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Abstract

During uncontrollable wildfires, Incident Management Teams (ITMs) dispatch ve-

hicles for tasks aimed at reducing the hazard to key assets. The deployment plan is

complicated by the need for vehicle capabilities to match asset requirements within

time-windows determined by the progression of the fire. Assignment of the response

vehicles to undertake protection activities at different assets is known as the asset

protection problem. The asset protection problem is one of the real-life applications

of the Cooperative Orienteering Problem with Time Windows (COPTW).

The COPTW is a class of problems with some important applications and yet has

received relatively little attention. In the COPTW, a certain number of team mem-

bers are required to collect the associated reward from each node simultaneously

and cooperatively. This requirement to have one or more team members simultane-

ously available at a vertex to collect the reward, poses a challenging task. It means

that while multiple paths need to be determined as in the team orienteering prob-

lem with time-windows (TOPTW), there is the additional requirement that certain

paths must meet at some of the vertices. Exact methods are too slow for operational

purposes and they are not able to handle large scale instances of the COPTW.

This thesis addresses the problem of finding solutions to COPTW in times that make

the approaches suitable for use in certain emergency response situations. Compu-

tation of exact solutions within a reasonable time is impossible due to the nature of

the COPTW. Thus, the thesis introduces an efficient heuristic approach to achieve

reliable solutions in short computation times. Thereafter, a new set of algorithms

are developed to work together as components of an adaptive large neighbourhood
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search algorithm. The proposed solution approaches in this work are the first algo-

rithms that can achieve promising solutions for realistic sizes of the COPTW in a

time efficient manner.

In addition to the COPTW, this thesis presents an algorithmic approach to solve

the asset protection problem. The complexities involved in the asset protection

problem are handled by a metaheuristic algorithm. The asset protection problem is

often further complicated by a wind change that is expected but with uncertainty

in its timing. For this situation a two stage stochastic model is introduced for the

optimal deployment of response vehicles. The model addresses uncertainty in the

timing of changes in the problem conditions for the first time in the literature. It

is shown that deployment plans, which improve on current practices, can be gener-

ated in operational times thus providing useful decision support in time-pressured

environments. The performance of the proposed approaches are validated through

extensive computational studies. The computational results show that the proposed

methods are effective in obtaining good quality solutions in times that are suitable

for operational purposes. This is particularly useful for increasing the tools available

to IMT’s faced with making deployment decisions crucial to savings lives and critical

assets.
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Chapter 1

Introduction

Wildfires (bushfires) is an unplanned, uncontrolled and free-moving combustion re-

action spreading across the landscape (Cruz et al., 2018). Wildfires constitute a

recurrent and seasonal phenomenon with key roles in maintaining a balance in envi-

ronmental ecosystems. Devastation and destruction caused by wildfires claim lives

and damage economies. The Attica wildfires of Greece in July 2018, for instance,

cost more than €33.7 million in terms of the damage done (Newsroom, 2018). Later

in November 2018, the largest complex wildfires were recorded in California and con-

sidered to be the costliest natural disaster in the world, causing over US$16.5 billion

worth of financial losses (Amadeo, 2019). The most destructive wildfires in the last

decade were the so-called “Black Saturday” bushfires of 2009 in Australia, resulting

in over 2000 homes being lost and 173 people killed (Haynes et al., 2010). Aus-

tralia has a long history of wildfires and four of the five most devastating bushfires

on record have occurred in Victoria and particularly in regions around Melbourne.

Three mega-fires in Victoria over the period 2002-2009 burnt some three million

hectares, or 40% of the state’s public land (Attiwill and Adams, 2013). The Black

Saturday bushfires were the worst on record with financial losses estimated to be

$4.5 billion and destruction of over 3500 structures (Whittaker et al., 2009).

The Victorian Bushfires Royal Commission (VBRC) made 67 recommendations to

the Victorian Government in July 2010, after the stark reminder of the Black Sat-
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2 Chapter 1

urday bushfires, for highlighting the need to amend and improve policies and proce-

dures. The VBRC underscored the importance of immediate firefighting and protec-

tion of critical assets (Commission et al., 2009). In May 2017, the VBRC invested

$23 million in developing scientific evidence for bushfire preparedness and response.

Efficient planning of resources for suppressing fires is one of the nine projects that

the fund has announced which proves the importance of this study (Commission

et al., 2009).

Decisions in fire management are made at operational, tactical and strategic levels.

Operational decisions are made is short time spans for immediate reactions to fire

events, examples of which are displacement of fire crews and assignment of resources

in fire suppression. Longer term decisions over days and seasons are known as tac-

tical decisions which mostly involve seasonal and daily resource deployment, fire

prevention planning and fuel treatment. Finally, decision over a horizon of years

and decades are strategic decisions and focus on substantial improvements includ-

ing budget allocation and facility location. This thesis mostly focuses on utilising

operational research applications to assist decision-makers in operational decisions.

Bushfires are capable of destroying natural resources, environmental services and

capital stock, impacting on both consumption and production aspects of people’s

lives (Ganewatta and Handmer, 2009). Asset protection and fire suppression aim to

minimise the aftermath of bushfires by employing capital and human resources. To

derive maximum benefit from such activities at operational level, scarce resources

need to be implemented in the most efficient and effective way. In this thesis we aim

to take realistic operational challenges into account and achieve optimal assignment

of resources.

Lessons learnt from the Black Saturday bushfires highlight the key role of speedy

assignment of resources to prevent the fire from escaping and incurring substantial

damage costs. Along with efficient assignment of resources, change in problem

conditions should be brought into our decision making process, an example of which

is change in wind direction. In the Black Saturday bushfire following a wind change

the long narrow fire-front become a wide fire-front that burned through a number
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of townships with tragic consequences (Cruz et al. (2012)). There are similar events

that highlight the importance of existing uncertainties during bushfires where some

of which are investigated in this thesis.

Incident Management Teams (IMTs) must deploy personnel and equipment to wild-

fire response-related operations, such as fire suppression and asset protection. Wild-

fires at various levels of intensity require different suppression responses. For ex-

ample, a deep-seated wildfire requires additional steps to assure it is completely

extinguished. Given the complexities of fire dynamics and the physical and chemi-

cal interactions involved, ultimate extinguishment of a wildfire should be achieved

by undertaking and completing cooperative tasks. Fire suppression and asset pro-

tection operations may involve single and/or multiple resources cooperating simulta-

neously or sequentially. Along with fire suppression requirements, other operational

attributes such as limited resources and objectives need to be accounted by incident

managers working under severe time pressures.

The asset protection and suppression operations can be considered as special cases

of the COPTW which has many applications from health care problems (Cissé et al.,

2017) to disaster management problems (Van Der Merwe et al., 2015). Although

a wide range of real-life applications are identified for the COPTW, no solution

approach is developed in the literature to solve large instances of such problems

in operational times. Consideration of existing issues regarding the Asset Protec-

tion Problem (APP) and Cooperative Orienteering Problem with Time Windows

(COPTW) shapes the following research questions.

Question 1: How can we develop an efficient method to solve the COPTW ?

Question 2: How can we handle the complexity of a real-world APP to include

synchronous operations?

Question 3: How metaheuristic algorithms can help us to employ the COPTW in

operational applications?

Question 4: How can we deal with existing uncertainties in the timing of wind

changes during asset protection operations?
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1.1 Thesis structure

Chapter 2 presents a review of the relevant literature. This chapter covers some of

the most recent operational research literature in wildfire and disaster management.

Then it further explains variants of the vehicle routing problem and orienteering

problem. The APP is a special case of the COPTW and will be discussed in this

thesis. The APP which is the focus of this thesis is explained and literature gaps

are identified. Thereafter, the stochastic orienteering problem is explored. Then,

since development of efficient solution approaches are not investigated for the APP,

a literature review is conducted to highlight some of the solution approaches for the

orienteering problem.

In chapter 3 the orienteering problem with time windows and synchronisation con-

straints known as the COPTW is studied. Real world applications of the COPTW

are investigated and a heuristic algorithm is developed to solve the COPTW for

the first time in literature. Synchronous visits are handled efficiently by designing

new operators for the merit-based heuristic. A new set of benchmark instances are

designed to evaluate the performance of the algorithm and they are solved both by

the means of an exact method and the newly developed heuristic. The work brought

into this chapter is the first heuristic solution for the COPTW.

In chapter 4 the APP as a practical application of the COPTW is studied. Ap-

plications of the APP in emergency situations reveal the necessity of developing

an efficient solution approach. An adaptive large neighbourhood search algorithm

developed to solve the APP in a time efficient manner. The efficacy of the solution

procedure is validated through extensive computational experiments. The illus-

trated metaheuristic algorithm in this chapter is the first heuristic solution for the

problem which solves large instances that make it suitable for operational purposes.

From the experience of the real application in chapter 4, further development of

the meta-heuristic for a general COPTW was made in chapter 5. In chapter 5 new

insertion and removal heuristics are designed to solve the COPTW using an adap-

tive large neighbourhood search. Thereafter, efficiency of the designed heuristics
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are evaluated and inefficient ones are filtered out. The final metaheuristic algorithm

could beat existing benchmarks and achieve close to optimal solutions in short com-

putational times.

Applications of the COPTW in real-life problems led us to consider the stochastic

environment of such problems in chapter 6. The APP, for instance, involves un-

certainties as do many other natural disasters. In chapter 6 a two-stage stochastic

approach for the APP is presented that encompasses multiple characteristics of the

problem. In the mixed integer programming model presented, possible wind changes

are considered that have impacts on the time windows that assets need to be ser-

viced. The proposed mathematical model for the first time considers uncertainty in

the timing of changes in a problem’s condition.

The findings of the thesis are summarised in chapter 7 followed by future research

needs.



Chapter 2

Literature Review

In this chapter a review of the literature relevant to this work is presented. The lit-

erature review first covers the most recent operational research literature in wildfire

and disaster management. From this the importance of VRP in this area becomes

clear. Thereafter, comprehensive review of literature in vehicle routing problem and

orienteering problem are presented.

2.1 Operation research in wildfire and disaster manage-

ment

Although emergency logistics for natural disasters including floods, earthquakes,

hurricanes and volcanic eruptions have been extensively studied (Özdamar and

Ertem, 2015), applications of operation research in the wildfire management have

received relatively less attention (Minas et al., 2012). Given the substantial in-

vestments in wildland fire management systems throughout Europe, Australia and

North America many research have emerged since the early 21st century and some

of which are reviewed by Minas et al. (2012) and Martell (2015). Fire management

systems focus on prevention (Prestemon et al., 2010), detection (Ko et al., 2012;

Benkraouda et al., 2014) suppression resource acquisition, deployment, dispatch

and use (Martell, 2015).

6
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Published research to date mostly cover strategic planning in regard of wildfire

management. Minas et al. (2014) focused on reducing potential wildfires at the

mitigation stage utilising a spatial fuel management method in Victoria, Australia.

They developed a deterministic MILP model to minimise connectivity of old fuel

cells in the belief that fragmentation of the landscape fuel complex will inhibit fire

spread. Rachmawati et al. (2018) similarly introduced a MILP for fuel treatment

planning to fragment high fuel load areas while inhibited connectivity is taken into

account. More recently, Matsypura et al. (2018) proposed an optimisation model to

identify the optimal spatial allocation of prescribed burning activities over a finite

planning horizon. A rather simple myopic heuristic algorithm was developed to

solve large scenarios. Krasko and Rebennack (2017) addressed a post-wildfire debris

flow hazard management system by developing a deterministic model for allocating

a budget to reduce flow of debris. In addition, they incorporate uncertain travel

time and number of wounded people in trying to solve the routing problem in a two-

stage stochastic programming model. This involves picking up injured people and

delivering them to the hospitals. Wei et al. (2014) developed a model to station and

dispatch hand crews and fire trucks for initial attack on bushfires. They introduced

a chance-constrained two-stage stochastic programming approach.

Van Der Merwe et al. (2015) addressed the APP during escaped wildfires. Their

study found that unplanned and uncontrollable wildfires sweep across valuable struc-

tures such as hospitals, bridges and schools that are connected by a network of roads

and some of which may be remotely located. They assumed a fleet of resources where

each has a vector of capabilities. Resource capabilities should match the protection

requirements that assets require so that they are protected. They applied the devel-

oped deterministic MILP model for bushfires in Hobart, Australia. However, they

were unable to solve realistic sized problems with exact methods.
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2.2 Vehicle routing problems

The vehicle routing problem (VRP) is well-known integer programming problem that

emerges from a combination of travelling salesman problem (TSP) and bin packing

problem. In other words, VRP is a TSP where the capacity constraint is taken into

account and aims to minimise the total travel distance (Dantzig and Ramser, 1959).

VRP and its variants have been intensively studied and future research directions are

set in the literature (Cordeau et al. (2007); Toth and Vigo (2014); Laporte (2009)).

Feillet et al. (2005) introduced the VRP with profit (VRPP) where multiple vehicles

cannot visit all vertices of the given graph. Archetti et al. (2014) provide a survey on

the VRP with profit in which the orienteering problem (OP) was considered as the

basic problem of this class. Many of the developed solution approaches for existing

VRPs cannot be replicated for OPs due to the problem-specific attributes.

2.2.1 Orienteering problem and its variants

The Orienteering Problem (OP) is a well-known problem in combinatorial optimi-

sation, introduced by Golden et al. (1987). The OP emerges from a combination of

the travelling salesman problem and the knapsack problem. It is a routing problem

where travelling to all vertices is often not feasible due to a time constraint. The

objective of the OP is to find the combination of nodes that maximise the total

reward collected. The design of tourist itineraries is an example where the OP has

been applied (Vansteenwegen and Van Oudheusden (2007); Vansteenwegen et al.

(2011a); De Falco et al. (2015)). The tourist trip design problem seeks to select the

most interesting combination of attractions to visit within some available time span

(Vansteenwegen and Van Oudheusden (2007); Borràs et al. (2014)). An extension of

this problem to cycle trip planning was proposed by Verbeeck et al. (2014). Further

applications can be found in the review by Vansteenwegen et al. (2011b). There

are a number of variants of the OP (Gunawan et al. (2016)). For example, the

time-dependent orienteering problem considers the case where the travel time be-

tween two vertices depends on the leaving time of the first vertex (Abbaspour and
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Samadzadegan (2011)). This situation arises, amongst others, when travel times

lengthen during peak traffic times. The time of arrival at a rail station, for example,

can have a significant effect on waiting times when using public transport (Garcia

et al. (2010)). The Team Orienteering Problem with Time Window (TOPTW) is

one of the widely studied OPs by scholars (Labadie et al. (2012); Kim et al. (2013);

Souffriau et al. (2013); Duque et al. (2015); Gunawan et al. (2015); Zhang et al.

(2018)). The TOPTW arises when the sport of orienteering is played by teams

of several people. The TOPTW extends the OP to identify multiple paths that

maximise the total score.

2.2.2 Synchronisation constraints

The VRP has been studied extensively over more than half a century. More recently,

synchronisation constraints between vehicles became a hot topic and has received a

lot of attention from scholars (Gansterer and Hartl (2018); Liu et al. (2019)). This

is inspired from real-life routing problems that involve spatial, temporal and load

synchronisation between vehicles Drexl (2012). Vehicles Synchronisation are con-

cerned with tasks, operations, movements, loads and resources associated to vehicles

Drexl (2012). An example in which synchronisation exist is the home care services.

In such services, some operations may require more than one staff member. For in-

stance, where heavy lifting and specialist medical expertise are required (Bredström

and Rönnqvist (2008)). A closely related problem is a home cleaning service where

some homes may require one or more services such as the following: basic cleaning,

window cleaning, and washing. Access to each house is within a given time-window.

2.2.3 Cooperative orienteering problem

An extension to TOPTW is the Cooperative Orienteering Problem with Time Win-

dows (COPTW), proposed by Van Der Merwe et al. (2015). This problem arises

when some tasks that need to be undertaken at certain locations can only be accom-

plished by two or more individuals acting cooperatively and simultaneously. Thus,
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in the COPTW each vertex has a unique resource requirement. This requirement

specifies the number of team members that simultaneously must visit each vertex

to collect the reward at that vertex. The reward is also conditional upon the re-

quirement being met within the time windows specified for each vertex. This means

that while multiple paths need to be determined as in the TOPTW, there is the

additional requirement that certain paths must meet at some of the nodes.

The COPTW arises in several applications. The first application arose from a

problem involving asset protection during escaped wildfires (Van Der Merwe et al.

(2015)). Valuable assets such as bridges and hospitals are distributed over a land-

scape with a network of roads. A wildfire sweeps over this landscape in a certain

direction. For a wildfire that is beyond control, fire-fighters are deployed to visit

each asset to undertake tasks that will mitigate the risk of each asset’s destruction.

The asset must be serviced before the fire reaches it, but must also not be serviced

too early as hosed down structures will dry out again or areas cleared of debris can

become littered again. Some assets might require a simultaneous visit by an aerial

truck for accessing tall structures and a pumper. Others might need a tanker (own

water) and a personnel vehicle. Further potential applications of the COPTW could

be considered in post-disaster emergency services, where some services require visits

from a supply vehicle to be synchronised with visits from personnel to distribute

supplies.

2.2.4 The asset protection problem

The APP is analogous to the OP(Van Der Merwe et al. (2015)). Constrained by

time, both problems involve choosing a subset of all nodes to visit to maximise an

objective. In the case of the OP a reward is on offer at each node and the objective

is to maximise the total rewards collected. The objective of the APP is to maximise

some weighted total of the number of sites serviced. Sites are often weighted by a

measure of the economic consequence of the facility being destroyed or damaged.

Unlike the OP, the APP may require synchronous visits to some nodes (assets) by

more than one vehicle type. As in APP multiple vehicle types are involved we may
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call APP is an extension to the COPTW. Dynamic fire fronts further impose time

window constraints on the service time of each node as well as on the accessibility

of roads. Therefore, the APP may deal with some stochastic parameters.

2.2.5 Stochastic orienteering problem

Recently, research interest on stochastic variants of routing problems has increased

significantly. Advances in technology have enabled larger, more complex problems

to be solved to support decision makers. For further details, we refer the interested

readers to the surveys by Gendreau et al. (2016) and Ritzinger et al. (2016). When

dealing with stochastic problems, a wide range of approaches can be utilised, e.g.

discrete event simulation or robust optimisation (Hoyos et al. (2015)). One of the

most frequently used techniques that has attracted substantial attention in stochas-

tic VRP and disaster management problems is the two-stage stochastic programming

(Falasca and Zobel (2011); Grass and Fischer (2016); Krasko and Rebennack (2017);

Badri et al. (2017); Van Hui et al. (2014)). In brief, the two-stage stochastic pro-

gramming make decisions in the first-stage prior to realisation of uncertain events,

while taking prospective second-stage decisions into account. There are various

stochastic characteristics of the orienteering problem that have been investigated.

Ilhan et al. (2008) introduced the OP with stochastic profit for the first time. Other

uncertainties, such as stochastic travel and service times (Papapanagiotou et al.

(2014)), stochastic time-dependent travel times (Varakantham and Kumar (2013))

and stochastic waiting time (Zhang et al., 2014) have been studied. While to the

best of our knowledge, no formulations have been reported in the literature of a

two-stage stochastic programming model with an uncertain time of change in the

problem condition, i.e. staging time. Staging time is the moment when transition

from one stage to another occurs. This is a situation that is commonly faced in

emergency and logistic problems.
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2.3 Solution approaches for the OP

The Orienteering problem is NP-hard (Golden et al. (1987)). An extensive number

of exact and heuristic approaches have been proposed to solve this problem. A few

papers have focused on exact methods (Keshtkaran et al. (2016); Poggi et al. (2010);

Dang et al. (2013a); Bianchessi et al. (2018)) but in general exact methods are not

efficient in dealing with large-sized problems. As a result, the main body of the

TOPTW literature is dominated by heuristic approaches (Bouly et al. (2010); Liang

et al. (2013); Marinakis et al. (2015); Dang et al. (2013b); Gunawan et al. (2015);

Labadie et al. (2012); Gunawan et al. (2017)). As the TOPTW has become a pop-

ular topic, several state-of-the-art papers on the solution methods can be found in

the recent literature. Gambardella et al. (2012) enhanced the Ant Colony algorithm

to overcome certain drawbacks of the algorithm that they developed earlier (Monte-

manni and Gambardella (2009)). Vansteenwegen et al. (2009) developed an iterated

local search algorithm for the TOPTW, where high quality solutions are attained in

much less computational time than exact methods. More complicated benchmark

instances for the multi-period orienteering problem, which is the generalisation of the

TOPTW, are solved by a variable neighbourhood search algorithm (Tricoire et al.

