SB-408124. Tissue slices incubated

FIGURE 1 | ARO-IR in cytotypes of normal and cryptic gonad of dogs. (a,d) Sertoli cells containing positive granules describing entire cellular profiles in normal and

cryptic canine testis (arrow and arrowhead, respectively). (b) ARO-IR occurs as a single, intensely stained, granular structure, and is contained in the perinuclear

cytoplasm of some spermatogonia (arrow). (c) a cluster of Leydig cells containing different quantities of reactive material in their cytoplasm in the retained male gonad

(asterisk). Bar: 25µm.
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FIGURE 2 | Detection by western blot analysis of ARO in the normal,

contralateral, and cryptic male gonads of dogs. ARO was detected in the

normal (NT), contralateral (CLT), and cryptic (CT) testis. Samples from rat testis

(RT) were also examined as positive controls. In all the examined tissues, ARO

appears as 2 bands, one at ∼49 kDa and another ∼51–53 kDa. This image is

representative of three different experiments.

FIGURE 3 | 17βE secretion in vitro carried out in normal, cryptorchid, and

contralateral dog testis. Testicular slices were incubated with OxA alone or with

OxA and the OX1R antagonist SB-408124 and the 17βE level in the media

monitored after 12 h. Values are normalized per ml of incubation medium. Data

are expressed as mean ± SD (n = 5 samples/group), *p < 0.01.

with medium only were used as controls of this experiment.
High levels of 17-βE were observed in CT slices relative to the
basal levels of NT treated with medium only. OxA significantly
decreased basal levels of 17-βE secretion in all three tissue types.
In NT, after 12 h of OxA treatment, 17-βE levels were lower
than those of control testis (from 7.9 ± 045 to 5.6 ± 0.54 pg/g
tissue, p < 0.01 tissue vs. control). Conversely, the antagonist
SB-408124 nullified the OxA-induced drop in 17-βE levels (from
5.6± 0.54 to 7.2± 045 pg/g tissue, p < 0.01 vs. with OxA alone).
This trend also occurred for the other two testis types. In CT,
OxA reduces the 17βE level from 10.7 ± 0.67 to 8.6 ± 0.5 pg/g
tissue and OxA antagonist presence increases the final levels
of 17-βE levels to 11.2 ± 0.64 pg/g tissue. Finally, in the CLT
OxA induces a decrease in 17βE levels from 8.9 ± 0.62 to 6.6
± 0.43 pg/g tissue and OxA antagonist presence decreases the
post-treatment 17-βE level to 8.2± 0.92 pg/g tissue.

Figure 4 shows the ARO activity of all three tissue types in
the presence of substrate (T) and either OxA alone or OxA

FIGURE 4 | ARO activity evaluated with in vitro tests carried out in normal,

cryptorchid, and contralateral dog testis. Testicular slices were incubated in

presence of testosterone alone, with OxA, or with both OxA and the OX1R

antagonist SB-408124 and 17βE production monitored. Values are normalized

per g tissue per hour. Data are expressed as mean ± SD (n = 5

samples/group), *p < 0.01.

and the OX1R antagonist. ARO activity was evaluated based
on 17β-E production via exogenous T conversion. The basal
levels of ARO activity are higher in CT than in NT (2.4 ± 0.33
compared to 1.2± 032 pg 17βE per g tissue per hour, p < 0.01 vs.
control). In presence of OxA the ARO activity of NT decreases
while the presence of the antagonist SB-408124 prevents this
decrease. More specifically, OxA induces a decrease in ARO
activity, from 1.2 ± 0.32 to 0.9 ± 0.1 pg of 17βE per g tissue
per hour (p < 0.01 normal testis alone vs. normal testis with
OxA), while presence of the antagonist SB-408124, ameliorates
this effect (from 0.9 ± 0.1 to 1.3 ± 0.21 pg of 17βE per g
tissue per hour, p < 0.01 normal testis with OxA vs. normal
testis with both OxA and antagonist). This trend is also evident
also for CT and CLT. In CT, OxA decreases the level of 17-
βE from 2.4 ± 0.33 to 1.5 ± 0.23 pg of 17βE per g tissue per
hour (p < 0.01 cryptorchid tissue alone vs. cryptorchid tissue
with OxA) while the antagonist SB-408124 reduces this decrease
(from 1.5 ± 0.23 to 2.6 ± 0.39 pg of 17βE per g tissue per
hour, p < 0.01 cryptorchid tissue with OxA vs. cryptorchid
tissue with OxA and antagonist). The same effect is observed
for CLT.

