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resumo 
 

 

Os cães existem na Península Ibérica pelo menos desde o Paleolítico Superior; 
o resto arqueológico mais antigo data há cerca de 16,000 AP (Erralla, Espanha). 
Existem diferentes teorias sobre a origem dos cães na Europa. Estudos 
anteriores indicam que os cães podem ter chegado à Europa a partir de uma 
população domesticada de lobos oriundos da Ásia Oriental, ou a partir de duas 
populações de lobos geneticamente distintas da Eurásia Oriental e Ocidental, 
domesticadas independentemente, e que mais tarde, a população de cães da 
Eurásia Oriental se espalhou e substituiu parcialmente a população da Eurásia 
Ocidental. 
Um estudo recente focando na composição genética de 6 cães Ibéricos do 
período Mesolítico, sugeriu que uma domesticação local na Península Ibérica 
pode ter ocorrido na Europa pré-Neolítica. Considerando o debate mantido 
sobre a origem dos cães, é crucial desvendar a composição genética de 
populações passadas e periféricas da Europa – usando métodos específicos 
para recuperar e analisar o DNA ancestral, de diferentes períodos, a fim de 
investigar a origem e a trajetória evolutiva dos cães no seu global. 
Nomeadamente, pode revelar-se importante por fornecer dados sobre uma 
possível contribuição do lobo Ibérico para a origem dos primeiros cães Ibéricos 
e informação genómica potencialmente útil para a detecção de eventos de 
hibridação histórica entre o cão e o seu parente selvagem, o lobo Ibérico – uma 
subespécie endêmica e atualmente considerada “Em perigo” de extinção. Esta 
informação pode ser englobada aquando a definição de medidas de gestão e 
conservação futuras para a espécie selvagem lobo Ibérico. 
Neste trabalho, uma abordagem genómica (Next Generation Sequencing, NGS) 
foi a escolhida para recuperar sequências do genoma mitocondrial (mt) e nuclear 
de Canis de três sítios arqueológicos Ibéricos datados do Calcolítico [ca. 5,000-
4,000 anos atrás]: dois cães de Leceia em Oeiras, Portugal; dois cães de 
Casetón de La Era em Valladolid, Espanha; e um lobo de Penedo de Lexim em 
Mafra, Portugal. Utilizando as ferramentas de bioinformática actuais, esses 
genomas foram identificados e compilados. Além disso, para entender a relação 
de populações passadas/modernas, construiu-se uma rede filogenética 
(baseada num fragmento parcial da região controlo do mtDNA) reunindo 254 
sequências de Canis, bem como uma árvore filogenética de 23 mitogenomas de 
Canis disponíveis em bases dados públicos. 
Embora a recuperação e análise do genoma nuclear sejam um maior desafio se 
proveniente de amostras ancestrais, este foi investigado para a identificação do 
sexo molecular desses 5 espécimes. 
Relativamente ao estudo dos cães pré-históricos da Ibéria, esta é a primeira 
tentativa de aplicar com sucesso o método NGS para investigar a sua 
composição genética. Neste estudo, foi possível: gerar sequências do genoma 
mitocondrial (com 1x a 17x de cobertura) e recuperar entre 0.09% e 3.75% do 
genoma nuclear endógeno das 5 amostras do Calcolítico; identificar haplótipos 
de DNA mitocondrial e atribuí-los a dois (A e C) dos quatro principais 
haplogrupos descritos para os cães (A, B, C e D); gerar dados genómicos de um 
lobo Ibérico do Calcolítico que, tanto quanto investiguei, constituem os primeiros 
dados genómicos de um espécime de lobo da Ibéria e desta cronologia. Os 
resultados mostram que os cães Ibéricos do Calcolítico apresentavam a mesma 
frequência de haplótipos do Haplogrupo A (Hg anteriormente presente neste 
território, em contraste com as outras regiões da Europa), bem como do 
Haplogrupo C (já presente em outras regiões da Europa desde o Paleolítico).  
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Domestic dogs exist in the Iberian Peninsula at least since the Upper Late 
Palaeolithic; the oldest remain dated to 16,000 BP years old (Erralla, Spain). 
There are different theories about the origins of European dogs. Previous studies 
indicated that dogs may arrived in Europe from an Eastern Asia domesticated 
population of wolves, or that two genetically distinct wolf populations in Eastern 
and Western Eurasia may have been independently domesticated, and that 
afterwards the Eastern dog population spread and partially replaced an 
indigenous Western Eurasian dog population. 
A recent study focusing in the genetic composition of 6 Mesolithic Iberian dogs 
reported that a local domestication in the Iberia Peninsula may have occurred in 
pre-Neolithic Europe. Considering the debated origin of Iberian dogs, it is crucial 
to unravel the genetic composition of past European peripheral populations - 
using specific methods to recover and analyse ancient DNA, from different 
periods in order to further investigate their origins and evolutionary trajectories. 
Additionally, it may prove important to provide data on a possible contribution of 
the Iberian wolf to the origin of the first Iberian dogs and genomic information 
potentially useful for the detection of historical hybridization events between the 
dog and its wild relative, the Iberian wolf – a subspecies and an endemism 
currently considered “Endangered”. This information can be included in the 
definition of future management and conservation measures for the wild Iberian 
wolf species. 
In this work, a genomic approach (Next Generation Sequencing, NGS) was 
carried out to recover mitogenome and nuclear genomic data of Canis from three 
Iberian archaeological sites dated to the Chalcolithic [ca. 5,000-4,000 years BP], 
in particular: two dogs from Leceia in Oeiras, Portugal; two dogs from Casetón 
de La Era in Valladolid, Spain; and one wolf from Penedo de Lexim in Mafra, 
Portugal. Using the most up-to-date bioinformatic tools, their mitochondrial (mt) 
and nuclear genomes were sequenced. In addition, to understand the 
relationship of past/extant populations, a phylogenetic network (based on a 
partial fragment of the mtDNA control region) comprising 254 Canis sequences, 
as well as a phylogenetic tree of 23 Canis mitogenomes, publicly available, were 
constructed. Furthermore, the nuclear genome, although more challenging to 
recover and analyse from ancient samples, was investigated to molecularly 
assess the sex of these 5 Canis specimens. 
Regarding ancient Iberian dogs, this is the first attempt to successfully apply 
NGS methods to investigate their genomic composition. In this study, it was 
possible to: generate the draft of mitochondrial genomes (coverages ranged 
between 1x and 17x) and recover between 0.09% and 3.75% of endogenous 
nuclear genomic data of these 5 Canis specimens; identify mitochondrial DNA 
haplotypes and assign those to 2 (A and C) of the four major dog haplogroups 
described (A, B C and D); generate genetic data from a Chalcolithic wolf - to the 
best of my knowledge this is the first genomic data available from an Iberian wolf 
specimen from this chronology. The results shown that the Chalcolithic Iberian 
dogs had about the same frequency of Haplogroup A (previously present in this 
territory, but contrasting with other European regions), as well as of the 
Haplogroup C (already present in other European regions since the Paleolithic). 
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1. Introduction  

1.1 The history of animal domestication 

Domestication of animals and plants started at the Late Pleistocene (MacHugh et al. 2016), 

beginning with the domestication of wolf (Canis lupus, Linnaeus 1758), followed, much 

later, by the ancestral of livestock species (e.g. goats, sheep, cattle and pigs) and crops (e.g. 

rye, wheat). Despite the existence of thousands species in the world, the number of animal 

species that man has been able to domesticate does not exceed four dozens (Larson & 

Fuller 2014), fact that proves that the necessary circumstances for this process to take place 

appear to have happened rarely during the past. 

There is not an unanimously accepted definition of domestication because of the diverse 

array of different relationships between humans and animals and plants that fall within the 

general rubric of domestication (Vigne et al. 2005). The process of domestication may not 

have been a deliberate act, but the result of a coevolutionary process with multiple stages 

along three different pathways (commensal, prey and directed; see Zeder 2012b). 

Nonetheless, domestication triggered a rapid and profound shift in the evolution, ecology 

and demography of both humans and domesticated species. After the process of 

domestication took place, biological changes continued through gene flow between 

domestic and wild populations, relaxation of natural selective pressure, and later artificial 

selection pressures driven by humans, resulting in the appearance of new traits by 

mutation (Larson & Fuller 2014). In order to decipher the key differences that allow to 

distinguish between the wild and domestic forms, many studies have concentrated in 

different approaches/methods to study archaeological records (Vigne et al. 2005; Zeder 

2006; MacHugh et al. 2016). 

1.2 Domestication of Canis lupus: one event, many theories 

1.2.1 MaŶ’s oldest frieŶd: froŵ wolf to dog. 

The mystery of resolving the complexity of the origin of dogs (Canis lupus familiaris, 

Linnaeus 1758) began formally with Charles Darwin, in 1868, when in his book entitled ͞ The 
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VaƌiatioŶ of AŶiŵals aŶd PlaŶts uŶdeƌ DoŵestiĐatioŶ͟, he ǁoŶdeƌed ǁhetheƌ dogs had 

evolved from a single species or from an unusual mating between a wolf and a jackal 

(Darwin 1885). Part of the answer for this question only came in the late 1980s, when 

morphological (Olsen 1985; Benecke 1987; Clutton-Brock 2016) and genetic (Wayne et al. 

1992; Vilà et al. 1997; Savolainen et al. 2002) analysis finally confirmed that dogs had 

descended from gray wolves (Canis lupus; both share 99.96% of their nuclear DNA 

(Lindblad-Toh et al. 2005)) – but not from the extant gray wolf (Figure 1). Instead, they 

would have descended from a now-extinct Late Pleistocene wolf population, as extant 

wolves are not closely related to the wolves that were first domesticated. Even tough, the 

closest living relative of the dog is the extant gray wolf (Lindblad-Toh et al. 2005; Freedman 

et al. 2014; Fan et al. 2016; Thalmann & Perri 2018).   

Hoǁeǀeƌ, soŵe ƋuestioŶs aƌe still uŶaŶsǁeƌed: ͞ǁheƌe dogs fiƌst appeaƌed?͟; ͞ǁheŶ this 

happeŶed?͟; aŶd ͞ǁhat is the ďest ǁaǇ to fiŶd these aŶsǁeƌs?͟. KŶoǁiŶg the aŶsǁeƌ to 

these questions will not only end with an old search, but also will improve our knowledge 

Figure 1. Canid phylogenetic tree based on 14948 bp of intron and exon sequences. Above and below the internodes 

are two different measures of support: bootstrap and bayesian value, respectively. The colors groups identify the 

red-fox-like clade (red), the South American clade (green), the wolf-like clade (blue) and the grey and island fox 

clade (orange). Underlined species names are represented with corresponding illustrations. Dogs and wolves are 

related species and descend from a common ancestor. Modified and reproduced with permission of the authors 

(Lindblad-Toh et al. 2005) 

https://en.wikipedia.org/wiki/Domestication
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of pre-history humans and the development of civilization, given that dogs were the first 

human͛s domesticate – before any other plant or other animal – (Morey 1994), and had a 

profound influence on the course of human history, such as the transition from hunter-

gatherers to farmers, the peopling of the Americas, the spread of pastoralism into Europe, 

and, most recently, European colonialism throughout the Americas and elsewhere 

(Shannon et al. 2015). 

Hagner (2018), mentions that domestication is a gradual process that occurs along a 

continuum, where no clear separation line between wolves and dogs can be determined 

(Figure 2) and arbitrary names can be given to some stages to better understand the 

processes. Irving-Pease et al. (2018) aƌgue that ͞Timing domestication should therefore 

focus on questions related to the numerous changes in the way humans interacted with 

domesticates, how those relationships varied in time and space, the relative intentionality 

of human actions and the genetic and morphological effects on the taxa in question͟. 

 

Figure 2. Timeline of dog domestication stages indicated by Hagner (2018). 

Most experts believe that domestication began with a wolf initiative. In other words, they 

self-domesticated (Budiansky 1992; Morey 1994). In the time of human hunter-gatherers, 

thousands of years ago, a bolder and less suspicious population of wolves came into initial 

contact with humans to feed on the remained carcasses that were discarded at the edges 

of human-hunter settlements, founding a new niche with a convenient food supply. After 

only few generations, the wolves of this bolder lineage reproduced and generation after 

generation became associated with humans. Thus, confidence arose between the two 

species and man probably started to realize that the presence of the wolf could be useful 

as protection against other large carnivores and helping them to take down prey, 

eventually becoming permanent hunting partners. Therefore, the active phase of 

domestication - where man had the initiative – began by breeding early canines to be better 

hunters and guardians (Morey 1994; Grimm 2015). 

Friendly wolf

Dog-wolf

Wolf-dog

Proto-dog

Dog
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Back to Palaeolithic period, humans hunted animals using heavy stone axes and spears. 

During Mesolithic period, the development of an improved arrow that allowed to hunt at 

long-distance, in partnership with dogs that could help to track down and bring wounded 

animals, probably enhanced the success in hunting (Vigne 2007; Clutton-Brock 2016). 

Prehistoric dogs may have been used to transport heavy pack on their backs by dragging 

carts, as a paleopathology study on Chalcolithic and Bronze age dogs skeletons revealed 

flattening of the dorsal tips of ancient dog vertebrae (Albizuri et al. 2011; Liesau Von 

Lettow-Vorbeck et al. 2014; Grimm 2015).  

There were some morphological changes accepted to be associated with early dog 

domestication events (Figure 3): 

• Reduction in body and head size: the new habitat chosen by the scavenger wolves 

led to changes in breeding strategies (accelerated maturation, larger littler sizes and 

shortened generation time) in face to changes in selective pressure (new conditions 

of food and water availability, low interspecific competition, relaxation in 

competition/predation pressures, increase in intraspecific competition), resulting 

in size reduction (due truncation of the growth period) (Tchernov & Horwitz 1991; 

Morey 1992; Clutton-Brock 2016). Paedomorphism, the retention of juvenile 

features in sexually mature adults, a criteria long time accepted to distinguish dog 

from wolf (Morey 1994; Waller et al. 2013), currently have been rejected (Drake 

2011), however whether early dogs resembled juvenile wolves is not excluded. At a 

late stage of domestication, the selection of smaller dogs was also related to 

tameness and submission to man (Morey 1994);  

• Wider Snout: increases in snout width as a consequence of a shape change of the 

mid-face in dogs (Drake 2011; Schmitt & Wallace 2012).  

• Development of an angle between the nasal/maxilla bones and the forehead bones, 

called a ͞frontal stop͟ (Drake 2011). 

• Carnassial size reduction: reduction of the carnassial teeth in the earliest dogs 

(Janssens et al. 2019). Mandibular tooth crowding (Morey 1992; Germonpré et al. 

2012; Clutton-Brock 2016), however, this character is no longer a reliable indicator 
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to assign species identification of early dogs, since high levels of tooth crowding in 

ancient wolves are also reported (Ameen et al. 2017); 

• Changes in fur color (Anderson et al. 2009; Ollivier et al. 2013; Shannon et al. 2015; 

Clutton-Brock 2016) and texture, shape of ears (floppy ears), eye color, tail length 

and its curvature can be also found in early dogs (Trut 1999; Wilkins et al. 2014). 

 

In the year of 2005, when the first dog genome was completely sequenced and published 

(Lindblad-Toh et al. 2005), researchers could have a glimpse in the genetics basis for dog 

domestication. Researchers could associate some genes found in the dogs͛ geŶoŵe to 

domestication. Those genes are mostly involved in nervous system development and 

function, supporting the hypothesis that first stage of domestication was selecting for 

behaviours, such as reduction in aggression, tameness and submission to live in human 

coexistence (Trut 1999; Akey et al. 2010; Pendleton et al. 2018). Other genes are involved 

in starch and fat metabolism, reflecting genetic changes an adaptation to a new diet 

available as a consequence of the development of agriculture (Axelsson et al. 2013). 

 

Figure 3.  Cranium characteristics used to distinguish wolves from dogs. Modified and 
reproduced with permission of the authors (Grimm 2015)   

The wolf snout slopes down gently, 
whereas the dog snout has a kink in 
front of the eyes, called “frontal stop”. 

Carnassial teeth tend to 
be bigger in wolves. 

Dogs have reduced 
craniofacial development. 

Dog 

Wolf 

Dogs have a 
wider snout 
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1.2.2 Archaeological evidence – earliest dog remains 

Currently, genetics and archaeological fields have come together to allow for a better 

understanding of the dog origins and evolution. Domestication was not abrupt, resulting in 

morphological differences that were not very apparent between the first domestic dogs 

and their wild wolf ancestors during the early stages of wolf domestication (Larson et al. 

2012; Hagner 2018). 

Before the advent of the molecular genetic toolbox, osteometric, morphometric and dating 

analyses were conducted to identify species. However, it is not possible to confirm when 

and where the domestication of the wolf happened based only on the morphological 

analysis of fossil remains: 1) wolves and the earliest dogs were likely very similar 

morphologically, making it difficult sometimes to distinguish their bones; 2) wolves in pre-

historic times used to have a much broader distribution, making it difficult to classify 

remains solely on the basis of geography; 3) until date, few canid fossil remains have been 

found, resulting in a temporally and geographically fragmented record (Freedman & Wayne 

2017).  

Dogs from Eurasia  

Well documented remains of early domestic dogs come from the Late Pleistocene and Early 

Holocene periods (see Appendix I), with few disputed dogs remains dated prior to the Last 

Glacial Maximum (22,000-19,000 BP (Yokoyama et al. 2000)) (Sablin & Khlopachev 2002; 

Germonpré et al. 2009, 2012; Druzhkova et al. 2013).  Dogs were well established across 

Eurasia before the end of the Late Pleistocene, before the advent of agriculture and 

domestication of other animals, indicating that the earliest dogs arose when humans 

were hunter-gatherers and not farmers (Davis & Valla 1978; Napierala & Uerpmann 2012; 

Freedman & Wayne 2017). 

Dog remains have been found at several archaeological sites located in distinct geographic 

areas, raising the hypothesis of multiple and independent processes of domestication of 

the wolf before the Neolithic period (Vilà et al. 1997; Pionnier-capitan 2010; Frantz et al. 

2016). According to zooarchaeology, the oldest archaeological evidence of domestic dog 

https://en.wikipedia.org/wiki/Hunter-gatherers
https://en.wikipedia.org/wiki/Agriculturists
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comes from the upper Palaeolithic 30,000 years-ago (Predmostí dog; Germonpré et al. 

2012), although the first remains confidently assigned to dogs appear in Europe and in the 

Middle East only by the end of the late Glacial period, ca. 14,000 and 12,000 years-ago, 

respectively (Kesslerloch and Ain Mallaha dogs; Davis & Valla 1978; Napierala & Uerpmann 

2012). 

Several studies place the first steps of wolf domestication in East Asia, Central Asia, 

Southeast Asia, Middle East, or Western Europe (see Table 1) before the Neolithic 

transition (Freedman et al. 2014). From the following Neolithic period, remains of dogs 

were abundant in archaeological sites from many parts of the world and status assignment 

in these remains becomes easier because dog-like features (e.g. small size and  skull and 

mandible shortening) were fully developed (Clutton-Brock 2016). A brief map description 

of each Palaeolithic and Mesolithic archaeological site is shown above (Figure 4). However, 

a more complete register of the main archaeological finds worldwide (disputed and 

undisputed) can be found at supplementary material of Larson et al. (2012) and Ollivier et 

al. (2018).  
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Figure 4. Geographical Location (numbers 1 to 14) of the Palaeolithic and Mesolithic archaeological sites in Eurasia from where the earliest undisputed dogs remain 

were excavated. Remains excavated from each site is described in detail in Appendix I.  
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Dogs from the Americas  

Genetic evidence indicates New World dogs, i.e. the Americas, originated from Old World 

dog lineages (Leonard et al. 2002). When the first humans who colonized America crossed 

the strait of Bering into the New World ca. 12,000-14,000 years ago, it is believed that they 

brought with them multiple lineages of Eurasian dogs (Leonard et al. 2002). The oldest dog 

remains until date was found in Danger Cave, Utah and is dated from ca 10,000-9,000 years 

ago (Grayson et al. 1988).  

Canids remains with ambiguous status and morphology 

- Goyet Cave, Belgium: a 36,000 cal BP skull was first indicated to belong to a 

Palaeolithic dog-like individual (Germonpré et al. 2009). However, its mitochondrial 

DNA did not match any modern wolf nor dog, placing it as an ancient sister-group 

rather than a direct ancestor of modern dogs. It may represent an unsuccessfully 

domestication event or phenotypically and genetically distinct wolves, perhaps 

from an extinct wolf lineage (Pionnier-Capitan et al. 2011; Thalmann et al. 2013; 

Drake et al. 2015). Crockford and Kusmin (2012) aƌgue ͞that the ͚PalaeolithiĐ dogs͛ 

desĐƌiďed ďǇ GeƌŵoŶpƌé et al. ;ϮϬϬϵ, ϮϬϭϮͿ […] ŵaǇ siŵplǇ ďe ƌatheƌ ͚shoƌt-faĐed͛ 

wolf individuals that lived within a population of typical wolves that interacted in 

ǀaƌious ǁaǇs ǁith huŵaŶ huŶteƌs͟. 

- Predmostí, Czech Republic: Three complete skulls were identified as Palaeolithic 

dogs estimated to be ca 27,000 BP (Germonpré et al. 2012). According to Larson et 

al 2012, although these skulls exhibit dog-like traits, they could also belong to an 

extinct population of wolves, as also argued above by Crockford and Kusmin (2012). 

- Taimyr, Siberian: The 35,000 year-old siberian wolf, belonged to a population that 

diverged from a now extinct common ancestor of gray wolves and domestic dogs 

before the peak of the Last Glacial Maximum (22,000-19,000 BP (Yokoyama et al. 

2000)) providing insight into wolf-dog divergence (Skoglund et al. 2015). 