(2010)). Lin and Vincent (2012) developed the slow and fast simulated annealing

algorithms, where the latter performs efficiently in terms of computational effort and

the former is more concerned about the solution quality. Gavalas et al. (2013) fo-

cused on tourist trip design problems and introduced two cluster-based algorithms

by considering the limitation of the iterative local search algorithm, proposed by

Vansteenwegen et al. (2009). Gunawan et al. (2015) extended the existing iterative

local search algorithm by including more local search operations. Vidal et al. (2015)

used variable neighbourhood search with an efficient select algorithm, equipped with

iterated local search and a hybrid genetic algorithm, to solve the team orienteering

problem. Also, Mei et al. (2016) investigated the multi objective time dependent

orienteering problem using a memetic algorithm. Vincent et al. (2019) studied the

team orienteering problem with time windows and time-dependent scores and de-

veloped a hybrid artificial bee colony algorithm to solve it. Finally, A recent article
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by Santini (2019) revealed the significance of using Adaptive Large Neighbourhood

Search (ALNS) algorithm for solving OPs.



Chapter 3

A heuristic solution for the COPTW

In this chapter, the COPTW is studied. The existing applications of the COPTW re-

quire an efficient solution method. The problem of finding solutions to the COPTW

in times that make the approach suitable for use in certain emergency response sit-

uations is addressed. This is achieved by developing a new merit based heuristic.

The algorithm tested extensively and compared with exact solutions to validate its

performance. The results prove the efficacy of the solution approach to generate

high quality solutions in short computation times.

3.1 The Cooperative Orienteering Problem with Time

Windows

The orienteering problem with time windows and synchronisation constraints known

as the Cooperative Orienteering Problem with Time Windows (COPTW) generalises

the TOPTW formulation (Van Der Merwe et al. (2015)), where a certain number

of team members are required at vertices N = {v1, . . . , vn}. The location vi is

considered served if ri team members, i ∈ N , arrive at the vertex within the time

windows [oi, ci] and start the service simultaneously at time si for a duration of ai
units of time to collect a reward, ψi. In the COPTW, a homogeneous fleet of P

team members start their route from v1 and must return to the depot vN by time

14
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Tmax, where both v1 and vN represent the same location. For any two vertices, tij
and dij indicate the required time and distance for each team member to travel from

i to j. The binary decision variable yi takes the value 1 if ri team members visit vi
within the appropriate time windows for the required duration, 0 otherwise. Another

decision variable is zij which takes 1 if (i, j) is traversed, otherwise 0. Furthermore,

xij represents the number of team members travelling from i to j. Lastly, A defines

a set of arcs that can be traversed. For (i, j) ∈ A, if a team member departs from

vertex i at oi + ai and arrives at vertex j before cj the (i, j) can be traversed.

Following the definition of A, a set of feasible arcs that can be traversed to and from

node i are shown by Ω−i and Ω+
i , respectively.

The mathematical formulation of the COPTW as a mixed-integer program is as

follows(Van Der Merwe et al. (2015)):

Maximise
N−1∑
i=2

ψiyi (3.1)

s.t. :
∑

(1,j)∈Ω+
1

x1j =
∑

(i,N)∈Ω−N

xiN ≤ P, (3.2)

∑
(i,k)∈Ω−

k

xik =
∑

(k,j)∈Ω+
k

xkj, k = 2, . . . , N − 1, (3.3)

rkyk ≤
∑

(k,j)∈Ω+
k

xkj, k = 2, . . . , N − 1, (3.4)

xij ≤ Pzij, (i, j) ∈ A, (3.5)

si + tij + ai − sj ≤M(1− zij), (i, j) ∈ A, (3.6)

oi ≤ si, i = 1, . . . , N, (3.7)

si ≤ ci, i = 1, . . . , N, (3.8)

xij ∈ {0, 1, . . . , P}, (i, j) ∈ A, (3.9)

yi, zij ∈ {0, 1}, i ∈ N, (i, j) ∈ A. (3.10)

The objective function (3.1) maximises the sum of the rewards ψi collected at each
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vertex i. Constraint (3.2) ensures all members depart from and return to a desig-

nated depot. Constraint (3.3) guarantees flow conservation by enforcing the equality

of incoming and outgoing arcs to each node. Constraint (3.4) ensures that the col-

lection of a reward (i.e. a score) at each location is dependent upon the condition

of fulfilling its resource requirement. Constraint (3.5) makes sure that the number

of travelling members of a fleet through an arc never exceeds P and it also ensures

that xij is zero when the path ij is not traversed. Constraint (3.6) ensures that at

each vertex the service can only be started when the previously visited location has

been served completely and there is sufficient time to travel to the vertex, where M

represents a large constant. Setting M = max(ci) + max(tij) + max(ai)−min(oi)

is sufficiently large for this purpose (Van Der Merwe et al. (2015)). Constraints

(3.7) and (3.8) ensure each vertex is visited within its time window. Integer and

binary conditions are defined in constraints (3.9) and (3.10). In the above model

the subtour elimination implemented similar to VRPs.

A graphical representation of a simple solution for the COPTW is sketched in Figure

3.1 as shown below. Two of the main attributes of each node, the resource require-

Figure 3.1: A sample solution of the COPTW

ment (ri) and corresponding reward (ψi), are specified while time window constraint

exists for all nodes. A number of team members leave the depot and ri members

must be at vertex i before starting the service to collect the associated reward (ψi).

The numbers over each arc represent the number of travelling members through an
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arc. It is infeasible to visit all vertices within their time windows. Considering the

set of all feasible solutions, a schedule that maximises the score (i.e. the sum of

rewards collected) is identified. In Figure 3.1, three members leave the depot by

travelling through different arcs and attend nodes 4, 1 and 3 individually. As their

associated resource requirements are all equal to one, they complete the service and

collect the rewards. Thereafter, all three members travel to node number 6 to fulfil

its resource requirement and collect its reward (10). After collection of maximum

amount of possible scores, all members return to the depot. Note that both depots

represent the same location.

3.2 A heuristic approach for the COPTW

Starting with the well-known Clarke and Wright (CW) algorithm (Clarke and Wright

(1964)), we make several changes to address the complexities of the COPTW prob-

lem. The classical CW algorithm uses saving values by merging pairs of customers

in the same route. The CW Saving Algorithm is one of the most implemented

heuristic methods for solving routing problems due to its efficient computation time

and reliability. As we want to maximise the rewards collected from visiting a node

we replace the “savings list” in the CW algorithm with a “merit list” as discussed

below. The next obvious problem to address is that the reward at some nodes can

only be collected if there is a synchronous visit by more than one team member

(or vehicle). Furthermore these synchronous visits must occur within a specified

time-window. Afterwards, we rank each unvisited node according to its reward and

the resources it requires. The initial solution of the algorithm can be any feasible

combination of two nodes with highest merit value. Working through this ranked

list we consider the possibility of inserting unvisited nodes within existing routes.

This action may have feasibility consequences which also need to be considered. In

some cases an insertion may lead to the removal of a node that is already in a route.

Further details of all these considerations are given below. For ease of reference we

will refer to our algorithm as the MB (merit based) heuristic.



18 Chapter 3

3.2.1 Merit list

The COPTW aims to maximise the collected score by meeting the resource re-

quirements of nodes within their associated time windows. Thus pairs of nodes are

ranked according to their combined reward. However, a greedy algorithm approach

to this may lead to too much time consumed in collecting the largest rewards at

the expense of several smaller rewards. To compensate for this we add to the merit

function a ”savings pair” term as used in the CW algorithm for finding the shortest

routes. This is further enhanced with another term based on the sweep algorithm

introduced by Doyuran and Çatay (2011). Sweep Algorithm is another well-studied

heuristic that constructs routes based on the angles of customers with depot and

another arbitrary line. To dynamically adjust the impact of the terms in equation

3.11, we introduced three associated weights. Our algorithm iterates over different

values of these weights within an interval pre-determined by experimentation. In-

tervals and step-sizes of weights are defined in such a way to compromise between

solution qualities and computation times. Therefore, the proposed merit function

for the MB heuristic is given by:

Mi,j = ϑ
ψi + ψj

ψ
+ di0 + d0j − λ dij

dmax
+ µ cos θij

|dmax − (di0 + d0j)/2|
dmax

. (3.11)

In equation 11, θij is the angle between the vector from the depot to node i and the

vector from the depot to node j, ψi and ψ represent the score for each node and

the average score of all vertices. Also, in the above formulation, dij is the euclidean

distance between nodes i and j and dmax = max {di,j; ∀i, j ∈ N}. It is assumed

that travel time and travel distance are correlated. Moreover, iterations of the three

parameters, ϑ, λ and mu, are used to search a broader solution space. To ensure

the assignment of nodes with highest merit values prior to others, we implemented

parallel route construction in the MB algorithm.
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3.2.2 Synchronous visits

Some nodes in the COPTW require synchronous visits from more than one team

member (or vehicle). We first illustrate how to deal with the multiple visit without

concern for the timing. Suppose node 3 requires two members to visit. Given a

merit pairing list as follows: (2,3), (3,4), (4,5), (3,6), and (6,7) with a depot at

node 1 we construct routes initially as in the CW algorithm. This gives: 1-2-3-4-5-1

based on the first three pairs in the list. The next pair in the list is (3,6) and would

normally be deleted as node 3 is internal to a route. In this case, however, node 3

still requires another visit so we introduce a new route 1-3-6-1. With the final pair

this second route becomes 1-3-6-7-1. So we have two routes with both routes visiting

node 3 as shown in Figure 3.2. If the timing of these visits is such that both team

members arrive at the node in time to service the node within the required time-

window then the reward is collected. Some issues arise when constructing routes to

Figure 3.2: Illustration of the synchronous visits handling

meet the requirements at a node. One is that it might not be feasible to reach the

node within its time window. The second is that after working through the pairs in

the merit list a particular node is visited by insufficient number of team members

to collect its reward. This means that time is possibly wasted travelling to that

particular node and the node should be removed from all routes. Another option

is to consider removing a node that has already been assigned to the routes. This

would help us to save sufficient time and resources to meet the demand of the other

node. The change would be accepted if the changes yielded greater rewards in total

than previously.
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3.2.3 Feasibility

Before adding a node to a route the feasibility of arriving at the node before its

closing time must be calculated. The ”closing time” is the latest possible arrival

time at a node to be able to commence and complete servicing it within the time

window required. The required number of team members must all be present be-

fore synchronous servicing can commence. Thus the start time of the service is

determined by the latest arriving team member and this may change as routes are

modified after insertion of a new node. It is also important to track the completion

time. The departure time from a node may affect the feasibility of visiting nodes

with later time windows.

Another feasibility constraint is the number of team members available. This to-

gether with the time window constraints means that, in general, it will not be

possible to service all nodes.

3.2.4 Prioritising nodes for insertion

After working through the merit list, a feasible solution is achieved but a number

of nodes may be unvisited. We performed extensive experiments to find the best

ranking methods of the unvisited nodes. As a result of experiments we rank these

nodes according to the ratio
ψm√
rm

where ψm and rm are the rewards available and resources (visits) required at node

m. By experimentation the square root in the denominator was found to yield better

results than a straight ratio of reward to required resources.

3.2.5 Insertion

We first illustrate the basic process of insertion with the following simple example.

Consider the pairs in the following merit list: (2, 3), (3, 4), (4, 6), (6, 7), (4, 5), (3,
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5), (5, 6). Working down the list we end up with the route 1-2-3-4-6-7-1. Node 5

would be excluded from the route as when the pairs involving node 5 are considered,

in each case the other element of the pair is internal to the route. We see, however,

that node 5 can be inserted between nodes 3 and 5 as shown in Figure 3.3. As

Figure 3.3: Illustration of the insertion procedure

previously mentioned feasibility has to be checked before an insertion such as the

one above can be accepted. Suppose that the route proposed in the example above

is not feasible because the arrival at node 6 from node 4 is too late. If the path

segment 3-5-6 is feasible (see Figure 3.4) we have two choices. Keep the original

path, with node 5 omitted, or remove node 4 from the solution. The obvious choice

is the one that maximises the rewards. There is a further difficulty with insertion

Figure 3.4: Illustration of the insertion procedure

when synchronous visits are involved. Suppose that node 4 required a visit by two

members for the reward to be collected and a solution satisfying this had already

been achieved as shown in Figure 3.5. In removing node 4 from the first route

there is no longer any point in the second route including node 4. In fact, the route

segment 8-10-11 might now be feasible or a slightly earlier departure time from node

11 (after servicing within the required time window) might just tip the difference

between arriving at node 12 in time or not.
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Figure 3.5: A sample solution of the COPTW

3.2.6 The MB Heuristic

All the operations discussed above are included in the pseudo-codes of our heuristic

as given in Algorithms 1-4. To start the algorithm, the CW algorithm modified to

enable synchronous visits as discussed in section 3.2.2, is employed to generate an

initial solution. The main body of the algorithm follows.

Iterating over values of ϑ, λ, and µ, a new merit list is compiled at each iteration by

calling the function ”CalcMeritList”. Then considering the set U of all unvisited

nodes, we try to assign each node to a route based on the pairs that they belong

to, their merit values and their resource requirements. Specifically, at line 11 of

Algorithm 3.1, an attempt is made to assign node j ∈ U , which belongs to pairij

into the existing routes, Λ. For each subroute belonging to Λ in which the node

i is located, the algorithm seeks to insert the arc ij to gain the score at j. Other

possibilities for insertion are investigated by the improve() function in Algorithm

3.4. Nodes that cannot be added to the existing routes in Λ will be assigned to a new

subroute, if the number of subroutes (n) in the set of temporary routes (Λ) is less

than the total number of team members (P ). Note that newly assigned nodes that

do not satisfy the resource requirements will be ignored when the algorithm returns

to line 7 without updating τ . The algorithm investigates further improvements by

calling the improve function at line 29.
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Algorithm 3.1: Pseudocode for the MB heuristic
Input: temporary routes (τ), best routes (β), collected reward (α), set of all

nodes (N), set of assigned nodes (γ), Merit Pair List (MPL), unvisited

vertices (U), service requirement of node j (rj), parameters’ intervals

(ϑ = [0, 3.2], λ = [0, 1.2], µ = [0, 1.2], step size = 0.4), available team

members (P ), number of sub-routes (n)

Output: αbest and β

1 function MBheuristic

2 generate distance matrix; generate initial solution by CW heuristic

3 forall (ϑ, λ, µ) do

4 Call the CalcMeritPairs(ϑ, λ, µ) function

5 forall (pairi,j ∈ MPL) do

6 Λ← τ //make a copy of τ

7 if (j ∈ U) then

8 V isitCountj ← 0

9 forall (subroutes ∈ Λ) do

10 try to add arc (i, j)

11 Call the FeasMatrix function

12 if (feasij == true) then

13 V isitCountj ← V isitCountj + 1

14 Update Λ

15 else

16 if (n < P ) then

17 Create a new route and add j

18 Update Λ

19 n ← n+ 1

20 V isitCountj ← V isitCountj + 1

21 if (V isitCountj == rj) then

22 αcurrent ← αcurrent + ψj

23 γ ← γ ∪ {j}

24 Update U

25 τ ← Λ

26 if (αcurrent > αbest) then

27 αbest ← αcurrent, β ← τ

28 Call the Improve function

29 return αbest and β
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The CalcMeritList() function is represented in Algorithm 3.2. As far as the pa-

rameters in the merit function are concerned, the computational effort is positively

correlated to the tuning of the (ϑ, λ, µ) tuples. After much experimentation, and

considering the compromise between the search effort and solution quality, the inter-

vals and incremental size for the coefficients shown in Algorithm 3.1. were chosen.

Algorithm 3.2: Pseudocode for the CalcMeritPairs
Input: merit function parameters (ϑ, λ, µ), Merit Pair List (MPL), score of node

i (ψi), travel velocity (velocity), set of all arcs (G), latest arrival time to
the depot (Tmax)

Output: MPL
1 function CalcMeritPairs
2 for ((i, j) ∈ G) do
3 if ((oj + aj + dj0/velocity ≤ Tmax) and (oi + ai + dij/velocity ≤ cj)) then
4 Mi,j ← ϑ

ψi + ψj

ψ
+ di0 + d0j − λ dij

dmax
+ µ cos θij

|dmax − (di0 + d0j)/2|
dmax

5 insert Mi,j to a vector of tuples (i, j,Mi,j) //initialising MPL

6 Sort MPL in descending order of Mi,j values
7 return MPL

In the MB heuristic, Algorithm 3.3. handles frequent updates of the feasibility

matrix, and Algorithm 3.4. enhances the solution quality, as defined below.

In Algorithm 3.4, the improve() function checks whether further score can be

achieved by adding more nodes to the routes or whether any of the inserted nodes

can be substituted for unvisited ones. The algorithm sorts unvisited vertices based

on the associated resource requirements and rewards. Those with higher reward

and less resource requirements climb within the list. This is done according to the

value of ψm/
√
rm, which represents the relative attractiveness of each vertex (line 2).

Thus, nodes that are ranked better in U (line 2), have a higher chance of assignment

to the routes, based on the pairs they belong to (lines 5-20). Nodes in set U will

be assigned at locations where the highest merit values can be achieved while still

maintaining all feasibility conditions. This is done in lines 5-8, where for each node

the algorithm iterates over MPL to add the node m where the highest merit value

can be achieved. Lines 9-20 consider the situation where the insertion of the node

m brings infeasibility for another node named as j. The insertion would be taken
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Algorithm 3.3: Pseudocode for the FeasMatrix
Input: set of temporary routes (Λ), set of all nodes (N), earliest start time oi,

latest possible start time ci, service start time at node i (ϕi), existing nodes
in sub-tours (κ), latest arrival time of members to node i (Ti), feasibility to
travel from i to j (feasi,j)

Output: FeasMatrix
1 function FeasMatrix
2 for (i ∈ N) do
3 ϕi ← oi

4 for (κ ∈ Λ) do
5 for (i ∈ κ) do
6 compute Ti
7 ϕi ← max(ϕi, Ti)

8 for (κ ∈ Λ) do
9 for (i ∈ κ) do

10 if (ϕi ≥ ci) then
11 feasi−1,i ← false
12 else
13 feasi−1,i ← true

14 return FeasMatrix;

into account if it could improve the objective function despite the loss of score from

the removal of the other node (lines 9-17).
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Algorithm 3.4: Pseudocode for the improve function
Input: best collected reward (α), best routes (β), unvisited vertices (U), Merit

Pair List (MPL), score of node i (ψi), resource requirements of node i (rm)
Output: β and α

1 function improve
2 sort set of U members //ψm/

√
rm

3 for (m ∈ U) do
4 L← β
5 for (pairp,q ∈ MPL) do
6 if (m == p) then
7 Seek to insert arc (m, q)
8 Call the FeasMatrix function
9 if (insertion causes infeasibility of node j) then

10 if (ψj ≤ ψm) then
11 insert m and remove j
12 Call the FeasMatrix function
13 if (insertion is feasible) then
14 update β
15 update α
16 else
17 β ← L

18 if (insertion is feasibe) then
19 update β
20 update α

21 return β and α

3.3 Computational results

Extensive numerical studies were conducted to evaluate the efficacy of the proposed

solution approach. A set of benchmark instances was generated by adding the

problem-specific attribute to the well-known existing benchmark sets (see Vansteen-

wegen et al. (2009)). The resource requirement attribute was added to each vertex

by picking 1, 2 or 3 randomly, which indicates how many members of the team are
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required to collect the associated reward at each node1.

In the first study, truncated benchmark sets are designed to solve sufficiently small-

size instances by means of both the CPLEX commercial solver and the MB algo-

rithm. The number of vertices in the small-size instances are chosen to obtain the

optimal solutions using CPLEX. Furthermore, we explored the trade-off between an

increased number of available members for service on the one hand and the com-

putation time and objective value on the other hand. We furthermore showed the

efficient performance of the proposed heuristic in terms of time and accuracy on the

large-size benchmark instances. All the above computational work was performed

on a node of the Australian National Computational Infrastructure using a single

thread. Each node is equipped with dual 8-core Intel Xeon (Sandy Bridge 2.6 GHz)

processors and 32GB of RAM. The algorithm was programmed in C++, using a

GCC 5.2.0 compiler. Where applicable, MILP models were solved by the CPLEX

12.7 commercial solver in deterministic parallel optimisation mode. All tables show

the execution times as elapsed time in seconds.

For the parameter studies, after running 720 instances with various parameter set-

tings, we tuned them in a way to define the best possible trade-off between runtime

and solution quality. It was decided to change the parameters within [0, 1.2] for both

λ and µ and [0, 3.2] for ϑ. Based on the authors’ observations the value of ϑ plays a

significant role in the solution quality, thus a broader interval is considered for the

newly introduced term in the merit function. Additionally, an incremental size of

0.4 is large enough to search the feasible region sufficiently and to avoid redundant

iterations. The large interval and step-size assist the heuristic to explore a broader

area of the solution space.

For validation and performance evaluation a collection of 456 small-size benchmark

instances were generated and solved by means of both CPLEX and the MB heuristic.