To investigate the relationship between energy metabolism
and reproductive function in canine cryptorchidism, we
evaluated Glut3 localization in testis and its expression by
western blotting. As shown in Figure 5A, Glut3-IR was found
in the tubular and interstitial compartment both in NT and
CT samples. More in detail, Glut3-IR was found in Leydig
cells characterized by punctiform distribution of this glucose
transporter in the cytoplasm (Figure 5Aa). In the Sertoli
cells, Glut3-IR was predominantly localized in the apical and
basal portions of the cytoplasm and rarely described the
entire profile of this cytotype (Figure 5Ab). Glut3-IR was
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FIGURE 5 | (A) Glut3-IR in cytotypes of normal and cryptic gonad of dogs. (a,g) A large group of Leydig cells positive to Glut3 in NT and CT (asterisk) were found;

(b,h) Glut3-IR were described in the apical and basal portions of the cytoplasm of Sertoli cells (arrowhead) in NT and CT; (c,d) few spermatogonia (c) and resting or

pre-leptotene spermatocytes (d) positive to Glut3 were found along the basal membrane of the testicular tubule of NT (arrow and double arrow, respectively); (e,f)

round or immature (e) and elongated or mature (f) spermatids were localized toward the tubular lumen (hashtag) in TN. Bar: 50µm. (B) Western blot analysis of Glut3

protein expression level in the canine NT, CLT, and CT. Samples from rat testis (RT) were blotted as positive controls. In all the examined tissues, Glut3 appears as a

band at ∼ 56 kDa. A significative increase in Glut3 expression is observed in CT respect to NT and CLT (densitometric analysis). Data are expressed as mean ± SD

(n = 5 samples/group), *p < 0.01.

also evidenced in few spermatogonia localized along the basal
membrane (Figure 5Ac), in resting pre-leptotene spermatocytes
(Figure 5Ad) and in round or immature (Figure 5Ae) and
elongated or mature spermatids (Figure 5Af). In these latter
cell types Glut3-IR was observed in the apical portion of the
cytoplasm toward the lumen. Interestingly, in CT samples,
Glut3-IR was found in a large group of Leydig cells that were
intensely stained (Figure 5Ag). In Sertoli cells, Glut3-IR was
mostly distributed in the basal portion of the cells and the

entire profile was described only in few cells (Figure 5Ah).
Glut3-IR in the CLT was similar to that in normal testis (data
not shown).

As shown in Figure 5B, CT displayed an increased
Glut3 protein expression compared to NT and CLT.
To evaluate further modifications related to cryptorchid
condition, western blotting analysis of phosphorylation
levels of AKT and of the SOD2 protein expression was
performed. As shown in Figure 6A, a significant decrease
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FIGURE 6 | Western blot analysis of phospho-AKT, AKT, and SOD protein expression in normal, cryptorchid, and contralateral dog testis. (A) Phospho-AKT/AKT and

(B) SOD2 proteins are evidenced respectively as a band of 60 and 22 kDa in all the tested tissues. Densitometric analysis shows a significant decrease in both protein

expression level in CT compared with NT and CTL. Samples from rat testis (RT) were blotted as positive controls. Data are expressed as mean ± SD (n = 5

samples/group), *p < 0.01.

of phosphorylated protein AKT was found in CT respect
to NT and CLT. Similarly, SOD2 protein showed a
decrease in its expression in CT respect to NT and CLT
(Figure 6B).

DISCUSSION

The goal of this study was to investigate the presence of
ARO in the dog testis both under normal and cryptorchid
conditions and evaluate the effects of OxA on this enzyme
and estrogen (E) biosynthesis. Results from our studies
demonstrated potential modulation of ARO activity by OxA
in testis of both normal and cryptorchid dogs. We first
aimed to demonstrate the presence of ARO in dog testes
by immunohistochemistry and showed enzyme localization
in both interstitial and tubular compartments of normal
and cryptic testis. Western blotting analysis confirmed
immunohistochemical results and identified two antibody-
specific bands at ∼51–53 and 49 kDa in agreement with
previous results from Lambard et al. (56). We previously
demonstrated the presence and expression of OxA and
OxA receptor 1 in testis from normal and cryptorchid dogs
(31). OxA was seen in both the interstitial and tubular
compartments. The immunohistochemical co-localization
of OxA and ARO in most testicular cytotypes may be
ascribed to a functional relationship between these proteins
in regulating spermatogenesis. Leydig cells immunoreactive
to OxA andARO serve as important sites for activating the

downstream signaling processes during steroidogenesis. The
balance between expression of ARO and sex hormones is
pathologically altered in cryptorchidism. Cryptorchidism is a
reproductive disease in which one or both testes fail to descend
toward the scrotum. This condition characterized by a gradual
decrease in the volume of seminiferous tubules per testis and
leads to a marked reduction (>50%) of luminal volume of the
seminiferous tubule with causing morphological and metabolic
alterations (57).