- Eliseyevichi I, Western Russia: Morphological measurements assigned two skulls 

found in this Upper Palaeolithic site to large dogs (Sablin & Khlopachev 2002) dated 

to ca. 16,945-16,190 cal BP (Pionnier-Capitan et al. 2011). New genetic and 

morphometric studies (Thalmann et al. 2013; Drake et al. 2015; Janssens et al. 2019) 

https://en.wikipedia.org/wiki/Mitochondrial_DNA
https://en.wikipedia.org/wiki/Mitochondrial_DNA
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questioned the validity of traditional measurements used for taxonomic 

identification, claiming that Eliseevichi I dogs are in fact wolves. 

- Razboinichya Cave, Altai Mountains, Southern Russia: Morphological studies 

iŶdiĐated that the ͞Altai dog͟, a Đa ϯϯ,ϬϬϬ-33,500 cal BP Palaeolithic doglike, came 

from a lineage that is now extinct and that was derived from a population of small 

wolves (also now extinct) (Ovodov et al. 2011; Larson et al. 2012). However, a later 

genetic analysis of mtDNA claimed that they are, in fact, early dogs (Druzhkova et 

al. 2013). 

 

1.2.3 Genetic studies: when and where the first dogs arose?  

The difficulty in pointing out the exact location and dating when the wolf domestication 

occurred, can be explained by the subsequent complex demographic processes which may 

have altered the patterns of genetic diversity (Shannon et al. 2015). Firstly, an important 

Đlue to ƌeǀeal dogs͛ oƌigiŶ ŵaǇ ƌelǇ iŶ the geŶetiĐ sigŶatuƌes fouŶd iŶ their DNA. However, 

this is blurred by the admixture that occurred between different dog and wolf populations 

over the last 10,000 years (Larson et al. 2012; Freedman et al. 2014; Fan et al. 2016), 

population bottlenecks due domestication and, more recently, breed formation (Freedman 

et al. 2014; Freedman & Wayne 2017). Secondly, the divergence between the dog and the 

modern wolf occurred within a short period (a rapid speciation may result in incomplete 

lineage sorting, which is an imperfect segregation of all alleles into all lineages), making it 

difficult to date the separation from its wild counterpart (Freedman et al. 2014). Timing 

domestication is further complicated by the few generations that separates dogs from their 

ancestor, so the number of mutations between the dog and the wolf is small (Freedman & 

Wayne 2017) 

Taking all this in account, and accepting as true that dogs were originally domesticated 

from an extinct wolf population (Freedman et al. 2014), many researchers have proposed 

that the direct analysis of ancient specimens might be a better approach in discovering 

dog͛s oƌigiŶ aŶd in elucidating the domestication processes. Genetic studies using ancient 

DNA (aDNA) can provide important insights into the understanding of the past 

https://en.wikipedia.org/wiki/Altai_Mountains
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demographic history and human-driven selection for certain traits in animals of the past 

(Botigue et al., 2017; Ollivier et al., 2016, 2013; Pilot et al., 2014), and can be helpful when 

bones are morphologically indistinct as genetic differentiation can precede morphological 

changes associated to domestication. 

The first phylogenetic analysis was conducted by Vilá et al (1997), using mtDNA control 

region (CR) sequence data of dogs and wolves; four major clades containing dog haplotypes 

were identified (I-IV) and an estimation of dog domestication was placed at least 135,000 

year ago, although according to the authors ͞suĐh estiŵates ŵaǇ ďe iŶflated ďǇ uŶoďseƌǀed 

multiple substitutions at hypervariable sites͟. Forward on, the first study to attempt in 

pinpoint a geographic origin of dogs (Savolainen et al. 2002) was based in genetic diversity 

of 654 dogs from Europa, Asia, Africa and North America and 38 Eurasian wolves. 

Sequencing 582 bp of mtDNA d-loop region – a useful marker for addressing intraspecific 

evolutionary questions -  from both dog and wolf, Savolainen et al. (2002) constructed a 

phylogeny that recovered clades I-IV of Vilá et al (1997) and added two more clades 

containing dog haplotypes, designating them as haplogroups A, B, C, D, E, F, indicating that 

dogs are derived from 6 separate lineages. The new designation given by Savolainen et al 

(2002) to the clades has been a benchmark to all subsequent studies in phylogeny of dogs.  

Back to dating the origin of dogs, later studies using Whole Genome Sequencing (WGS) of 

modern wolves and dogs argued for a more recent origin of dogs – 30,000 years ago (Wang 

et al. 2013) or 16,000-11,000 years ago (Freedman et al. 2014). In the year of 2015, 

Skoglund and colleagues used the 35,000-year-old Taimyr wolf to estimate dog-wolf 

divergence to at least 27,000 years ago. Later, in 2017, a study compared the mitochondrial 

genome sequences of 3 Neolithic dogs with sequences from modern dogs and wolves, 

giving a dog-wolf divergence time of 36,900-41,500 years BP followed by domestication 

occurring between 20,000-40,000 years BP (Botigué et al. 2017). A more recent study 

analysed canids Y-chromosome sequence and revealed that the dog male lineage and the 

modern gray wolf genetically diverged from a common ancestor between 68,000-151,000 

years PB (Oetjens et al. 2018). The reason for this disparity of dates between studies can 

be explained by the different age chosen to calibrate the mutation rate in the wolf. Even 

not reaching an agreement, up to date, the timing of domestication has been accepted on 

https://en.wikipedia.org/wiki/Nuclear_genome
https://en.wikipedia.org/wiki/Nuclear_genome
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a date in the Upper Palaeolithic, between 15,000 and 12,000 years ago, due to clear 

archaeological evidence of morphologically distinct modern dogs in that time (Benecke 

1987; Street 2002; Thalmann et al. 2013; Janssens et al. 2018). 

In order to determine whether dogs where domesticated in one or multiple places, and the 

precise time of these events, many researches worldwide conducted DNA analysis using 

different approaches. A table containing the main theories of dog domestication, until date, 

is presented below for a better understanding.  
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Table 1. Compilation of the putative geographic location of dog domestication supported by different studies. 

Geographic 

Location 
Author Supporting evidence Notes 

Western 

Europe 
(Thalmann et al. 2013) 

• Comparison of mitogenome of 18 ancient 
canids from Eurasia and America, along 
with extant dogs and wolves from around 
the world; 

• The phylogenetically results indicated that 
modern dogs are more closely related to 
either ancient or modern canids of Europe; 

• Dog-wolf divergence time was estimated at 
18,800–32,100 years ago. 

Thalmann and his colleagues also used 
the Goyet and Altai dogs in their research, 
concluding that they may represent 
aborted domestication episodes. 

Central Asia (Shannon et al. 2015) 

• Survey of 185,805 genotyped markers of 
4,676 extant purebred dogs and 549 village 
dogs from 38 countries, combined with 
previously generated array and mtDNA 
data from dogs and wolves. 

• Results supports Central Asia origin for 
dogs, having undergone a strong 
domestication bottleneck followed by 
population expansion in East Asia. 

1) Village dogs are relatively free of 
admixture, genetically diverse and 
geographically widespread, making them 
a powerful candidate to uncover dog 
population history. 
2) Study of extant dogs cannot exclude 
the possibility that domestication 
occurred earlier elsewhere and then, 
either through migration or a separate 
domestication event, arrived and 
diversified in Central Asia. 

East Asia (Savolainen et al. 2002) 

• Extant mtDNA of dogs and wolves suggests 
a greater antiquity of haplotypes in East 
Asia;  

• Concluded that domestication event 
occurred at ca. 15,000 years ago in East 
Asia. 

A lack of dog remains dated before 12,500 
years BP in this region (East Asia) rebuts 
this proposal (Larson et al. 2012) 
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(Boyko et al. 2009) 
• Similar mtDNA haplotype diversity in 

African and East Asian village dogs; 

• Hypothesis of an East Asian origin of dogs. 

 

(Duleba et al. 2015) 

• Analysis of 555 mitochondrial genome of 
extant dogs; 

• Indicates that dogs may have originated in 
East Asia during the Mesolithic and Upper 
Palaeolithic. 

 

 (Pang et al. 2009) 

• A study of mitochondrial genome of 169 
extant dogs and mtDNA Control Region of 
dogs and wolves across the Old World, 
sampling either indigenous village dogs or 
breeds with known geographic origins; 

• Indicated the origin of dogs in the South of 
the Yangtze River (ASY), China, in reason of 
the highest diversity of mtDNA haplotypes 
only found there. 

The problem appointed for this proposal 
is that no wolf remains have been found 
in this region and the earliest dog remains 
dates only to 4,200 BP (Larson et al. 
2012). Although, this could be due to the 
unfavourable environmental condition 
for preserving fossils in this region, or less 
archaeological studies developed in this 
region. 

 Southeast Asia 

(Brown et al. 2011) 

• Using mtDNA D-loop, and Y-chr markers 
(SNP and STR), they analysed village dogs 
from Middle East and Southeast Asia, along 
with 138 breed dogs; 

• Evaluate genetic evidences for a Middle 
East (as claimed by vonHoldt et al. [2010]) 
versus ASY dog origin;  

• The results supported a dog origin in 
Southeast Asia instead Middle East. 

(Ding et al. 2012) 

• Y-choromossome DNA sequences of extant 
dogs worldwide; 

• Indicates the origin of dogs in South of the 
Yangtze River (ASY), China, because of the 



Dogs (Canis lupus familiaris) from the Iberian Peninsula  
dated to the Chalcolithic period: a genomic approach 
 

- 16 - 
  

diversity of Ychr-DNA haplogroups found 
there. 

(Wang et al. 2016) 

• Based on extant mtDNA of 19 breed dogs 
worldwide, including 11 indigenous dogs 
from Southeast Asia, 12 indigenous dogs 
from Northern East Asian, 4 village dogs 
from Nigeria and 12 Eurasian gray wolves; 

• Suggests that dogs originated from 
Southeast Asia 33,000 YBP. From this 
population, a subset of early dogs, around 
15,000 years ago, started migration to the 
Middle East, Africa and Europe and at least 
America. 

Middle East 

(VonHoldt et al. 2010) 

• Survey of 48,000 autosomal SNPs in dog 
breeds and wolves;  

• Concluded that dogs have more haplotype 
sharing with wolves from Middle East than 
with other wolf populations. 

Freedman and colleagues (Freedman et 

al. 2014) refused this proposal. They 
argued that this genetic proximity is likely 
due to dog-wolf introgression in the 
Middle East rather than an indication of 
Middle Eastern origins. 

West and East 

Eurasia (Dual 

Origin) 

(Frantz et al. 2016) 

• Based on 59 hypervariable mtDNA 
fragments from ancient European dogs, a 
28x nuclear genome of an ancient dog from 
IƌelaŶd, ϴϬ eǆtaŶt dogs͛ whole-genome 
data and 605 modern dogs (including village 
dogs and 48 breeds) genotyped on the 
CanineHD 170 K HD SNP array; 

• Revealed a deep splitting separating 
modern East Asian and Western Eurasian 
dogs (ca. 14,000-6,400 BP). 

Botigué et al. (2017) refuses the 
hypothesis of dual origin and Late 
Neolithic dog population replacement. 
Whole genome sequencing of an Early 
and End Neolithic dog from Germany 
demonstrated continuity with each other 
and ancestry with modern European 
dogs. 
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• Indication that two genetically 
differentiated wolf population in Eastern 
and Western Eurasia may have been 
independently domesticated at least 
15,000 years ago, and the Eastern dog 
population spread and partially replaced an 
indigenous Western European dog 
population.   

(Pilot et al. 2015) 

• An analyse of genome-wide SNPs variability 
of free-breeding dogs (FBDs) and pure-
breed dogs across Eurasia; 

• Suggests that modern European breeds 
originated locally from European FBDs and 
East Asian and Arctic breeds show closest 
affinity to East Asian FBDs; 

• Indicated a gradual westward expansion of 
East Asian indigenous dogs to the Middle 
East and Europe, leading afterwards to the 
replacement of native resident populations 
in Western Eurasia. 

(Deguilloux et al. 2009) 

• Ancient mtDNA analysis of three Neolithic 
France dogs, compared to sequences of 
Swedish and Italian Neolithic dogs;  

• Confirmed that clade C was widespread 
over Western Europe and supports a 
maternal lineage replacement in Europe. 
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1.3 The Iberian dog 

In the Iberian Peninsula, the first evidence claimed to belong to a dog, comes from the 

Upper Late Palaeolithic, 19,000-12,500 YBP (Altuna & Mariezkurrena 1985; Vigne 2005). In 

Portugal, the oldest almost complete skeleton of two dogs recovered from excavations 

come from shell-middens located in the Muge – Cabeço da Arruda, Tagus valley and Poças 

de S. Bento, Sado valley - these remains are dated to the Mesolithic period (ca. 7,600 cal 

BP) (Detry & Cardoso 2010; Pires et al. 2019). These findings confirms that during the 

Chalcolithic period, in the Iberian Peninsula, dogs were already present in the territory a 

long time ago, in contrast to other domesticated animals, such as sheep, pig, goat and 

cattle, that were brought to the Western coast of the Iberian Peninsula only ca 7,500 years 

cal BP (Zilhão 2001; Davis & Simões 2016). 

According to the morphometric records of excavated remains of dogs from the Chalcolithic 

Iberian Peninsula, there was already some intraspecific phenotypic variability at this time, 

as a result of the beginning of intentional breeding towards different objectives (human-

driven selection) in parallel to accidental crosses between domestic and wild forms 

(Catagnano 2016).  

It has been suggested that the Iberian Peninsula, during the Last Glacial Maximum (22,000-

19,000 BP (Yokoyama et al. 2000)), served as a biodiversity refugia (Hewitt 1996). This had 

profound influence on the genetic structure of isolated populations (Avise et al. 1998) and 

its effects on ancestral Iberian wolves population are currently poorly understood. 

Curiously, a recently published study analysed the earliest Iberian dogs found and reported 

a high frequency (83%) of Haplogroup (Hg) A during the pre-Neolithic period (Pires et al. 

2019), contrasting with the occurrence observed on other areas of Europe (in Frantz et al. 

(2016), the frequency of HgA haplotypes found  in Europe was lower than 9% for the period 

14,700 to 3,090 BP; HgC frequency was higher than 50% for the same period). Thus, despite 

previous studies suggest a dog population expansion from East Asia to the West during the 

Neolithic period as responsible for the modern pattern of predominance of HgA in dogs 

(Pilot et al. 2015; Frantz et al. 2016; Wang et al. 2016), there was already a high diversity 

of HgA haplotypes in Iberia before the Neolithic period. 
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Concerning extant Iberia dogs, they present a great diversity, carrying haplotypes belonging 

to the different haplogroups A, B, C and D. Haplogroup A is the most frequent, while D is 

the least represented (Savolainen et al. 2002; Pires 2006; Pires et al. 2017). Haplogroups E 

and F were never detected in Iberia, being present only in dogs from Asia (Pionnier-capitan 

2010). 

To date, the only study that has focused on the mtDNA of the earliest Iberian dogs and 

wolves is the study by from Pires et al (2019). Studies which included ancient data and tried 

to unravel the origin of dogs, did not include ancestral samples of Iberian dogs (Deguilloux 

et al. 2009; Thalmann et al. 2013; Frantz et al. 2016). It is crucial to unravel the genetic 

composition of past European peripheral populations to better understand the global 

evolutionary trajectories of early dogs. 

 

1.4 Ancient DNA analysis  

1.4.1 History and significance of ancient DNA (aDNA) 

Paleogenomic research is a relatively recent discipline in the history of molecular biology, 

having as a pioneer case the extraction of 229 bp of mitochondrial (mt) DNA from the 

muscle of a quagga  (Equus quagga, Boddaert, 1785) from the 19th century, a species 

currently extinct (Higuchi et al. 1984). Following, Pääbo (1985) reported a 3.4 kb fragment 

cloned from DNA obtained from an Egyptian human mummy with 2,400 years. These 

researches were the only studies conducted during the pre-PCR era. However, these 

studies demonstrated to be unreliable, since aDNA from these specimens was limited to 

low concentrations of highly degraded endogenous DNA that the isolation of bacterial 

clones (these studies used bacterial cloning to amplify sequences) containing similar DNA 

sequences was difficult, resulting in contamination (Pääbo et al. 2004). 

After introduction of the polymerase chain reaction (PCR), it became possible to target and 

replicate specific DNA sequences and some improvements were made. Unfortunately, until 

mid-2000s, this new genomic field based in PCR technique was often discredited by science 

(Orlando et al. 2015). The degradation of aDNA together with PCR sensitivity to 

contamination (e.g. microorganisms or human handling) and inhibitors led to a series of 
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publications with false-positive results (e.g. in 1994, a DNA alleged to come from a dinosaur 

[Woodward et al. 1994], was actually nuclear copies of human mitochondrial DNA [numt; 

Zischler et al. 1995]). Only after the introduction of high-throughput sequencing (HTS) 

platforms, that paleogenomics studies could bloom. 

Currently, it is acknowledged that to reconstruct and better understand the evolutionary 

processes of a past population is necessary to obtain data directly from archaeological 

samples. Due to human-induced decline or fragmentation of habitats and breeding 

selection in the recent past, the exclusive use of modern genetic data can hide important 

processes of population dynamics, such as changes in population size, structure and 

migration patterns at different time periods (Hedrick & Waits 2005; Ramakrishnan & Hadly 

2009). A phylochronologic approach – in which several populations are studied over large 

temporal and geographical scales - has been successfully applied to inferring evolutionary 

history more accurately (Leonard et al. 2002; Botigué et al. 2017). Studies about the genetic 

composition of a species require an adequate sample size at different time periods and 

representing wide geographic coverage. 

1.4.2 Damage patterns of aDNA 

The intensity of postmortem damage of DNA is affected by the elapsed time since the death 

of the organism and by taphonomic processes. After death, DNA repair systems ceases 

whereas destructive processes (mainly spontaneous hydrolytic lesions, oxidative lesions 

and nonenzymatic methylation of DNA) continues, resulting in chemical modifications 

(Lindahl 1993; Handt et al. 1994; Pääbo et al. 2004). In addition, DNA molecules faces an 

͞attaĐk͟ fƌoŵ ďaĐteƌia, fuŶgi, aŶd iŶseĐts that feed oŶ aŶd degƌade ŵaĐƌoŵoleĐules (strand 

breaks; Paabo et al. 2004). Thus, preservation and DNA integrity are better achieved in 

certain environments - cold, dry and/or low oxygen, e.g. permafrost regions or temperate 

environments (Lindahl 1993). Therefore, amplification is crucial when working with few 

DNA copies from ancient material (Griffiths et al. 2004), allowing to recover some 

information from samples in which the disintegration of DNA is not yet complete 

(circumstances that happens when a tissue becomes rapidly desiccated after death or 



Dogs (Canis lupus familiaris) from the Iberian Peninsula  
dated to the Chalcolithic period: a genomic approach 

- 21 - 
  

when the DNA becomes adsorbed to a mineral matrix, such as teeth or bones, been 

fossilized; Paabo et al. 2004).  

Even so, when performing PCR amplification, hydrolytic lesions (i.e. hydrolytic loss of amino 

groups, or deamination, from the nitrogenous bases: adenine -> hypoxanthine, cytosine -> 

uracil, 5-methyl-cytosine -> thymine, guanine -> xanthine) can cause nucleotides 

misincorporation during the first cycles of PCR (C»T and G»A transitions) (Hansen et al. 

2001; Hofreiter et al. 2001; Pääbo et al. 2004). Thus, such modifications are constantly 

reported in aDNA studies, being C»T ŵoƌe fƌeƋueŶtlǇ fouŶd at ϱ͛ eŶd aŶd G»A at ϯ͛ eŶd of 

the sequence reads (Briggs et al. 2007). Experimental procedures, such as the treatment of 

DNA extractions with uracil N glycosylase (UNG), revealed cytosine deamination to uracil 

to be the most common base modification that leads to CT/GA transitions (Hofreiter et al. 

2001). 

1.4.3 Methods and Criteria for authenticity in aDNA 

Obtaining adequate samples can be sometimes a hard task if the extracted DNA has 

suffered damages or has been contaminated. Because the techniques used in aDNA studies 

can contain inherent problems, during PCR era some methods and criteria have been 

established to avoid and identify exogenous DNA contamination and to account for 

sequencing inaccuracies when working with ancient DNA (Paabo 1989; Handt et al. 1994; 

Cooper & Poinar 2000; Gilbert et al. 2005; Pires & Ginja 2013). Some of these methods and 

criteria are summarized in Box 1. 