A summary of the tests for 10− 12 nodes with 3 and 4 team members on instance

sets c100, r100 and rc100 is provided in Table 1. The benchmark instances have

cluster (c), random (r) and random cluster (rc) distribution, where the last to are
1All the benchmark instances are available via www.sites.google.com/site/imanrzbh/datasets
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Table 3.1: A summary of MB Heuristic (MBH) performance for small-size instances for 10, 11 and 12 nodes on
c100, r100 and rc100 datasets. All computational times are in seconds.

Set # Vehicles 10 Opt
Gap %

11 Opt
Gap %

12 Opt
Gap %CPLEX MBH CPLEX MBH CPLEX MBH

c100 p=3 1.54 0.05 0.00 0.90 0.07 0.00 2.82 0.12 0.00
p=4 1.70 0.04 0.00 0.75 0.06 0.00 1.18 0.11 0.00

r100 p=3 9.23 0.13 -2.23 40.07 0.16 -1.83 1740.62 0.22 -0.16
p=4 12.88 0.12 -3.43 59.92 0.15 -3.46 1455.69 0.22 -3.50

rc100 p=3 15.97 0.09 0.00 43.38 0.14 -0.54 304.96 0.20 -1.02
p=4 8.12 0.09 -0.60 503.42 0.13 -1.09 1908.95 0.18 -0.98

Table 3.2: A summary of MB heuristic performance for small-size instances for 24, 25 and 26 nodes on c200, r200
and rc200 dataset. All computational times are in seconds.

Set # Vehicles 24 Opt
Gap %

25 Opt
Gap %

26 Opt
Gap %CPLEX MBH CPLEX MBH CPLEX MBH

c200 p=3 3.11 0.46 0.00 4.00 0.61 0.00 5.44 0.73 0.00
p=4 2.89 0.48 0.00 3.93 0.49 0.00 3.15 0.56 0.00

r200 p=3 11.84 0.92 -0.03 12.17 1.19 -0.08 19.13 1.40 -0.54
p=4 5.24 0.71 0.00 6.88 0.93 0.00 7.71 1.08 0.00

rc200 p=3 22.75 0.81 0.00 478.37 1.04 0.00 13585.62 1.40 -1.15
p=4 7.78 0.61 0.00 8.31 0.81 0.00 9.83 1.04 0.00

harder to solve to optimality. The sizes of truncated instances are chosen in a way

to investigate the correlation between the increase in problem size and exponential

growth in computational effort. It is worthwhile to mention that infeasible edges are

excluded in MILP formulations to simplify models for the CPLEX implementation.

In Table 3.1 computation times and the optimality gap are reported for all problems.

The “optimality gap” (OPT Gap %) represents the percentage gap between the

optimal solutions obtained by the CPLEX and MB heuristic, where is negative

meaning MB heuristic solution is not optimal. It is seen in Table 3.1 that the average

gap is −1.04% which shows the promising performance of the proposed heuristic.

Moreover, it can be seen that the computation time increases significantly with

minor changes in the problem size for CPLEX compared with the negligible changes

for the MB heuristic.

Table 3.2 gives the summary of results for 24 − 26 vertices with the same number

of available team members. One can see that CPLEX solves larger problems from

the sets c200, r200 and rc200 compared to those in Table 3.1. This is due to the

nature of the studied class of problems as the time window intervals are different in
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Table 3.3: A summary of MB heuristic performance for small-size instances for 19, 20 and 21 nodes on pr01-10
dataset. All computational times are in seconds.

Set # Vehicles 19 Opt
Gap %

20 Opt
Gap %

21 Opt
Gap %CPLEX MBH CPLEX MBH CPLEX MBH

pr01-10 p=3 55.36 0.45 -2.08 84.27 0.50 -1.93 259.63 0.54 -1.93
p=4 64.98 0.47 -1.87 254.00 0.51 -2.41 854.03 0.56 -3.03

Table 3.4: A summary of MB heuristic performance for small-size instances for 10, 11 and 12 nodes on pr11-20
dataset. All computational times are in seconds.

Set # Vehicles 10 Opt
Gap %

11 Opt
Gap %

12 Opt
Gap %CPLEX MBH CPLEX MBH CPLEX MBH

pr11-20 p=3 10.92 0.14 -2.09 113.72 0.19 -2.50 1497 0.25 -3.95
p=4 19.50 0.12 -1.27 131.95 0.18 -1.11 6917.79 0.24 -3.05

length and a larger portion of nodes can be covered by the same number of team

members. In Table 3.2, the heuristic average computational time remains around

one second for all instances, while it takes hours to solve some sets by CPLEX. In

Table 3.2, the average deviation of the MB heuristic from optimal solutions is just

0.10% which is reasonable for a heuristic solution.

To further verify the reliability of MBH, more truncated instances from (pr01-pr10)

and (pr11-pr20) sets were tested and results are demonstrated in Table 3.3 and 3.4.

The proposed algorithm performs similarly in all examined cases which assures its

reliability for further runs on larger problems.

An instance where the MB heuristic achieved an optimal solution on a small set is

demonstrated in Fig. 3.6. For the sake of better presentation, nodes are assigned

into the cells of arrays. The times for starting the service and the corresponding

time windows for each succeeding vertex are provided. Consider, for example, three

Figure 3.6: A sample scheduled tour by MBH
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members leave the depot and arrive at node number 5 within its time windows

[15,67], where they start the service simultaneously to collect the associated score at

time 15.1. After that, second and third members leave node 5 toward vertex number

3. Finally, all the team members finish their tour by returning to the depot before

Tmax = 1236. One can see that the illustrated routes are highly dependent such that

any minor change in sequence of nodes at any tour, requires reconstruction of other

routes.

We performed further experiments on larger instances. Proportional to the problem

size more team members are considered in order to cover a substantial percentage

of available nodes. As the objective function we report our results in the percentage

value of rewards collected. Since there is no benchmark for our tests, we compare

with the best CPLEX bound after an one hour run (CPLEX Best Solution%).

An analysis of our results indicated that on average 1.45, 1.12, and 0.85 were the

values assigned to ϑ, µ and λ, respectively. The magnitude of µ, the second largest

value, implies that minimising the distance travelled, as in the CW algorithm, is an

important factor in maximising the rewards collected. Perhaps, this is not surprising

given the time-window aspect of the problem and that travelling time is directly

proportional to distance travelled. This provided the motivation for looking at the

simpler CW* algorithm with its focus on minimising distance travelled. The CW*,

initialises the merit list by the following equation, Si,j = d0i + dj0 − dij. Having the

results of the CW* allows us to evaluate our contribution through the efficacy of the

applied logic in the merit function, improve function and the way the MB heuristic

sorts unvisited node. Finally, in Table 3.5, 3.6 and 3.7 we report a summary of tests

for large instances.

It is important to note that the MB heuristic produces better results than the

CPLEX best solution in all of the sets. Furthermore, the MB heuristic collects on

average 26% and 36% more of the total rewards available than those achieved by

CPLEX and CW∗, respectively. In instances with more than a hundred vertices

the MB heurstic performs around 40% and 30% better than CPLEX and CW∗,

respectively. As can be observed, the performance of our algorithm gets better with
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Table 3.5: Computational results for the large-size sets with 50 vertices. The last three columns show the percentages
of rewards collected.

Set #Vehicles 50
tMBH(sec) tCW ∗(sec) MBH% CPLEX Best Solution% CW∗%

c100 p=3 10.69 0.16 48.45 43.15 22.22
p=4 11.25 0.17 59.04 52.20 28.29

c200 p=3 10.47 0.11 88.08 80.81 55.81
p=4 10.72 0.38 96.37 90.26 61.92

r100 p=3 13.03 0.26 37.39 27.27 17.60
p=4 13.75 0.26 44.58 37.85 20.98

r200 p=3 15.36 0.21 86.79 66.8 46.24
p=4 16.23 0.15 93.01 69.34 49.56

rc100 p=3 9.81 0.20 34.15 26.93 11.98
p=4 9.93 0.23 41.75 36.34 13.92

rc200 p=3 14.17 0.16 77.45 58.38 36.08
p=4 15.44 0.21 84.92 65.98 40.08

Table 3.6: Computational results for the large-size sets with 100 vertices.The last three columns show the percentages
of rewards collected.

Set #Vehicles 100
tMBH(sec) tCW ∗(sec) MBH% CPLEX Best Solution% CW∗%

c100 p=4 60.11 1.08 36.10 23.88 11.05
p=6 73.76 1.15 47.64 29.83 19.46

c200 p=4 88.02 1.06 74.31 47.31 35.36
p=6 94.94 1.11 88.40 58.56 45.30

r100 p=4 88.41 1.70 33.77 18.12 11.29
p=6 94.60 1.51 44.00 22.84 16.10

r200 p=4 133.26 1.76 76.01 38.73 28.99
p=6 138.27 1.59 89.85 44.94 33.68

rc100 p=4 74.90 1.47 29.86 14.99 9.02
p=6 82.97 1.49 39.53 22.29 13.26

rc200 p=4 128.52 1.65 67.04 36.96 24.93
p=6 130.33 1.52 82.85 40.98 28.24

Table 3.7: Computational results for the large-size instances in the set of pr01-20.The last three columns show the
percentages of rewards collected.

Set #Vertices #Vehicles tMBH(sec) tCW ∗(sec) MBH% CPLEX Best Solution% CW∗%

pr01&11 48 p=4 15.40 0.25 64.31 54.34 32.72
p=5 16.11 0.25 71.99 59.28 35.31

pr07&17 72 p=4 27.87 0.40 52.22 20.78 16.88
p=5 30.31 0.35 62.08 36.08 23.95

pr02&12 96 p=4 98.74 1.60 52.05 24.71 13.73
p=6 104.62 1.45 63.28 25.04 20.41

pr03&08
&13&18 144 p=5 237.82 3.52 42.41 5.14 12.74

p=7 256.93 3.60 51.67 11.28 18.16

pr04&14 192 p=6 396.03 5.95 40.45 4.86 10.74
p=8 436.35 6.15 49.41 11.36 14.47

pr09&19 216 p=6 786.69 16.40 41.21 5.63 17.23
p=8 939.35 15.10 49.20 2.72 20.32

pr05&15 240 p=8 1116.10 37.25 43.48 6.61 11.79
p=10 1558.30 39.45 50.98 9.33 14.49

pr06&10
&16&20 288 p=8 965.52 46.35 38.97 2.56 12.81

p=12 1538.40 44.77 50.27 7.13 18.45
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the increasing size of the problem instances.

The proposed algorithm achieves optimal solutions for 75% of instances for which

the optimal results are known (342 out of 456 small instances). our implementation

attains an optimality gap of 1.09% on small instances and solves benchmarks with

realistic size efficiently.

3.4 Summary and discussion

In this chapter, the COPTW as an important class of the orienteering problem that

arises naturally in many important applications has studied. In practical problems

many of these applications require solutions as a matter of urgency. Before the work

presented here, only exact methods had been used to solve the COPTW. While ex-

act methods have been good for illustrative purposes involving small-sized instances,

they are not useful for operational needs. Furthermore current heuristic algorithms

are not designed to handle the complexities resulting from the requirements of syn-

chronised visits in the COPTW.

In this chapter, we developed a new heuristic algorithm to deal with the various

issues that arise from this problem. The proposed approach can solve large-sized

problems in times that are appropriate for operational uses. To evaluate the solu-

tion approach, a new benchmark set was generated for the COPTW problem. The

performance of the algorithm was validated for small-sized instances by comparing

solutions with the optimal results obtained by the CPLEX solver. Further exper-

iments with large scale problems demonstrated the efficacy of the MB heuristic in

terms of various metrics. The significance of the results should be seen in the light

of an application like that originally introduced by Van Der Merwe et al. (2015).

Where the heuristic solution produces more than seven times the rewards achieved

by CPLEX this could mean seven times more structures (or even lives) saved.
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An adaptive large neighbourhood

search for the APP

In chapter 3 the COPTW was investigated. The Asset Protection Problem (APP) is

an extension to the COPTW where multiple team members (resources) with unique

capabilities are involved during bushfires. In this chapter, the mixed integer linear

programming model from chapeter 3 is used to solve small instances with CPLEX.

Although optimal solutions were achieved in most cases the solution times precluded

the method being used for operational purposes. The following chapter aims to ad-

dress this NP-hard problem and find a method of achieving good solutions in times

that make it suitable for operational purposes. We propose an Adaptive Large

Neighbourhood Search (ALNS) metaheuristic which provides a robust framework

for solving large size instances that IMTs may encounter in cases of extensive wild-

fires. Computational experiments show the efficacy of the implemented approach to

achieve solutions close to optimal in time efficient manner.

4.1 An Illustrative Example

To illustrate the APP on a small example consider the problem settings in Fig.4.1.

The depot is denoted as “D” and associated protection values are defined in each

33
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vertex. Note that, while vehicles depart from the central depot, due to the fire

advancement they need to return to another depot, not threatened by fire. There are

three types of vehicles, namely tanker, pumper and aerial vehicle each of which are

defined by a unique array. Vehicle types are characterised based on the operational

fleet of vehicles available. A binary vector is used to represent the capabilities of

each vehicle type. The protection requirements of assets are uniformly selected from

the set of vectors Ri = {< 2, 0, 0 >,< 0, 2, 0 >,< 0, 0, 2 >,< 1, 1, 0 >,< 0, 1, 1 >,<

1, 0, 1 >,< 1, 1, 1 >} where each member of a vector represents the required number

of each vehicle type to protect an asset.

Figure 4.1: An illustrative example. Assets and depots are defined in circular and triangular shapes, respectively.

To represent a realistic scenario time windows translate the anticipated remaining

time to the fire impact while the fire front spreads in a circular manner as defined

in Fig. 4.2. Therefore, the opening time of each asset is oi =
√
x2+y2

firevelocity
and the

latest service time ci = oi + E, where E , x and y are the time duration in which

the protection activities have to be carried out and coordinates of an asset. Time

windows are correlated with the coordinates in the Euclidean space. Taking that

into consideration, the planning horizon (Tmax) is equal to ci for the furthest asset

from the origin of the fire. Moreover, traversing each arc is a function of distance and

vehicle velocity tij = dij

vehiclespeed
. To present a real-life situation we set E = 2 hours,

firevelocity = 10 km/h, vehiclesspeed = 40 km/h and a = 1 hour.
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Figure 4.2: Direction of fire spread

In the graphical representation of the problem (Fig. 4.1), some assets are not pro-

tected. This is because of the time windows imposed by the advancing fire front

(see Fig 4.2). It means that sufficient number of vehicles cannot arrive at those

locations by their latest service time. Therefore, a selection of assets must be made

that maximises the total value protected. To protect an asset all resource require-

ments must be present at the asset before the protection operation can commence

simultaneously and cooperatively.

Through the asset protection activities, some disruptions or changes to conditions

may occur which necessitate rerouting of vehicles. To deal with various disruptions

and changing conditions the problem needs to be studied with a dynamic approach.

Some of the numerous disruptions that may occur during wildfires are changes in

wind speed, wind direction, relative humidity, temperature. Although meteorologist

can feed the IMTs with highly reliable data by using advance equipment, changes

in weather conditions should never be under-estimated, as they severely impact

the speed, intensity and direction of wildfire spread. Other disruptions, such as

vehicles breakdowns, change in road conditions and travel times might also take

place in wildfire scenarios. Given the time-critical nature of wildfire response, it is

important that asset protection plans are updated and implemented as quickly as

possible following a disruption. To illustrate a dynamic scenario in an APP, the

following problem is considered and solved by CPLEX. Figures 4.3 and 4.4 show

the affect of change in the direction of fire spread on assets being impacted and the
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need for rerouting. When a change in wind direction occurs, rerouting of vehicles

take place from the assets last visited before the disruption. The rerouting attempts

to cover assets within their updated time windows according to the change in wind

direction.

Figure 4.3: An illustrative example. Assets and depots are defined in circular and triangular shapes, respectively.
Assets that are not under threat are shaded as grey, and the bold line shows the direction of fire spread.

Figure 4.4: An illustrative example. Assets and depots are defined in circular and triangular shapes, respectively.
Assets that are not under threat are shaded as grey, and the bold line shows the direction of fire spread.

In Figure 4.3, fire spreads at a rate of 10 km.h−1 in a linear fashion from left to right.

As a result of that five out of eleven assets are evaluated at risk. While the primary

routes are planned as can be seen in Fig. 4.3, a disruption occurs when vehicles

are at node E and a rerouting is required. In Figure 4.4, the wind direction and
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consequently the direction of the fire front changes before asset protection operations

being completed, as planned under the primary information. The change in the wind

direction necessitates updating assets that need to be protected. In Figure 4.4, the

fire front sweeps over assets in a vertical manner, unlike Figure 4.3. By comparison

of Figure 4.3 and 4.4, it can be observed that a new set of assets demand protection

while asset F is no longer at risk. Once the status of assets along with their time

windows were updated, rerouting was performed and resources were sent to the

assets at risk under the new scenario.

The approach developed in this thesis can be used to solve the APP in a dynamic

manner in a similar way to that presented in the illustrative example above. Our

solution approach can handle changes in conditions that might arise during operation

and require rerouting. Although unusual, in some cases rerouting might be required

more than once through the course of a protection operation. Considering the

computational resources required to solve each problem by commercial solvers, the

efficiency of our algorithm is an important and practical tool for IMTs operating

under such circumstances with tight time limits.

4.2 Proposed Methodology

To solve real size instances within suitable operational times, we propose an Adap-

tive Large Neighbourhood Search (ALNS) which provides a powerful algorithmic

framework. In this section, we describe the general framework of the algorithm

followed by details on the problem-specific heuristics.

4.2.1 Overview of the ALNS metaheuristic

The ALNS paradigm, introduced by Ropke and Pisinger (2006) which extends the

large neighbourhood search previously put forward by Shaw (1998). Compared to

many local search heuristics by which only minor changes can be applied on the

solution, the ALNS brings a larger search space into consideration. Within one
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iteration, ALNS can rearrange up to 40% of a solution. This attribute is partic-

ularly useful with tightly constrained routing problems. Suppose, for example, we

have a VRP with 100 nodes where the degree of destruction is 40%. There are

C(100, 40) = 100 !/(40 !, 60 !) = 1.4×1028 alternative ways to remove the customers.

This very specification leads to moving between promising areas in the feasible re-

gion and avoiding getting stuck in local optima during the search. The outstanding

performance of ALNS in solving various scheduling and routing problems has been

demonstrated. In a subsequent study, Pisinger and Ropke (2007) showed that the

improved ALNS algorithm gives promising results for different VRP variants. Since

then, ALNS has been used to solve variants of routing problems, e.g. the periodic

inventory routing problem (Aksen et al. (2014)), VRP with multiple routes (Azi

et al. (2014)), distribution problem of perishable products (Belo-Filho et al. (2015)),

e-grocery delivery routing problem (Emeç et al. (2016)), share-a-ride problem (Li

et al. (2016)), railway line planning problem (Canca et al. (2017)), and cross-dock

selection (Maknoon and Laporte (2017)). Our developed algorithm brings in a set of

destroy (hd) and repair (hr) heuristics. These heuristics are either introduced by au-

thors for efficiently handling the problem side constraints or are adapted versions of

the existing heuristics, mostly proposed by Demir et al. (2012); Ropke and Pisinger

(2006); Emeç et al. (2016). The problem specific heuristics are indicated with an

asterisk (*) when they are introduced. Please note that even the heuristics used by

applying modifications to the existing algorithms in the literature incorporate new

terms and ideas. We now describe the general framework of our proposed ALNS

approach below.

4.2.1.1 Initial solution construction

In chapter 3 we proposed a heuristic to solve the COPTW named as the Merit

Based (MB) heuristic. The heuristic is adapted to construct the initial solution in an

efficient manner. MB heuristic combines the strengths of classical CW heuristic with

a sweep algorithm while trying to maximise the total award by an additional term

in the saving function.The pseudo-code of the construction of the initial solution is
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described in Algorithm 4.1.