Modifications from cryptorchidism also concern
steroidogenesis, as basal 17β-E levels in cryptorchid tissue
are higher than those in the normal tissue, leading to infertility
(58). Furthermore, E levels decrease in the presence of
OxA, demonstrating an inhibitory effect of OxA on E
synthesis. A possible role of OxA in these mechanisms
was suggested in previous studies demonstrating the
presence and expression of OxA in the testis of several
species (25, 28, 31), according to which OxA induces T
secretion via binding OX1R. OxA is also involved in down-
regulating estrogen secretion. The underlying mechanism
of these effects is most likely reduced ARO activity, which
further hinders the conversion of T to E and consequently
increases OxA-triggered T synthesis. These two events
may be related since both are eliminated by the presence
of the OX1R antagonist SB-408124. On this basis, we
can hypothesize a combined role of OxA and ARO in the
testicular tubular compartment for regulation of steroidogenesis
and spermatogenesis.
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To further elucidate this relationship between the increase
of T levels and 17β-E, we directly investigated the effects
of OxA on ARO activity, which is the principal source of
E in mammalian testis. ARO inhibition is associated with
lowered E and elevated levels of gonadotropins and T via
the E-sensitive male hypothalamus-pituitary-gonadal axis, which
potentially stimulates sperm production (59). Our in vitro
tests showed that the OxA inhibits ARO activity in all
three types of tissue examined and that this is mediated by
OX1R, since this effect is lost in the presence of the OX1R
antagonist SB-408124. These findings confirm those previously
described for alpaca male gonads (48), in which OxA-triggered
downregulation of E secretionmay be ascribed to ARO inhibition
by exogenous OxA. This OxA-induced downregulation of E may
be caused by reduced ARO activity, potentially due to repressed
expression. This aspect implies that OxA may indirectly regulate
ARO expression, causing decreased E levels and stimulating
T production.

Recently, it has been demonstrated that OxA plays a role at
testicular level on glucose metabolism acting on Glut 3 regulation
and Glut 8 expression (22). Glut3 was previously described in
different cytotypes in human (60, 61), mouse (62), and rat (63)
testes and both in normal and cryptic male gonad of the dog (64).
In cryptorchid condition, the intensely stained and numerous
Leydig cells positive to Glut3 confirmed the previous finding
reported by Hann et al. (64). In the present study, Glut3 was
described not only in Leydig and SC in NT and CT samples, but
also in the tubular compartment.

These morphological findings was confirmed at molecular
level. In CT samples, the increased Glut3 protein expression,
could suggest a putative role of this glucose transporter in this
pathological condition. Our data are in agreement with previous
data showing that the increase expression of Glut3 in the Leydig
cells may be associated with cell hyperplasia and the relevant
metabolic role of this glucose transporter in retained gonad (64).
Interestingly, the cryptorchid condition predisposes to testicular
germ cell tumors (TGCTs), characterized by metabolic hyper-
glycolitic cell phenotype, promoting tumor development (65, 66).

Moreover, cryptorchidism, as well the impairment of male
infertility (67), can be associated to elevate oxidative status (68,
69). Here, we showed that SOD2 protein expression in canine
cryptorchid condition was significantly reduced compared to NT.

Kawakami et al. (70) have already demonstrated that SOD
activity was down regulated in unilateral cryptorchid testis of
dog affected by Sertoli cell tumor. Our finding supports the
beneficial role of SOD anti-oxidative defense in maintaining
sperm fertilization, counteracting the elevated oxidative species
revealed in cryptorchid condition (71, 72).

Our data are the first reports to our knowledge showing
that canine cryptorchid testis condition is characterized by a
reduction of both SOD2 activity and AKT phosphorylation. It
has been demonstrated that the decreased phosphorylation level
of AKT in CT could be associated to germ cell apoptosis due
to the altered oxidative stress balance (73). Since the protective
role of OxA during oxidative stress has been recently investigated

(74, 75), we may hypothesize a possible involvement of OxA as a
key modulator of cryptorchid disease.

These data suggest that OxA could act as a sensor of energy
status, participating as a local regulator to maintain a consistent
relationship between the T and E. Aromatization is a process that
requires energy consumption, therefore OxA downregulation
of ARO activity is extremely important to avoid unnecessary
glucose consumption.

The possible role of ARO in the regulation of metabolism in
breast cancer has recently been investigated by Buch et al. (76).
Additionally, ARO has been shown to play roles in glucose and
insulin metabolism.

In conclusion, this research demonstrates the relationship
of OxA and ARO in male gonads from NT and CT, and its
involvement in downregulation of E secretion likely through
repressed ARO activity.

On the other hand, Ox-A may be involved in the regulation
of metabolic changes occurring in cryptorchid condition, even if
further molecular studies are needed to confirm its autocrine and
paracrine effects.

All these findings also suggest the translational importance of
this canine model that mirrors human pathological.

This consideration derives from studies demonstrating similar
profiles of canine and human epididymal proteins at the
molecular level measured in terms of tissue distribution, relative
abundance, and spatial patterns within tissues (77).
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