Decontamination of bones and tooth is possible but, it must be used with precaution, since 

it can be invasive and destructive. There are physical or chemical methods, such as 

sandpaper polishing or electric drills or 0.1M HCl + 0.5% bleach on powdered samples 

(Malmstrom et al. 2007) or ultraviolet irradiation ;O͛‘ourke et al. 2000). When working 

with aDNA, the environmental condition where the remains of organic material have been 

deposited must be also considered. Precautions should begin during and soon after 

excavation due contamination and destructive environmental agents (temperature 

increase, desalting and decrease of pH; Pruvost et al. 2007). Freshly excavated and 

nontreated material has been demonstrated to contain six times more DNA and has yielded 
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twice as many authentic DNA than remains treated/stored under standard procedures 

(washed museum-stored; Smith et al. 2001; Pruvost et al. 2007). Thus, to preserve DNA 

Box 1. Methods and Criteria for authenticity in ancient DNA. 

i. Isolation of work areas: to avoid contamination of endogenous DNA, it’s important that DNA extractions 
and amplification reactions are manipulated in an environment physically isolated from other materials, such 
as modern samples or PCR product that might be present from other analyses (Cooper & Poinar 2000). 
Therefore, the use of laboratories dedicated to aDNA work is mandatory, following strict rules for the 
maintenance of an almost sterile environment and control for contamination1. 
ii. Extraction blank controls and PCR controls: multiple extraction procedure and negative PCR control 
(no template DNA is added) must be performed to detect the existence of contamination, e.g. derived from 
environmental microorganisms or modern human DNA that exists in laboratory and/or in reagents, or is 
embedded in the samples (Cooper & Poinar 2000). According to Paabo et al. (2004), three extracts may be 
a reasonable number of extraction attempts. 
iii. Appropriate molecular behavior: it’s often impossible to obtain long amplification products when 
working with aDNA because of the fragmentation of the genetic material. PCR amplification efficiency 
should be inversely related to length of the amplification products, otherwise the amplification could be due 
to contamination with non-ancient template (Handt et al. 1994; Cooper & Poinar 2000). Different lengths 
of amplifications can be achieved from different species, however in most species the length of amplification 
is between 100-200 bp (Paabo et al. 1989).  
iv. Reproducibility of results: Multiple PCR and DNA extraction from the same specimen should yield 
consistent results (Cooper & Poinar 2000). However, different results may be useful to identify numt 
(nuclear insertions of mtDNA) or contamination, when using different primer pairs to amplify partially 
overlapping sequences (Handt et al. 1996). 
v. Cloning of amplification products and sequencing of multiple clones: in case the DNA amount is 
limiting or degraded, several amplifications and sequence of multiple clones, i.e. high-coverage sequencing 
are necessary. Overlapping fragments are desirable to confirm that sequence variation is authentic and not 
due to damage-induced errors (deamination of deoxycytidine residues), ‘jumping PCR’ (template switching 
during PCR) and contamination (Handt et al. 1994; Cooper & Poinar 2000). 
vi. Independent replication: generation of results in independent laboratories is a common practice in high-
standard aDNA research to detect contamination of chemicals or samples (Cooper & Poinar 2000). 
vii. Biochemical preservation: the composition of some biomolecules is correlate with DNA survival 
(Poinar & Stankiewicz 1999; Cooper & Poinar 2000). 
viii. Quantification of the number of amplifiable DNA molecules: By competitive PCR or Real-Time PCR 
to access the number of the copy of the DNA target (Cooper & Poinar 2000). Few initial template molecules 
(<1000 template molecules; Paabo et al. 2004) are more likely correlated with substitutions in the final 
amplification product when misincorporations happens during the early cycles of PCR (Handt et al. 1996). 
ix. Associated remains: Associated remains can be good supporting evidence for DNA preservation and 
contamination (Cooper & Poinar 2000). 

Some additional criteria have been subsequently included: 
x. Use of a “carrier DNA” negative: The addition of a control containing nonamplifiable “carrier DNA”, 
such as nontarget DNA from a different source, should be included to avoid misleadingly clean negative 
controls (Handt et al. 1994). 
xi. Preservation-dependent pattern of DNA damage and sequence diversity: Sequences isolated from badly 
preserved samples should be more damaged than better preserved samples (as assessed via high-throughput 
sequencing) (Willerslev & Cooper 2005). 
xii. Phylogenetic sense or otherwise reasonable results: Critical assessment of the sensibility of the results 
obtained from an aDNA experiment is an important aspect of aDNA research. For example, BLAST 
searching should be used to confirm that the sequences belong to an expected species or to find contaminants 
match (Gilbert et al. 2005; Handt et al., 1994). 
 
1The environment and working surfaces where DNA are handled must to be frequently decontaminated (e.g 
10% bleach solution or Actril) and has its own independent air system (Pires & Ginja 2013). Disposable 
laboratory ware should be preferably used and non-disposable glassware should be treated with 1 N HCO 
and rinsed with double-distilled (dd) water before use (Handt et al. 1996). 
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molecules, it is demanded to store freshly excavated material in dry and cold conditions. 

Moreover, some authors believe that more criteria should be added to the list. Gilbert et 

al. (2005) advocate that researches should do beyond the criteria list and have a more 

cognitive and self-critical approach of the results and ask themselves whether the study's 

conclusions have sufficient evidence to support the veracity of the data.  

1.4.4 Ancient DNA sequencing technologies 

Currently, technical advances in sequencing DNA, i.e. high-throughput sequencing 

platforms [HTS] (e.g. Second Generation Sequencing, also known as Next Generation 

Sequencing), enhanced data authenticity by identifying contaminant and filtering and 

correcting aDNA damages because NGS platforms (e.g. Roche/454 FLX, Illumina HiSeq X 

Ten (Figure 5), Applied Biosystems SOLiDTM System, Helicos HelicospeTM and Pacific 

Biosciences SMRT instruments) can generates overlapping reads and multifold coverage of 

the target regions through emulsion PCR or solid-phase amplification and an increase 

recover of shorter DNA fragments (Metzker 2010; Illumina 2016), differently from 

traditional Pre-NGS PCR-based approaches, in which loci are individually targeted and 

ultrashort aDNA fragments (~30-50 bp) are unexploited. A better explanation of these NGS 

technologies can be found at Mardis (2008), Millar et al. (2008) Shendure & Ji (2008) and 

Metzker (2010). 

 

 One DNA molecule
per cluster

III. Bridge amplification
Add unlabeled nucleotides
and enzyme to initiate solid 
phase bridge amplification.

I. Sample preparation DNA 
NGS library is prepared by fragmenting a DNA sample 
and ligating specialized adapters to both fragment ends.

II. Attach DNA to surface
Bind single-stranded fragments 
randomly to the inside surface of 
the flow cell channels.

IV. Denature of double 

stranded molecules

V. Determine the 

sequence of bases: four-
colour cyclic reversible
termination (CRT) 

 

Figure 5. Representation of the workflow of the shotgun resequencing method HiSeq X Ten from Illumina and  followed in 

this study. Adapted from Mardis (2008). 
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More recently, new methods in NGS to improve sequence retrieval from aDNA has been 

developed.  For example, silica-based DNA extraction technique (Rohland & Hofreiter 

2007) in combination with single-stranded library preparation (Gansauge & Meyer 2013) 

has allowed short molecules (50bp) to be recovered (Dabney et al. 2013), while 

conventional PCR amplification provides limited power to reconstruct sequences from 

short DNA fragments usually found in ancient samples, losing amounts of important 

information. Since then, many tens of ancient genome have been sequenced, some of them 

with high-coverage: 4,000-year-old paleo-eskimo genome (20x; Illumina; Rasmussen et al. 

2010), 120,000-year-old polar bear genome (0.4x; Illumina; Miller et al. 2012), 700,000-

year-old horse genome (Orlando et al. 2013), 50,000-year-old Neanderthal genome (42x; 

Illumina; Prüfer et al. 2014), 4,800-year-old dog genome (28x; Illumina; Frantz et al. 2016). 

However, large-scale products resulted from these new methods in sequencing DNA 

requires advanced use of computational resources and bioinformaticians for data 

processing and analysis. A variety of software tools are available for analysing next-

generation sequencing data, being categorized according to their different functions: (i) 

sequence quality scoring; (ii) alignment of sequence reads against reference genome of 

interest; (iii) base-calling and/or SNP detection; (iv) de novo assembly, from paired or 

unpaired reads; (v) authentication of aDNA data; and (vi) genome browsing annotation 

(some software packages reviewed in Shendure & Ji 2008; Orlando et al. 2015). As new 

extraction and computational methods improve, in the near future, it will expand the age 

range and quality of specimens from which data can reliably be obtained, bringing us new 

insights about population past demographic, adaptive and admixture trajectories. 

A new generation of sequencers, called Third Generation Sequencing is under active 

development since 2010. These new platforms work by reading the nucleotide sequences 

at the single molecule level, not requiring breaking long strands of DNA into small segments 

and a very small amounts of starting DNA templates as next generation sequencers does. 

Moreover, it uses the total DNA isolated from the specimen, without any kind of sequence 

enrichment or PCR amplification, that can sometimes introduce biases into the data, thus 

allowing an assessment of postmortem DNA damage. However, error rate remains to be 



Dogs (Canis lupus familiaris) from the Iberian Peninsula  
dated to the Chalcolithic period: a genomic approach 

- 25 - 
  

improved before these new generation of sequencers overcome Second Generation 

Sequencing (Rizzi et al. 2012; Bleidorn 2015). 

1.5 Relevance of this study 

The scientific community already knows that the modern dog was not domesticated from 

the extant grey wolves, being species that are currently well structured, that is, there are 

few direct lineages between extant dogs and extant wolves that places them in the same 

mitochondrial haplogroup. Thus, science now looks to the past and focuses on the fossils 

of wolves and dogs to unravel the origin and evolution of the dog – if a single or multiple 

domestication of an ancient grey wolf population/populations happened, and the cases of 

historical hybridization between dogs and wolves. 

Little is known about the origin of the Iberian dogs and a hypothesis of a local domestication 

from the Iberian grey wolf (Canis lupus signatus, Cabrera 1907) or events of admixture 

should not be excluded (Pires et al. 2019). Understanding the Iberian dog is also a way to 

understand the humans who lived in the Iberian Peninsula. Mutualism between the two 

species allowed man to be better succeeded throughout his history. Looking at past 

populations may also bring new discoveries (e.g past population demography) that may 

prove to be important for the management and conservation of wild species, such as the 

endemic Iberian wolf which has suffered a sharp decline due to the direct persecution of 

man and nowadays is considered an ͞EŶdaŶgeƌed͟ status of conservation (Queiroz et al. 

2005).  

The present study aims to make a genomic analysis of four ancestral dogs and one wolf 

from the Iberian Peninsula to fill the lack of information about the Iberian Canids from the 

Chalcolithic, providing important data to understand the origin and diversity of the 

Chalcolithic dogs, enriching the knowledge of Canis lupus in the prehistory. 
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1.6  General objectives of this thesis 

• Use ďioiŶfoƌŵatiĐ tools to analyse and filter DNA sequences - extracted from 4 ancient 

dogs and 1 ancient wolf - for screening for possible post-mortem contaminations and 

mutations in order to obtain a reliable consensus sequence of the samples. 

• Study the genetic diversity and population structure of Chalcolithic dogs, in order to infer 

evolutionary trajectories and their genetic composition: identify variants in the 

mitochondrial genome and perform phylogenetic analyses for haplogroup assignment; 

• Assess nuclear sequences to determinate the sex of these ancient dogs and wolf. 

 

This study was developed within the scope of the project WOOF - Tracing the origins and 

evolutionary paths of the Iberian and the Maghreb Dog with reference PTDC/HAR-

ARQ/29545/2017, supported by national funds by FCT / MCTES and co-supported by Fundo 

Europeu de Desenvolvimento Regional (FEDER) throughout COMPETE - POCI – Programa 

Operacional Competividade e Internacionalização (POCI-01-0145-FEDER-029545), in the 

area of Biological Sciences and sub-area of Zooarcheogenetics, headed by Ana Elisabete 

Pires, my supervisor. 
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2. Materials and methods 

Below it is described in detail the genetic study conducted including the description of the 

archaeological remains dated to the Chalcolithic period, and the methods followed in the 

ancient DNA laboratory: sub-sampling, DNA extraction, preparation of genomic libraries, 

sequencing and bioinformatic analysis. My particular contribution regards the 

bioinformatic analysis of the generated sequences. 

2.1 Archeological material 

Four ancient dogs and one ancient wolf remains from Iberian Peninsula were studied for 

their genetic content (Table 2; Figure 6). These samples have been previously studied in 

Pires et al (2019) where a fragment of 181 bp of their mtDNA was investigated by a 2nd 

generation 454 (Roche) sequencing method (PCR based). In this study a genomic approach 

was attempted using a Next Generation Sequencing approach for the same ancient 

remains.

Figure 6. Photos of some Chalcolithic Iberian Canis remains.  A) sample LYEP9 from Leceia, Portugal; B) sample LYEP51 from 

Valladolid, Spain; C) sample LYEP11 from Leceia, Portugal. Note: no picture is available for sample LYEP53 from El Casetón 

de la Era, Spain, nor LYEP27 (wolf). Photos by Carlos Fernandez-Rodrigues (remains from Spain) and José Paulo Ruas (remains 

from Portugal). 

A) 

B) 

C) 
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Table 2 Samples specifically analysed in this study. 

Ancient 

Canis 

sample ID 

Scientific name/ 

Common name 
Skeletal element 

recovered 
Origin Chronology  Laboratory ID Reference 

LYEP9 

Canis lupus 

familiaris/ domestic 

dog 

Mandible Leceia (PT) ca. 5,000-4,300* 
BP P9306_1034 (Pires et al. 2001, 2019) 

LYEP11 

Canis lupus 

familiaris/ domestic 

dog 

Maxilla Leceia (PT) ca. 5,000-4,300 BP* 
 P9306_1026 (Pires et al. 2001, 2019) 

LYEP51 

Canis lupus 

familiaris/ domestic 

dog 

Maxilla 
El Casetón de la 

Era, Valladolid (ES) 
ca. 4,000 BP* 

 P9306_1033 
(Arana & Rodríguez 2013; 

Pires et al. 2019) 

LYEP53 

Canis lupus 

familiaris/ domestic 

dog 

Tooth (3rd Incisor) 
El Casetón de la 

Era, Valladolid (ES) 
ca. 4,000 BP* 

 P9306_1031 
(Arana & Rodríguez 2013; 

Pires et al. 2019) 

LYEP27 

Canis lupus 

signatus/ Iberian 

wolf 

Tooth (1st Lower 

molar) 

Penedo de Lexim, 

Mafra (PT) 
4,085–3,856 cal BP** P9306_1025 

(Sousa 2010; Pires et al. 

2019) 

 *Dated by archaeological context 

**Indirect radiocarbon date for a specimen of Sus from the same stratigraphic unit. 
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Previous studies performing biometric analysis provide information regarding species 

identity for these 5 samples. For the samples LYEP9 and LYEP11, found in the archeological 

site of Leceia, values obtained by Pires et al. (2001) on the measurement of different bone 

parameters were compared with homologous parts of extant wolves. A dimensional 

reduction in the values was observed for the samples from Leceia, compared to their wild 

relatives, indicating that these samples probably belonged to dogs. The biometric study of 

Arana and colleagues (2013) confirms the status of the canids found in this archaeological 

site as belonging to dogs. Regarding LYEP27, osteometry analysis was conducted in order 

to determine the taxa of this sample. According to Moreno-Garcia and colleagues (2016) 

this samples probably belonged to a wolf because of the large width of this tooth (13.4 

mm). Pires and colleagues (Pires et al. 2019) also assigned this remain to a wolf, after 

comparing its likelihood ratio and posterior probabilities under the hypothesis of being a 

wolf or a dog taking into account the archaeological, osteometric, direct dating and isotopic 

data. 

2.2 Study areas 

The number of mammals´ remains found in excavations dated to the Chalcolithic from the 

Iberian Peninsula is quite expressive, including a high number of domestic animal remains 

(Catagnano 2016). This fact can be explained by the abandonment of hunting activities in 

favor of intensification on agro-pastoral activities. Nevertheless, the presence of dogs does 

not occur equally in all archaeological sites throughout the Iberian Peninsula. Villages dogs 

may be present mainly in sites where the economy provided food surplus. Dogs were better 

tolerated in those circumstances and included in different human activities, such as 

hunting, property and livestock guarding and herding (in a mutualist relationship)  (Pires et 

al. 2001). 

Leceia (Oeiras, Portugal) is considered one of the most important archaeological 

excavations of a Chalcolithic site in Iberian Peninsula. Located at the Estremadura region, 

near the coastline and the estuary of the river Tejo (Figure 7), this region had a favorable 

climate for human settlement during the pre-history (Late Neolithic [3,300-2,900 cal BC], 

Early Chalcolithic [3,800-2600/2,500 cal BC] and middle and Late Chalcolithic [2,500-2,100 
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cal BC] (Cardoso & Soares 1995; Cardoso 1997, 2000, 2008)). Since 1983, 20 annual field 

seasons were carried out; among 122 carnivores remains excavated, a total of 81 remains 

of dogs were identified; some of them displayed traces of human consumption (Pires et al. 

2001). Only two dog remains from this site were selected for this genetic study: samples 

LYEP9 and LYEP11. The selection of these specific samples was made after a screening of 

14 samples to identify the best ones. 

Penedo de Lexim (Mafra, Portugal) is a volcanic hill (223m) situated between the Ribeira da 

Mata and Ribeira da Laje. Next to Leceia, Penedo de Lexim is also located at the 

Estremadura region (Figure 7). Its occupation dates back to Neolithic, Early Chalcolithic, 

Late Chalcolithic, Bronze Age and Roman period, during the second half of the fourth 

Millennium and the third Millennium BP. Within the thousands of bones excavated and 

identified, only two dogs and one wolf were found (Sousa 2010). This unique Chalcolithic 

wolf was selected for this study: sample LYEP27.  

El Casetón de la Era (Villalba de los Alcores, Valladolid, Spain) is an archaeological site 

located in the North of Spain (Figure 7), discovered in 1997, through the use of aerial 

photography. It was occupied during two distinct phases of pre-history: Chalcolithic (the 

first half of the third millennium cal BC) and Bronze age (1,600-1,335 BC) (Delibes de Castro 

et al. 2018). Among 27 of the carnivorous remains excavated, 16 were identified as dogs. 

Bone marks, related to human consumption, were not found in those specimens, indicating 

that dogs presence was related to other purposes rather than as a food source (Arana & 

Rodríguez 2013). Only two dog remains from this site were selected for this genetic study: 

samples LYEP51 and LYEP53. The selection of these specific samples was made after a 

screening of 4 samples to identify the best ones. 
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2.3 Archaeogenetics 

Sub-sampling and aDNA extraction were performed in facilities dedicated exclusively to 

ancient DNA analysis, located at the Archaeological Research Laboratory of Stockholm 

University (Sweden) by a well-trained researcher, following appropriate protocols to avoid 

contamination as described below. 

2.3.1 Sub-sampling for aDNA analysis 

A thorough description can be found in Pires et al. (Pires et al. 2018) and Pires et al. (Pires 

et al. 2019) but, briefly, prior to the DNA extraction, samples underwent an outer surface 

UV sterilization, followed by removal of approximately 1 mm layer of the surface. A piece 

of 1 cm2 were reduced to a fine powder using sterile scapel or a Dremel tool.  Bone powder 

replicas were kept in a freezer at -20ºC for subsequent analyses. Other Iberian Canis 

samples which sequences were used in this thesis for comparisons were treated the same 

way. 

2.3.2 DNA extraction, preparation of genomic libraries and sequencing 

A thorough description can be found in Pires et al. (Pires et al. 2018) and Pires et al. (2019) 

but, briefly,  for DNA extraction, the bone tissue powder (100-200 mg) was digested 

overnight with 1 mL of buffer EDTA (0-5 M, pH 8) and Urea 1 M with 10 µL of proteinase K 

Figure 7. Location of the Iberian archaeological sites from where the studied dog/wolf remains were excavated. Dogs: 

Leceia, Portugal (n=2); El Casetón de la Era, Spain (n=2). Wolf:  Penedo de Lexim, Portugal (n=1). 
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(20 mg/mL in water) at 38 ºC with constant agitation. For each sample, the lysate volume 

was concentrated down to 100 µl with Amicon columns (MilliporeAmicon Ultra-4 30 kDa) 

through centrifugation at 4,000 g for 10-15 min. The sample volume was then mixed with 

5xPB buffer from the commercial kit QIAquick PCR Purification Kit from Qiagen. Ancient 

DNA was recovered, following the manufacturer's protocol, in a final volume of 100 µL. 

Duplicates of aDNA extracts were obtained independently from each specimen. Two 

negative extraction controls were included and subjected to identical procedure as powder 

samples.  

The obtained aDNA extracts were used for preparation of blunt-end (index) Illumina 

genomic libraries (Meyer & Kircher 2010). The number of amplification cycles was 

estimated by qPCR and the libraries were amplified with indexes/right number cycles (5 

PCR/per sample) using AmpliTaq Gold® DNA Polymerase (Applied BiosystemsTM). The 

amplified products were pooled, purified with magnetic beads (Agencourt AMPure, 

Beckman Coulter), quantified using DNA High Sensitivity Kit with Agilent 2100 Bioanalyzer 

Instrument (Agilent Technologies), followed by shotgun sequenced on Illumina HiSeq X Ten 

platform (High Output mode, paired-end 2x150bp; the amplified library was sequenced in 

a pool of 9 Canis samples) at the Science for Life Laboratory Sequencing Centre in 

Stockholm University. Raw DNA data was sorted into individual samples based on tagged 

sequences (de-multiplexed). 

2.4 Bioinformatic processing 

The script used in this study can be consulted for mtDNA analysis (Appendix II) and for 

nDNA analysis (Appendix III). For a better comprehension of the steps, a schematic 

representation of the pipeline followed in this study is available for consultation (Appendix 

IV). Some programs and parameters have not been commented in the pipeline as they are 

less crucial (e.g samtools sort to sort reads, samtools index to index BAM files, bgzip to 

compress VCF files, and tabix to index VCF files).   
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2.4.1 Raw-read processing 

To inspect the quality of raw reads, we used the software Fastqc v0.11.8 (Andrews 2010). 

Fastqc generates a graphical report with most relevant statistics for the read set: per base 

sequence quality of reads, overrepresented sequences and the presence of adapter 

sequences, among other relevant parameters. After visual inspection, cutadapt v1.18 

(Martin 2011) was used to trim any read containing adapter sequences, as well as to 

remove low quality bases towards read ends (quality score < 30) .  Reads that had short 

length (<35bp) or reads containing one oƌ ŵoƌe ͞N͟ ǁeƌe eǆĐluded.  Afteƌ these filteƌs, 

reads were screened a second time with Fastqc in order to confirm the expected 

improvement in read quality. Clean paired end reads were then collapsed using 

AdapterRemoval v2.2.2 (Lindgreen 2012), requiring a minimum of 11 bp overlap between 

read pairs. 

2.4.2 Mapping 

Since archaeological samples tend to contain exogenous DNA, mainly due to human 

manipulation (Paabo 1989; Zischler et al. 1995), it is important to identify reads from other 

species and exclude them from downstream steps of analysis. The procedure accounted 

for this challenge. Sequenced reads were mapped against other reference genomes e.g. 

human, pig, chicken and cow, before being mapped against the reference dog genome. 