Algorithm 4.1: Pseudocode for the initial solution
Input: vector of temporary routes τ = (τ1, τ2, τ3), best routes (β), best collected

reward (αbest), set of all nodes (N), Merit Pair List (MPL), unvisited

vertices (U), vector of resource requirement Ri = (ri1, ri2, ri3), distance

matrix (dN×N), number of routes by vehicle type q ∈ Q (nq)

Output: αbest and β

1 function MB heuristicheuristic

2 forall ((i, j) ∈ N) do

3 Si,j ←
di0 + d0j − λdij

dmax
+ ϑ ∗ ψi + ψj

ψ
+ µ ∗ cos θij|dmax − (di0 + d0j)/2|

dmax

4 insert Si,j to a vector of tuples (i, j, Si,j) //initialising MPL

5 Sort MPL in descending order of Si,j values

6 forall (q ∈ Q) do

7 forall ((i, j) ∈ N) do

8 if ((oj + aj + dj0/velocity ≤ Tmax) &&(oi + ai + dij/velocity ≤ cj) &&

(riq 6= 0 && rjq 6= 0)) then

9 feasq,i,j ← 1 else

10 feasq,i,j ← 0

11 forall (q ∈ Q) do

12 forall (pairs ∈MPL) do

13 if (feasq,i,j == 1) then

14 assign (j ∈ U) to (subroutes ∈ τq)

15 V isitCountjq ← V isitCountjq + 1

16 else

17 if (nq < Pq) then

18 Open a new route and add (j ∈ U)

19 nq ← nq + 1

20 V isitCountjq ← V isitCountjq + 1

21 if (Ri == satisfied) then

22 Update U, αbest and β

23 return αbest and β

In Algorithm 4.1, at first, a merit pair list is initialised. As far as the parameters in

the saving function are concerned, constant values for (λ, µ, ϑ) triplets are defined,
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based on our study in chapter 3. The first term of the savings function enhances the

reshaping ability of the classical Clarke and Wright heuristic and its circumference

characteristic. The second term aims to protect assets with higher values earlier than

the rest. Motivation of the last term is to give early placement to pairs in vicinity

of the depot by including cos θij, which is the value of constructed angles between

pairs. After that, transitive closures are computed by considering the time windows

and asset protection requirements of assets. So that there is an arc connecting any

two vertices that have resource requirements in common and can be reached within

their time windows. Algorithm 4.1 returns αbest and β which are the total value of

the protected assets and the best set of routes. Note that, velocity and Tmax refer

to the vehicle speed and the planning horizon.

Synchronisation constraints in vehicle routing problems have been investigated by

Afifi et al. (2016) and Drexl (2012) developed heuristic solutions. The APP is an

interdependence problem due to the service synchronisation. It means that routes

are highly dependent in the sense that any minor change in orientation of the nodes

in any tour necessitates a check of every single constraint for all routes. This is

because insertion and removal of any node within the routes may impact on the

arrival and service start time in all the tours. Therefore, to evaluate the feasibility

of insertion at any point in a constant time, a calculation needs to be performed

initially and then updated after each insertion of visits. For each node i, we define

maxshifti to memorise the allowed delay in arrival to node i where an unvisited

node get inserted before i. To find maxshifti the following variables are defined

and should be calculated beforehand.

arrivei = departurei−1 + traveltimei−1,i (4.1)

Due to the synchronised visit, each node may need to be visited within multiple

routes and i ∈ T represent the routes that node i belongs to. oi in the following

equation refers to the opening of the time window.

startsynci = max{max
i∈T

arrivei, oi} (4.2)
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By having the synchronised start at node i the departure time is as below.

departurei = startsynci + ai (4.3)

Subsequently the waiting time at node i can be calculated as follow.

waiti = startsynci − arrivei (4.4)

For a given route τ , a visit at node i is defined by τ(i). The value of maxshiftτ(i) in

the equation 4.5 is equal to the time that the arrival at point i can be delayed while

the feasibility conditions are met. This amount of delay is equal to the summation

of waitτ(i+1) and maxshiftτ(p+1) unless it violates the time window bound.

maxshiftτ(i) = min{cτ(i) − startτ(i),

waitτ(i+1) +maxshiftτ(i+1)}
(4.5)

The value of the maxshiftτ(i) in the equation 4.5 must be calculated in a backward

manner. It means that we start our calculation from the last visit in each route

where maxshift for the subsequent visit (depot) can be calculated independent of

other nodes. On the other hand, as visits need to be synchronised, the minimum

value of maxshift for each node in existing routes has to be taken. Therefore, for

the maxshiftτ(i) if there exist i+ 1 ∈ V such that {τ(i), τ(i+ 1)} ∈ T we have:

maxshiftsyncτ(i) = min{maxshiftτ(i),

min
i∈T

maxshiftτ(i+1)}
(4.6)

To define whether an insertion of a node z between i and i+ 1 in route τ is feasible,

we need to calculate the generated shift (shiftτ,iz ).

shiftτ,iz = traveltimei,z + waitz+

servicetimez + traveltimez,i+1 − traveltimei,i+1

(4.7)
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If the value of shiftτ,iz is less than or equal to the waiti+1 + maxshiftsyncτ(i+1), the

insertion will be considered valid.

Since the visits have to be synchronised, an update is required through all routes

after each insertion. Transitive closures (Aho et al. (1972)) are used in order to filter

infeasible arcs to avoid infinite loops. Arcs that connect nodes with no resource

requirements in common are infeasible to traverse. For example, travelling from i to

j should be marked as infeasible where i only needs two visits by vehicle type1 and

j two visits by vehicle type2 for protection. Moreover, cross synchronisation needs

to be filtered out, e.g. when node j is visited after i by the first vehicle, the visit

of i after j should be prohibited in other routes. Also, we filter out the arcij when

oi + ai + tij > cj, at the preprocessing step of the algorithm.

4.2.1.2 General flow

Initially, a feasible solution S0 ← β is formed by using the MB heuristic. At iteration

i, a removal heuristic d ∈ hd is selected dynamically and adaptively to destroy the

the current feasible solution partially. Then the resulting solution S−i undergoes

for reconstruction with the hope of improving the objective function by choosing a

repair heuristic r ∈ hr based on a calculated probability. The new solution S+
i is a

temporary feasible solution which can be discarded or replaced with the best current

solution according to the change in the objective function. The performance of the

heuristics will be recorded to use in the next iterations for dynamic and adaptive

updates of the selection probabilities.

4.2.1.3 Adaptive weight adjustment procedure

There is no heuristic that can perform efficiently for all types of problems. Since

the APP is new in nature, it may be difficult to anticipate the performance of a

heuristics according to the problem and instance class. The ALNS enables us to

pick as many destroy and repair heuristics as we want. Assuming that the past

success of the chosen heuristics indicates their future performance, the algorithm
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assigns a weight to each heuristic based on how they impact the objective function.

The algorithm runs for N number of iterations, divided into k segments. Therefore,

the algorithm iterates over each segment for n = N
k

. Each heuristic s ∈ hd ∪ hr is

associated with a weight W (s) and a score πs. Initially, equal weights and score of

zero are assigned to all heuristics. We reset the value of πs to zero before starting

each segment. After a solution goes through the destroy and repair process the

result will drop into one of the following cases. (1) If the new solution is the best

one found so far, the corresponding scores of the repair and destroy heuristics are

increased by σ1. (2) If the new solution improves the current best one but not the

best known so far then the scores are increased by σ2. (3) If the new solution is

accepted, even though it is worse than current best one, the scores are incremented

by σ3.

The probability to select a heuristic at each iteration is as below.

p(rs) = W (rs)∑R
j=1W (rj)

, p(ds) = W (ds)∑D
j=1W (rj)

(4.8)

In equation 4.8, weights dynamically and adaptively are adjusted after n iterations

according to their performance. At the end of each segment weights are updated as

W (h)

(1− ρ)W (h) + ρπ(h)
u(h) , if u(h) > 0

(1− ρ)W (h), if u(h) = 0
(4.9)

,where ρ is a parameter called reaction factor. This parameter can regulate about

after how many iterations most ineffective heuristic should not play any substantial

role. Thus, for example, if we want to have a 0.01% of the Winitial for ineffective

heuristics after 1000 iterations, when N = 10000 and n = 100, the minimum value

for ρ can be calculated by equation 4.10 as, 1
1000 > (1− ρ) 1000

100 → ρ ≥ 0.602.

W (h) ≈ Winitial(1− ρ)[ N
n

] (4.10)

In equation 4.9, π(h) and u(h) record the number of times a heuristic is selected by

a roulette-wheel mechanism and associate weight of the heuristic.
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4.2.1.4 Acceptance and stopping criteria

At the master level of the ALNS algorithm, we use an acceptance criterion based on

a Simulated Annealing (SA) local search framework (see Van Laarhoven and Aarts

(1987)). Let z(S) and z(S∗) denote the objective value of the current solution and

the best known solution, respectively. The initial temperature Tinitial should be set

in a way to accept solutions with δ% worse objective value compare to z(Sinitial)

with the probability of Paccept.

Tinitial = (Sinitial ∗ δ)
log(1/Paccept)

(4.11)

The achieved initial temperature by equation 4.11 cools down with a fixed cooling

rate 0 < ε < 1, (T = ε ∗ T ). Following the SA framework, solutions with worse

objective values would be accepted with probability of exp( (z(S)−z(S∗)
T

) and those

improving the objective value will always be accepted.

4.2.1.5 Applying noise

Some heuristics may insert each node at its best place iteratively, but locally best

moves can increase the chance of getting stuck in local optimum (Ropke and Pisinger

(2006)). To apply diversification to the search, we use a noise-imposed insertion

heuristic beside the clean insertion which uses the original saving list. Additionally,

there is a random removal heuristic among the destroy heuristics which derives a

significant amount of randomisation. It is worthwhile to mention that the imple-

mentation of noise and randomisation may not always result in a better solution;

however it increases the chance of exploring new parts of the search space with the

hope of improving the objective function.

4.2.2 Removal Algorithms

Before a removal heuristic can be used to destroy a solution partially, the algorithm

needs to determine the degree of destruction, D. Large values for D can assist the
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algorithm towards overcoming the tightly constrained search space of the problem

and give more freedom to the repair function. The number of nodes D to be removed

is a random number from [0.1K, 0.4K], where K is the number of nodes covered by

all constructed routes while their resource requirements are satisfied.

4.2.2.1 Random Removal

The random removal randomly selects D nodes and removes them from all existing

routes. This heuristic is important as it performs randomly regardless of any cost

function or criteria which creates diversification.

4.2.2.2 Worst-Distance Removal (WDR)

We employ two classes of WDR, the classic WDR that considers the cumula-

tive distance, and the relative distance to the protection value which looks at the

cost/benefit ratio. A binary random variable is used to pick either the classical or

new WDR each time we iterate over the algorithm. For each node i, the distance-

cost can be calculated as DCi = dli+dij, where l and j are preceding and succeeding

nodes on different routes for the vertex i. The algorithm sorts nodes in descending

order based on the distance-cost, sorted list O, and removes the node in position

bΥκ|O|c from the list. Parameters 0 < Υ < 1 and κ ≥ 1 introduce randomness to

avoid repeated removal of the same nodes. Alternatively, the DCi

ψ
ratio can be used

before sorting the list. We name the process of node selection for removal and using

the cost/benefit logic as the selection mechanism.

4.2.2.3 Worst-Time Removal (WTR)

The WTR is similar to WDR when we look at the general flow; however it considers

the TCi = |startsynci − oi|, where startsynci is the synchronised service starting time

and oi is the earliest service time. Note that we use the same mechanism as in WDR

to choose between classical WTR or cost/benefit WTR.
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4.2.2.4 Shaw Removal (SR)

Many heuristics have been developed in attempt to measure the relatedness between

nodes, but SR (Shaw (1998)) has got more attention since it integrates several

criteria. The SR algorithm is modified for the APP as below:

Γij = θ1dij + θ2|oi − oj|+ θ3Ωij (4.12)

where θ1 − θ3 are the shaw parameters and Ωij can get any value from the set

β = {−3,−2,−1, 1} depending on number of same routes that node i and j belong

to. The Ωij gets value of 1 when i and j are not assigned to any mutual route at all.

This value decreases as the number of mutual routes for i and j increases (e.g., -3

for three mutual tours). Γij decreases as the relatedness of two nodes increases. The

algorithm starts with a random node and calculates the relatedness value of other

nodes with the selected one by using equation 4.12. The node in position bΥη|O|c

will be removed from the relatedness list |O|, where η ≥ 1 is the Shaw removal

determinism factor and 1 ≥ Υ ≥ 0 is a random number.

4.2.2.5 Proximity-Based Removal (PR)

A special case of SR algorithm where θ1 takes value 1 and θ2 and θ3 are 0.

4.2.2.6 Time-Based Removal (TR)

A special case of SR algorithm we set θ2 = 1 and θ2 = θ3 = 0.

4.2.2.7 Requirement-Based Removal (RR∗)

A special case of SR algorithm where θ3 takes value 1 and θ1 = θ2 = 0.
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4.2.2.8 Waiting Time-Oriented Removal (WTOR∗)

This heuristic considers removing nodes with highest waiting time WTi = startsynci −

arrivei, caused by the synchronised start time. Same procedure as WDR is used

for picking a node for removal and choosing between classic WTOR or cost/benefit

WTOR.

4.2.2.9 Worst-Requirements Removal (WRR∗)

In the APP, multiple resources are required to satisfy the protection requirements of

an asset. The WRR removes nodes with highest cumulative resource requirements.

The selection mechanism is used to take advantage of the cost/benefit approach.

4.2.2.10 Relative-Requirement Removal (RRR∗)

Let riq and Zq ∈ {−1, 0, 1} denote the number of vehicle type q required to satisfy

the requirements of node i and the score of vehicle type q, respectively. Vehicles

that are low in number have lower scores, e.g. when number of vehicle types are

V 1 < V 2 < V 3 we have Z1 = −1, Z2 = 0 and Z3 = 1. Therefore, for each

node, we can compute ω such that ω = riq ∗ Zi. After all, values can be sorted

in ascending order and we remove nodes with applying the same logic as WDR

selection mechanism.

4.2.2.11 Cluster Removal (CR∗)

This algorithm categorises nodes based on their resource requirements. Then, the

CR heuristic removes nodes that are in the same cluster with the hope of possible

exchanges and finding better solutions.
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4.2.2.12 Historical-Node Removal (HR∗)

The HR heuristic takes advantage of the historical records when removing nodes.

To achieve this purpose we developed a cost function for the APP as below.

fi = WTi + DCi − ψi (4.13)

The first two terms can be calculated by normalisation, x = (x−xmin)/(xmax−xmin),

of the achieved values in WTOR and WDR heuristics, and the last term is the

normalised protection value of the associated asset. Let f ∗j = minm=1,...,i−1{fjm}

be the best position cost of node j before iteration i. The HR heuristic removes,

D = degreeofdestruction, nodes which have the worst j∗ = argmaxj∈V {fji − f ∗j }.

4.2.2.13 Time Windows-Oriented Removal (TWR∗)

The TWR heuristic is another problem-specific algorithm trying to make room for

nodes with limited insertion possibilities. In the APP, time windows are defined

based on the cartesian coordinates. The TWR heuristic divides the whole area to

four different zones (see Figure 4.5).

Figure 4.5: An illustrative example for TWR

The number of nodes that should be removed Λi from zones ZI,...,i−1, when D, tu, zui
denote the degree of destruction, total unvisited nodes and number of the unvisited
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nodes in the zone i, is Λi = D∗zui

tu
. For instance, when ΛIII = 10 it means that total

number of 10 nodes must be removed from zone I, zone II and zone III. While Λi

defines the number of nodes that has to be removed, the removal at each iteration

will follow the same procedure as HR.

4.2.3 Insertion Algorithms

In the final repair phase of the algorithm, partially destroyed solutions will evolve

into complete feasible solutions.

4.2.3.1 Classical MB Heuristic∗

This heuristic attempts to insert unvisited nodes with highest value in vicinity of

vertices with maximum possible value of Sij. Although the algorithm seeks to find

the best possible position for insertion with highest saving value, it may increase

the chance of getting trapped at local optimum.

4.2.3.2 Noise-Imposed MB Heuristic (NMBH∗)

To apply further diversification to the search, we use the NMBH algorithm beside

the clean insertion. let 0 < αnoise < 1 denote a noise parameter, then ∆ = αnoise ∗

max{Sij} is the allowed amount of noise. In the NMBH heuristic we consider

Sij = Sij + ξ where ξ ∈ [−∆,∆].

The master-level overview of the presented ALNS algorithm is provided in the fol-

lowing pseudocode, Algorithm 4.2.

The general framework of our algorithm when certain parameters, such as predefined

vehicle speed, fire velocity and time windows are involved have been explained.

When dynamic routing is concerned as explained in section 4.1, the algorithm can

also be implemented to solve the problem at multiple stages. Therefore, once a

condition changes (like, time windows, wind speed, road accessibility and so forth)

the algorithm can start rerouting. One way of doing so is to start a new routing
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Algorithm 4.2: Pseudocode for the ALNS Algorithm
Input: N , n, hd, hr
Output: S∗

1 function ALNS algorithm with simulated annealing
2 Generate initial solution S0 using MBheuristic
3 i← 1
4 Let S∗ ← Si ← S0
5 Initialise P (rs), P (ds) for each s ∈ hd ∪ hr
6 Initialise Tinitial by equation 21
7 while (i ≤ N) do
8 j ← 1
9 while (j ≤ n) do

10 Select a removal heuristic d ∈ hd → (S−i ) Select a repair heuristic
r ∈ hr → (S+

i )
11 if z(S∗) ≤ z(S+

i ) then
12 S∗ ← S+

i

13 if z(Si) ≤ z(S+
i ) then

14 Si ← S+
i

15 if z(Si) ≥ z(S+
i ) then

16 Using SA criterion to accept/reject S+
i

17 Update πs for the selected heuristics
18 i← i+ 1
19 j ← j + 1
20 Update adaptive weights of heuristics, s ∈ hd ∪ hr
21 Update temperature
22 return S∗

problem with the updated time-windows. Other than this the main difference is

that instead of starting at the depot, the vehicles are re-routed from their current

first-phase location.

4.3 Computational Study

We carried out a set of computational experiments to validate the performance of

the proposed ALNS approach. We perform further tests on the large set of generated

benchmark instances. As the focus is on large-scale problems, the problem-specific

attributes are added to extended VRPTW benchmarks of Gehring and Homberger

(1999). The problem attributes are added to the benchmark sets as described in
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section 4.1. The sixty problems of each size are divided into R1, C1, RC1, R2, C2

and RC2 classes based on their spatial distribution over a 140× 140 grid and solved

with two sets of vehicle numbers. In other words, there are ten instances under each

class and a total of six classes exist (6∗10 = 60), which are solved with two different

sets of vehicle numbers (60 ∗ 2 = 120) at three various sizes (120 ∗ 3 = 360).

In the first study, truncated benchmark sets are designed to solve sufficiently small-

size instances by means of both the CPLEX commercial solver and the ALNS al-

gorithm. We further show the efficacy of the ALNS on large-size instances, where

they are compared to the CPLEX best bound. All the above computational work is

performed on a node of the Australian National Computational Infrastructure using

a single thread. Each node is equipped with dual 8-core Intel Xeon (Sandy Bridge

2.6 GHz) processors and 32GB of RAM. The algorithm was coded in C++, using a

GCC 6.2.0 compiler. Where applicable, MILP models were solved by the CPLEX

12.7 commercial solver in deterministic mode. All tables show the execution times

as CPU time in seconds.

4.3.1 Parameter Tuning

Our tuning methodology has been carried out by following the literature ( Ropke

and Pisinger (2006); Demir et al. (2012); Emeç et al. (2016)). To get the most infor-

mation about the parameters contributions we omitted C1 and C2 problem classes

as they mostly converge to optimal solutions. Subsequently, R104, R206, RC104,

RC108 and RC206 were selected to determine the value for following parameters.

The initial value of parameters are set in line with those by Ropke and Pisinger

(2006) and Emeç et al. (2016). We perform five runs on tuning instances considering

ten different values for each parameter. Thereafter we set each parameter on the

value that yield the least average deviation from the best achieved solution.
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Table 4.1: Parameters used in the proposed algorithm

Description Parameter Value
Parameters for MB heuristic (λ, µ, ϑ) (2,1,3)
Improving solution score σ2 12
Number of iterations N 3000
Number of iterations over each segment n 100
Roulette wheel reaction factor ρ 0.1
Global solution score σ1 35
Worse solution score σ3 5
Shaw parameters θ1, θ2, θ3 (3,13,7)
SA parameter δ 0.05
Cooling rate ε 0.9999
Noise parameter αnoise 0.6
WDR determinism factor κ 8
Shaw determinism factor η 12

4.3.2 Experiments on Asset Protection Problem

In this section, we generate instances with 35, 100 and 200 nodes to solve them by

using the proposed methodology. For validation and performance evaluation of the

ALNS, we solve truncated benchmark sets by means of both the CPLEX and the

ALNS algorithm. For larger instances, we present our results as benchmarks for

future research.

4.3.2.1 Numerical Results for Small-Size Instances

We solve small instances (35 nodes) with two different set of vehicle numbers((V 1 =

4, V 2 = 3, V 3 = 2) and (V 1 = 5, V 2 = 4, V 3 = 3)). This is to verify the reliability

of ALNS in different scenarios. We demonstrate the results of the performed tests

in Table 4.2. The average and best results achieved in 10 runs of ALNS algorithm

are compared to those by CPLEX. The proposed algorithm performs similarly in

all examined cases which assures its reliability for further runs on larger problems.

Note that instances with more than 35 nodes cannot be solved to optimality within

the time limit of 48 hours for each class of instances.
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Table 4.2: A summary of results for 35-node. Vehicle numbers are defined in two categories:
Set1=(V1=4,V2=3,V3=2) and Set2=(V1=5,V2=4,V3=3).