Mitochondrial 

Read mapping used BWA aln v0.7.17 (Li & Durbin 2010) with some modified parameters 

[seeding was disabled (-l 1024), maximum number of gaps was set to 2 (-o 2) and  maximum 

edit distance was set to 0.03 (-n 0.03)] onto a composite reference genome consisting of 

human (Homo Sapiens [Linnaeus 1758]; NCBI Acession Number NC_012920.1), pig (Sus 

scrofa [Linnaeus 1758]; NCBI Acession Number NC_000845.1), chicken (Gallus gallus 

[Linnaeus 1758]; NCBI Acession Number NC_040902.1) and cow (Bos taurus [Linnaeus 

1758]; NCBI Acession Number NC_006853) to detect and remove contamination (Greig et 

al. 2015).  
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The sequence alignment map (SAM) file generated by BWA was then filtered (mapping 

quality of 20 or greater) and those reads with mapping quality below the threshold were 

kept as contamination-free reads. These clean reads were then mapped against boxer dog 

reference mitochondrion (CanFam3.1; NCBI Acession Number NC_002008.4) and Eurasian 

wolf reference mitochondrion (NCBI Acession Number NC_009686.1) using BWA aln with 

the same previous parameters. The resulting SAM file was converted to BAM and only 

those alignments with mapping quality above 30 were maintained. 

AddOrReplaceReadGroups and MarkDuplicates tools from PICARD v2.18.14 (Broad 

Institute 2018) were used to add read groups and to remove PCR duplicates, respectively. 

Nuclear 

Given that nuclear genomes are much larger than mitochondrial genomes, removal of 

nuclear genome contaminant reads was performed sequentially for the same species as 

described above, instead of all at once using a composite approach. For each genome 

reference (human [GRCh38.p12; GenBank assembly accession GCA_000001405.27), pig 

[Sscrofa11.1; GenBank assembly accession GCA_000003025.6], chicken [GRCg6a; GenBank 

assembly accession GCA_000002315.5] and cow [ARS-UCD1.2; GenBank assembly 

accession GCA_002263795.2] BWA aln was employed with some modified parameters (-l 

1024, -o 2 and -n 0.03). After the removal of all reads that mapped against human, pig, 

chicken and cow genomes (mapping quality of 20 or greater), the remaining reads were 

aligned against boxer dog nuclear genome reference (CanFam3.1; GenBank accession 

AAEX00000000.3) and Eurasian wolf denovo assembled wolf reference genome 

(Gopalakrishnan et al. 2017) using BWA aln with the same previous parameters. As 

described before for mitochondrion, good quality mappings (MQ>30) were kept and 

AddOrReplaceReadGroups and MarkDuplicates tools from PICARD v2.18.14 (Broad 

Institute 2018) were used to add read groups and to remove PCR duplicates, respectively. 

2.4.3 DNA degradation 

MapDamage v2.0 (Jónsson et al. 2013) is a software that tracks and quantifies DNA damage 

among ancient DNA sequencing reads generated by NGS platforms, enabling rescaling of 

base quality scores specific to the damage patterns of aDNA. This software was employed 
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using default parameters and the rescale option, in order to rescale base quality scores in 

bam files, attributing a low quality score to bases with signs of postmortem degradation 

effects, such as C>T transitions at the 5' ends of the molecule and G>A transitions at the 3' 

ends of the molecules. The resulting bam file with rescaled qualities for the most likely 

postmortem damaged bases was used for further steps. 

2.4.4 Variant calling 

GATK v4.0.11.0 (McKenna et al. 2010) HaplotypeCaller was used in order to accurately call 

variants, namely Indels (insertions and deletions) and SNPs (Single Nucleotide 

Polimorphisms). SNP calling was recalibrated by local realignment of reads in regions with 

candidate InDels (default settings and i) disabled soft clipped bases, ii) Don't skip 

calculations in ActiveRegions with no variants and iii) force active regions). Following, 

through GATK VariantFiltration, the SNP variants were filtered with per read SNP quality 

ш20 and coverage ш5, accepting only homozygous variants for mitochondrial genome. 

ReadPosRankSum and AS_BaseQRankSum tools of GATK were also used as looser 

parameters at the end of the reads, thus accepting edge SNPs with confidence values lower 

than those of the SNPs at the central positions of the reads. 

Finally, all variants were then saved in variant call format (vcf) files using GATK 

SelectVariants for further usage. 

2.4.5 Consensus mitochondrial sequence 

In order to infer about the haplogroup of each ancient sample, a fasta file for each sample 

was created independently using the corresponding BAM alignment file. 

First, Bedtools v2.27.1 (Quinlan & Hall 2010) genomecov was used to produce a bed file 

containing a summary of the coverage through the alignment file. An additional script was 

created in order to account only for Indels when there is a position with both Indels and 

SNPs, since Bedtools genomecov do not recognize Indels. Using Bedtools maskfasta, the 

positions with zero coverage or low coverage (<2x) ǁeƌe ƌeplaĐed ǁith N͛s, siŶĐe these 

ƌegioŶs doŶ͛t offeƌ eŶough ƌeads to ĐoŶfideŶtlǇ Đall ǀaƌiaŶts aŶd estaďlish haplotǇpes. The 
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ƌesult is a fasta file eƋual to the dog CaŶFaŵϯ.ϭ ŵitoĐhoŶdƌioŶ geŶoŵe ďut haǀiŶg N͛s at 

the positions with low coverage. For those variants initially called with GATK 

HaplotypeCaller (see section Variant Calling) that did not pass filter parameters, the 

ƌefeƌeŶĐe ŶuĐleotide ǁas also ƌeplaĐed ǁith N͛s usiŶg Bedtools ŵaskfasta; otheƌǁise, at 

the positions where SNPs passing filters were detected, the reference nucleotide was 

replaced by the alternative nucleotide using bcftools consensus. This tool also generates a 

fasta file with the consensus mitochondrial sequence, that can be used as input for any 

alignment software. 

2.4.6 Contaminants - taxonomic assignment 

In order to identify the source of contamination, publicly available sequences were 

downloaded from NCBI database and a taxonomic assignment using BLASTn (Altschul et al. 

1990) was applied. Only the top blast hit into a subject domain level were specified for 

output format. For the sake of the analysis time, only 1,000,000 reads were blasted from a 

total of 28,383,012 number of reads, on average, per sample. These reads chosen for the 

analyses, are the ones that did not map against dog/wolf reference genome neither 

composite genomes. 

2.4.7 Species identity assignment 

In order to confirm the taxa of the specimens, a comparison of the coverage obtained for 

each alignment when mapped against dog or wolf reference was performed. Since 

intraspecific mappings are expected to yield better results than interspecific ones, namely 

for the total amount of reads mapped as well as for higher mapping qualities, this 

information was used to corroborate previous information (zooarchaeological information 

(such as dating and osteometry) regarding the species of each sample. 

2.5 Multi-sequence alignment of whole mtDNA genome sequences 

2.5.1 Dataset and Alignment 

An exhaustive search of mitogenomes from wolves and dogs from Iberia and Eurasia – 

extant and ancient, was conducted to assign correctly each of the 5 ancient sequences to 
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an haplogroup with reference mitogenomes from dogs and wolves. Twenty-two 

mitogenomes was successfully retrieved (see Appendix V and Table 3).   

Prior the construction of the phylogenetic tree, using Geneious v2019.1 (Kearse et al. 

2012), sequences were aligned using Muscle algorithm. Regarding LYEP51, despite the high 

percentage of unknown/missing nucleotides (N) in the Control Region (CR) (see Table 5), 

the sequence obtained by NGS-Illumina method was used here in the complete mtDNA 

alignment. 

 
2.5.2 Model Test with jModelTest2 

The software jModelTest2 (Guindon & Gascuel 2003; Darriba et al. 2012) was used to select 

the best evolutionary model to be used in the tree construction. Using posterior 

probability-based criteria (e.g. BIC, which stands for Bayesian Information Criteria), the 

model that generated the lowest BIC score is considered to be the best evolutionary model 

to explain the pattern of nucleotide substitution for this specific dataset. 

2.5.3 Phylogenetic tree 

A phylogenetic analyses using MrBayes v3.2.6 (Ronquist & Huelsenbeck 2001) for Bayesian 

Inference implemented in the Geneious v2019.1 software (Kearse et al. 2012), was used to 

estimate Bayesian support under the best evolutionary model determined by jModelTest2, 

which was the HKY85+G (Hasegawa–Kishino–Yano) model of nucleotide substitution, 

which accounts for variable base frequencies, different transition and transversion rates 

Table 3. Chronology and geographic location of sequences used to construct the phylogenetic tree based on the mitogenomes 

available. 

Context Canid type Cultural Period 
Number of 
sequences 

Iberia Dog Ancient/Chalcolithic 4 (this study) 
 

Wolf Ancient/Chalcolithic 1 (this study) 

 Dog Modern 2 
 

Wolf Modern 4 

Eurasia Dog Ancient/Neolithic 1 
 

Dog Ancient/Palaeolithic 2 
 

Wolf Ancient/Palaeolithic 7 

 Canis sp. Ancient/Palaeolithic 1 

  Total 22 
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(Hasegawa et al. 1985) and using default parameters (4 gamma categories; 1,100,000 chain 

length; 200 subsampling frequency; 100,000 burn-in length). A previously published coyote 

(Canis latrans) mtDNA complete sequence was used as an outgroup (GenBank Acession 

Number NC_008093.1). A Majority greedy clustering consensus tree was generated using 

Geneious v2019.1 software using the Bayesian Inference support values. 

2.6 Multi-sequence alignment of control region (CR) mtDNA partial sequences 

2.6.1 Dataset and Alignment 

A Median-Joining (MJ) network method was chosen to help assigning each of the 5 ancient 

sequences to an haplogroup with reference sequences from extant specimens from the 

same region – Iberia, and to visualize genealogical relationships at the intraspecific level. 

Prior the construction of the networks, Mega v7 (Kumar et al. 2016) was used for the 

multiple alignment of a compilation of 253 sequences (Appendix VI): 27 ancient dogs from 

Iberia (including the 4 sequences obtained in this study), 94 ancient dogs from Eurasia 

(Eurasia, in this study, stands for the countries inside the perimeter considered in Figure 8), 

3 ancient wolves from Iberia (including the one obtained in this study), 36 ancient wolves 

from Eurasia, 61 modern dogs and 18 modern wolves from Iberia and 11 sequences from 

wolves outside of Iberia (included in order to have wolf haplogroup 2 representatives, since 

in Iberia, extant specimens all belong to wolf haplogroup 1 (Bjornerfeldt et al. 2006; Koepfli 

et al. 2015; Koblmüller et al. 2016; Pires et al. 2018), with only one exception, an 

Portuguese wolf that belongs to haplogroup 2 (Pires et al. 2018); note that these sequences 

do not include all the diversity of Eurasian wolves because the search was not exhaustive 

for modern wolves), spanning a 43 bp common fragment of the Control Region (CR) 

(position 15,610-15,652, CanFam3.1) in the Iberia and Eurasia context alignment and 66bp 

common fragment of the CR (position 15,587-15,652 bp, CanFam3.1) in the Iberia context 

alignment (Table 4). All the sequences had to be reduced to a shorter length (43bp or 66bp) 

because, after the alignment, some positions were uncovered for some fragments because 

some sequences were shorter than others (e.g ancient Eurasian wolves sequences 

retrieved from Stiller et al. (2006) are fragments of 57 bp). Although a short portion of the 

Hypervariable Region 1 (HVR1) of the mitochondrial DNA was analysed, it is within a highly 
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informative region used to discriminate all the major Haplogroups, because it includes most 

of the diagnosed positions to separate the Haplogroups from each other (15595-15653 bp; 

Himmelberger et al. 2008). 

Modern dogs and wolves from Eurasia were not included in this analysis due the large 

number of sequences available at GenBank (5,380 entries for the dog and 1315 entries for 

the wolf). 

For the fragment analysed in this study (15,587-15,652 bp, CanFam3.1), LYEP9 and LYEP53 

sequenced with the NGS-Illumina technology had unknown/missing nucleotides (N) at the 

15,603 bp and 15,643 bp, respectively. In order to use these samples in the phylogenetic 

analysis, we complemented information about these nucleotides position, using the data 

retrieved by the NGS-454 method (Pires et al. 2019). In the case of the LYEP51 sample, the 

sequence obtained by NGS-Illumina could not be used because at the positions 

correspondent to that used for the phylogenetic analyses (15587-15652 bp, CanFam3.1) it 

had a high proportion of many missing genotype calls. Alternatively, for this sample, we 

used the sequence obtained by the NGS-454 method (Pires et al. 2019). 

Finally, the nexus file generated in Mega with sequences alignment was imported into 

DnaSP v6.12.03 to collapse the sequences within identical nucleotide sequences 

(haplotypes) for each of the eight alignments (sub datasets; see Table 4) containing 

different sequence sizes (43 or 66bp).   

  

Figure 8. Extension of geographic region selected (in green) for Eurasian context to compare with Iberia.  
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2.6.2 Phylogenetic networks 

 PopART v1.7 (Leigh & Bryant 2015) was used to build MJ networks connecting mtDNA 

haplotypes from ancient and extant Canis. Eight MJ based on the different datasets 

comprising different nucleotide sequences (length of alignment) and different geographic 

and temporal representativeness (number of sequences) of the total sequences, were also 

generated to a better understanding of the evolution of the Iberian dog through time and 

space (Table 4). The decision of exclude ancient periods after the Chalcolithic period is 

based on the focus of this study, which is to infer the evolutionary trajectories and the 

genetic composition of the Chalcolithic dogs from Iberia. Artistic edition of networks was 

made with GIMP v2.10.8. 

 

2.7 Statistical analysis - Genetic distance between populations 

GenAlEx v6.5 (Peakall & Smouse 2006, 2012) was used for estimating genetic distances 

among populations. Different populations were defined for this analysis, taking into 

account the geographic origin of samples – Iberia and Eurasia – and chronological period – 

Palaeolithic, Mesolithic, Neolithic, Chalcolithic and Extant. All the 251 sequences (with the 

exception of the Chalcolithic wolf, since there is only one specimen from the Chalcolithic 

Iberian wolf population) were maintained, considering a small fragment of 43 bp with no 

missing data, and a larger one of 182 bp where several missing data are present – 19% (the 

software GenAlEx accepts positions with missing data, assigning a special value for these 

positions when doing the statistical analysis). Population structure was investigated by 

pairwise PhiPT values, an analog of the Fixation index (Fst) (Wright 1922) parameter, 

Context Canid type Cultural Period Alignment size 

Ib
e

ri
a

 Dog Mesolithic+Neolithic+Chalcolithic+Extant 66 bp 

Wolf Palaeolithic+Chalcolithic+Extant 66 bp 

Dog & Wolf Palaeolithic+Mesolithic+Neolithic+Chalcolithic+Extant 66 bp 

Ib
e

ri
a

 &
 E

u
ra

si
a

 Dog & Wolf Palaeolithic 43 bp 

Dog & Wolf Palaeolithic+Mesolithic 43 bp 

Dog & Wolf Palaeolithic+Mesolithic+Neolithic 43 bp 

Dog & Wolf Palaeolithic+Mesolithic+Neolithic+Chalcolithic 43 bp 

Dog & Wolf Palaeolithic+Mesolithic+Neolithic+Chalcolithic+Extant 43 bp 

Table 4. Chronological and geographic information for each network. 
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adequate for sequences analyses. PhiPT suppresses within-population variance and simply 

calculate population differentiation based on the haplotypic variance. The probability 

values estimated by 1,000 permutations were used to determine whether the partitioning 

of variance components was significant. Population differentiation values that ranges from 

0 to 1 - where 0 means complete sharing of genetic material (high gene flow, no genetic 

structure) and 1 means genetic divergency (low or no gene flux and high genetic structure; 

limited by population͛s homozygosity). 

AĐĐoƌdiŶg to Wƌight͛s (1978) qualitative guidelines for the interpretation of Fst, values can 

have the following interpretation:  

• The range 0 to 0.05 may be considered as indicating little genetic 

differentiation; 

• The range 0.05 to 0.15 indicates moderate genetic differentiation; 

• The range 0.15 to 0.25 indicates great genetic differentiation; 

• Values of FST above 0.25 indicate very great genetic differentiation. 

Nm (Number of migrants) values based on PhiPT values were also estimated to calculate 

the average number of individuals migrating between populations/per generation time 

which in dogs and wolves are approximately 3 years (Lindblad-Toh et al. 2005). 

 

2.8 Nuclear genome analysis: Sex determination of samples 

 

Due to the very low recovery of endogenous nuclear genomes (Appendix IX), it was not 

possible to provide information regarding complete nuclear genomes. In this work, only sex 

determination analysis could be carried out. The reference CanFam3.1 genome (a female 

from the Boxer breed) lacks the Y chromosome, therefore reference sequences of the Y 

chromosome for the subsequent analysis were retrieved from different studies available at 

GenBank (Accession numbers KP081776; GQ366706-GQ366731; GQ366741-GQ366770; 

GQ366790-GQ366793; DQ973626-DQ973805). For each sample, the reads that did not 

map against CanFam3.1 genome were aligned against those Y sequence fragments, in order 

to molecularly identify the sex through their archaeological remains. Additionally, a read 

depth-based method was used, by comparing the ratio of reads/Mbp over all 
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chromosomes in order to check the read proportion on chromosomes X and/or Y compared 

with the remaining chromosomes. Females are expected to have a similar ratio when 

comparing chromosome X with autosomal chromosomes. Males are expected to present 

similar ratio of chromosome X and Y, but half of the ratio, when comparing sexual 

chromosomes with autosomal chromosomes.  

For the wolf sample, it was not possible to map against a wolf reference nuclear genome, 

because the only de novo assembly available (Gopalakrishnan et al. 2017) is consisted of 

unplaced scaffolds; it is not known to which chromosome each scaffold belongs to. Thus, 

assignment of LYEP27 sex was employed using dog reference CanFam3.1 genome and the 

Y chromosome reference sequences mentioned above. 
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3. Results  

3.1 Bioinformatic analysis 

3.1.1 Raw-read processing 

Read quality dropped most of the times towards the end of the fragments, probably due 

the Illumina adapters that sometimes can continue present in many reads despite the fact 

that reads were already filtered from the adapters. After removal of low-quality bases (ч30, 

as a minimum quality threshold), all the remaining reads showed at least the minimum 

desired quality threshold of ш30 (Appendix VII) and the persisting adapters were removed.    

3.1.2 Mapping 

A table summarizing the number of reads mapping against reference genomes was 

generated (Appendix IX). Contaminant reads that could exist in the datasets were filtered 

out as described in Materials and Methods section. This resulted in the exclusion of only 

0,0008% and 0,05% reads per sample, on average, for mitochondrial and nuclear genome, 

respectively. A highest percentage of mapped reads against endogenous nuclear in 

comparison with the mtDNA endogenous values is due to the shorter length of the mtDNA 

compares to the nuclear one. An alternative analysis (not shown) using the EAGER software 

(Peltzer et al. 2016) for the same reads generated almost the same results. Due to these 

results, a BLAST assignment was performed to find the source of contamination. Most of 

the discarded reads had a bacterial contamination origin (see section 3.1.6). 

3.1.3 DNA degradation 

The pƌopoƌtioŶ of ϱ͛ CǇtosiŶe to ThǇŵiŶe ;C>TͿ  aŶd ϯ͛ GuaŶiŶe to AdeŶiŶe ;G>AͿ increases 

towards the end of the reads, as showed in mapDamage analysis charts (T: red line; A: blue 

line; Figure 9), demonstrating that all samples exhibited some level of degradation, and 

therefore aŶĐieŶt DNA͛s tǇpiĐal ĐhaƌaĐteƌistiĐs. 
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Figure 9. “uďstitutioŶ patteƌŶs at the ϱ′ aŶd ϯ′ eŶds of the seƋueŶĐe tǇpiĐal of aŶĐieŶt DNA. aͿ 
LYEP9; b) LYEP11; c) LYEP51; d) LYEP53 e) LYEP27. 

a) 

b) 

c) 

d) 

e) 
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3.1.4 Consensus mitochondrial sequence 

All fasta files created in this study are not available for public access. In a near future, the 

5 ancient DNA samples analysed in this study will be rescreened in a specific way to increase 

their sequences coverage. 

As expected, when analysing ancient DNA, sequences have unknown/missing bases (Ns) in 

different amounts (Table 5). The sequences length is in concordance with mitochondrial 

DNA dog reference sequence length (16,729 bp) or wolf reference sequence length (16,757 

bp). 

A table containing the information of mitochondrial variants (nucleotide substitution and 

position in genome) identified when mapping each sample against the reference 

mitochondrial genome can be consulted in Appendix VIII. 

Table 5. mtDNA fasta files summary regarding information of sequence length and number of unknown bases for each 

sample. 

 

 

 

 

 

 

 

 

 

3.1.5 Species identity assignment 

The genome coverage results indicate that LYEP9, LYEP11, LYEP51 and LYEP53 samples 

were dogs, since these samples showed higher coverage values when they were mapped 

against the dog reference mtDNA genome. In the case of LYEP27, this sample belongs to a 

wolf (Table 6). However, in the context of ancient analysis, genetic taxonomic assignment 

is better used to corroborate osteometric and archaeological context analysis, due to the 

typical degradation of aDNA that may affect the alignment against reference genomes and 

lead to incorrect species identification.  

Sample 
Sequence 

length (bp) 

Number of 
unknown bases 

(Ns) 

% of 
unknown 

bases 

LYEP9 16,732 268 1.60 

LYEP11 16,730 143 0.85 

LYEP51 16,727 4,012 23.99 

LYEP53 16,731 543 3.25 

LYEP27 16,757 10,231 61.06 
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Table 6. Coverage results of samples mapped against dog and wolf genome. 