Instances #Vehicles
CPLEX MB heuristic

(%)

ALNS OPT
Gap (%)

Asset Value
Protected(%)

Time
(sec)

Asset Value
Protected(%) Time

(sec)
Avg Best Avg Best

C100 Set1 77.56 2,632.71 55.47 76.41 77.56 9.37 -1.49 0.00
Set2 89.82 6,747.80 67.59 87.98 89.82 10.08 -2.03 0.00

C200 Set1 71.23 2,065.90 51.67 70.17 71.23 9.29 -1.49 0.00
Set2 83.64 10,641.48 61.08 81.63 83.64 9.42 -2.38 0.00

R100 Set1 76.20 24.01 57.87 74.79 75.91 9.08 -1.85 -0.38
Set2 89.19 128.90 71.33 87.12 89.04 9.48 -2.31 -0.17

R200 Set1 84.58 3,076.49 65.62 82.73 84.38 9.44 -2.20 -0.23
Set2 95.28 5,057.62 76.75 93.52 95.00 9.90 -1.85 -0.29

RC100 Set1 86.11 4,511.13 64.03 84.95 86.11 9.84 -1.34 0.00
Set2 96.58 10,774.72 75.53 95.02 96.58 10.37 -1.62 0.00

RC200 Set1 83.07 18,181.56 62.56 81.33 82.74 9.59 -2.10 -0.39
Set2 95.71 9,164.91 73.25 93.58 95.71 10.23 -2.22 0.00

Table 4.3: A summary of results for 100 nodes. Vehicle numbers are defined in two categories:
Set1=(V1=6,V2=5,V3=4) and Set2=(V1=7,V2=6,V3=5).

#Vehicles
100

Time
(sec)

CPLEX MB heuristic
(%)

ALNS(%)
LB(%) UB(%) Avg Best

C100 Set1 138.47 47.21 95.78 40.87 60.17 61.84
Set2 150.39 65.73 99.52 45.42 66.66 68.35

C200 Set1 133.48 48.51 94.64 38.82 59.04 60.72
Set2 143.92 61.24 99.29 43.15 64.87 66.58

R100 Set1 134.47 53.96 96.20 46.19 61.19 62.50
Set2 138.97 56.68 99.74 52.19 68.45 69.86

R200 Set1 135.75 59.36 99.71 46.78 63.64 65.30
Set2 144.65 64.94 99.68 51.86 69.76 71.38

RC100 Set1 143.41 60.59 98.52 49.43 66.77 68.59
Set2 149.53 67.72 99.89 53.06 73.21 75.17

RC200 Set1 142.97 63.87 98.92 47.35 67.17 69.13
Set2 146.91 55.48 99.90 52.88 73.12 74.71

In Table 4.2 computation times are reported in seconds and the optimality gap is

defined by ”OPT Gap %” and reported for the both average and best run of the

ALNS. Furthermore, initial solutions that feed the algorithm are reported under the

tag of ”MB heuristic %”. This value shows how much the ALNS improves over the

initial solution found by MB heuristic. Our algorithm improves the initial solution

(MBheuristic%) by 20% of the total value of assets to be protected. Also, the
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Table 4.4: A summary of results for 200-node. Vehicle numbers are defined in two categories: Set1=(V1=9, V2=8,
V3=7) and Set2=(V1=12, V2=11, V3=10).

Instances #Vehicles
200

Time
(sec)

CPLEX(%) MB heuristic (%) ALNS(%)
LB UB Avg Best

C100 Set1 589.60 21.37 100 32.21 56.13 57.68
Set2 619.33 31.73 100 38.90 65.11 66.57

C200 Set1 542.64 15.33 100 29.23 51.06 52.60
Set2 566.36 19.96 100 35.99 60.34 61.56

R100 Set1 539.19 19.64 100 39.53 58.23 59.60
Set2 585.49 27.62 100 46.57 69.04 70.29

R200 Set1 542.78 17.59 100 36.82 57.75 59.27
Set2 589.17 21.94 100 43.13 68.74 73.58

RC100 Set1 561.80 18.87 100 37.16 60.90 62.18
Set2 607.04 32.62 100 43.92 71.21 72.46

RC200 Set1 570.06 21.84 100 36.86 61.45 62.66
Set2 633.17 23.63 100 44.29 72.14 73.58

average gap of 1.9% and 0.12% in the last two columns of the table from optimal

solution prove the efficacy of the ALNS algorithm. Comparing the achieved results

by MB heuristic and ALNS to the optimal solutions reveals that the ALNS improves

the high quality initial solution significantly and often converges to the optimal

solution. The average run time of ALNS is only 9.67 seconds whereas CPLEX

spent 6,083.97 seconds on average. Among 120 instances solved by both CPLEX

and ALNS, the proposed algorithm achieves optimal solution for about 95% of the

problem instances. The ALNS achieves optimal solution for all instances in which

nodes are displaced in cluster manner (C) and most of the random clustered class

(RC). The deviation from optimal solution mostly occurs when vertices are randomly

distributed.

4.3.2.2 Numerical Results for Large-Size Instances

To test the utility of our algorithm for operational purposes we solve large instances

with 100 and 200 nodes in our experimental study. Since there is no benchmark to

compare our results with, we run CPLEX for nine hours and report the best upper
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bound and best integer solution. Note that for the sake of better comparison, results

are presented as a percentage of the total value of assets that required protection.

The results for 100-node instances are illustrated in Table 4.3. The number of vehi-

cles are considered proportional to the problem size in order to cover a substantial

portion of available assets. The second column defines the set of vehicle numbers

which are either set1=(V1=6, V2=5, V3=4) or set2=(V1=7, V2=6, V3=5). In Ta-

ble 4.3 CPLEX covers about 57% of the total value of assets, while the ALNS covers

67.84%, on average. It can be seen that CPLEX is unable to handle the complexity

of the APP when it comes to large scale instances, while the ALNS achieves better

solutions than CPLEX in a shorter computation time. This is more evident when

we increase the problem size by 100 nodes in Table 4.4. However, a better solution

by ALNS does not guarantee its quality as the gap between the best integer and

the CPLEX bound is still large. It is important to note that running CPLEX for a

longer time to achieve a better upper bound would not be helpful. To investigate

this claim, we performed a few experiments by running CPLEX for 48 hours to find

a better upper bound. The results showed a slight improvement of about 0.5% in

the upper bound. Therefore, as the results need to be achieved in operational time

and no benchmark exists for the same type of problem, the quality of the results are

validated by comparing to the optimal solution for small instances and the Lower

Bound (LB) for larger instances.

In Table 4.4 two sets of vehicle numbers are defined, namely set1=(V1=9, V2=8,

V3=7) and set2=(V1=12, V2=11, V3=10). Based on the results presented, in all

instances the ALNS performs much better than CPLEX in terms of computational

time or solution quality. The ALNS covers on average 40% more value of assets

among the large instances with 200 nodes compared to the best solution by CPLEX,

while improving the initial solution by 23.96%. The computation time for 100 and

200 node instances are 2.3 and 9.6 minutes, respectively. This is considered to be

within the times suitable for operational purposes.
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4.4 Summary and discussion

The loss of an infrastructure asset can cause major disruption to daily life and for

an extended period. When these assets are threatened by runaway wildfires the de-

ployment of resources to reduce their vulnerability is very important. It is therefore

desirable to optimally deploy resources to try to save as many assets as possible.

The optimal deployment problem for asset protection, however, is NP-hard and be-

yond human ability to solve especially under severe pressure ot time. Moreover, we

found that using one of the most advanced commercial solvers available, in general

did not produce the results required quickly enough for operational purposes.

In this chapter, we developed a solution scheme for solving the APP within times

that make it suitable for operational purposes. The efficacy of the solution pro-

cedure was validated through extensive computational experiments. To evaluate

the solution approach, new benchmark instances were generated based on problem-

specific attributes. Our solution approach is inspired by methods in the literature

(see Ropke and Pisinger (2006), Emeç et al. (2016)). We have, however, designed

new removal and insertion heuristics and modified existing ones to assist us toward

finding high quality solutions. We believe these heuristics can be implemented for

solving other routing problems particularly those with synchronisation constraints.

Our computational experiments reveal the efficacy of the solution procedure under

tight time limits. The results show that for problems up to 35 nodes the ALNS

heuristic can generate near-optimal solutions in computational times of a few sec-

onds. For larger problems in several minutes the ALNS can generate solutions that

in most cases enable a three-fold increase in the number of assets treated compared

with the best solutions CPLEX can achieve in nine hours. Thus, in the context of

the APP the ALNS offers incident-management controllers a tool that may lead to

significant reduction in losses during extreme fire events.



Chapter 5

An adaptive large neighbourhood

search for the COPTW

Following the proposed solution approaches in chapters 3 and 4, we further improve

the proposed Adaptive Large Neighbourhood search (ALNS), in chapter 4, to im-

plement on the COPTW . The COPTW is a broader class of problems of which the

APP is a special case. In this chapter we propose an ALNS algorithm that pro-

vides a powerful framework for solving the COPTW. Newly designed removal and

insertion heuristics are integrated in the body of the ALNS and evaluated based

on their performance. Achieved improvements are reported after exclusion of the

inefficient heuristics. In this section, we define the ALNS algorithm and explain the

implemented heuristics.

5.1 ALNS procedure

The ALNS paradigm, introduced by Ropke and Pisinger (2006) which extends the

large neighbourhood search previously put forward by Shaw (1998). The proposed

ALNS algorithm consists of node removal and node insertion heuristics. The ALNS

applies removal and insertion heuristics on the initial solution until the termina-

tion conditions are met. Stopping conditions for the ALNS heuristic are the total
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number of iterations and the run-time limit. Through every iteration (i ∈ N) a

removal heuristic (d ∈ hd) is selected and partially destroys the feasible solution

(S−i ). Thereafter, a repair heuristic (r ∈ hr) inserts unvisited nodes into a sufficient

number of routes in order to achieve a better solution (S+
i ). In the ALNS, wide

ranges of removal and insertion heuristics are implemented and used dynamically

and adaptively according to their past performance. This leads to the exploration of

large neighbourhoods and enables escape from local optimal solutions. An adaptive

weight W (h) and a score π(h) is defined for each heuristic (h ∈ hd∪hr). Initially, all

weights are equal and scores are set to be zero. The algorithm runs for N iterations,

divided into k segments and therefore iterates n = N
k

time over each segment. The

corresponding score of removal and repair heuristics are increased by σ1, σ2 and σ3

after each iteration. If the new solution improves the best solution (S∗) so far, the

value of σ1 is added to the score of the associated removal and repair heuristics. The

value of the σ2 is added to scores if the resulted solution improves the best current

solution through a segment. Finally, a value of σ3 is added if the solution is accepted

despite the degraded value of the achieved solution. After each segment, weights of

algorithm h ∈ hd ∪ hr updates by using the formula (1− ρ)W (h) + ρ × π(h)/u(h)

where parameter ρ is called the reaction factor regulating the number of iterations

that ineffective algorithms should not substantially contribute in the solution. Also,

associate weights and number of times a heuristic is selected are defined by π(h)

and u(h) .The probability of using an algorithm in segment s + 1 is defined based

on the formula probs+1(h) = W s(h)/∑R
j=1W

s(hj) where the denominator calculates

the cumulative weight of destroy/repair heuristics and the scores are set back to

zero when a segment has been completed.

It has shown by Santini et al. (2018) that acceptance criterion can significantly

impact the solution quality. For this reason, we take advantage of the Simulated

Annealing (SA) (Van Laarhoven and Aarts (1987)) local search framework to escape

from local optimal solutions by accepting solutions with worse objective values with

probability exp( (z(S)−z(S∗)
T

), while those with improved objective values will always

be accepted. In the SA, z(S) and z(S∗) represent the objective value of the current

and best solution. The initial temperature Tinitial in a way to accept solutions with
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δ% worse objective value compare to z(Sinitial) with probability of Paccept. The initial

temperature can be set as (Sinitial ∗ δ)/ log(1/Paccept) where 0 < ε < 1 is the cooling

rate, (T = ε ∗ T ).

5.2 Insertion feasibility

To efficiently conduct insertion operations, we filter out infeasible arcs through the

search process, as discussed in chapter 4. We initially filter arcij when oi+ai+tij > cj

for all nodes. Also, due to the requirement of nodes that need to be visited by

multiple routes, we filter visiting of node i after j if j has already been inserted

before i in one of the existing routes. We finally define a binary matrix named

as the ”feasibility matrix” to facilitate the insertion process. Most importantly, to

evaluate the possibility of an insertion in time efficient manner, we need to define

maxshifti. This is to determine the existing amount of spare time that can be

invested to meet a node i before arrival (see chapter 4).

5.3 Insertion algorithms

To handle The complexities of synchronous visits we implement the proposed Merit

Based (MB) heuristic as explained in chapter 3. The MB heuristic is utilised with

different approaches to get the most out of it, namely classical MB heuristic, noised

imposed MB heuristic, cumulative MB and noised imposed cumulative MB heuristic.

In addition to variants of the MB heuristics, an algorithm designed to take relative

travel time into account and named as greedy time heuristic. A total of five insertion

algorithms were designed and are illustrated below.
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5.3.1 Classical merit based heuristic

The MB heuristic constructs a list of tuples < i, j,Mij > ∀i, j ∈ N . The Mij refers

to the merit value which is calculated by using the following function.

Mi,j = ϑ
ψi + ψj

ψ
+ di0 + d0j − λ dij

dmax
+ µ cos θij

|dmax − (di0 + d0j)/2|
dmax

. (5.1)

In equation 5.1, θij is the angle between the vector from the depot to node i and

the vector from the depot to node j, ψi and ψ represent the score for each node

and the average score of all vertices. Also, in the above formulation, dij is the

distance between nodes i and j and dmax = max {di,j; ∀i, j ∈ N} used to scale.

To ensure the assignment of nodes with highest merit values prior to others, we

implemented parallel route construction in the algorithm. Moreover, best values for

three parameters, ϑ, λ and µ, are defined in the parameter tunning of the algorithm.

The Algorithm 5.1. represents the MB heuristic. The algorithm starts with ranking

unvisited nodes according to the ratio ψm√
rm

where ψm and rm are the rewards (scores)

available and resources (visits) required at node m. . By experimentation the square

root in the denominator was found to yield better results than a straight ratio of

reward to required resources. Then the algorithm creates the euclidean distance

matrix and feasibility matrix as explained in section 5.2. A Merit Pair List (MPL)

is constructed and sorted in descending order of Mi,j in lines 5 and 6. The algorithm

iterates over each node in set U (line 7) for every pair (line 9) to assign unvisited

nodes into the existing subroutes. If resources allow a new route would be opened in

line 17. If the algorithm accomplishes a successful insertion, the relevant information

is updated in lines 22-25.
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Algorithm 5.1: Pseudocode for the merit based heuristic
Input: best collected reward (α), best routes (β), unvisited vertices (U), Merit

Pair List (MPL), score of node m (ψm), maximum number of travelling

team members (P ), number of sub-routes (n), service requirement of node

m (rm), distance matrix of nodes(dN×N) , node visited before node q (q′)

Output: β and α

1 function MB heuristic

2 sort U in descending order of ψm√
rm
, ∀m ∈ U

3 generate dN×N
4 calculate feasibility matrix

5 calculate merit list and sort(< i, j,Mi,j >)

6 Mi,j ← ϑ
ψi + ψj

ψ
+ di0 + d0j − λ dij

dmax
+ µ cos θij

|dmax − (di0 + d0j)/2|
dmax

7 for (m ∈ U) do

8 L← β

9 for (pairp,q ∈ MPL) do

10 for (subroutes ∈ L) do

11 if (m == p && q ∈ L && V isitCountm < rm) then

12 if (shiftτ,i+1
k ≤ waiti+1 +maxshiftsyncτ(i+1)) then

13 remove arc (q′, q), add arcs (q′,m) and (m, q)

14 update maxshifts and insertion feasibility matrix

15 Update L

16 V isitCountm ← V isitCountm + 1

17 if (n < P && V isitCountm < rm) then

18 Create a new route and add m

19 Update L

20 n ← n+ 1

21 V isitCountm ← V isitCountm + 1

22 if (V isitCountm == rm) then

23 update β

24 update α

25 update U

26 return β and α

5.3.1.1 Noise-imposed merit based heuristic

The noise-imposed merit based heuristic (NMB) heuristic is used to bring additional

diversification to the search (Emeç et al. (2016)). We define a noise parameter

0 < αnoise < 1, then ∆ = αnoise ∗ max{Mij} is the allowed amount of noise. The
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NMB heuristic updates merit values by Mij = Mij + ξ where ξ ∈ [−∆,∆].

5.3.1.2 Cumulative merit based heuristic

Through the insertion process using the classical MB heuristic we look at the merit

value Mi,j when insertion of unvisited node i is ongoing and j is the succeeding

node. However, we may need to consider the preceding node to accomplish an

efficient insertion. To incorporate both succeeding and preceding nodes into the

merit values we make a tuple of four components (< i, j, k,Mi,j,k >) where Mi,j,k is

the merit value that can be achieved by insertion of the unvisited node k between

nodes i and j.

Mi,j,k = Mi,k +Mk,j −Mi,j (5.2)

The Cumulative Merit Based (CMB) heuristic uses the calculated merit values for

pairs in equation 5.1 and determines values of Mi,j,k by equation 5.2. Figure 5.1

illustrates insertion operation before (figure 5.1(a)) and after (figure 5.1(b)) using

equation 5.2. Insertion by equation 5.1 may result a route as defined in Figure

5.1(a). In the generated merit pair list using the equation 5.2, as both succeeding and

preceding nodes are considered, the Mi,j,k gets a larger value than Mi,L,k. Therefore,

insertion will take place as shown in Figure 5.1(b) which is the optimal assignment.

Figure 5.1: A sample improvement by cumulative merit-based heuristic.
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5.3.1.3 Noise-imposed cumulative merit based heuristic

The same approach as in section 5.3.1.1 is used for the noise-imposed cumulative

merit based (NCMB) heuristic to explore a broader search space.

5.3.1.4 Greedy time heuristic

As travel time minimisation may result in an increase in the number of nodes visited,

and hence in the rewards collected, the Greedy Time (GT) heuristic is developed.

The GT heuristic focuses on travel time minimisation, we generate a list of tuples

< i, j, k, TRijk > and sort them in ascending order of TRijk values. The TRijk is

the time ratio of node k for insertion between nodes i and j. Note that, although

equation 5.3 focuses more on travel time, it includes other problem specific attributes

in the denominator.
TRijk = ti,k + tk,j − ti,j

ψk√
rk/P

(5.3)

In equation 5.3, the numerator calculates the increase in the travel time as a result

of inserting node k between i and j. The ψk is the associated score for node k which

is divided by the square root of the ratio between node k requirements (rk) and total

number of team members available(P ).

Figure 5.2: A sample insertion by greedy time heuristic.

In Figure 5.2(a) two alternatives are shown for insertion between nodes i and j.

Although visiting node L demands a longer travel time, the GT heuristic inserts L

into the route. This is because ψL > ψk which impacts on the total value of the

TRijL and hence will be ranked higher in the list.
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5.3.2 Destroy methods

Using one of the removal (destruction) algorithms discussed below, the initial so-

lution generated by the classical MB heuristic (S0)is partially destroyed. At each

iteration, a removal heuristic removes D nodes from the solution, where D is called

the degree of destruction. The value for D is a random number in the range of

[0.1K, 0.4K] when K nodes are visited. We utilise removal algorithms presented in

chapter 4 and Santini (2019) as discussed in detail below.

The Random Removal (RR) algorithm randomly removes D nodes from the solution.

Worst-Distance Removal (WDR) determines the distance of nodes from succeeding

and preceding nodes and sorts them in a descending order in a list named asO. Then,

it removes nodes in position bΥκ|O|c from the solution and the list. Parameters

κ ≥ 1 and 0 < Υ < 1 bring randomness to select new nodes for removal. Worst-

Time Removal (WTR) performs same as the WDR, however the list O is defined

based on values of |sync starti− oi| (see chapter 4 for more details). Shaw Removal

(SR) measures relatedness between nodes using Γij = θ1dij+θ2|oi−oj|+θ3Ωij where

θ1, θ2 and θ3 are the Shaw parameters and Ωij varies in the range of [−3, 1] based

on the number of routes that nodes i and j have in common. The SR heuristic

picks a random node and measures relatedness of other nodes with the one selected.

Thereafter, position bΥη|O|c will define the node that has to be removed from the

relatedness list |O|. In the SR algorithm parameters η ≥ 1 is the determinism factor

and 1 ≥ Υ ≥ 0 is a random number. The SR increase the chance of substitution of

nodes with the ones that have high level of similarities in terms of distance, routes in

common and time window, so that the algorithm can move to a new neighbourhood.

Proximity Removal (PR), Time Removal (TR) and Requirement-Based Removal

(RBR) algorithms are special case of the SR heuristic where where θ1, θ2 and θ3 get

a value of 1, but others are set to 0.

Waiting-Time Oriented Removal (WTOR) is similar to the WDR, however the cost

is the waiting time calculated as WTi = sync starti − arrivei. Worst Require-

ment Removal (WRR) algorithm removes nodes with the highest demand from the
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solution. Relative-Requirement Removal (RRR1) heuristic is designed for a hetero-

geneous fleet of vehicles (members). The RRR1 algorithm follows the same logic

as the WRR, however considers the available number of members from each type.

Therefore, nodes with lowest value of ω defined as ω = riq ∗Zi have a higher chance

of removal, where riq and Zq ∈ {−1, 0, 1} are the number of member types q needed

to visit node i and the assigned importance rate of member type q, respectively.

the parameter Zq gets larger values when more members of type q are available.

The Resource Requirement Removal (RRR2) algorithm removes nodes with similar

demands to increase the chance of being reinserted in alternative positions.

The Historical-Node Removal (HNR) algorithm uses the cost function fi = WTi +

DCi − ψi for removing nodes, where the first two terms are normalised values from

the WTOR and WDR algorithms. The HNR removes nodes with the worst j∗ =

argmaxj∈V {fji − f ∗j } where f ∗j is the best position cost of node j before iteration

i. Time Windows-Oriented Removal (TWR) algorithm removes nodes with similar

time windows using the same approach as the HNR algorithm. The TWR algorithm

divides the total time window length to four zones and removes Λi = D∗zui

tu
number

from each zone, where tu, zui denote respectively the total unvisited nodes and

unvisited nodes in the zone i. Every time one of the WDR, WTR, WTOR, WRR

and RRR1 algorithms is called, we use a random binary variable to decide whether

the calculated cost values should be divided by their associated score or not. The

Last removal algorithm is the Cluster Removal (CR) heuristic. We use a density-

based algorithm for clustering nodes (Ester et al. (1996)) which proved to be efficient

for classical OPs (Santini (2019)). We select a random cluster and remove D nodes

from the chosen cluster that exist in the current solution. The process of random

selection of clusters and removal of nodes from the intersection of the cluster and

the solution continuous until D nodes are being removed.

The overall description of our algorithm is given in Algorithm 5.2. The ALNS

algorithm determines an initial solution (S0) by the merit based heuristic. Then,

probabilities for insertion and removal heuristics are initialised in line 5. The initial

temperature needs to be initialised for the SA algorithm and is updated in line
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22 through the search process. Using the roulette-wheel mechanism (Lipowski and

Lipowska, 2012) as an adaptive layer of the ALNS a destruction and repair heuristic

is selected through every iteration in lines 10 and 11. Depending on the resulting

improvements by the selected algorithms, we update the scores for the heuristics in

line 18. Finally, the ALNS returns the best solution (S∗) found after N iterations

in line 23.
Algorithm 5.2: Pseudocode for the ALNS Algorithm
Input: Number of iterations (N), Initial solution (S0), Number of iterations for

each segment (n), Set of destruction heuristics (hd), set of repair heuristics

(hr)

Output: Best solution (S∗)

1 function ALNS algorithm with simulated annealing

2 Generate initial solution S0 using MB heuristic

3 i← 1

4 Let S∗ ← Si ← S0

5 Initialise Prob(rs), Prob(ds) for each s ∈ hd ∪ hr
6 Initialise Tinitial
7 while (i ≤ N) do

8 j ← 1

9 while (j ≤ n) do

10 Select a removal heuristic d ∈ hd → (S−i )

11 Select a repair heuristic r ∈ hr → (S+
i )

12 if z(S∗) ≤ z(S+
i ) then

13 S∗ ← S+
i

14 if z(Si) ≤ z(S+
i ) then

15 Si ← S+
i

16 if z(Si) ≥ z(S+
i ) then

17 Using SA criterion to accept/reject S+
i

18 Update πs for the selected heuristics

19 i← i+ 1

20 j ← j + 1

21 Update adaptive weights of heuristics, s ∈ hd ∪ hr
22 Update temperature

23 return S∗
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5.4 Computational results

Extensive numerical studies were conducted to evaluate the efficacy of the proposed

solution approach. A set of benchmark instances was generated by adding the

problem-specific attribute to the well-known existing benchmark sets (see Vansteen-

wegen et al. (2009)). This involved adding the resource requirement at each vertex

by picking 1, 2 or 3 randomly. This number indicates how many members of the

team are required to collect the associated reward at each node1.

In the first study, we investigate the performance of the removal and insertion al-

gorithms. Thereafter, we validate the performance of our ALNS algorithm against

the published results for the APP due to the similarity to the COPTW. We test our

ALNS algorithm on 100 node instances for two sets of members. In the next study,

truncated benchmark sets are designed to solve sufficiently small-size instances by

means of both the CPLEX commercial solver and our algorithm. The number of ver-

tices in the small-size instances are carefully chosen to obtain the optimal solutions

using CPLEX. Furthermore, we explore the trade-off between an increased number

of available members for service on the one hand and the computation time and

objective value on the other hand. We furthermore show the efficient performance

of the proposed heuristic in terms of time and accuracy on the large-size benchmark

instances and present our results as benchmarks for future studies. All the above

computational work was performed on a single CPU with 16GB of RAM on the

Australian National Computational Infrastructure using a single thread. Each node

is equipped with dual 8-core Intel Xeon (Sandy Bridge 2.6 GHz) processors. The

algorithm was programmed in C++, using a GCC 6.2.0 compiler. Where applicable,

MILP models were solved by the CPLEX 12.6 commercial solver in deterministic

parallel optimisation mode. All tables show the execution times as elapsed time in

seconds.

The parameter tuning was performed by following literature (Emeç et al. (2016);

Ropke and Pisinger (2006)). We defined parameter values as explained in chapter 4.
1All the benchmark instances are available via www.sites.google.com/site/imanrzbh/datasets
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The parameters were determined using the 100-node APP’s benchmark instances:

R104, R206, RC104, RC108 and RC206. Parameters and their tuned values are

summarised in Table 5.1.
Table 5.1: Parameters used in the proposed algorithm.

Description Parameter Value
Parameters for MB heuristic (λ, µ, ϑ) (2,1,3)
Improving solution score σ2 12
Number of iterations N 3000
Number of iterations over each segment n 100
Roulette wheel reaction factor ρ 0.1
Global solution score σ1 35
Worse solution score σ3 5
Shaw parameters θ1, θ2, θ3 (3,13,7)
SA parameter δ 0.05
Cooling rate ε 0.9999
Noise parameter αnoise 0.6
WDR determinism factor κ 8
Shaw determinism factor η 12

We investigate the performance of the insertion and removal heuristics to remove out

the inefficient heuristics. we conduct the sensitivity analysis on the heuristics using

the same instances as the parameter tuning: R104, R206, RC104, RC108 and RC206.

Numbers in Table 5.2 represent the average results for 5 instances after 10 runs

(5instances×10runs). The second column denotes the name of algorithms, the third

column illustrates the percentage of total iterations that a corresponding algorithm

is chosen. Among the removal algorithms, WTOR, WDR and HNR are the most

frequently used algorithms while CR, TWR and RR rarely contribute through the

ALNS algorithm. The results show that all insertion heuristics contribute to the

solution.

An algorithm with a minor contribution through the search process does not mean

that removing it will improve the solution since it may help the ALNS to escape

the local optimum to find a better solution Emeç et al. (2016). To identify whether

exclusion of an algorithm may improve the final solution, we conduct further exper-

iments omitting one algorithm at a time while keeping the others. The fourth, fifth

and sixth columns show the change in the objective values after exclusion of the
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Table 5.2: Statistics for performance of the removal and insertion algorithms. Deviation in objective value after
exclusion of each algorithm are shown in percentage. In the last column, “N” and “Y” represent inclusion and
exclusion of a heuristic from the algorithm.

# Algorithm Average %
usage

Average %
dev in worst
obj value

Average %
dev in avg
obj value

Average %
dev in best
obj value

Exclusion

1 GT 12.98 -0.36 -0.33 0.69 N
2 NCMB 19.00 0.06 0.08 1.00 Y
3 CMB 18.73 -0.31 -0.37 -0.24 N
4 NMB 24.69 -0.18 -0.24 -0.30 N
5 MB 24.60 -0.50 -0.90 -0.53 N
6 RR 3.69 -0.52 1.15 1.35 Y
7 WDR 9.45 -1.51 -1.24 -0.93 N
8 WTR 6.65 -1.19 -0.46 0.78 N
9 SR 8.40 -0.12 0.21 -0.26 N
10 PR 8.56 -1.54 0.05 0.35 Y
11 TR 7.67 -2.03 -0.27 0.15 N
12 RBR 7.52 -0.56 0.09 0.30 Y
13 WTOR 11.63 -1.19 -0.50 -0.49 N
14 WRR 6.47 -1.58 -0.84 0.13 N
15 RRR1 8.61 -0.76 0.20 0.78 Y
16 RRR2 8.02 -1.00 -0.22 0.49 N
17 HNR 9.43 -1.27 -0.09 0.98 N
18 TWR 2.19 -0.56 0.02 0.28 Y
19 CR 1.71 -0.06 1.16 2.47 Y

corresponding algorithm. A positive value shows an improvement in the objective

function’s value after leaving out the associated algorithm. For instance, exclusion of

the MB heuristic has a negative impact on the worst, average and the best values of

the objective function in 10 runs. However, exclusion of the NCMB can improve the

ALNS performance. Subsequently, the last column shows if an algorithm is excluded

from the ALNS. Finally, we keep algorithms that can add positive contribution in

either average or best value of the objective function.

We investigate the effectiveness of our algorithm by comparing our average and best

results with the results reported in chapter4. They recently studied a problem named

as APP during wildfires where community assets are endangered by the moving fire

front. An asset can be protected if sufficient number of vehicles (i.e. members) from

different types accomplish tasks within the time window. Our results achieved by

using the parameters in Table 5.1 after exclusion of inefficient algorithms. In Table
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5.3, two sets of vehicles are defined as in the original paper and average and best

solution are used for comparison. Results under the label ”APP” referring to asset

protection problem’s results and ALNS refers to our proposed algorithm.

Table 5.3: A summary of results for 100-nodes. APP represents results for asset protection problem and ALNS
shows our results. Vehicle numbers are defined in two categories: Set1 = (V1=6, V2=5, V3=4) and Set2 = (V1=7,
V2=6, V3=5). Results in the table are in the percentage value of scores collected.

Instances # Vehicles APP ALNS ∆avg ∆best

Avg Best Avg Best

C100 Set1 60.17 61.84 62.34 63.18 3.48 2.12
Set2 66.66 68.35 68.46 69.70 2.63 1.95

C200 Set1 59.04 60.72 61.06 61.92 3.31 1.94
Set2 64.87 66.58 66.73 67.73 2.79 1.70

R100 Set1 61.19 62.50 63.39 64.49 3.47 3.09
Set2 68.45 69.86 70.28 71.31 2.60 2.03

R200 Set1 63.64 65.30 65.80 66.75 3.28 2.17
Set2 69.76 71.38 71.66 72.74 2.65 1.87

RC100 Set1 66.77 68.59 68.84 69.98 3.01 1.99
Set2 73.21 75.17 74.94 75.85 2.31 0.90

RC200 Set1 67.17 69.13 69.35 70.45 3.14 1.87
Set2 73.12 74.71 74.95 75.79 2.44 1.42

In Table 5.3, ∆best and ∆avg are the percentage deviation from the reported results

in the literature. Our proposed algorithm improves results for all instances and en-

hances the average results for the ∆best and ∆avg by around 2% and 3%, respectively.

Table 5.3 shows that our approach performs efficiently and validates our algorithm

on the existing benchmarks.

For further evaluation, a collection of small-size benchmark instances were generated

and solved by means of both CPLEX and the ALNS algorithm. A summary of the

tests for 10 and 12 nodes with 3 and 4 team members on instance sets C100, R100 and

RC100 is provided in Table 5.4. The sizes of truncated instances are chosen in a way

to investigate the correlation between the increase in problem size and exponential

growth in computational effort. Infeasible edges are excluded in MILP formulations

to simplify models for the CPLEX implementation. Also, larger problems with more

than 12 nodes could not be solved within the time limit of 5 hours.

In Table 5.4 computation times and the optimality gaps are reported. The “∆average”
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and “∆best” represent the percentage gap between the CPLEX optimal solution

and ALNS algorithm average and best results. In Table 5.4, the average gap for

∆average and ∆best are 0.06% and 0.00% which shows the promising performance

of the proposed algorithm. Moreover, it can be seen that the computation time

increases significantly with minor changes in the problem size for CPLEX compared

with the negligible changes for the ALNS.

Table 5.4: A summary of the ALNS performance for small-size instances for 10 and 12 nodes on C100, R100 and
RC100 datasets. All computational times are in seconds.

Set # Members 10 12
CPLEX ALNS ∆average ∆best CPLEX ALNS ∆average ∆best

C100 p=3 62.15 5.48 0.00 0.00 142.37 6.86 0.00 0.00
p=4 80.16 61.24 0.00 0.00 61.75 113.21 0.00 0.00

R100 p=3 244.29 4.55 0.00 0.00 5809.95 6.91 0.00 0.00
p=4 355.91 28.78 -0.02 0.00 6018.78 43.48 -0.20 0.00

RC100 p=3 356.87 26.33 0.00 0.00 4502.62 21.19 -0.28 0.00
p=4 277.14 60.99 -0.13 0.00 3297.12 111.34 -0.10 0.00

Table 5.5: A summary of the ALNS performance for small-size instances for 24 and 26 nodes on C200, R200 and
RC200 dataset. All computational times are in seconds.

Set # Members 24 26
CPLEX ALNS ∆average ∆best CPLEX ALNS ∆average ∆best

C200 p=3 140.95 51.79 0.00 0.00 217.15 55.87 0.00 0.00
p=4 145.81 92.63 0.00 0.00 144.80 104.69 0.00 0.00

R200 p=3 351.03 117.21 0.00 0.00 473.92 128.09 0.00 0.00
p=4 224.51 132.4 0.00 0.00 286.45 134.96 0.00 0.00

RC200 p=3 509.47 130.13 0.00 0.00 4516.54 147.05 -0.38 0.00
p=4 313.45 143.61 0.00 0.00 336.61 168.53 -0.04 0.00

Table 5.5 gives a summary of results for 24 and 26 vertices with the same number

of available team members. One can see that CPLEX solves larger problems from

the sets C200, R200 and RC200 compared to those in Table 5.4. This is due to the

nature of the studied class of problems as the time window intervals are different in

length and a larger portion of nodes can be covered by the same number of team

members. In Table 5.5, the average computational time remains around two minutes

for all instances, while it takes hours to solve some sets by CPLEX. In Table 5.5, the

average deviation of the ALNS algorithm from optimal solutions is 0.00% for ∆best

and just 0.03% for ∆average which is reasonable. Due to the CPLEX computational
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time we are unable to solve larger instances in Table 5.5 while for some instances

large amounts of nodes are covered.

We performed further experiments on larger instances. Proportional to the problem

size more team members are considered in order to cover a substantial percentage

of available scores. As the objective function we report our results in the percentage

value of scores collected. Since there is no benchmark for our tests, we report the

results obtained with the ALNS as benchmarks. In the last two columns of Table

5.6, we report the most effective insertion and removal algorithms for each set of

instances.
Table 5.6: Computational results for the large-size sets with 100 vertices. Results are shown as the percentage of
rewards collected.

Set # Members 100

worst(%) average(%) best(%) best removal
algorithms

best insertion
algorithms

C100 p=4 35.36 35.98 36.71 WDR/HNR/WTR/WTOR MB/NMB/GT/NCMB
p=6 46.41 46.95 47.82 WDR/WTR/TR/SR MB/NCMB/NMB/GT

C200 p=4 72.17 73.25 74.65 WDR/WTR/HNR/RR1 MB/NMB/NCMB/GT
p=6 85.84 87.00 88.26 WDR/HNR/WTR/WTOR MB/NMB/NCMB/GT

R100 p=4 32.48 33.48 34.44 WDR/WTR/WRR/RRR1 MB/NCMB/NMB/GT
p=6 42.26 43.40 44.71 WDR/RRR1/WTR/WTOR MB/NMB/GT/NCMB

R200 p=4 74.26 75.99 78.32 WDR/WTR/SR/TR MB/NCMB/NMB/GT
p=6 87.00 88.57 90.61 WDR/WTR/RRR1/SR MB/NMB/GT/NCMB

RC100 p=4 30.12 30.78 31.51 HNR/WTR/WTOR/WDR MB/NMB/GT/NCMB
p=6 39.96 40.74 41.51 WDR/WTOR/HNR/RRR1 MB/NMB/GT/NCMB

RC200 p=4 66.63 68.37 70.44 WDR/WTR/WTOR/TR MB/NMB/GT/NCMB
p=6 81.70 83.61 86.09 WTR/WDR/RRR1/SR MB/NCMB/NMB/GT

5.5 Summary and discussion

The COPTW is an important class of the orienteering problem that arises naturally

in many important applications. In practical problems many of these applications

require solutions as a matter of urgency. Current algorithms are not designed to

handle the complexities resulting from the requirements of synchronised visits in the

COPTW. Thus, in this chapter, we developed a new ALNS algorithm equipped with

the MB heuristic as an insertion operator to deal with the various issues that arise

from this problem. Together with the MB heuristic 19 heuristics were developed

using the problem specific attributes. Then, we evaluated the effectiveness of the
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removal and insertion algorithms to improve the efficiency of the ALNS by investing

more time on effective heuristics. The tailored ALNS algorithm can solve large-sized

problems in computational times suitable for operational purposes.

In order to validate the solution approach, we modified our algorithm according

to the specification of the existing benchmarks and performed sets of tests on the

APP. In the APP any minor improvements in the objective function is significant and

important as it means that more assets can be protected. Not only is our proposed

algorithm running efficiently but improvements in the results are also achieved.

For further evaluation, a new benchmark set was generated for the COPTW. The

performance of the algorithm was validated successfully for small-sized instances

by comparing solutions with the optimal results obtained by the CPLEX solver.

Further experiments with large scale problems demonstrated the efficacy as well as

accuracy of the ALNS in terms of various metrics.



Chapter 6

A two-stage stochastic approach for

the APP

Many practical applications of the APP and the COPTW involve uncertainties

that need to be taken into account. For example, in the APP during uncontrollable

wildfires, incident managers dispatch vehicles for tasks aimed at reducing the hazard

to key assets. The deployment plan is complicated by the need for vehicle capabilities

to match asset requirements within time-windows determined by the progression of

the fire. This is often further complicated by a wind change that is expected but

with uncertainty in its timing. This chapter aims to identify the best practice for

determining plans for the deployment of resources under various circumstances. To

this end, a two-stage stochastic model is developed for solving an APP using the

context of the 2009 Black Saturday wildfires. Then, a dynamic rerouting approach

is presented to empower the reactive ability of decision makers. Additionally, an

ALNS algorithm is implemented to solve the dynamic rerouting APP in a a time

efficient manner.

74
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6.1 Problem description and model formulation

The two-stage stochastic approach for the APP encompasses multiple character-

istics of the problem, such as a heterogeneous fleet of trucks, multiple scenarios,

uncertain time of change and locations, imposed time windows by the fire front, and

synchronous service requirements. The problem is formulated in a generic manner

to facilitate its application to analogous problems.

6.1.1 Sets, parameters and decision variables

The mixed integer linear programming formulation uses the following notation.