 

 

Mitochondrial Coverage 

                    

Sample 

m
ap

p
ed

 a
ga

in
st

 d
o

g 
 g

e
n

o
m

e
 % of merged 

reads mapped 
against 

endogenous 
mtDNA (%) 

mtDNA % 
coverered 

>2 

mean coverage 
of mtDNA 
genome 

Endogenous 

mtDNA (%) 1 

mean 
coverage 
of mtDNA 

genome 1 

m
ap

p
ed

 a
ga

in
st

 w
o

lf
 g

en
o

m
e

 

mtDNA % 
coverered 

>2 

mean 
coverage of 

mtDNA 
genome 

Species 
assignment 

Illumina - Stockholm University LYEP9 0.010 99.20 17x 0.010 19x 98.60 17x Dog 

Illumina - SU LYEP11 0.012 99.28 12x 0.010 17x 97.88 12x Dog 

Illumina - SU LYEP51 0.002 86.44 2x 0.002 3x 76.60 2x Dog 

Illumina - SU LYEP53 0.005 98.94 5x 0.004 6x 95.20 6x Dog 

Illumina - SU LYEP27 0.005 36.98 1x 0.002 3x 38.97 1x Wolf 
           

 

Nuclear Coverage 

                     

Sample 

m
ap

p
ed

 a
ga

in
st

 d
o

g 
ge

n
o

m
e

 

% of merged 
reads mapped 

against 
endogenous 

nDNA (%) 

nDNA % 
coverered 

>2 

mean coverage 
of nDNA 
genome 

Endogenous 

nDNA (%) 1 

mean 
coverage 
of nDNA 

genome 1 

m
ap

p
ed

 a
ga

in
st

 w
o

lf
 g

en
o

m
e

 

nDNA % 
coverered 

>2 

mean 
coverage of 

nDNA genome 

Species 
assignment 

Illumina - Stockholm University LYEP9 3.75 0.001 0.043x 3.05 0.054x 0.001 0.043x Dog 

Illumina - SU LYEP11 0.55 2.55E-05 0.002x 0.82 0.008x 2.81E-05 0.002x Dog 

Illumina - SU LYEP51 0.95 4.85E-05 0.006x 0.84 0.01x 1.26E-10 0.006x Dog 

Illumina - SU LYEP53 0.09 2.79E-06 0.0005x 0.11 0.001x 4.15E-06 0.0005x Dog 

Illumina - SU LYEP27 0.64 1.48E-05 0.0009x 0.35 0.003x 1.52E-05 0.0009x Wolf 
           

 
1 Using EAGER software. 
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3.1.6 Contaminants – taxonomic assignment 

Regarding the contaminants, the majority of Blast hits have bacterial origin (Figure 10). 

From 1,000,000 reads analysed, match hits were found only in 287,956 reads for LYEP9, 

105,302 reads for LYEP11, 89,953 reads for LYEP51, 106,580 reads for LYEP53 and 77,699 

reads for LYEP27. Almost 90% of the reads analysed, on average, that do not align against 

reference genomes also did not find correspondence with NCBI database sequences. These 

Figure 10. Number of contaminated reads out of 1M reads per taxon analysed in Blastn software. a) sample LYEP9; b) 

saŵple LYEPϭϭ; ĐͿ saŵples LYEP5ϭ; dͿ saŵple LYEP5ϯ; eͿ saŵple LYEPϮ7.  ͞N/A͟ ƌesults aƌe BLA“T hits of organisms not 

classified in NCBI database. 

a) b) 

c) d) 

e) 
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reads are likely sequences artefacts that are common to occur in aDNA due to the existence 

of few template molecules to initiate amplification (Kircher et al. 2011).  

3.2 Genetic diversity 

3.2.1 Phylogenetic tree 

Bayesian phylogenetic tree of complete sequences (Figure 11) confirm the Haplogroup 

assignment of the Chalcolithic dogs: LYEP9 and LYEP11 segregates within Haplogroup A; 

LYEP51 and LYEP53 segregates within Haplogroup C. 

One of the extant Iberian dogs (eDog_D6_ES/PT_HgD) segregates close to ancient wolves 

from Switzerland (aWolf26_SWI_Hg2 and aWolf40_SWI_Hg2). The other extant Iberian 

dog (eDog_A34_ES_HgA) segregates close to Chalcolithic dogs (aDog_LYEP9_PT and 

aDog_LYEP11_PT). 

 

 

Figure 11. Bayesian phylogenetic tree (1,100,000 iterations) for complete mtDNA. Bayesian support values are indicated 

at eaĐh Ŷode. AŶĐieŶt saŵples iŶitiate ǁith ͞a͟ aŶd eǆtaŶt saŵples ǁith ͞e͟. “aŵples ǁithout a date iŶdiĐate eǆtaŶt 
samples. At each branch, the samples identifiers and geographic origin are also indicated. The scales on bottom 

measure evolutionary distance in substitutions per nucleotide. See Appendix V for detailed information regarding the 

source of the sequences displayed here. 
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3.2.2 Phylogenetic networks 

It is important to recall here that in order to accommodate data from other authors, the 

mitogenomes determined for the 5 Canis samples of this study were trimmed to 66bp and 

43 bp in the case of Iberian context and Iberian and Eurasian context, respectively (see 

Table 4 in Material and Methods). 

To understand the origin and diversity of the Chalcolithic dogs it will be shown several 

networks. These will be presented firstly by canid type from the Palaeolithic to the 

Chalcolithic Iberian and them chronologically from the Palaeolithic to Chalcolithic periods 

of dogs and wolves from Iberian and Eurasian.  

The following phylogenetic networks display the phylogenetic relationships among 

ancestral dogs from Iberia and dogs and wolves from different chronological contexts. For 

the Iberian context, and when only partial mtDNA sequences from dogs were used, the 

network generated (Figure 12) shows that only mtDNA dog Haplogroups A and C are 

present in Iberia since the Mesolithic until the Chalcolithic period. Among the 24 

haplotypes displayed here, none of the ancient samples segregated within dog Haplogroup 

B or D. Haplogroup A is the most diverse Haplogroup for the Chalcolithic period (5 out of 7 

haplotypes, in contrast with only two haplotypes in Haplogroup C) as happens nowadays 

(in extant dogs; 13 out of 22 haplotypes). 
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For the Iberian context, and regarding only Iberian wolf partial mtDNA sequences, the 

resulting network (Figure 13) display only two wolf Haplogroups. Following Pilot et al. (Pilot 

et al. 2010) nomenclature, two Palaeolithic Portuguese wolves from Pires et al. (2019) 

study and a single extant Portuguese wolf from Pires et al. (Pires et al. 2017) segregate 

within Wolf_Hg2. The unique Chalcolithic wolf haplotype from Iberia (and elsewhere) 

segregates within Wolf_Hg1, together with haplotypes from extant Iberian wolves (Vilà et 

al. 1997; Bjornerfeldt et al. 2006; Koepfli et al. 2015; Koblmüller et al. 2016; Pires et al. 

2018). 

 

 

Figure 12. Median-Joining network showing genetic relationships among Iberian mtDNA dog haplotypes (partial 

seƋueŶĐesͿ of phǇlogeŶetiĐ Haplogƌoups A, B, C aŶd D. ͞a͟ staŶds foƌ aŶĐieŶt; ͞e͟ staŶds foƌ eǆtaŶt, ͞W͟ foƌ ǁolf, ͞D͟ foƌ 
dog aŶd ͞H͟ foƌ haplotǇpe. Coloƌed Đircles represent different chronological periods. White circles are median vectors 

(hypothetical intermediates). The sizes of colored circles are proportional to the haplotype frequency in the respective 

populations. Newly generated data from this thesis (NGS) are: LYEP9 and LYEP11 which segregates within HgA; LYEP51 

and LYEP53 which segregates within HgC. The remaining sequences are from Pires et al (2019), Pires et al (2006) and Pang 

et al (2009). See Appendix VI for detailed information regarding the source and haplotype correspondence of the 

haplotypes displayed here. 

Iberian context  

Dogs only (66bp fragment spanning from 15587 to 

15652 bp of the Dloop region) 

 

LYEP9_454/ILLU 

LYEP51_454/ILLU 
LYEP53_454/ILLU 

LYEP11_454/ILLU 
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When analysing a network comprising both wolf and dog haplotypes from the Iberia from 

different periods (Figure 14), both Palaeolithic wolves (aeD/aWH2 and aeD/aWH3) and one 

extant wolf from Hg1 segregates within dogs͛ Haplogroups. Hg2 haplotypes from extant 

wolves (eWH25-H29) are well segregated from dog haplotypes. 

 
 
 

Figure 13. Median-Joining network showing genetic relationships among Iberian mtDNA wolf haplotypes (partial sequences) of 

phǇlogeŶetiĐ Haplogƌoups ϭ aŶd Ϯ. ͞ a͟ staŶds foƌ aŶĐieŶt; ͞ e͟ staŶds foƌ eǆtaŶt, ͞ W͟ foƌ ǁolf, ͞ D͟ foƌ dog aŶd ͞ H͟ foƌ haplotype. 

Coloured circles represent different chronological periods. White circles are median vectors (hypothetical intermediates). The 

sizes of coloured circles are proportional to haplotype frequency in the respective populations. Newly generated data from this 

thesis (NGS) is: LYEP27 which segregates within Wolf_Hg1. The remaining sequences are from Bjornerfeldt et al (2006), 

Koblmuller et al (2016), Koeplfi et al (2015), Parra et al unpublished, Pires et al (2017), Pires et al (2019), Randi et al unpublished 

and Vila et al (1997). See Appendix VI for detailed information regarding the source and haplotype correspondence of the 

haplotypes displayed here. 

Iberian context  
 

Wolves only (66bp 
fragment spanning 
from 15587 to 15652 
bp of the Dloop 
region) 

 

LYEP27_454/ILLU 
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Iberian context 
 

Dogs and wolves (66bp 
fragment spanning 
from 15587 to 15652 
bp of the Dloop region) 

Figure 14. Median-Joining network showing genetic relationships among Iberian mtDNA Canis haplotypes of phylogenetic Haplogroups A, B, C and D 

;dogsͿ. ͞a͟ staŶds foƌ aŶĐieŶt; ͞e͟ staŶds foƌ eǆtaŶt, ͞W͟ foƌ ǁolf, ͞D͟ foƌ dog aŶd ͞H͟ foƌ haplotǇpe. Colouƌed ĐiƌĐle ƌepƌesents different chronological 

periods and species. White circles are median vectors (hypothetical intermediates). The sizes of coloured circles are proportional to haplotype 

frequency in the respective populations. See Appendix VI for detailed information regarding the source and haplotype correspondence of the 

haplotypes displayed here. 

LYEP27_454/ILLU 

LYEP9_454/ILLU LYEP51_454/ILLU 
LYEP53_454/ILLU 

LYEP11_454/ILLU 
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A network based on Palaeolithic dogs and wolves haplotypes from Iberian and Eurasian 

(Figure 15), apparently do not show a clearly structure that separate haplotypes among 

Haplogroups. However, using data from other authors and reference haplotypic data, it 

was possible to assign Haplogroups. This network displays the segregation of LYEP46* – 

haplotype aW/DH4 together with two Palaeolithic dogs from Germany and France (both 

HgC), and one Palaeolithic wolf from Italy (Wolf_Hg2). Sample LYEP44** - haplotype 

aWH17, is a unique haplotype from the Palaeolithic of Iberian and Eurasian context. 

Regarding the specimens with ambiguous assignment (Canis from Goyet Cave, Belgium and 

 

 

Iberian + Eurasian context 

Dogs and wolves from the 

Palaeolithic (43bp fragment 

spanning from 15610 to 15652 bp of 

the Dloop region) 

Figure 15. Median-Joining network showing genetic relationships among Iberian and Eurasian mtDNA Canis haplotypes 

segƌegatiŶg ǁithiŶ Haplogƌoups A aŶd C ;dogsͿ. ͞a͟ staŶds foƌ aŶĐieŶt; ͞e͟ staŶds foƌ eǆtaŶt, ͞W͟ foƌ ǁolf, ͞D͟ foƌ dog aŶd 
͞H͟ foƌ haplotǇpe. Colouƌed ĐiƌĐles ƌepƌeseŶt diffeƌeŶt PalaeolithiĐ Canis. White circles are median vectors (hypothetical 

intermediates). The sizes of coloured circles are proportional to haplotype frequency in the respective populations. None of 

these sequences were generated under this study. See Appendix VI for detailed information regarding the source and 

haplotype correspondence of the haplotypes displayed here. *Haplotype where LYEP46 is included; **Haplotype where LYEP44 

is included. 

* 

** 



Dogs (Canis lupus familiaris) from the Iberian Peninsula  
dated to the Chalcolithic period: a genomic approach 

- 57 - 
  

Razboinichya Cave, Russia), they segregate with other wolves, in this study. So, thereafter 

these samples are considered as wolves. 

After adding Mesolithic period to the network (Figure 16), it can be observed that HgC is 

more present in Eurasia (more haplotypes, higher frequencies), in contrast to HgA that is 

more present in Iberia. Palaeolithic wolf LYEP46 and Mesolithic dog LYEP68_A (aW/DH4*), 

segregate with Mesolithic dogs from France, Romania and Estonia and one Palaeolithic dog 

from Germany and one Palaeolithic wolf from Italy (in Haplogroup C). Regarding wolf 

 

Iberian + Eurasian context 
  

Dogs and wolves from the 
Palaeolithic + Mesolithic 
(43bp fragment spanning 
from 15610 to 15652 bp of 
the Dloop region) 

Figure 16. Median-Joining network showing genetic relationships among Iberian and Eurasia mtDNA Canis 

haplotypes. “a͟ staŶds foƌ aŶĐieŶt; ͞e͟ staŶds foƌ eǆtaŶt, ͞W͟ foƌ ǁolf, ͞D͟ foƌ dog aŶd ͞H͟ foƌ haplotǇpe. 
Coloured circles represent different chronological periods and species. White circles are median vectors 

(hypothetical intermediates). The sizes of coloured circles are proportional to haplotype frequency in the 

respective populations. None of these sequences were generated under this study. See Appendix VI for 

detailed information regarding the source and haplotype correspondence of the haplotypes displayed here. 

*Haplotype where LYEP46 and LYEP68_A are included; **Haplotype where LYEP44 and Mesolithic Iberian 

dogs are included. 

* 

** 
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LYEP44 and most of the Mesolithic Iberian dogs (aW/DH17**), they share the same 

haplotype with a Mesolithic Italian wolf (in clade A). 

In the Palaeolithic+Mesolithic+Neolithic network (Figure 17), it is described the appearance 

of dogs carrying haplotypes segregating in Haplogroups D and B in the Neolithic but outside 

Iberia. Only two Iberian dog specimens are dated to the Neolithic period, they share the 

same haplotype which clusters within Haplogroup A. A larger sampling is necessary for this 

period. 

 

Figure 17. Median-Joining network showing genetic relationships among Iberian and Eurasia mtDNA Canis haplotypes of 

phǇlogeŶetiĐ Haplogƌoups A, B, C aŶd D ;dogsͿ. ͞a͟ staŶds foƌ aŶĐieŶt; ͞e͟ staŶds foƌ eǆtaŶt, ͞W͟ foƌ ǁolf, ͞D͟ foƌ dog aŶd 
͞H͟ foƌ haplotǇpe. Colouƌed ĐiƌĐles ƌepƌeseŶt diffeƌeŶt ĐhƌoŶologiĐal peƌiods aŶd speĐies. White ĐiƌĐles aƌe ŵediaŶ ǀeĐtors 

(hypothetical intermediates). The sizes of coloured circles are proportional to haplotype frequency in the respective 

populations. See Appendix VI for detailed information regarding the source and haplotype correspondence of the haplotypes 

displayed here. 

 

 

Iberian + Eurasian context 

Dogs and wolves from the Palaeolithic + 

Mesolithic + Neolithic (43bp spanning 

from 15610 to 15652 bp of the Dloop 

region) 
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According to the next network (Figure 18), in the Chalcolithic period, the single Iberian wolf 

sample analysed (LYEP27, one of the samples from this study) held a unique haplotype 

(aWH40+). Chalcolithic Iberian dog haplotypes (n=7) are segregating within Haplogroups A 

and C. The samples from this study are LYEP9, LYEP11, LYEP51, LYEP53 and LYEP27 - 

. 

 

Iberian + Eurasian context 

Dogs and wolves from the Palaeolithic + Mesolithic 

+ Neolithic + Chalcolithic (43bp fragment spanning 

from 15610 to 15652 bp of the Dloop region) 
 

* 

** 

*** 

+ 

Figure 18. Median-Joining network showing genetic relationships among Iberian and Eurasia mtDNA Canis haplotypes of phylogenetic 

Haplogƌoups A, B, C aŶd D ;dogsͿ, spaŶŶiŶg PalaeolithiĐ, MesolithiĐ, NeolithiĐ aŶd ChalĐolithiĐ peƌiods. ͞a͟ staŶds foƌ aŶĐieŶt; ͞e͟ staŶds 
foƌ eǆtaŶt, ͞W͟ foƌ ǁolf, ͞D͟ foƌ dog aŶd ͞H͟ foƌ haplotǇpe. Colouƌed ĐiƌĐles ƌepƌeseŶt diffeƌeŶt ĐhƌoŶologiĐal peƌiods aŶd species. White 

circles are median vectors (hypothetical intermediates). The sizes of coloured circles are proportional to haplotype frequency in the 

respective populations. See Appendix VI for detailed information regarding the source and haplotype correspondence of the haplotypes 

displayed here. *Haplotype where LYEP9 is included; **Haplotype where LYEP11 is included; ***Haplotype where LYEP51 and LYEP53 are 

included; +Haplotype where LYEP27 is included. 
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haplotypes aW/DH1*, aDH28**, aWDH4*** and aWH40+ respectively, from HgA and HgC. 

Haplotype aW/aeDH4 (HgC) is the most frequently found and is detected in every period.  

Below, the next network represents mtDNA haplotypes detected in Iberian and Eurasian 

dogs and wolves from Palaeolithic, Mesolithic, Neolithic, Chalcolithic and Extant periods 

(Figure 19). Haplotype aDH35 no longer exists in extant Iberian dogs.  

Extant Iberian wolves are well structured/separated from wolves of other European region, 

with exception of eWolf25 (Bulgaria) and aWolf4 (Portugal) that share the same haplotype 

aeW/aeDH17 (in the network this haplotype can be found segregating within dog 

Haplogroup A), and eWolf18 (Latvia/Russia/Sweden) and eWolf28 (Portugal) that also 

share the same haplotype eW/aeDH21 (in the network this haplotype can be found 

segregating within dog Haplogroup A). In the most geographically and temporally best 

represented haplotypes (aW/aeDH4 and H17) are included the Palaeolithic Iberian wolves 

(samples aWolf3 and aWolf4). 

Regarding extant Iberian wolf Haplogroups, there is not a clear separation between 

wolf_Hg1 and wolf_Hg2, since 94% (n=16) belongs to wolf_Hg1 and 6% (n=1) to wolf_Hg2. 

As mentioned in Materials and Methods, only some representativeness of Eurasian wolves 

from Haplogroup 2 were used in this analysis. For this reason, beside the known existence 

of two distinct mtDNA haplotypes in extant Italian wolves (Randi et al. 2000; Boggiano et 

al. 2013; Montana et al. 2017), here only one haplotype appears (eWH54).  
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Iberian + Eurasian context 

Dogs and wolves from the Palaeolithic + Mesolithic + Neolithic + Chalcolithic + Extant (43bp spanning from 15610 to 15652 bp of the Dloop region) 
 

Figure 19. Median-Joining network showing genetic relationships among Iberian and Eurasia mtDNA Canis haplotypes of phylogenetic Haplogroups A, B, C and D (dogs), spanning Palaeolithic, Mesolithic, 

NeolithiĐ aŶd ChalĐolithiĐ aŶd EǆtaŶt peƌiods. ͞a͟ staŶds foƌ aŶĐieŶt; ͞e͟ staŶds foƌ eǆtaŶt, ͞W͟ foƌ ǁolf, ͞D͟ foƌ dog aŶd ͞H͟ foƌ haplotǇpe. Colouƌed ĐiƌĐles ƌepƌeseŶt diffeƌeŶt ĐhƌoŶologiĐal peƌiods aŶd speĐies. 
White circles are median vectors (hypothetical intermediates). The sizes of coloured circles are proportional to haplotype frequency in the respective populations. See Appendix VI for detailed information 

regarding the source and haplotype correspondence of the haplotypes displayed here. *Haplotype where LYEP9 is included; **Haplotype where LYEP11 is included; ***Haplotype where LYEP51 and LYEP53 are 

included; +Haplotype where LYEP27 is included. 

 

*** 

** 

+ 
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There is a genetic continuity regarding dog mtDNA Haplogroup representativeness in 

Iberian dogs, although the Iberian Neolithic period is sub-represented with only 2 samples. 

In contrast, in Eurasia, a sharp difference is noted by the Neolithic period with the 

introduction of dogs with a different mtDNA genetic composition (Figure 20). 

 

Figure. 20. Frequency of the main dog mtDNA-Haplogroups (A, B, C and D) across time in Iberia and Eurasia. A high 

frequency of HgA dogs can be detected continuously in Iberia since the Mesolithic. Dates below charts represents the 

oldest sample and the earliest sample from dataset for each cultural period. 
 

3.2.3 Chalcolithic Iberian dogs - PhiPT statistics 

Iberian dogs show almost no intraspecific genetic differentiation among the populations 

over time – regarding the ancient periods considered: values range from 0 (not significant; 

p>0,05; Mesolithic vs Neolithic) to 8% (not significant; p>0,05; Mesolithic vs Chalcolithic) 

when the 43 bp fragment is used. If a fragment of 182 bp containing missing data is used, 

this value is 0% for both comparisons (Mesolithic vs Neolithic and Mesolithic vs 

Chalcolithic), but not significant (p>0,05). The evolutionary trajectory of the Chalcolithic 

Iberian dogs is of a genetic continuity over time as evidenced by the PhiPT values below 

(Table 7). Values estimated from 43 bp fragments are on the left side of the bar symbol. On 

the right side of the bar symbol are the values estimated from 182 bp fragments. 
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Table7. Iberian dogs PhiPT values over periods for two different fragments lengths (43bp and 182bp). 