Indices and sets

Q set of vehicle types

A set of all arcs

δ+
q (i) set of feasible arcs (i, j) that can be traversed from i by vehicle type q ∈ Q

δ−q (j) set of feasible arcs (i, j) that can be traversed to j by vehicle type q ∈ Q

N set of all assets

Ξ set of all scenarios, ξc ∈ Ξ

F number of scenarios, Ξ := {ξ1, ξ2, . . . , ξF}

Parameters

ai service duration associated with location i

cfi latest time that protection activities may commence at location i in stage
f (first stage)

csi (ξc) latest time that protection activities may commence at location i in stage
s (second stage) in scenario ξc ∈ Ξ

P (ξc) the probability that scenario ξc ∈ Ξ occurs

M A sufficiently large number

n number of assets in the graph representation of the problem

ofi earliest time that protection activities may commence at location i in
stage f
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osi (ξc) earliest time that protection activities may commence at location i in
stage s, scenario ξc ∈ Ξ

κq number of vehicles of type q ∈ Q

rfi vector of protection requirement for asset i in stage f , e.g. ri =< ri,q=1 =
2, ri,q=2 = 1, ri,q=3 = 0 >, representing number of required vehicles of each
type at node i

rsi (ξc) vector of protection requirement for asset i in stage s, scenario ξc ∈ Ξ

tijq travel time from location i to location j by vehicle type q ∈ Q

νi value of asset i

TOc time of occurrence for scenario c, TO1 ≤ TO2 ≤ · · · ≤ TOc ≤ · · · ≤ TOF , where
TO1 is the staging time that transition from one stage to another takes place

Tmax latest time allowed to start a protective task

0, N + 1 represents the start and final locations (may be the same location)

Variables

wj 1 if asset j is the last node visited before stage transition occurs, 0 other-
wise

First stage decision variables

Xf
ijq number of vehicles of type q ∈ Q travelling from location i to location j

at stage f

zfijq 1 if arc (i, j) is traversed by vehicle type q ∈ Q, 0 otherwise

Sfi time at which service commences in location i at stage f

Y f
i 1 if location i is serviced at stage f , 0 otherwise

Second stage decision variables

zsijq(ξc) 1 if arc (i, j) is traversed by vehicle type q ∈ Q at stage s in scenario
ξc ∈ Ξ, 0 otherwise

Γi(ξc) 1 if node i under scenario ξc is visited before the time TOc

Ssi (ξc) time at which service commences in location i at stage s in scenario ξc ∈ Ξ

Xs
ijq(ξc) number of vehicles of type q ∈ Q travelling from location i to location j

at stage s in scenario ξc
Y s
i (ξc) 1 if location i is serviced at stage s in scenario ξc ∈ Ξ, 0 otherwise
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6.1.2 Mathematical model

Consider a set of n assets with depots 0 and N + 1. The start and end depots

may be the same. Each asset i is associated with a value νi and a vector of service

requirements ri =< ri1, ri2, . . . , riq >. Variable Ri indicates the number of vehicles of

each type needed to accomplish a task cooperatively to service an asset. Variables

Yi is binary and equal 1 if an asset is protected and 0 otherwise. The decision

variable zijq takes value 1 if arc (i, j) traversed by vehicle q while variables Xijq

and tijq represent number of vehicles travel along arc (i, j) and the travel time.

Superscripts f and s indicate the stage and P (ξc) is the probability of scenario ξc at

the second stage. Every asset should be visited within the associated time window

[oi, ci] depending on the scenario and the stage. The set of all arcs is defined by

A. The set δ+
q (i) is the set of all feasible arcs (i, j) for each asset i such that both

assets i and j need to be visited by vehicle type q ∈ Q and can be reached within

their time windows. Similarly, δ−q (j) is the set of all feasible incoming arcs to asset j.

Parameter TO1 represents the staging time where a change in the problem conditions

occurs. A stage transition may occur at any location on an arc or at an asset where

a vehicle is located when the staging time occurs. wi is assigned the value 1 if i is

the last asset on a route to be visited before the commencement of stage two. This

enables us to maintain information through the stage transition. The superscripts

f and s indicate variables for the first and second stage, respectively.

With the notations and explanations above, the problem is formulated as follows:

Max
∑
i∈N

νiY
f
i +

∑
ξc∈Ξ

P (ξc)(
∑
i∈N

νiY
s
i (ξc)) (6.1)

s.t. :
∑

j∈δ+
q (0)

Xf
0jq +

∑
j∈δ+

q (0)

Xs
0jq(ξc) =

∑
i∈δ−q (N+1)

Xf
i(N+1)q+

∑
i∈δ−q (N+1)

Xs
i(N+1)q(ξc), ∀q ∈ Q,∀ξc ∈ Ξ;

(6.2)
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∑
i∈δ−q (j)

Xf
ijq +

∑
i∈δ−q (j)

Xs
ijq(ξc) =

∑
k∈δ+

q (j)

Xf
jkq+

∑
k∈δ+

q (j)

Xs
jkq(ξc), ∀q ∈ Q,∀j ∈ N, ∀ξc ∈ Ξ;

(6.3)

∑
q∈Q

∑
k∈δ+

q (j)

Xf
jkq −

∑
q∈Q

∑
i∈δ−q (j)

Xf
ijq ≥ −M × wj, ∀j ∈ N ; (6.4)

∑
q∈Q

∑
k∈δ+

q (j)

Xf
jkq −

∑
q∈Q

∑
i∈δ−q (j)

Xf
ijq ≤ −wj, ∀j ∈ N ; (6.5)

Sfj + aj − TO1 ≤M(1− zfijq), ∀q ∈ Q, ∀(i, j) ∈ A; (6.6)

Ssj (ξc) + aj − TO1 ≥M(zsijq(ξc)− 1), ∀q ∈ Q,∀(i, j) ∈ A, ∀ξc ∈ Ξ; (6.7)

∑
j∈δ+

q (k)

Xf
0jq +

∑
j∈δ+

q (j)

Xs
0jq(ξc) ≤ κq, ∀q ∈ Q, ∀ξc ∈ Ξ; (6.8)

∑
i∈δ−q (j)

Xf
ijq = rfjqY

f
j , ∀j ∈ N, ∀q ∈ Q; (6.9)

∑
i∈δ−q (j)

Xs
ijq(ξc) = rsjq(ξc)Y s

j (ξc), ∀j ∈ N,∀q ∈ Q, ∀ξc ∈ Ξ; (6.10)

Y f
j + Y s

j (ξc) ≤ 1, ∀j ∈ N,∀q ∈ Q,∀ξc ∈ Ξ; (6.11)

Xf
ijq ≤ κqz

f
ijq, ∀(i, j) ∈ A,∀q ∈ Q; (6.12)
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Xs
ijq(ξc) ≤ κqz

s
ijq(ξc), ∀(i, j) ∈ A, ∀q ∈ Q, ξc ∈ Ξ; (6.13)

Sfi + tijq + ai − Sfj ≤M(1− zfijq), ∀(i, j) ∈ A, ∀q ∈ Q; (6.14)

Ssi (ξc)+ tijq+ai−Ssj (ξc) ≤M(1−zsijq(ξc)), ∀(i, j) ∈ A,∀q ∈ Q,∀ξc ∈ Ξ; (6.15)

Sfi − Ssi (ξc) ≤M(1− wi), ∀(i) ∈ N,∀ξc ∈ Ξ; (6.16)

Sfi − Ssi (ξc) ≥M(wi − 1), ∀(i) ∈ N,∀ξc ∈ Ξ; (6.17)

TOc ≤ Ssi (ξc) +M × Γi(ξc), ∀i ∈ N, ξc, ξc′ ∈ Ξ \ ξ1; (6.18)

TOc ≥ Ssi (ξc)−M × (1− Γi(ξc)), ∀i ∈ N, ξc, ξc′ ∈ Ξ \ ξ1. (6.19)

Ssi (ξc)− Ssi (ξc′) ≤M(1− Γi(ξc)), ∀i ∈ N, ξc, ξc′ ∈ Ξ \ ξ1, c < c′; (6.20)

Ssi (ξc)− Ssi (ξc′) ≥M(Γi(ξc)− 1), ∀i ∈ N, ξc, ξc′ ∈ Ξ \ ξ1, c < c′; (6.21)

Xs
jiq(ξc)−Xs

jiq(ξc′) ≤M(1− Γi(ξc)), ∀i, j ∈ N, q ∈ Q, ξc, ξc′ ∈ Ξ \ ξ1, c < c′;

(6.22)
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Xs
jiq(ξc)−Xs

jiq(ξc′) ≥M(Γi(ξc)− 1), ∀i, j ∈ N, q ∈ Q, ξc, ξc′ ∈ Ξ \ ξ1, c < c′;

(6.23)

ofj ≤ Sfj ≤ cfj , ∀j ∈ N ; (6.24)

osj(ξc) ≤ Ssj (ξc) ≤ csj(ξc), ∀j ∈ N,∀ξc ∈ Ξ; (6.25)

Y f
i , Y

s
i (ξc) ∈ {0, 1}, ∀i ∈ N, ∀ξc ∈ Ξ; (6.26)

zfijq, z
s
ijq(ξc) ∈ {0, 1}, ∀(i, j) ∈ A,∀q ∈ Q, ∀ξc ∈ Ξ; (6.27)

wi ∈ {0, 1}, ∀i ∈ N ; (6.28)

Γi(ξc) ∈ {0, 1}, ∀i ∈ N, ξc,∈ Ξ. (6.29)

Xf
iiq, X

s
ijq(ξc) ∈ {0, 1, . . . , κq}, ∀(i, j) ∈ A, ∀q ∈ Q, ∀ξc ∈ Ξ; (6.30)

Sfi , S
s
i (ξc) ∈ [0, Tmax], ∀i ∈ N,∀ξc ∈ Ξ. (6.31)

The objective function (6.1) maximises the expected value of serviced assets. Con-

straints (6.2) require that all vehicles leaving the starting depot must reach the final

depot. Constraints (6.3) enforce the conservation of flow at each asset. Constraints

(6.4 and 6.5) indicate the staging location. If a vehicle depart from a node and

cannot arrive to the destination by the staging time, the departing node will be
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denoted as staging location. This assists in assigning the right values to Ssj (ξc) in

constraints (6.16 and 6.17) in order to start trips from staging locations in various

scenarios at stage two. Constraints (6.6 and 6.7) impose the staging time. If an arc

is traversed in stage f , zsijq(ξc) for all scenarios must be zero. On the other hand, if

zfijq is zero, one of the zsijq(ξc) could be one, but not necessarily. Constraints (6.8)

indicate that the number of vehicles departing from a depot may not exceed the

number of vehicles stationed at the depot. Constraints (6.9 and 6.10) guarantee an

asset is serviced only if its service requirements are fulfilled by the right combination

of incoming vehicles. Constraints (6.11) ensure each asset will be visited at most

once in both stages. Constraints (6.12 and 6.13) make sure that vehicles travelling

through an arc never exceed the number available κq. Constraints (6.14 and 6.15)

ensure that an asset may only be visited if the service requirements of the previous

location has been satisfied and there is enough time to reach the next asset. Equa-

tions (6.16 and 6.17) guarantee that proper values are assigned to Ssj (ξc) through

a transition from one stage to another. Constraints (6.18 and 6.19) identify nodes

that are visited in shared time intervals, where decisions in one scenario must match

with those in other scenarios, to get the same values of decision variables. Shared

time intervals refer to the time periods between two wind changes where any decision

made during this time would must hold for the remaining scenarios. Equations (6.20

and 6.23) enforce equality of shared decision variables under different scenarios for

the nodes identified by constraints (6.18 and 6.19). Terms (6.24) and (6.25) ensure

that the time window constraints are not violated. Constraints (6.26-6.31) impose

non-negative, binary and integer restrictions on the variables.

6.1.3 An illustrative example

The time windows during which an asset must be serviced will depend on the

progress of a wildfire as it spreads across the landscape. Fire-spread models used

by IMTs can generate these time windows. Reviews of wildfire models can be found

in Scott and Burgan (2005); Sullivan (2009); Johnston et al. (2008); Bakhshaii and

Johnson (2019) while Petrasova et al. (2018) is an example of recent developments.
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For our illustrative hypothetical landscape we note that with a constant wind, fire-

fronts mostly progress in an elliptical shape (Anderson et al. (1982)). Thus we use

the general equation of an ellipse to generate time windows with similar character-

istics to those occurring in real landscapes.

The problem we want to investigate is the frequent situation where it is known that

a wind change will occur but there is uncertainty over its exact timing. As shown

in Figure 6.1, the timing of the wind change is represented by two scenarios, for the

purpose of simplicity. In the first scenario the wind change occurs at the staging

time, (TO1), and an hour later in scenario 2. The change in wind direction and its

timing has a significant impact on the fire front. This in turn affects which assets

will be in the path of the wildfire. There is a significant difference in the number of

assets at risk in each scenario while the hazard for some assets is common to both

scenarios although with different probabilities associated with each scenario.

Figure 6.1: Fire front progressing through a landscape. The initial north wind (Y-direction) is expected to change
to a westerly but there is uncertainty as to the timing of the change. Two scenarios are shown representing the
times at which the wind change may occur. In each scenario a new set of assets are at risk.
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A simple demonstration of the two-stage optimisation model for the APP problem

is sketched in Figure 6.2. The service requirements of each asset were chosen to

highlight some of the key features of the APP problem. Due to resource limitations

and time windows not all assets can be serviced. The optimally deployed vehicles

maximise the expected value of assets serviced. The assets actually serviced also

depend on which scenario is realised.

As shown in Figure 6.2, twenty community assets are at risk. Each vehicle has

particular capabilities that need to be matched with the service requirements of

each asset. For example, an asset in stage 1 which has requirements of < 2, 1, 1 >

must be serviced by two type 1 vehicles and one of the other two vehicle types. The

service must start cooperatively and simultaneously within the time window [ofi , c
f
i ]

for a duration of ai. In the Figure 6.2, the probability of occurrence for each scenario

is known and routing in the first stage is planned to gain the highest benefit from

the expected value of the objective function in the second stage.

Figure 6.2: Illustrative APP problem with two wind change scenarios. The area impacted in each scenario is shown
in different colours. Asset values are shown within the circles with the requirements shown below them. Vehicle
types 1, 2 and 3 have capability vectors of < 1, 0, 0 >, < 0, 1, 0 > and < 0, 0, 1 >. To the extent possible they must
be assigned to the assets so that their capabilities match the asset’s requirements. The optimal assignment of the
three vehicles is shown.
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6.2 Dynamic rerouting approach

The dynamic rerouting of vehicles reallocate resources in the event of a change in

conditions (e.g. road closure). The initial deployment of vehicles is based on a

deterministic MILP (see 4) assuming no changes will occur. If any change in condi-

tions or disruptions occur during operations, new parameters (e.g. time windows)

are updated accordingly. Then, the problem is solved to optimality from where the

disruption took place. The pseudo-code of the dynamic rerouting asset protection

problem is described in Algorithm 6.1.

Algorithm 6.1. returns the expected value of the protected assets using the dynamic

rerouting approach. The algorithm defines a scenario that has the highest proba-

bility (lines 2-8). Then, constructs a set of nodes including the first stage assets

and those belonging to the scenario with the highest probability of occurring. After

solving the deterministic MILP, the model determines the set of protected assets.

By solving the initial MILP at lines 9 and 10 the algorithm also determines loca-

tions where the resources would be at when the disruptions occur. Algorithm 6.1.

solves the MILP model again for assets belonging to other scenarios, while resources

start their routes from where they were at the staging time. In lines (13-19) the

algorithm calculates the expected value of the assets protected by multiplying the

total asset value at each scenario by the probability of each scenario. The same

benchmark instances are used and solved according to the above procedure. To ad-

dress this NP-hard problem and solve realistically large instances, we developed an

efficient metaheuristic approach to solve the dynamic rerouting APP in operational

computation time.
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Algorithm 6.1: Pseudocode for the dynamic rerouting approach
Input:
staging time (TO1), set of at risk assets in stage 1 (N f ), set of at risk assets in
stage 2 under scenario # 1 (N s

1 ), set of at risk assets in stage 2 under scenario #2
(N s

2 ), probability of scenario #1 (P (1)), probability of scenario #2 (P (2)),
collected rewards from assets in set N f (νf = 0), collected rewards from assets in
set N s

1 (νs1 = 0), collected rewards from assets in set N s
2 (νs2 = 0), set of all assets

(N)
Output: Expected value of the collected rewards (E(ν)).

1 Function Dynamic Rerouting
2 if (P (1) > P (2)) then
3 Na ← N f ∪N s

1
4 Nb ← N s

2
5 else
6 if ((P (2) > P (1))) then
7 Na ← N f ∪N s

2
8 Nb ← N s

1

9 Υ ←Solve the deterministic APP for assets ∈ Na and determine the visited
assets

10 Dst ← Define the set of locations where resources are at time TO1
11 Υ ← Solve the deterministic asset protection model for assets ∈ Nb starting

from Dst

12 E(ν)← 0
13 forall (i ∈ N) do
14 if (i ∈ Υ & i ∈ N f ) then
15 E(ν)← E(ν) + νi
16 if (i ∈ Υ & i ∈ N s

1 ) then
17 E(ν)← E(ν) + P (1)× νi
18 if (i ∈ Υ & i ∈ N s

2 ) then
19 E(ν)← E(ν) + P (2)× νi
20 return E(ν)

6.3 Adaptive large neighbourhood search

The asset protection problem is NP-hard and cannot be solved analytically. The

ALNS algorithm as discussed in chapters 4 and 5 is implemented to solve the dy-

namic rerouting APP in operational times.
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6.4 Experiments and empirical results

We carried out extensive computational experiments to test our model. Initially, we

present a case study using the context of the February 2009, Black Saturday bushfires

in Australia. Then, we perform further tests on a large set of generated benchmark

instances using realistic parameters 1 and compare them against a dynamic rerouting

approach solved by the both CPLEX and ALNS. All computational experiments are

implemented on a desktop computer equipped with Intel Core i5 (3.2GHz) and 8.0

GB of RAM, where MILP models are solved by the commercial solver, CPLEX 12.8,

coded in Python 3.6; and the algorithm coded in C++ using the Microsoft Visual

Studio 2017. Computational times are measured in elapsed time with a time limit

of thirty minutes for the CPLEX solver.

6.4.1 Case study - Murrindindi Mill fire Black Saturday

The shire of Murrindindi is 3, 889 km2 in extent with a population of 13, 732 (2016

census) located in the north-eastern part of Victoria, Australia. About 46% of the

total land area of the municipality is forest (1788 km2), and a large proportion

of this land is mountainous (Shahparvari et al. (2016)). On 7 February 2009, a

series of bushfires known as Black Saturday raged through the shire (see Figure

6.3). The fire swept the 50 km distance between Saw Mill in Wilhelmina Falls Road

and Narbethong in about 90 minutes. Following a wind change the long narrow

fire-front become a wide fire-front that burned through a number of townships with

tragic consequences (Cruz et al. (2012)). Five of the bushfires on Black Saturday

claimed people’s lives. The second highest number of deaths resulted from the

Murrindidi bushfires (40 people), which reveals the importance of the area under

study (Whittaker et al. (2009)).

A set of 25 assets are identified in the area as being impacted (see Appendix one).

The Yea country fire authority is defined as the starting point of the operations
1All the benchmark instances are available at www.sites.google.com/site/imanrzbh/datasets
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(depot). Distance matrices were obtained using the Google Maps API (Google API

(2018)). Time windows are set approximately based on the Victorian Bushfires

Royal Commission report (see Teague et al. (2010)). The number of vehicles are

considered proportional to the problem size in order to cover a significant amount

of at risk assets {κ1 = 5, κ2 = 3, κ3 = 2}. Vehicle velocity (V = 60 km.h−1)

and probability of scenarios (P (1) = 25%, P (2) = 35%, P (3) = 40%) are other

parameters involved in the problem. The wind change can occur at TO1 = 4 : 00 pm

(scenario 1), TO2 = 5 : 30 pm (scenario 2) and TO3 = 6 : 00 pm(scenario 3). As

a consequence of the wind change a new set of assets will be at risk. Those assets

common to both sets may have new time windows for servicing. As illustrated in

Figure 6.3, two assets are at risk regardless of the wind change scenarios (A6 and

A10), while the risk to other assets depends on the timing of the wind change. As

shown in Figure 6.3, the value of the at-risk assets in scenario 2 of stage two is 9%

and 12% more than the impacted assets in scenario 1 and 3 of stage two, respectively.

This illustrates the impact of wind change and how significant the difference between

scenarios may be. However, when we look at the expected value of the at-risk assets,

scenario 3 of stage two has the highest value due to the probability of the scenario.

We use CPLEX to solve the case study discussed above using the two-stage stochas-

tic programming model formulated in Section 6.1.2. Results of this case study are

reported in Table 6.1. The optimal solution shows that all assets under threat dur-

Table 6.1: Summary of results for the case study

Stage (scenario)
Number

of at
risk assets

Probability of
occurrence

At risk
assets

Value of
the at risk

assets

Serviced
assets

Value of
the serviced

assets
First stage 5 100% 2, 4, 5, 17, 18 203.00 2, 4, 18 132.00

Second stage (1) 10 25%
3, 6, 9, 10,
15, 19, 21,
22, 23, 24

378.00
3, 6, 9, 10,

15, 22
23, 24

322.00

Second stage (2) 14 35%
1, 3, 6, 7, 8,

10, 11, 12, 14,
15, 20, 21, 23, 25

410.00
3, 6, 7,

10, 11, 12,
15, 20, 21, 23

325.00

Second stage (3) 12 40%
1, 6, 7, 8,

10, 11, 12, 13,
14, 16, 20, 25

366.00
6, 7, 8,

10, 11, 12, 13,
16, 20

299.00

ing the first stage can be serviced. A total of ten vehicles finished their protective
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Figure 6.3: Case study region - Murrindindi Shire, Victoria, Australia.

activities at assets A2, A4 and A18 before immediately heading to the at-risk assets

in the next stage. It can be seen in Figure 6.3 that some assets, A11, A7 and A12

are impacted after TO1 = 4 : 00 pm but before the time of wind change in scenario

2, TO2 = 5 : 30 pm. For such assets the associated decision variables are unchanged

in scenarios 2 and 3. Overall, the optimal solution provides a strategy for servicing

assets to the value of 65%, 85%, 79% and 82% of the total asset value in stage 1,

and scenarios 1, 2 and 3, respectively.