Cultural Period PhiPt values (p-value) 

Mesolithic vs Neolithic (43 bp/182bp) 0% (0.262) / 0% (0.352) 

Mesolithic vs Chalcolithic (43 bp/182bp) 8% (0.135) / 0% (0.332) 

 

Regarding genetic distance between Iberian dogs and their European counterparts over 

time, PhiPT values increases substantially (all PhiPT ǀalues шϬ.20), which indicate great/very 

great genetic diferentiation aĐĐoƌdiŶg to Wƌight͛s Ƌualitatiǀe guideliŶes (see Materials and 

Methods section). Accounting for an average generation time of three years in dogs and 

wolves (Lindblad-Toh et al. 2005), to achieve these PhiPT values of 0.22/0.27 migrant 

individual every 3 years (or one migrant individual every 15/12 years) for the Mesolithic 

period, 1.92/1.19 migrant individual every 3 years (or one migrant individual every 6/6 

years) for the Neolithic period and 0.34/0.29 migrant individual every 3 years (or one 

migrant individual every 9/12 years) for the Chalcolithic period would have migrated (bred 

with) between these populations of dogs (Table 8). The lower time estimated for the 

Mesolithic period may be explained by the contrasting number of samples from Iberia and 

Eurasia. 

Table 8. PhiPT and Nm (Number of migrants) values of Iberian and Eurasian dogs from different chronological periods. 
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As mentioned in Materials and Methods section, in this study, Chalcolithic Iberian wolf 

structure could not be estimated confidently since there was only one Chalcolithic Iberian 

wolf in the database.  

3.3 Nuclear DNA data: Sex determination of samples 

For the LYEP9 sample, once the reads have been normalized by the length of each 

respective chromosome, only 255.3 reads per 1 million base pairs (0.026%) aligned to the 

chromosome X with mapping quality of 60 or above (255.3 reads(Q60)/Mbp), compared 

for instance, with 485.3 reads(Q60)/mbp that aligned to chromosome 1, resulting in half 

the ratio when comparing chromosome X with autosomal chromosome 

(255.3/485.3=52.6%); while 357.3 reads(Q60)/mbp aligned to chromosome Y, resulting in 

a slightly higher proportion of reads when comparing to chromosome X 

(255.3/357.3=71.6%) (Figure 21;Table 9), an acceptable result due to the fact that there is 

no reference Y chromosomes; its actual size is not known and may have been 

underestimated. This result is similar to a previously reported ancient male dog (Frantz et 

al. 2016). 

  

Applying the same depth based method, LYEP11 and LYEP53 were classified as males as 

well (Table 9), where only 26.1 reads(Q60)/mbp and 4.4 reads(Q60)/mbp, respectively, 

aligned to the chromosome X compared with 49.3 reads(Q60)/mbp and 8.6 

Figure 21. Histograms representing the proportions of sequencing reads mapping each chromosome for LYEP9. 

Chromosome X is represented by the green bar and chromosome Y by the blue bar. 
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reads(Q60)/mbp, respectively, that aligned to chromosome 1. This results in half the ratio 

when comparing chromosome X with autosomal chromosome for LYEP11 

(26.1/49.3=52.95%) and LYEP53 (4.4/8.6=50.73%). Regarding chromosome Y, for both 

LYEP11 and LYEP53 samples, a higher proportion of reads aligned to chromosome Y when 

compared to chromosome X - 26.1/52.0=50% and 4.4/6.9=63.62%, respectively (Figure 22 

and Figure 23). As mentioned above, the high proportion of reads aligned to chromosome 

Y is an acceptable result due to the fact that there are no reference Y chromosomes; its 

actual size is not known and may have been underestimated. 

 

Figure 23.  Histograms representing the proportions of sequencing reads mapping each chromosome for LYEP53. Chromosome 

X is represented by the green bar and chromosome Y by the blue bar.  

 

Figure 22. Histograms representing the proportions of sequencing reads mapping each chromosome for LYEP11. Chromosome 

X is represented by the green bar and chromosome Y by the blue bar. 
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The sample LYEP51 is the only female (Table 9). A similar ratio of X and autosomal 

chromosome was found, where 93.8 reads(Q60)/mbp aligned to chromosome X and 93.4 

reads(Q60)/mbp aligned to chromosome 1. Some of the reads that did not map against dog 

genome (41.9 reads(Q60)/mbp) aligned to chromosome Y, however it is possibly a result 

of contaminant reads that aligned to fragments of chromosome Y, not endogenous DNA 

(Figure 24). 

 

 

The only ancient wolf analysed in this study was a male (Table 9), according to the 9.1 

reads(Q60)/mbp aligned to chromosome X against 17.9 reads(Q60)/mbp that aligned to 

chromosome 1. Moreover, 28.5 reads(Q60)/mbp aligned to chromosome Y, a higher 

proportion of reads when comparing to chromosome X ratio (28.5/9.1=31.5%) (Figure 25). 

Again, the high proportion of reads aligned to chromosome Y is an acceptable result due to 

the fact that there are no reference Y chromosomes; its actual size is not known and may 

have been underestimated. This results confirm the result obtained by Moreno-Gárcia and 

colleagues (2016) using osteometry approach to infer about the sex of this ancient wolf, as 

a male. 

 

 

 

 

Figure 24. Histograms representing the proportions of sequencing reads mapping each chromosome for LYEP51. Chromosome X 

is represented by the green bar and chromosome Y by the blue bar. 
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Table 9. Results of molecular sex determination for each Canis sample. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sample ID Sex assignment 

LYEP9 Male 

LYEP11 Male 

LYEP51 Female 

LYEP53 Male 

LYEP27 Male 

Figure 25. Histograms representing the proportions of sequencing reads mapping each chromosome for LYEP27. Chromosome 

X is represented by the green bar and chromosome Y by the blue bar. Note: this sample was not mapped against the de novo 

wolf genome (Gopalakrishnan et al. 2017) because it consisted only of unplaced scaffolds. 
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4. DISCUSSION 
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4 Discussion 

This is the first attempt to reconstruct mitochondrial and nuclear genomes from ancient 

Canis from Iberia with NGS methods. The sequences obtained in this study showed the 

typical pattern of ancient DNA, such as low endogenous DNA (Appendix IX), nucleotide 

suďstitutioŶs at the ϱ͛ aŶd ϯ͛ eŶds ;Figuƌe 9), bacterial contaminant reads (Figure 10) and 

uŶkŶoǁŶ ŶuĐleotides ;N͛s; Table 5). However, it was possible to reconstruct more than 90% 

of the mitogenome for LYEP9, LYEP11 and LYEP53; unfortunately, LYEP51 and LYEP27 

presented a higher percentage of unknown bases, allowing the reconstruction of 

approximately 76% and 39 % of the mitogenome, respectively (Table 5).  

From a network analysis and using reference sequences from extant dogs from other 

studies (including the 4 ancient dog sequences which sequences were generated by the 

NGS-454 method by Pires et al 2019 for the samples of this study) for which their dog 

mtDNA haplogroup was known,  I was able to  assign each of the newly generated sequence 

(this study) to its closest Haplogroup. The presence of reference sequences in a study of 

ancient specimens has shown to be important to clearly assign sequences to the closest 

Haplogroup and to identify unique haplotypes. 

With regard to genetic diversity and population structure of Iberian dogs, a genetic 

continuity regarding Haplogroup representativeness is observed since Mesolithic period, 

with Hg A being prevalent. In contrast, in the other regions of Eurasia, Hg C is the most 

prevalent during pre-Neolithic period (Deguilloux et al. 2009; Frantz et al. 2016; Ollivier et 

al. 2018), being partially replaced by HgA and HgD after the Neolithic (Botigué et al. 2017; 

Ollivier et al. 2018). Neolithic Eurasian haplotypes were mainly Haplogroup A, C, or D type, 

but also one dog carried mtDNA of the Haplogroup B type (Botigué et al. 2017; Ollivier et 

al. 2018) (Figure20). The introduction of mtDNA Hg B in Iberia appears to have occurred 

later than Chalcolithic since this Hg was never detected in 29 dogs analysed between 

Mesolithic and Chalcolithic periods. 

According to Pires et al. (Pires et al. 2018), Hg D may have arrived in Iberia during late 

Roman occupation (ca. 1,600 years ago). This alteration of the genetic composition could 
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be explained by the migration of dogs from other regions of Europe into Iberia. During the 

Chalcolithic period in Iberia, mtDNA Hg C dogs increased in frequency (Figure 20). When 

comparing Iberian dogs with their contemporaneous Eurasian counterparts, genetic 

differentiation is statistically significant, showing great genetic divergency between 

populations over periods (all pairwise PhiPt values are >0.20). These results suggest a 

strong genetic isolation of Iberian dogs from the rest of Europe until the Chalcolithic period. 

PhiPt values based on alignments of sequences with different lengths (smaller fragments 

with no missing data versus longer sequences with missing data), differ little. Equivalent 

values are accommodated within the same partition of Wƌight͛s (1978) guideline. 

It is important to highlight the high frequency and distribution of haplotype H2/H17 (Figure 

14/Figure 19). This haplotype accommodates one of the oldest Iberian wolf analysed in this 

study, LYEP44, and its presence is maintained in dogs in the following periods. Genetic data 

suggests is a genetic continuity between paleolithic wolves and early dogs in Iberia, but not 

among paleolithic and extant wolves as has been identified before (Pires et al 2019), 

probably due to a bottleneck as consequence of human persecution and habitat 

fragmentation during the past few hundred years (Álvares 2011). Another haplotype that 

is well represented in different chronology of Iberian ancient dogs is the haplotype H3/H4 

(Figure 14/Figure 19). Also, in this haplotype, a genetic continuity between wolf (LYEP46) 

and dog͛s haplotype can also be noted. This haplotype is also the most frequent (9 out of 

21 dogs) in Chalcolithic dogs. 

Wolf Haplogroup 2 is described to be more frequent in ancient wolf population. However, 

during the last several thousand years, Haplogroup 2 became outnumbered by Haplogroup 

1 (Pilot et al. 2010). The oldest Iberian wolves – LYEP44 and LYEP46 belonged to Hg2, while 

LYEP27- the Chalcolithic Iberian wolf of this study, belonged to Haplogroup 1. All 

haplotypes of extant Iberian wolves fall exclusively within Haplogroup 1, with the exception 

of a Portuguese wolf, eWolf28, that is the only extant Iberian wolf that belonged to 

Haplogroup 2 (Pires et al. 2017). This wolf is considered a relic, since, in extant Eurasia, 

Haplogroup 2 can only be detected in Italian wolves (Pilot et al. 2010). Pires et al. (Pires et 

al. 2019) conclude that this change in Iberian wolf mitochondrial composition (Haplogroup 
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1 outnumbering Haplogroup 2), associated with the genetic continuity of Paleolithic wolf 

and extant dog haplotype, suggests that Mesolithic dogs kept the genetic signature of 

ancient Iberian wolves, transmitting it up to present-days dogs.  

It is necessary to sequence more ancient Iberian wolves to investigate the genetic 

composition and structure over time and clarify this turnover. There is a possibility that the 

early Iberian dogs were locally domesticated from the Iberian wolves. This study also 

emphasizes the importance of including ancient wolves and early dogs from European 

periphery in more global studies of the domestication evolution of dogs. It has been 

suggested that the Iberian Peninsula, during the Last Glacial Maximum (21,000-17,000 

years BP), served as a biodiversity refugia (Hewitt 1996). This pre-historic episode had a 

profound influence on the genetic structure of isolated populations (Avise et al. 1998) such 

as the Iberian wolf and consequently the Iberian dogs . 

The occurrence of events of admixture between wolves and dogs along the past has been 

widely accepted in the literature (Vilà et al. 1997; Vila et al. 1999; Leonard et al. 2007), in 

particular as an explanation for the different mitochondrial lineages present in dogs. In the 

past, many haplotypes were shared between wolves and dogs. Currently, as shown in 

Figure 14, the modern population of Iberian wolves is well segregated from modern Iberian 

dogs including village dogs , and it is not currently common the occurrence of hybridization 

between domestic dogs and wild Iberian wolves, with the exception of certain remote 

areas and occasions where and when feral dogs may contact with Iberian wolves  in the 

wild (Godinho et al. 2011; Torres et al. 2017) . This situation deserves constant monitoring 

and special attention to avoid the loss of the Iberian wolf genetic patrimony. Presently it is 

a subject of intense research.  

 
Since the nuclear DNA is present in less quantity than mitochondrial DNA within a cell (Ho 

& Gilbert 2010; Chinnery & Hudson 2013), the recovery of endogenous nuclear DNA in an 

ancient sample becomes even more difficult. In that way, the low coverage and quantity of 

endogenous nuclear DNA led this study to focus only in determining the sex of the 

specimens. To identify the sex of ancestral specimens, which are often found only bone 

fragments (some of which do not allow inferring sex), the genomic approach presents itself 
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as a good solution.  I had to opt for a non-direct approach, calculating and comparing the 

rate of the reads that mapped against the sex chromosomes and the autosomes. This 

strategy has also been used successfully in Frantz et al. (2016) to determinate the sex of a 

Neolithic dog. 

 

This paleogenomic study provided important results to contributing to a better 

understanding of the origin of Iberian Chalcolithic dogs. However, it is important to 

highlight some limitations that prevented the access to more genetic information of Iberian 

dogs from the Chalcolithic period. The low quality of sequencing is a constraint that occurs 

due to the fact that we are handling/analysing ancient DNA, characterized by high 

degradation pattern and consequent post-mortem nucleotides alterations (equivalent to 

mutations) that difficult or even invalidates the sequences͛ quality reading. Nucleotide 

bases that are sequenced with poor reading quality are ƌeplaĐed ďǇ N͛s (unknown 

nucleotides) characters in the consensus sequence. The presence of unknown bases at the 

Hyper Variable Region of the the D-loop, the ͞hot spot͟ of nucleotide variability of the 

mtDNA in Canis, may impair the haplogroup assignment, species identity and inferences of 

evolutionary processes. 

Other constraints lay on the molecular marker used in this study. Mitochondrial DNA 

markers have been widely used to investigate phylogeographic of animals, including dogs, 

due to its characteristics: easy amplification, maternally inherited, lack of chromosome 

recombination and high rate of mutation (Chinnery & Hudson 2013). However, these 

analyses consist on a limited approach to reconstruct the past and should be 

complemented with other independent data sources (e.g. chromosome Y and autosomal 

SNPs). 

Despite the great percentage of bacterial reads contaminants, mostly reads were assigned 

to potential artefacts. New molecular strategies, such as capture-enrichment approach (e.g 

biotinylated RNA baits) (Cruz-Dávalos et al. 2017) that are designed to capture specific 

genomic regions, is recommended for contaminated and fragmented DNA, increasing the 

endogenous nuclear DNA recovery and reducing level of artefacts. In order to improve the 

sequence quality, it is recommended for future research to sequence all the 5 ancient DNA 
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samples together or even less in a single lane (not all together with other samples as it was 

done before).  

The mitochondrial genomes sequences recovered in this study were not submitted to 

GenBank database since a new sequencing is planned to be carried out with considered 

changes to reduce missing nucleotides.  The improvement of the coverage will allow the 

identification of the nucleotide bases with more confidence. The impact in gene function 

of certain mtDNA SNPs that were identified in this study should be further investigated. 

Finally, whatever is the direction of future investigations, this study provides basic data 

for a better understanding of the evolutionary trajectories and genomic composition of 

the Chalcolithic Iberian dogs, a population, so far, little investigated.  
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5. FINAL CONSIDERATIONS 

 
 
 
 
 
  



Dogs (Canis lupus familiaris) from the Iberian Peninsula  
dated to the Chalcolithic period: a genomic approach 
 

- 76 - 
  

5 Final considerations 

 
Directly analysing specimens from the past reduces erroneous conclusions over the genetic 

background of past populations, especially when working with a species that has been 

strongly selected and has had its genetic makeup altered over time. The development of 

new sequencing technologies, which allowed a higher sequencing power, has proven to be 

crucial in the analyses of entire genomes from old specimens – the oldest specimens 

analyzed so far had ca. 300,000 years-old (Meyer et al. 2014) and ca. 700,000 years-old 

(Orlando et al. 2013). It is important to emphasize that the success of analyzing such old 

samples are exceptions, as in the case of samples that are found inside caves or permafrost 

ground. On the order hand, warm climates, e.g. tropical and mediterranean regions, are 

not the best environment to preserve DNA. Therefore, it presents a high failure rate in the 

extraction of endogenous DNA, due to the modifications that happen over time in DNA.  

Bioinformatics, a field of biology that has experienced an explosive growth in the last 

decade, allows the analysis and management of megadata generated by Next Generation 

Sequencing, something that would have been impossible without the advance of software 

used by bioinformaticians. In Portugal, even more Universities are adapting their 

curriculum to include the study of Bioinformatics in formation. Some Institutes and 

Organizations also have been offering training program and computing facilities, as well as 

consulting services in data analysis and management.  

Working with ancestral samples differs from working with modern samples. Different 

software and filters were used in this study, following the best practices for ancient DNA. 

The Script generated here can be repeated for other ancient samples if one wishes, with 

the caution to install all the software needed before. 

Here I conclude that despite the environmental factor from where these samples were 

retrieved (warm climate) and age of samples (ca. 5,000-4,000 BP) this study was 

successfully carried out. A multidisciplinary approach, where zooarchaeology and genetic 

is integrated (zooarchaeogenetic) is to uncover the evolution of domestication of the 

Iberian dogs. In addition, the results of the genetic composition of ancient Iberian wolves 
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presented here may be important as an auxiliary tool in the study of conservation and 

ecology of extant Iberian wolves. Knowing its genetic composition through the time, allows 

to better understand the events that modulated the genetic variability and evolutionary 

path of the Iberian wolf. This species has resisted against various obstacles (environmental 

and anthropogenic), being currently an important genetic patrimony. 
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Appendix I. Description of each remain, regarding its cultural period, which can be linked with map at Figure 4 using 
the numbers 01 to 14 for the site location. 
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on the 
map 

Geographi
c location 

Dates 
(cal 
BP) 

Elements 
Dog 

Reference 
Dating 

Reference 
Notes 
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02 
Erralla, 
Spain 

 

19,000-
12,500 

1 humerus 
 

(Altuna & 
Mariezkurrena 

1985) 

(Vigne et al. 
2005) 

Identified to belongs to a small dog. 

04 Le Closeau, 
France 

14,999-
14,055 

7 fragments 
including 
mandible, 

meta carpal, 
metapodial 

and phalanxes 

(Pionnier-
Capitan et al. 

2011) 

(Pionnier-
Capitan et 
al. 2011) 

 

04 Montespan, 
France 

15,500 
- 

13,500 

1 atlas, 1 
femur, 1 
baculum 

(Pionnier-
Capitan et al. 

2011) 

(Pionnier-
Capitan et 
al. 2011) 

Identified to belong to a small male 
dog. 

04 
Pont 

d’Ambon, 
France 

12,952-
12,451 

39 skull, limb, 
mandible,verte
bal, and tooth 

fragments 

(Célérier & 
Delpech 1978) 

(Célérier et 
al. 1999)  

04 

Saint-
Thibaud-de-

Couz, 
France 

12,027-
11,311 

skull, right 
mandible, 
atlas, axis, 
some teeth, 

left humerous 

(Chaix 2000) 
(Pionnier-
Capitan et 
al. 2011) 

Morphological measurements of a 
Canis remains found in this site were 
assigned to an individual of reduced 
size very close to that observed in 
Neolithic dogs from Switzerland. 

05 

Hauterive-
Champréve

yres, 
Switzerland 

15,200-
13,900 

metatarsal and 
two teeth, 
second 
phalanx 

(Morel & 
Müller 1997) 

(Pionnier-
Capitan et 
al. 2011) 

Bone fragments were identified to 
belong to a dog based on 
measurements made on the upper 
canine. 

05 
Kesslerloch 

Cave, 
Switzerland 

14,600-
14,100 

partial maxillary 
fragment with 

teeth 

(Napierala & 
Uerpmann 

2012) 

(Napierala & 
Uerpmann 

2012) 

This remains is considered the 
earliest undisputed evidence of a 
domestic dog. 
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06 Oelknitz, 

Germany 
15,770-
13,957 

small 
phalanges, 

short 
metapods and 
part of distal 
humerus and 

tibia 

(Mussil 2000) 
(Pionnier-
Capitan et 
al. 2011) 

 

06 Teufelsbrucke, 
Germany 

15,770-
13,957 

proximal 
metapodial 

fragment and 
first phalanx 

(Mussil 2000) 
(Pionnier-
Capitan et 
al. 2011) 

Similar remains in size to the small 
dog from Kniegrotte was found in 
this site. 

06 Kniegrotte, 
Germany 

16,700 
- 

13,800 

partial 
maxillary 

fragment with 
teeth 

(Mussil 2000) 
(Pionnier-
Capitan et 
al. 2011) 

Morphological measurements 
assigned bone remains found in this 
Upper Palaeolithic site to a small 
dog. 

06 
Bonn–

Oberkassel, 
Germany 

14,708-
13,874 

maxillary, 
vertebrae, ulna 
and humerus 

fragments 

(Street 2002) 
(Pionnier-
Capitan et 
al. 2011) 

Initially thought as a wolf, 
archaeological (Benecke 1987; 
Street 2002; Janssens et al. 2018) 
and genetic analysis (Thalmann et 
al. 2013) show that the remains of a 
dog buried beside humans, to be the 
first undisputed domestic dog 
skeleton. 
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07 Shillourokambos
, Cyprus 

12,400-
12,300 

multiple 
elements 

(Vigne et al. 
2011) 

(Vigne et al. 
2011) 

Multiple Canis remains were found 
at this site and associated with very 
small dogs. 

07 Klimonas, 
Cyprus 

11,120-
10,615 one phalanx (Vigne et al. 

2011) 
(Vigne et al. 

2011)  

08 Hayonim 
Terrace 

12,000-
11,000 

co-burials with 
humans, 
Complete 
skeleton 

(Tchernov & 
Valla 1997) 

(Tchernov & 
Valla 1997)  

Continued on the next page 
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08 Ain Mallaha, 
Israel 11,500 

co-burials with 
humans, one 

skeleton 
juvenile and 

one adult, and 
one partial 
mandible 

(Davis & 
Valla 1978; 
Tchernov & 
Valla 1997) 

 

(Tchernov & 
Valla 1997) 

Skeletons of a human and a small 
dog buried together are the earliest 
accepted evidence of the human-
canine bond. This found supports 
that dogs were independently 
domesticated in Middle East from a 
lighter Southwest Asian wolf form, 
Canis lupus arabs, just before 
human became farmer. 