6.4.2 Test instances

To further evaluate the two-stage stochastic model, the dynamic rerouting approach

and the proposed ALNS algorithm, a set of benchmark instances are generated by

randomly distributing assets over an 80× 80 grid. Five sets of problems with asset

numbers from 20 to 200 are solved by ALNS while CPLEX is used, where applicable,
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for the dynamic rerouting and the two-stage stochastic models. Every instance is

solved for two cases representing different sets of vehicles as given in Table 6.4. We

use the elliptical fire spread to simulate a realistic scenario and set time windows

for each asset. Similar to the events of Black Saturday we consider a wind change.

However, two scenarios are possible for the timing of the wind change. In scenario

1 the wind change occurs at the staging time whereas it occurs two hours later in

scenario 2. The realisation of which scenario will occur will only be known at the

staging time.

For representing a realistic situation where the impact of the wind change is signif-

icant, a different set of assets are impacted with each scenario. Therefore, there are

four types of assets: (1) assets impacted at the first stage; (2) assets in either scenario

1 or scenario 2 but not both at the second stage; (3) assets that are affected in both

scenarios, (4) and assets that are not at risk at all in either scenario. Fire velocities

are set in a manner to simulate escaped wildfires. Travel time is calculated with

vehicle velocity set at a conservative but realistic (30 km.h−1). To investigate the

impact of vehicle numbers on the percentage of the assets protected, we performed

experiments with two different sets of vehicles Set1 = {κ1 = 3, κ2 = 2, κ3 = 2}

and Set2 = {κ1 = 4, κ2 = 3, κ3 = 3} for small instances. The key parameters for

generating benchmark instances are mostly inspired by real life scenarios, and are

listed in Table 6.3.
Table 6.2: Parameters used in the benchmark instances

Parameter Explanation Value
vx0 Fire velocity along x in stage one. 14
vy0 Fire velocity along y in stage one. 16
vx1 Fire velocity along x in stage two, scenario one. 19
vy1 Fire velocity along y in stage two, scenario one. 17
vx2 Fire velocity along x in stage two, scenario two. 21
vy2 Fire velocity along y in stage two, scenario two. 19
Delay Delay between staging time and change of wind, in scenario two. 2
TW1 Length of time window for assets impacted in stage one. 2
TW2 Length of time window for assets impacted in stage two. 2
a Service duration time. 1
P (1) Probability of scenario 1. 0.6
P (2) Probability of scenario 2. 0.4
V Travel speed of vehicles. 30
TO1 Staging time. 4.5

To evaluate the performance of different methods, we solve each benchmark in-
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stance using dynamic rerouting model, two-stage stochastic model and the ALNS

algorithm, where they are applicable. Please note that we initially tune the ALNS

parameters following the same mythology as literature (Roozbeh et al., 2018). We

perform five runs on tuning instances for ten different values for parameters and

chose the one with least deviation from the best solution. The value of the param-

eters are determined in Table 6.3.
Table 6.3: Parameters used in the proposed algorithm

Description Parameter Value
Parameters for MB heuristic (λ, µ, ϑ) (2,1,3)
Improving solution score σ2 12
Number of iterations ntotal 3000
Number of iterations over each segment nseg 100
Roulette wheel reaction factor ρ 0.1
Global solution score σ1 35
Worse solution score σ3 5
Shaw parameters θ1, θ2, θ3 (3,13,7)
SA parameter δ 0.05
Noise parameter αnoise 0.6
WDR determinism factor κ 8
Shaw determinism factor η 12

6.4.3 Experiments on small-sized instances

Both the dynamic rerouting and the two-stage stochastic programming approaches

are implemented to solve the benchmark instances by means of CPLEX. The ALNS

algorithm is used to solve the same instances for validation purposes. Note that we

eliminate infeasible arcs due to the time window constraints, protection requirements

and the impact time in a preprocessing step to sufficiently reduce the problem size

for all approaches. The result are presented in Table 6.4.

The results for the two-stage stochastic programming model (TSSP), the dynamic

rerouting approach (DR) and the adaptive large neighbourhood algorithm (ALNS)

are reported as percentages of the total value of assets impacted. The objective

value (”asset value protected”) is the summation of the actual values of protected

assets at stage one and the expected values of them at stage two.
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Table 6.4: A summary of results for 50-55-60 assets. Vehicle numbers are defined at two levels: Set1 = {κ1 =
3, κ2 = 2, κ3 = 2} and Set2 = {κ1 = 4, κ2 = 3, κ3 = 3}. Results are reported as percentage of the assets’
values protected. Computation times are reported in seconds(sec). Under “Gap(%)” positive numbers imply better
performance of the first method. Asterisk is used to define sets that couldn’t be solved within the time limit by
CPLEX.

#Vehicles #Assets
TSSP DR ALNS Gap(%)

Asset value
protected(%)

Time
(sec)

Asset value
protected(%)

Time
(sec)

Asset value
protected(%) Time

(sec)
TSSP

vs
DR

ALNS
vs

DR
Avg Best Avg Best

Set 1
20 64.49 183.08 62.33 24.54 61.94 62.24 5.49 3.36 -0.65 -0.17
25 58.47 1637.03 56.69 51.59 56.11 56.50 8.05 3.25 -0.88 -0.19
30* 52.10 1845.94 49.68 810.74 49.19 49.89 11.84 5.00 -0.96 0.43

Set 2
20 77.37 769.89 76.47 140.49 75.49 76.10 5.83 1.17 -1.24 -0.42
25* 73.54 1578.42 71.29 674.34 69.83 70.69 9.45 3.09 -1.92 -0.74
30* 67.27 1850.96 64.12 1831.34 64.21 64.38 14.03 4.77 -0.67 0.93

Table 6.4 shows that the TSSP takes advantage of integrating all scenarios and

maximises the total expected value of the serviced assets. Therefore, the two-stage

stochastic programming performs better for small instances at a cost of higher com-

putation time, as more decision variables are involved. The TSSP results are 3.44%

better than those by the DR. As is to be expected for both DR and TSSP methods,

it is seen in Table 6.4 that computational time increases with increasing assets. Less

obvious is that more time is required to solve instances with a larger number of

vehicles (set 2). Dispatching more vehicles increases the complexity of the IMTs

task but more assets are serviced. Both DR and TSSP failed to solve all instances

to optimality for 30 nodes in set 1, and this drops to 25 nodes for set 2, where more

vehicles are operating.

On the other hand, the ALNS has a consistent performance both in terms of speed

and accuracy. The average computation time for ALNS, in Table 6.4, is 9.1 seconds

compare to 588.84 and 1310.9 for DR and TSSP, respectively. This makes the ALNS

suitable for operational purposes and it gives the IMTs a close to optimal solution.

The average optimality gap of −1.05% and −0.02% in the last two columns of the

table illustrate the efficacy of the ALNS. The algorithm generates better solutions

for instances with 30 nodes where CPLEX cannot achieve optimal solutions within

the time limit.

Overall, the results indicate that the two-stage stochastic approach can improve

the quality of the solution but that it comes at a computational cost. For less
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than 30 assets this computational cost is not a concern as solution times are still

satisfactory for operational purposes. For cases involving either a larger number

of assets or resources the ALNS algorithm would need to be employed despite the

reduction in solution quality.

6.4.4 Experiments on large-sized instances

Both from theoretical considerations and from Table 6.4 we expect the TSSP to

generate optimal results when prior knowledge of a wind change and its timing is

available. Thus, we use the TSSP to test the the quality of the ALNS for larger

problems with 100 and 200 nodes. We run CPLEX for twelve hours and compare

the best integer and the best upper bound with results by the ALNS. The twelve

hours time limit for the CPLEX is not relevant for operational purposes but is set

merely for evaluation of the ALNS solutions.

The results for the large-sized instances are presented in Table 6.5. Results are

illustrated as percentage of asset values; and number of vehicles are set proportional

to the problem size. In Table 6.5 the TSSP can only covers about 28.15% , on

Table 6.5: A summary of results for 100 and 200 nodes. Vehicle numbers are defined in four categories. For 100
nodes: Set1 = ( V 1 = 6 , V 2 = 5 , V 3 = 4 ) and Set2 = ( V 1 = 7 , V 2 = 6 , V 3 = 5 ). For 200 nodes: Set1 =
( V 1 = 9 , V 2 = 8 , V 3 = 7 ) and Set2 = ( V 1 = 12 , V 2 = 11 , V 3 = 10 )

#Vehicles #Assets
TSSP ALNS Gap(%)

Asset value
protected(%)

Asset value
protected(%) Time

(sec)

ALNS
vs

DR
CPLEX

LB
CPLEX

UB Avg Best Avg Best

Set 1 100 38.04 99.90 42.28 43.24 225.75 12.34 14.90
200 8.86 100 37.05 37.85 609.46 680.65 696.43

Set 2 100 44.98 100 48.03 49.25 334.42 10.07 12.85
200 20.74 100 46.71 47.39 764.08 795.66 809.44

average, after 43200 seconds. On the other hand, the ALNS collects 44.43% of the

total value of assets in 483 seconds. The average gap between ALNS and TSSP gets

larger when we increase the problem size by 100 nodes. There is a small difference

between the average and the best result by the ALNS which emphasises the robust
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performance of the algorithm through each run. Table 6.5 shows that the ALNS

can perform better in practice when sudden changes take place as it requires less

computational resources. However, a better solution by ALNS does not assure its

quality as CPLEX could not achieve reliable upper bounds with which to compare

our results. Overall, the ALNS can generate practical solutions within times suitable

for operational purposes.

6.5 Summary and discussion

In this chapter a two-stage stochastic programming approach is developed to handle

the unusual feature of uncertainty in the timing of changes in conditions. In this

study the changed conditions refer to wind direction and velocity. These changes

determine new time windows during which assets must be serviced and hence the

optimal deployment schedule and routing of vehicles. To the best of my knowledge

this is the first two-stage stochastic programming problem dealing with uncertainties

in the timing of changes.

The two-stage stochastic programming approach (TSSP) requires forecasts of changes.

We also investigated a dynamic rerouting approach to the problem. In an opera-

tional setting the deployment model would simply be solved again once the wind

actually changed or the forecast uncertainty had been removed. Solving the dy-

namic rerouting problem (DR) with exact methods using a commercial solver, as

expected, yielded results that were not as good as the TSSP but nevertheless were

at worst within five per cent of that achieved by the theoretically superior method.

The exact method for both approaches, however, was not able to produce results for

larger problems in times useful for practical purposes. Thus, we investigated the use

of an adaptive large neighbourhood search algorithm (ALNS) to solve the rerouting

problem in a more time efficient manner.

In addition to a case study, the proposed approaches were tested with extensive com-

putational experiments. To evaluate the efficacy of our solution scheme, results were

compared to the dynamic rerouting approach and the two-stage stochastic approach.
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As expected the two-stage stochastic program produced better solutions than the

rerouting approach. This difference became more pronounced as the complexity

of the problem increased with more assets and vehicles. However, the two-stage

stochastic program was unable to solve realistic size problems in operational time.

On the other hand, the performance of the ALNS in terms of computational time

was superior to the stochastic programming approach and generates high quality

solutions.

Fire authorities can utilise the proposed models in their decision making process

to incorporate any uncertainties in the problem condition due to the change of fire

direction, demand of suppression and protection operations, change of time windows

and/or other problem attributes. Also, along with weather change, other disruptions

with uncertain time of occurrence can be considered such as network accessibility,

and change in travel time. These can be incorporated into the model in a similar

way.
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Conclusion

Wildfires are often hazardous to key assets whose loss can disrupt community life

for months and be costly to replace. During an uncontrollable wildfire IMT’s deploy

response vehicles to mitigate the risk of losing crucial assets. Planning, coordinat-

ing and managing protective activities using limited resources (i.e., personnel and

equipment) in an optimal way is critically important. The optimal deployment of

resources during wildfires, known as the asset protection problem, is NP-hard. The

literature review conducted in chapter 2 reveals that there is no solution scheme to

solve either the APP or the COPTW in times suitable for operational purposes. In

the APP any strategy would not be optimal without utilising all available knowledge

including the forecast of a wind change even if there is some uncertainty about the

timing of that change. There is very little in the literature dealing with uncertainty

in the timing of changes in the problem conditions.

This thesis introduces a heuristic solution approach to solve large size COPTW

for the first time. The solution approach demonstrated in chapter 3 can efficiently

handle synchronisation of team members within predefined time windows. The

performance of the proposed solution approach was evaluated by comparing against

optimal solutions for small instances. Furthermore, the results of the large instances

are compared to another heuristic method which proved the superior performance

of the proposed approach.

95
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In chapter 4 a metaheuristic approach was designed to deal with existing com-

plexities of the APP. New problem specific insertion and removal algorithms were

developed to implement, dynamically and adaptively, in the body of an adaptive

large neighbourhood algorithm. The efficacy of the solution approach was evaluated

through extensive computational experiments. Proposing a new approach to eval-

uate the feasibility of insertion at any point in a specific time favoured the ALNS

algorithm both in terms of solution quality and computation effort. The algorithm

developed was able to solve realistic sized asset protection problems for the first

time in computational times suitable for implementation in practical problems.

In chapter 5 additional algorithms were formulated to improve the ALNS perfor-

mance introduced in chapter 4. The performance of every insertion and removal

heuristic was evaluated and the least efficient algorithms excluded. Doing so pro-

vides more time for the efficient heuristics to improve the solution. The enhanced

ALNS algorithm achieved better solutions than previously published results which

demonstrated the efficacy of the solution approach. Once the performance of the al-

gorithm was validated, the ALNS was used for solving the COPTW and the results

evaluated and released as benchmarks for future research.

In chapter 6 a two-stage stochastic programming approach for the APP was in-

troduced. The model incorporates uncertainties in the timing of changes in the

problem condition. Such changes could be the result of factors such as changes in

wind direction, protection requirements or network accessibility. This is an impor-

tant problem that arises frequently with wildfires in south-eastern Australia when a

change in wind direction is predicted but the timing of the change is uncertain. The

change in the wind direction impacts on the time windows during which protection

activities need to be accomplished. The performance of the two-stage stochastic pro-

gramming model, the dynamic rerouting model and the ALNS algorithm for solving

dynamic rerouting were evaluated through extensive computational experiments. A

case-study of the Black Saturday bushfires was presented and the impact of wind

change was investigated.

Although the discussion focused on asset protection and change in wind direction,
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other logistic operations can be accommodated by the proposed modelling approach

and solution schemes. An example of which could be suppression operations during

bushfires. A common situation that arises in wildfire suppression operations is

dealing with precedence and synchronisation constraints, similar to the APP. This is

due to different tasks and resources having to be allocated so that aerial and ground

vehicles can do their job effectively. When wildfires take place, initial resources,

e.g. helicopters, are deployed to achieve the earliest possible suppression of the fire.

After the initial attack, depending on fire suppression requirements and available

resources, other response vehicles such as tankers and pumpers will be deployed to

work either cooperatively or independently.

Another application is the home care services. In such services, some operations

may require more than one staff member. For example, where heavy lifting and

specialist medical expertise are required (Bredström and Rönnqvist (2008)). A

closely related problem is a home cleaning service where some homes may require

one or more services such as the following: basic cleaning, window cleaning, and

washing. Access to each house is within a given time-window.

7.1 Thesis contributions

As demonstrated the proposed solution algorithms and modelling approaches can be

used for operational purposes. They can also be implemented for strategic planning

decisions to identify home-basing of resources and fleet composition. Solving large

scale asset protection problems are now possible by using the solution approaches

proposed in this thesis. Strategically, fire authorities can use the proposed models

to determine optimal deployment plans for various simulated wildfire scenarios. In

this way they can gain better insight about the proportion of community assets

that can be protected. Identifying assets that would go unprotected with different

combinations of resources can assist decision makers to determine what additional

resources are required to cover a majority of important community assets.

Contribution 1 Providing algorithmic approaches to solve the COPTW
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This is the first time that a large scale COPTW with real-life applications, requiring

quick solutions, is solved. A merit-based heuristic was developed and the perfor-

mance of the algorithm was evaluated. The proposed solution approach can be

implemented on regular desktop computers by using free-of-charge existing software

technology.

Contribution 2 Developing an adaptive large neighbourhood algorithm to solve the

APP in operational times Decision-makers are faced with complex problems under

severe time-pressure.One such problem is the Asset Protection Problem. For the

first time this problem was solved within times suitable for operational purposes.

The newly designed heuristics achieved high quality solutions. By implementing a

new approach, the feasibility of insertions were evaluated in a time efficient manner

that improved the efficacy of the adaptive large neighbourhood algorithm.

Contribution 3 The development of a comprehensive metaheuristic solution approach

for the COPTW.

Following the success of the ALNS approach introduced in chapter 4 a thorough

exploration of additional heuristics was made with a view to making further per-

formance improvements. Inefficient heuristics were identified and excluded and new

heuristics designed as explained in chapter 5. The resulting solution procedure pro-

duced reliable solutions both in terms of solution quality and computational times

in solving the COPTW.

Contribution 4 A two-stage stochastic programming model to incorporate existing

uncertainties in the APP

A two-stage stochastic programming approach is presented to handle uncertainties

in the asset protection during bushfires. This is one of the first studies incorporating

uncertainty in the timing of changes. The proposed model considers changes in wind

direction that impacts on the availability of networks, protection requirements, and

time windows.
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7.2 Suggestions for future works

As the applications grow in the cooperative orienteering class of problems, other

developments may be needed to handle complexities such as soft time windows and

real-time changes to routes. The ALNS algorithm is a powerful tool which can

accommodate further constraints to deal with such problems.

Fire suppression operations are crucial at the early stages of wildfires. The models

discussed and the solutions approaches presented in this thesis can be extended and

implemented for such operations. Some problem attributes should be taken into

account for fire suppression operations, such as the travel speed of the different

aerial and ground vehicles, different service times at various points and incidents of

vehicles breaking down. The characteristics of the suppression operations can be

integrated into the models and algorithms formulated in this thesis.

Developing a decision support tool for both defensive tasks and suppression oper-

ations by implementing the models and solution approaches developed is a natural

next step. Doing so, would facilitate constructive feedback from fire authorities.

This is turn would have the benefit of identifying possible modifications to increase

the practical utility of the models under operational conditions.
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Appendix One

A.1 Supplementary data for the case study

A weather change is forecast after the initial trip scheduled for the Black Saturday

case study (chapter 6). In table A1, assets impacted as a result of the change in

the weather condition are identified on the map. The protection requirement vector

shows the number of resources of each type needed for accomplishing the protection

task. Protection requirement vectors are assigned randomly and time windows are

defined approximately based on The Victorian Bushfires Royal Commission report

(Whittaker et al. (2009)). Some assets are impacted in multiple scenarios and others

in one scenario, while those that are not at risk require no protection and have the

impact time of 0.
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Table A1: List of assets being impacted in chapter 6. For sensitivity reasons asset names are not mentioned.

# Asset ID Protection
requirement vector

Time of being impacted
at stage 1

Time of being impacted
at scenario 1 (stage 2)

Time of being impacted
at scenario 2 (stage 2)

Time of being impacted
at scenario 3 (stage 2)

1 A1 <0, 2, 1> - - 6.5 7
2 A2 <2, 1, 0> 2 - - -
3 A3 <1, 2, 1> - 5.5 8 -
4 A4 <1, 2, 1> 1 - - -
5 A5 <2, 0, 1> 3 - - -
6 A6 <1, 2, 0> - 5 6.5 7
7 A7 <1, 0, 0> - - 4.4 4.4
8 A8 <1, 0, 2> - - 8 8.5
9 A9 <2, 0, 1> - 9 - -
10 A10 <2, 1, 0> - 6.5 7.5 8
11 A11 <2, 1, 0> - - 4 4
12 A12 <0, 2, 1> - - 4.5 4.5
13 A13 <2, 1, 0> - - - 5.5
14 A14 <0, 2, 1> - - 6.5 7
15 A15 <1, 0, 2> - 4.5 6 -
16 A16 <2, 1, 0> - - - 5.5
17 A17 <0, 2, 1> 1 - - -
18 A18 <1, 1, 2> 3 - - -
19 A19 <1, 0, 2> - 11 - -
20 A20 <1, 0, 2> - - 7.5 8
21 A21 <2, 0, 1> - 9.5 9 0
22 A22 <1, 2, 1> - 7 - -
23 A23 <2, 1, 0> - 10.5 10 -
24 A24 <0, 2, 1> - 9 - -
25 A25 <1, 2, 1> - - 9 9.5
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