10 Tell Mureybet, 
Syria 

11,500-
11,300 

skull and left 
and right 

mandibles 

(Gourichon & 
Helmer 2008) 

Évin J & 
Stordeur D 
(2008) cited 
in Larson et 

al. (Larson et 
al. 2012) 

 

11 Palegawara 
Cave, Iraq 13,000 mandible (Turnbull & 

Reed 1974) 
(Turnbull & 
Reed 1974) 

An early dog that shows clear 
evidence of cranial morphology, 
such as tooth size reduction and 
crowding in a smaller jaw (Zeder 
2012a). 

E
A

S
T

 A
S

IA
 12 Tumat, Eastern 

Russia 12,400 
Two complete 

mummified 
dogs 

(“Bark to the 
future: Ice 

Age puppies 
may reveal 

canine 
evolution” 

2016) 

(“Bark to the 
future: Ice 

Age puppies 
may reveal 

canine 
evolution” 

2016) 

Two well preserved dogs (the oldest 
mummified dogs in the world) turned 
up in permafrost Siberia, giving 
scientists hope to obtain high quality 
DNA and pinpoint the origin of 
domestic dogs. 

12 Ushki-I, Eastern 
Russia 

12,900-
12,600 

complete 
skeleton (Dikov 1996) (Dikov 1996)  

13 Nanzhuangtou, 
China 

12,790 
- 

10,747 

>31 fragments 
including a 
complete 
mandible 

Jing Y 2010 
cited in 

Larson et al 
2012) 

Jing Y 2010 
cited in 

Larson et al 
2012) 
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01 Poças de São 
Bento, Portugal 6,866 

almost 
complete 
skeleton 

(Arias et al. 
2015) 

(Pires et al. 
2019)  

01 Muge, Portugal 
7,070 

Aamost 
complete 
skeleton 

(Detry & 
Cardoso 

2010) 

(Pires et al. 
2019)  

7015- 
6930 fragments 

01 Vale Boi, 
Portugal 7,080 one tooth 

(Bicho et al. 
2012) 

 
 

(Pires et al. 
2019)  

03 Star Carr, 
England 

11,658-
10,633 

skull fragment, 
single tooth, 
femur, tibia (Degerbøl 

1961; 
Clutton-
Brock & 

Noe-
Nygaard 

1990) 
 
 
 
 
 
 
 
 

(Degerbøl 
1961; Clutton-
Brock & Noe-

Nygaard 1990) 

It’s possible that both bones came 

from the same dog or from unrelated 

dogs of the same size and age. 

Similar remains in size and 

proportions have also been found in 

another Mesolithic sites in Bedburg-

Köningshoven, Germany (Street 

1991) and in Denmark: these 

similarities found in these early dogs 

may indicate that they were the 

result of dispersal from a single 

founder population (by the time of 

early Mesolithic, the sea level had 

not yet separate Britain from the 

Continent).  To sustain that propose 

03 Seamer Carr, 
England 

11,866-
11,246 

6 vertebrae 
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Bedburg-Köningshoven dog skull is 

more closer in size and morphology 

to the dog skulls found in Western 

Asia than it is to the Mesolithic wolf 

skull from Star Carr (Clutton-Brock 

2016). 
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09 Cafer Höyük, 
Turkey 

9,500-
8,300 

complete dog 
skull and 14 

other elements 

(Helmer & 
Gourichon 

2008b) 

(Calvin et al. 
1999 cited in 
Larson et al 

2012) 

 

09 Çayönü, Turkey 9,200-
9,100  

(Özdoğan 
1999 cited 

in Larson et 
al 2012) 

(Özdoğan 
1999 cited in 
Larson et al 

2012) 

 

10 Tell Aswad, 
Syria 

10,200-
9,400 

tens of 
elements 

(Helmer & 
Gourichon 

2008a) 

(Helmer & 
Gourichon 

2008a) 
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12 Zhokhov, 
Russia 

8480-
8175 

2 mandibles, 
maxilla, 

canine, radius, 
ribia 

(Pitulko & 
Kasparov 

2017) 

(Pitulko & 
Kasparov 

2017) 

Suggests that sled dogs could have 

been used in Siberia around 

15,000 years ago 

14 Natsushima 
Shell, Japan 9,300 complete 

skeleton 

(Nishinakag
awa et al. 

1992). 

(Nishinakagaw
a et al. 1992). 

 

14 Kamikuroiwa, 
Japan 

8,500 - 
8,000 

complete 
skeleton 

(Nishinakag
awa et al. 

1992). 

(Nishinakagaw
a et al. 1992). 
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Appendix II. Script used for mtDNA analysis. 
 
#!/bin/bash 
#Script to run entire aDNA analysis at once 
 
display_usage() { 
echo '1st argument must be the path to the sample fastq file read1 [and 
read2 if paired] in the following format: "path/to/read1:" OR 
"path/to/read1:path/to/read2" 
2nd argument is the mininum base quality for trimming 
3rd argument is the minimum read length after adapter removal 
4th argument is the path to the reference genome index 
5th argument is the minimum mapping quality 
6th argument is the path to the reference_composite genome index 
7th argument is the number of threads available to use. example "15" 
8th argument is the complete path to the directory were results must be 
saved 
9th argument is the sample name 
10th argument is the minimum snp coverage 
11th argument is the minimum snp quality 
12th argument is the name of the snpEff database (ex: canis_mt or 
canfam3.1) 
13th argument is the maximum read size (ex: 150bp)' 
} 
 
 
#check if required arguments are there and display usage message 
if [ -z "$1" ] || [ -z "$2" ] || [ -z "$3" ] || [ -z "$4" ] || [ -z "$5" 
] || [ -z "$6" ] || [ -z "$7" ] || [ -z "$8" ] || [ -z "$9" ] || [ -z 
"$10" ] || [ -z "$11" ] || [ -z "$12" ] || [ -z "$13" ]; then 
        printf "Please provide the arguments required for the 
script.\n\n" 
        display_usage 
        exit 1 
fi 
 
read1=$(echo $1 | cut -d ":" -f1) 
read2=$(echo $1 | cut -d ":" -f2) 
 
pair='true' 
 
if [ ${#read2} -eq 0 ]; then  
 pair='false' 
fi 
 
#variantes  
trimqual="$2" 
minreadlength="$3" 
reference="$4" 
minmapqual="$5" 
reference_composite="$6" 
threads="$7" 
base_output="$8" 
base_name="$9" 
snp_coverage="${10}" 
snp_quality="${11}" 
snpEffDB="${12}" 
readsize="${13}" 



Dogs (Canis lupus familiaris) from the Iberian Peninsula  
dated to the Chalcolithic period: a genomic approach 
 

- 96 - 
  

 
######################### 
##### PREPROCESSING ##### 
######################### 
 
mkdir $base_output'/preprocessing' 
 
 
#FASTQC raw reads 
 
mkdir $base_output'/preprocessing/fastqc_raw_reads' 
 
fastqc -t "$threads" -o "$base_output/preprocessing/fastqc_raw_reads" 
"$read1" 
 
if [ $pair = 'true' ]; then 
 fastqc -t "$threads" -o 
"$base_output/preprocessing/fastqc_raw_reads" "$read2" 
fi 
 
#cutadapt 
 
mkdir $base_output'/preprocessing/cutadapt' 
 
if [ $pair = 'true' ]; then 
 cutadapt -b 
"AGATCGGAAGAGCACACGTCTGAACTCCAGTCACNNNNNNATCTCGTATGCCGTCTTCTGCTTG" -B 
"AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT" -q 
"$trimqual","$trimqual" -j "$threads" -m "$minreadlength" --max-n 0 -o 
"$base_output"/preprocessing/cutadapt/"$base_name"_R1_trimmed.fq -p 
"$base_output"/preprocessing/cutadapt/"$base_name"_R2_trimmed.fq "$read1" 
"$read2" 
else 
 cutadapt -b 
"AGATCGGAAGAGCACACGTCTGAACTCCAGTCACNNNNNNATCTCGTATGCCGTCTTCTGCTTG" -q 
"$trimqual","$trimqual" -j "$threads" -m "$minreadlength" --max-n 0  -o 
"$base_output"/preprocessing/cutadapt/"$base_name"_trimmed.fq "$read1" 
fi 
 
#FASTQC clean reads 
 
mkdir $base_output'/preprocessing/fastqc_clean_reads' 
 
if [ $pair = 'true' ]; then 
 fastqc -t "$threads" -o 
"$base_output"/preprocessing/fastqc_clean_reads 
"$base_output"/preprocessing/cutadapt/"$base_name"_R1_trimmed.fq 
 fastqc -t "$threads" -o 
"$base_output"/preprocessing/fastqc_clean_reads 
"$base_output"/preprocessing/cutadapt/"$base_name"_R2_trimmed.fq 
else 
 fastqc -t "$threads" -o 
"$base_output"/preprocessing/fastqc_clean_reads 
"$base_output"/preprocessing/cutadapt/"$base_name"_trimmed.fq 
fi 
 
#Merge clean reads 
if [ $pair = 'true' ]; then 
        mkdir $base_output'/preprocessing/merge_reads' 
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        AdapterRemoval --file1 
"$base_output"/preprocessing/cutadapt/"$base_name"_R1_trimmed.fq --file2 
"$base_output"/preprocessing/cutadapt/"$base_name"_R2_trimmed.fq --
basename 
"$base_output"/preprocessing/merge_reads/"$base_name"_output_paired --
collapse --minlength 48 
fi 
 
######################### 
######## MAPPING ######## 
######################### 
 
#bwa aln - mapping against composite_genome 
 
mkdir $base_output'/mapping' 
 
if [ $pair = 'true' ]; then 
 bwa aln -t "$threads" -l 1024 -o 2 -n 0.03 "$reference_composite" 
"$base_output"/preprocessing/merge_reads/"$base_name"_output_paired.colla
psed > "$base_output"/mapping/"$base_name"_composite.sai 
 bwa samse "$reference_composite" 
"$base_output"/mapping/"$base_name"_composite.sai 
"$base_output"/preprocessing/merge_reads/"$base_name"_output_paired.colla
psed > "$base_output"/mapping/"$base_name"_composite.sam 
else 
 bwa aln -t "$threads" -l 1024 -o 2 -n 0.03 "$reference_composite" 
"$base_output"/preprocessing/cutadapt/"$base_name"_trimmed.fq > 
"$base_output"/mapping/"$base_name"_composite.sai 
 bwa samse "$reference_composite" 
"$base_output"/mapping/"$base_name"_composite.sai 
"$base_output"/preprocessing/cutadapt/"$base_name"_trimmed.fq > 
"$base_output"/mapping/"$base_name"_composite.sam 
fi 
 
#Filter only unmapped reads (samtools view) 
 
samtools view -bh -q 20 "$base_output"/mapping/"$base_name"_composite.sam 
-U "$base_output"/mapping/"$base_name"_no_contamination.bam  
samtools bam2fq "$base_output"/mapping/"$base_name"_no_contamination.bam 
> "$base_output"/mapping/"$base_name"_no_contamination.fq 
 
#bwa aln - mapping against dog reference 
 
if [ $pair = 'true' ]; then 
 bwa aln -t "$threads" -l 1024 -o 2 -n 0.03 "$reference" 
"$base_output"/mapping/"$base_name"_no_contamination.fq > 
"$base_output"/mapping/"$base_name"_no_contamination.sai 
 bwa samse "$reference" 
"$base_output"/mapping/"$base_name"_no_contamination.sai 
"$base_output"/mapping/"$base_name"_no_contamination.fq > 
"$base_output"/mapping/"$base_name"_no_contamination.sam 
else 
 bwa aln -t "$threads" -l 1024 -o 2 -n 0.03 "$reference" 
"$base_output"/mapping/"$base_name"_no_contamination.fq > 
"$base_output"/mapping/"$base_name"_no_contamination.sai 
 bwa samse "$reference" 
"$base_output"/mapping/"$base_name"_no_contamination.sai 
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"$base_output"/mapping/"$base_name"_no_contamination.fq > 
"$base_output"/mapping/"$base_name"_no_contamination.sam 
fi 
 
#samtools  
 
cd "$base_output"/mapping 
 
samtools view -bh "$base_name"_no_contamination.sam -o "$base_name".bam 
samtools sort "$base_name".bam > "$base_name"_sorted.bam 
samtools index "$base_name"_sorted.bam 
 
#picartools (add read groups) 
java -XX:ParallelGCThreads="$threads" -XX:ConcGCThreads="$threads" -jar 
$PICARD AddOrReplaceReadGroups VALIDATION_STRINGENCY="LENIENT" 
ID="$base_name" SM="$base_name" PU="PU" LB="LB" PL="illumina" 
I="$base_name"_sorted.bam O="$base_name"_RG.bam  
 
#picartools (remove duplicates) 
 
samtools sort "$base_name"_RG.bam > "$base_name"_sorted_RG.bam 
samtools index "$base_name"_sorted_RG.bam 
java -XX:ParallelGCThreads="$threads" -XX:ConcGCThreads="$threads" -jar 
$PICARD MarkDuplicates VALIDATION_STRINGENCY="LENIENT" 
REMOVE_DUPLICATES="true" I="$base_name"_sorted_RG.bam 
O="$base_name"_no_dups.bam M="marked_dup_metrics.txt" 
 
#samtools (filtering by flag and qual) 
 
samtools sort "$base_name"_no_dups.bam > "$base_name"_sorted_no_dups.bam 
samtools index "$base_name"_sorted_no_dups.bam 
samtools view -q "$minmapqual" -bh "$base_name"_sorted_no_dups.bam -o 
"$base_name"_filtered.bam 
samtools sort "$base_name"_filtered.bam > 
"$base_name"_filtered_sorted.bam 
samtools index "$base_name"_filtered_sorted.bam 
 
######################### 
####### mapDamage ####### 
######################### 
 
mkdir $base_output'/mapDamage' 
 
mapDamage -l "$readsize" -d $base_output'/mapDamage' --rescale --rescale-
out "$base_name"_filtered_sorted_mapdamage.bam -i 
"$base_name"_filtered_sorted.bam -r "$reference" 
 
samtools index "$base_name"_filtered_sorted_mapdamage.bam 
 
rm $base_name'_sorted.bam' $base_name'_sorted.bam.bai' 
$base_name'_RG.bam' $base_name'_sorted_RG.bam' 
$base_name'_sorted_RG.bam.bai' $base_name'_no_dups.bam' 
$base_name'_sorted_no_dups.bam' $base_name'_sorted_no_dups.bam.bai'  
  
######################### 
#### VARIANT CALLING #### 
######################### 
 
mkdir $base_output'/variant_calling' 
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gatk HaplotypeCaller -R "$reference" -I 
"$base_name"_filtered_sorted_mapdamage.bam --bam-output 
"$base_name"_GATK_out.bam --pcr-indel-model CONSERVATIVE --dont-use-soft-
clipped-bases true --active-probability-threshold 0.002 --disable-
optimizations true --dont-trim-active-regions true  -O 
"$base_output"/variant_calling/"$base_name".vcf 
 
#vcf filter using GATK 
 
cd $base_output'/variant_calling' 
gatk VariantFiltration -R "$reference" -V 
"$base_output"/variant_calling/"$base_name".vcf --filter-name 
'FAILED_qual' --filter-expression "QD < $snp_quality" --filter-name 
'FAILED_read_pos' --filter-expression "ReadPosRankSum < -1.0 && 
ReadPosRankSum > 1.0" --filter-name 'FAILED_base_rank' --filter-
expression "AS_BaseQRankSum < -1.0 && AS_BaseQRankSum > 1.0" --genotype-
filter-name 'FAILED_DP' --genotype-filter-expression "DP < $snp_coverage" 
--genotype-filter-name "FAILED_HOMO" --genotype-filter-expression "isHet 
== 1" --set-filtered-genotype-to-no-call true -O 
"$base_output"/variant_calling/"$base_name"_filtered.vcf 
 
gatk SelectVariants -V 
"$base_output"/variant_calling/"$base_name"_filtered.vcf --exclude-
filtered true --exclude-non-variants true --remove-unused-alternates true 
--restrict-alleles-to BIALLELIC -O 
"$base_output"/variant_calling/"$base_name"_PASS_ONLY.vcf 
 
gatk SelectVariants -V 
"$base_output"/variant_calling/"$base_name"_filtered.vcf --exclude-
filtered true --exclude-non-variants true --remove-unused-alternates true 
--select-type-to-include INDEL --restrict-alleles-to BIALLELIC -O 
"$base_output"/variant_calling/"$base_name"_INDELS.vcf 
 
######################## 
###### SNP effects ##### 
######################## 
 
java -jar /opt/anaconda3/share/snpeff-4.3.1t-1/snpEff.jar "$snpEffDB" 
"$base_output"/variant_calling/"$base_name"_PASS_ONLY.vcf > 
"$base_output"/variant_calling/"$base_name"_effects.vcf 
 
########################## 
####CONSENSUS SEQUENCE#### 
########################## 
 
mkdir $base_output'/consensus_sequence' 
 
bedtools genomecov -ibam 
"$base_output"/mapping/"$base_name"_filtered_sorted_mapdamage.bam -bga > 
"$base_output"/consensus_sequence/"$base_name"_cov_regions.bed 
 
python /DATA/SCRIPTS/resolver_depth_nas_delecoes.py -v 
"$base_output"/variant_calling/"$base_name"_INDELS.vcf -b 
"$base_output"/consensus_sequence/"$base_name"_cov_regions.bed -o 
"$base_output"/consensus_sequence/"$base_name"_cov_regions_DELok.bed 
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cat "$base_output"/consensus_sequence/"$base_name"_cov_regions_DELok.bed 
| awk '$4 < 2' > 
"$base_output"/consensus_sequence/"$base_name"_lowcov_regions.bed 
 
bedtools maskfasta -fi "$reference" -bed 
"$base_output"/consensus_sequence/"$base_name"_lowcov_regions.bed -fo 
"$base_output"/consensus_sequence/"$base_name"_MT_REFERENCE_with_Nscov.fa 
 
bgzip -c "$base_output"/variant_calling/"$base_name"_filtered.vcf > 
"$base_output"/variant_calling/"$base_name"_filtered.vcf.gz 
 
tabix -p vcf "$base_output"/variant_calling/"$base_name"_filtered.vcf.gz 
 
grep "^#" "$base_output"/variant_calling/"$base_name"_filtered.vcf > 
"$base_output"/variant_calling/"$base_name"_FAILED_ONLY.vcf 
 
grep -v "^#" "$base_output"/variant_calling/"$base_name"_filtered.vcf | 
grep "FAILED" >> 
"$base_output"/variant_calling/"$base_name"_FAILED_ONLY.vcf 
 
bedtools maskfasta -fi 
"$base_output"/consensus_sequence/"$base_name"_MT_REFERENCE_with_Nscov.fa 
-bed "$base_output"/variant_calling/"$base_name"_FAILED_ONLY.vcf -fo 
"$base_output"/consensus_sequence/"$base_name"_MT_REFERENCE_with_Ns.fa 
 
bgzip -c "$base_output"/variant_calling/"$base_name"_PASS_ONLY.vcf > 
"$base_output"/variant_calling/"$base_name"_MT_PASS_ONLY.vcf.gz 
 
tabix -p vcf 
"$base_output"/variant_calling/"$base_name"_MT_PASS_ONLY.vcf.gz 
 
bcftools consensus -f 
"$base_output"/consensus_sequence/"$base_name"_MT_REFERENCE_with_Ns.fa -o 
"$base_output"/consensus_sequence/"$base_name"_MT_REFERENCE_with_Ns_and_S
NPs.fa "$base_output"/variant_calling/"$base_name"_MT_PASS_ONLY.vcf.gz 
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Appendix III. Script used for nDNA analysis. 

#!/bin/bash 
#Script to run entire aDNA analysis at once 
 
display_usage() { 
echo '1st argument must be the path to the sample fastq file read1 [and 
read2 if paired] in the following format: "path/to/read1:" OR 
"path/to/read1:path/to/read2" 
2nd argument is the mininum base quality for trimming 
3rd argument is the minimum read length after adapter removal 
4th argument is the path to the reference genome index 
5th argument is the minimum mapping quality 
6th argument is the path to the human genome index 
7th argument is the number of threads available to use. example "15" 
8th argument is the complete path to the directory were results must be 
saved 
9th argument is the sample name 
10th argument is the minimum snp coverage 
11th argument is the minimum snp quality 
12th argument is the name of the snpEff database (ex: canis_mt or 
canfam3.1) 
13th argument is the maximum read size (ex: 150bp) 
14th argument is the path to the pig genome index 
15th argument is the path to the chicken genome index 
16th argument is the path to the cow genome index' 
} 
 
 
#check if required arguments are there and display usage message 
if [ -z "$1" ] || [ -z "$2" ] || [ -z "$3" ] || [ -z "$4" ] || [ -z "$5" 
] || [ -z "$6" ] || [ -z "$7" ] || [ -z "$8" ] || [ -z "$9" ] || [ -z 
"$10" ] || [ -z "$11" ] || [ -z "$12" ] || [ -z "$13" ] || [ -z "$14" ] 
|| [ -z "$15" ] || [ -z "$16" ]; then 
        printf "Please provide the arguments required for the 
script.\n\n" 
        display_usage 
        exit 1 
fi 
 
read1=$(echo $1 | cut -d ":" -f1) 
read2=$(echo $1 | cut -d ":" -f2) 
 
pair='true' 
 
if [ ${#read2} -eq 0 ]; then 
 pair='false' 
fi 
 
#variantes  
trimqual="$2" 
minreadlength="$3" 
reference="$4" 
minmapqual="$5" 
reference_human="$6" 
threads="$7" 
base_output="$8" 
base_name="$9" 
snp_coverage="${10}" 
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snp_quality="${11}" 
snpEffDB="${12}" 
readsize="${13}" 
reference_pig="${14}" 
reference_chicken="${15}" 
reference_cow="${16}" 
 
######################### 
##### PREPROCESSING ##### 
######################### 
 
mkdir $base_output'/preprocessing' 
 
 
#FASTQC raw reads 
 
mkdir $base_output'/preprocessing/fastqc_raw_reads' 
 
fastqc -t "$threads" -o "$base_output/preprocessing/fastqc_raw_reads" 
"$read1" 
 
if [ $pair = 'true' ]; then 
 fastqc -t "$threads" -o 
"$base_output/preprocessing/fastqc_raw_reads" "$read2" 
fi 
 
#cutadapt 
 
mkdir $base_output'/preprocessing/cutadapt' 
 
if [ $pair = 'true' ]; then 
 cutadapt -b 
"AGATCGGAAGAGCACACGTCTGAACTCCAGTCACNNNNNNATCTCGTATGCCGTCTTCTGCTTG" -B 
"AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT" -q 
"$trimqual","$trimqual" -j "$threads" -m "$minreadlength" --max-n 0 -o 
"$base_output"/preprocessing/cutadapt/"$base_name"_R1_trimmed.fq -p 
"$base_output"/preprocessing/cutadapt/"$base_name"_R2_trimmed.fq "$read1" 
"$read2" 
else 
 cutadapt -b 
"AGATCGGAAGAGCACACGTCTGAACTCCAGTCACNNNNNNATCTCGTATGCCGTCTTCTGCTTG" -q 
"$trimqual","$trimqual" -j "$threads" -m "$minreadlength" --max-n 0  -o 
"$base_output"/preprocessing/cutadapt/"$base_name"_trimmed.fq "$read1" 
fi 
 
#FASTQC clean reads 
 
mkdir $base_output'/preprocessing/fastqc_clean_reads' 
 
if [ $pair = 'true' ]; then 
 fastqc -t "$threads" -o 
"$base_output"/preprocessing/fastqc_clean_reads 
"$base_output"/preprocessing/cutadapt/"$base_name"_R1_trimmed.fq 
 fastqc -t "$threads" -o 
"$base_output"/preprocessing/fastqc_clean_reads 
"$base_output"/preprocessing/cutadapt/"$base_name"_R2_trimmed.fq 
else 
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 fastqc -t "$threads" -o 
"$base_output"/preprocessing/fastqc_clean_reads 
"$base_output"/preprocessing/cutadapt/"$base_name"_trimmed.fq 
fi 
 
#Merge clean reads 
if [ $pair = 'true' ]; then 
        mkdir $base_output'/preprocessing/merge_reads' 
 
        AdapterRemoval --file1 
"$base_output"/preprocessing/cutadapt/"$base_name"_R1_trimmed.fq --file2 
"$base_output"/preprocessing/cutadapt/"$base_name"_R2_trimmed.fq --
basename 
"$base_output"/preprocessing/merge_reads/"$base_name"_output_paired --
collapse --minlength 48 
fi 
 
######################### 
######## MAPPING ######## 
######################### 
 
#bwa aln - mapping against human reference 
 
mkdir $base_output'/mapping' 
 
if [ $pair = 'true' ]; then 
 bwa aln -t "$threads" -l 1024 -o 2 -n 0.03 "$reference_human" 
"$base_output"/preprocessing/merge_reads/"$base_name"_output_paired.colla
psed > "$base_output"/mapping/"$base_name"_human.sai 
 bwa samse "$reference_human" 
"$base_output"/mapping/"$base_name"_human.sai 
"$base_output"/preprocessing/merge_reads/"$base_name"_output_paired.colla
psed > "$base_output"/mapping/"$base_name"_human.sam 
else 
 bwa aln -t "$threads" -l 1024 -o 2 -n 0.03 "$reference_human" 
"$base_output"/preprocessing/cutadapt/"$base_name"_trimmed.fq > 
"$base_output"/mapping/"$base_name"_human.sai 
 bwa samse "$reference_human" 
"$base_output"/mapping/"$base_name"_human.sai 
"$base_output"/preprocessing/cutadapt/"$base_name"_trimmed.fq > 
"$base_output"/mapping/"$base_name"_human.sam 
fi 
 
#Filter only unmapped reads from human alignment 
 
samtools view -bh -q 20 "$base_output"/mapping/"$base_name"_human.sam -U 
"$base_output"/mapping/"$base_name"_no_human_contamination.bam  
samtools bam2fq 
"$base_output"/mapping/"$base_name"_no_human_contamination.bam > 
"$base_output"/mapping/"$base_name"_no_human_contamination.fq 
 
#bwa aln - mapping against pig reference 
 
if [ $pair = 'true' ]; then 
 bwa aln -t "$threads" -l 1024 -o 2 -n 0.03 "$reference_pig" 
"$base_output"/mapping/"$base_name"_no_human_contamination.fq > 
"$base_output"/mapping/"$base_name"_pig.sai 
 bwa samse "$reference_pig" 
"$base_output"/mapping/"$base_name"_pig.sai 
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"$base_output"/mapping/"$base_name"_no_human_contamination.fq > 
"$base_output"/mapping/"$base_name"_pig.sam 
else 
 bwa aln -t "$threads" -l 1024 -o 2 -n 0.03 "$reference_pig" 
"$base_output"/mapping/"$base_name"_no_human_contamination.fq > 
"$base_output"/mapping/"$base_name"_pig.sai 
 bwa samse "$reference_pig" 
"$base_output"/mapping/"$base_name"_pig.sai 
"$base_output"/mapping/"$base_name"_no_human_contamination.fq > 
"$base_output"/mapping/"$base_name"_pig.sam 
fi 
 
#Filter only unmapped reads from pig alignment 
 
samtools view -bh -q 20 "$base_output"/mapping/"$base_name"_pig.sam -U 
"$base_output"/mapping/"$base_name"_no_pig_human_contamination.bam  
samtools bam2fq 
"$base_output"/mapping/"$base_name"_no_pig_human_contamination.bam > 
"$base_output"/mapping/"$base_name"_no_pig_human_contamination.fq 
 
#bwa aln - mapping against chicken reference 
 
if [ $pair = 'true' ]; then 
 bwa aln -t "$threads" -l 1024 -o 2 -n 0.03 "$reference_chicken" 
"$base_output"/mapping/"$base_name"_no_pig_human_contamination.fq > 
"$base_output"/mapping/"$base_name"_chicken.sai 
 bwa samse "$reference_chicken" 
"$base_output"/mapping/"$base_name"_chicken.sai 
"$base_output"/mapping/"$base_name"_no_pig_human_contamination.fq > 
"$base_output"/mapping/"$base_name"_chicken.sam 
else 
 bwa aln -t "$threads" -l 1024 -o 2 -n 0.03 "$reference_chicken" 
"$base_output"/mapping/"$base_name"_no_pig_human_contamination.fq > 
"$base_output"/mapping/"$base_name"_chicken.sai 
 bwa samse "$reference_chicken" 
"$base_output"/mapping/"$base_name"_chicken.sai 
"$base_output"/mapping/"$base_name"_no_pig_human_contamination.fq > 
"$base_output"/mapping/"$base_name"_chicken.sam 
fi 
 
#Filter only unmapped reads from chicken alignment 
 
samtools view -bh -q 20 "$base_output"/mapping/"$base_name"_chicken.sam -
U 
"$base_output"/mapping/"$base_name"_no_chicken_pig_human_contamination.ba
m  
samtools bam2fq 
"$base_output"/mapping/"$base_name"_no_chicken_pig_human_contamination.ba
m > 
"$base_output"/mapping/"$base_name"_no_chicken_pig_human_contamination.fq 
 
#bwa aln - mapping against cow reference 
 
if [ $pair = 'true' ]; then 
 bwa aln -t "$threads" -l 1024 -o 2 -n 0.03 "$reference_cow" 
"$base_output"/mapping/"$base_name"_no_chicken_pig_human_contamination.fq 
> "$base_output"/mapping/"$base_name"_cow.sai 
 bwa samse "$reference_cow" 
"$base_output"/mapping/"$base_name"_cow.sai 
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"$base_output"/mapping/"$base_name"_no_chicken_pig_human_contamination.fq 
> "$base_output"/mapping/"$base_name"_cow.sam 
else 
 bwa aln -t "$threads" -l 1024 -o 2 -n 0.03 "$reference_cow" 
"$base_output"/mapping/"$base_name"_no_chicken_pig_human_contamination.fq 
> "$base_output"/mapping/"$base_name"_cow.sai 
 bwa samse "$reference_cow" 
"$base_output"/mapping/"$base_name"_cow.sai 
"$base_output"/mapping/"$base_name"_no_chicken_pig_human_contamination.fq 
> "$base_output"/mapping/"$base_name"_cow.sam 
fi 
 
#Filter only unmapped reads from cow alignment 
 
samtools view -bh -q 20 "$base_output"/mapping/"$base_name"_cow.sam -U 
"$base_output"/mapping/"$base_name"_no_cow_chicken_pig_human_contaminatio
n.bam  
samtools bam2fq 
"$base_output"/mapping/"$base_name"_no_cow_chicken_pig_human_contaminatio
n.bam > 
"$base_output"/mapping/"$base_name"_no_cow_chicken_pig_human_contaminatio
n.fq 
 
 
#bwa aln - mapping against dog reference 
 
if [ $pair = 'true' ]; then 
 bwa aln -t "$threads" -l 1024 -o 2 -n 0.03 "$reference" 
"$base_output"/mapping/"$base_name"_no_cow_chicken_pig_human_contaminatio
n.fq > "$base_output"/mapping/"$base_name"_only_dog.sai 
 bwa samse "$reference" 
"$base_output"/mapping/"$base_name"_only_dog.sai 
"$base_output"/mapping/"$base_name"_no_cow_chicken_pig_human_contaminatio
n.fq > "$base_output"/mapping/"$base_name"_only_dog.sam 
else 
 bwa aln -t "$threads" -l 1024 -o 2 -n 0.03 "$reference" 
"$base_output"/mapping/"$base_name"_no_cow_chicken_pig_human_contaminatio
n.fq > "$base_output"/mapping/"$base_name"_only_dog.sai 
 bwa samse "$reference" 
"$base_output"/mapping/"$base_name"_only_dog.sai 
"$base_output"/mapping/"$base_name"_no_cow_chicken_pig_human_contaminatio
n.fq > "$base_output"/mapping/"$base_name"_only_dog.sam 
fi 
 
#samtools  
 
cd "$base_output"/mapping 
 
samtools view -bh "$base_name"_only_dog.sam -o "$base_name"_dog.bam 
samtools sort "$base_name"_dog.bam > "$base_name"_sorted.bam 
samtools index "$base_name"_sorted.bam 
 
rm $base_name'_human.sai' $base_name'_human.sam' $base_name'_pig.sai' 
$base_name'_pig.sam' $base_name'_chicken.sai' $base_name'_chicken.sam' 
$base_name'_cow.sai' $base_name'_cow.sam' 
 
#picartools (add read groups) 
java -XX:ParallelGCThreads="$threads" -XX:ConcGCThreads="$threads" -jar 
$PICARD AddOrReplaceReadGroups ID="$base_name" SM="$base_name" PU="PU" 
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LB="LB" PL="illumina" VALIDATION_STRINGENCY="LENIENT" 
I="$base_name"_sorted.bam O="$base_name"_RG.bam  
 
samtools sort "$base_name"_RG.bam > "$base_name"_sorted_RG.bam 
samtools index "$base_name"_sorted_RG.bam 
java -XX:ParallelGCThreads="$threads" -XX:ConcGCThreads="$threads" -jar 
$PICARD MarkDuplicates VALIDATION_STRINGENCY="LENIENT" 
REMOVE_DUPLICATES="true" I="$base_name"_sorted_RG.bam 
O="$base_name"_no_dups.bam M="marked_dup_metrics.txt" 
 
#samtools (filtering by flag and qual) 
 
samtools sort "$base_name"_no_dups.bam > "$base_name"_sorted_no_dups.bam 
samtools index "$base_name"_sorted_no_dups.bam 
samtools view -F4 -q "$minmapqual" -bh "$base_name"_sorted_no_dups.bam -o 
"$base_name"_filtered.bam 
samtools sort "$base_name"_filtered.bam > 
"$base_name"_filtered_sorted.bam 
samtools index "$base_name"_filtered_sorted.bam 
 
 
######################### 
####### mapDamage ####### 
######################### 
 
mkdir $base_output'/mapDamage' 
 
mapDamage -l "$readsize" -d $base_output'/mapDamage' --rescale --rescale-
out "$base_name"_filtered_sorted_mapdamage.bam -i 
"$base_name"_filtered_sorted.bam -r "$reference" 
 
samtools index "$base_name"_filtered_sorted_mapdamage.bam 
 
rm $base_name'_sorted.bam' $base_name'_sorted.bam.bai' 
$base_name'_RG.bam' $base_name'_sorted_RG.bam' 
$base_name'_sorted_RG.bam.bai' $base_name'_no_dups.bam' 
$base_name'_sorted_no_dups.bam' $base_name'_sorted_no_dups.bam.bai'  
  
######################### 
#### VARIANT CALLING #### 
######################### 
 
mkdir $base_output'/variant_calling' 
 
gatk HaplotypeCaller -R "$reference" -I 
"$base_name"_filtered_sorted_mapdamage.bam --bam-output 
"$base_name"_GATK_out.bam --pcr-indel-model CONSERVATIVE --dont-use-soft-
clipped-bases true --active-probability-threshold 0.002 --disable-
optimizations true --dont-trim-active-regions true  -O 
"$base_output"/variant_calling/"$base_name".vcf 
 
#vcf filter using GATK 
 
cd $base_output'/variant_calling' 
gatk VariantFiltration -R "$reference" -V 
"$base_output"/variant_calling/"$base_name".vcf --filter-name 'quality' -
-filter-expression "QD < $snp_quality" --filter-name 'readpos' --filter-
expression "ReadPosRankSum < -1.0 && ReadPosRankSum > 1.0" --filter-name 
'baserank' --filter-expression "AS_BaseQRankSum < -1.0 && AS_BaseQRankSum 
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Dogs (Canis lupus familiaris) from the Iberian Peninsula  
dated to the Chalcolithic period: a genomic approach 

- 107 - 
  

> 1.0" --genotype-filter-name 'DP' --genotype-filter-expression "DP < 
$snp_coverage" --set-filtered-genotype-to-no-call true -O 
"$base_output"/variant_calling/"$base_name"_filtered.vcf 
 
gatk SelectVariants -V 
"$base_output"/variant_calling/"$base_name"_filtered.vcf --exclude-
filtered true --exclude-non-variants true --remove-unused-alternates true 
--restrict-alleles-to BIALLELIC -O 
"$base_output"/variant_calling/"$base_name"_PASS_ONLY.vcf 
 
 
######################## 
###### SNP effects ##### 
######################## 
 
java -jar /opt/anaconda3/share/snpeff-4.3.1t-1/snpEff.jar "$snpEffDB" 
"$base_output"/variant_calling/"$base_name"_PASS_ONLY.vcf > 
"$base_output"/variant_calling/"$base_name"_effects.vc
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 Appendix IV. Schematic representation of the pipeline carried out for sequences alignment and variant calling. 
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Appendix V. Description of samples used in the construction of Iberia and Eurasia phylogenetic tree. 

 
 
 
 
 

 
 
 
 
 
 
 

Canine type Age(BP) Sub-region Region GenBank Accession Number Sample Name Sample Name (This Study) Genome Region Haplogroup Haplogroup (in this study) References

Coyote Modern n/a n/a NC_008093.1 n/a Canis latrans 16,724 bp of mt genome n/a n/a Bjornerfeldt et al 2009

Dog Modern Iberia Peninsula Europe EU789655 D6_R33 eDog_D6_ES/PT_HgD 16,195 bp of mt genome D D Pang et al 2009

Dog Modern Spain Europe EU789714 A34_R34 eDog_A34_ES_HgA 16,195 bp of mt  genome A A Pang et al 2009

Wolf Modern Spain Europe DQ480505 n/a eWolf8_ES 16,729 bp of mt  genome n/a WOLF Hg1 Bjornerfeldt et al 2006

Wolf Modern Spain Europe KU644670 SpanishWolf2 eWolf1_ES 16,580 bp of mt  genome n/a WOLF Hg1 Koblmuller et al, 2016

Wolf Modern Portugal Europe KT448278 CLU_PT eWolf3_PT 16,729 bp of mt  genome n/a WOLF Hg1 Koeplfi et al, 2015

Wolf Modern Portugal Europe KU644668 PortugueseWolf eWolf2_PT 16,520 bp of mt  genome n/a WOLF Hg1 Koblmuller et al, 2016

Dog 5000-4300 Leceia, Portugal Europe - LYEP11 aDog_LYEP11_PT 16,587 bp of mt  genome n/a A This study

Dog 4000 Valladolid, Spain Europe - LYEP53 aDog_LYEP53_ES 16,188 bp of mt  genome n/a A This study

Dog 4000 Valladolid, Spain Europe - LYEP51 aDog_LYEP51_ES 12,715 bp of mt  genome n/a C This study

Dog 5000-4300 Leceia, Portugal Europe - LYEP9 aDog_LYEP9_PT 16,454 bp of mt  genome n/a C This study

Wolf ϰϬϴϱ–ϯϴϱϲ Lexim, Portugal Europe - LYEP27 aWolf1_PT_Hg1 6,526 bp of mt  genome WOLF Hg1 WOLF Hg1 This study

Dog 7173-6990 cal Herxheim, Germany Europe KX379529 HXH aDog_HXH_GER_HgC 16,725 bp of mt  genome C C Botigué et al, 2017

Dog 12500 Kartstein cave, Germany Europe KF661094 n/a aDog_GER12500_HgC 16,239 bp of mt  genome C C Thalmann et al 2013

Canissp. 33500 Razboinichya cave, Russia Europe KF661092 n/a aCanissp_RUS33500 16,411 bp of mt  genome n/a aWolfHg2 Thalmann et al 2013

Wolf 14500  Kesslerloch cave, Switzerland Europe KF661087 Switzerland 1 aWolf26_SWI 16,357 bp of mt  genome n/a aWolfHg2 Thalmann et al 2013

Wolf 18000  Medvezya cave, Russia Europe KF661081 n/a aWolf28_RUS 16,414 bp of mt  genome n/a aWolfHg2 Thalmann et al 2013

Wolf 30000 Goyet cave, Belgium Europe KF661080 n/a aWolf29_BE 16,348 bp of mt  genome n/a aWolfHg2 Thalmann et al 2013

Wolf 26000 Trou des Nutons, Belgium Europe KF661078 n/a aWolf38_BE 16,170 bp of mt  genome n/a aWolfHg2 Thalmann et al 2013

Wolf 22000 Kostenki, Russia Europe KF661085 n/a aWolf27_RUS 16,397 bp of mt  genome n/a aWolfHg2 Thalmann et al 2013

Wolf 14500 Kesslerloch cave, Switzerland Europe KF661095 Switzerland 3 aWolf40_SWI 16,089 bp of mt  genome n/a aWolfHg2 Thalmann et al 2013

Dog 15000 Eliseevichi, Russia Europe KF661082 n/a aDog_Rus15000 14,340 bp of mitochondrial genome n/a C Thalmann et al 2013

Wolf 14500  Kesslerloch cave, Switzerland Europe KF661091 Switzerland 2 aWolf25_SWI 13,965 bp of mitochondrial genome n/a aWolfHg2 Thalmann et al 2013
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Appendix VI. Description of samples used in the construction of Iberia & Eurasia phylogenetic networks. 
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Canine 

type
Age(BP) Sub-region Region

GenBank Accession 

Number
Sample Name

Sample Name (This 

Study)

Haplotype 

(only dogs - 

66bp)

Haplotype 

(only 

wolves - 

66bp)

Haplotype 

(dogs & 

wolves - 

66bp)

Haplotype 

(dogs & 

wolves - 43bp)

Hg
Hg (In this 

study)
References Frequency

Dog 0 Portugal Europe AY706513 H38 eDog_H38_HgD H16 - H16 H47 D D Pires et al 2006 1

Dog 0 Portugal Europe AY706504 H29 eDog_H29_HgC H18 - H18 H34 C C Pires et al 2006 2

Dog 0 Portugal Europe AY706491 H16 eDog_H16_HgC H3 - H3 H4 C C Pires et al 2006 1

Dog 0 Portugal Europe AY706480 H05 eDog_H05_HgC H3 - H3 H4 C C Pires et al 2006 6

Dog 0 Portugal Europe AY706509 H34 eDog_H34_HgB H9 - H9 H25 B B Pires et al 2006 1

Dog 0 Portugal Europe AY706506 H31 eDog_H31_HgB H9 - H9 H25 B B Pires et al 2006 2

Dog 0 Portugal Europe AY706505 H30 eDog_H30_HgB H19 - H19 H49 B B Pires et al 2006 1

Dog 0 Portugal Europe AY706497 H22 eDog_H22_HgB H20 - H20 H25 B B Pires et al 2006 1

Dog 0 Portugal Europe AY706484 H09 eDog_H09_HgB H9 - H9 H25 B B Pires et al 2006 2

Dog 0 Portugal Europe AY706517 H42 eDog_H42_HgA H14 - H14 H45 A A Pires et al 2006 1

Dog 0 Portugal Europe AY706516 H41 eDog_H41_HgA H15 - H15 H46 A A Pires et al 2006 1

Dog 0 Portugal Europe AY706510 H35 eDog_H35_HgA H17 - H17 H48 A A Pires et al 2006 1

Dog 0 Portugal Europe AY706503 H28 eDog_H28_HgA H14 - H14 H45 A A Pires et al 2006 6

Dog 0 Portugal Europe AY706500 H25 eDog_H25_HgA H21 - H21 H50 A A Pires et al 2006 14

Dog 0 Portugal Europe AY706495 H20 eDog_H20_HgA H2 - H2 H17 A A Pires et al 2006 1

Dog 0 Portugal Europe AY706493 H18 eDog_H18_HgA H4 - H4 H20 A A Pires et al 2006 1

Dog 0 Portugal Europe AY706489 H14 eDog_H14_HgA H7 - H7 H21 A A Pires et al 2006 2

Dog 0 Portugal Europe AY706490 H15 eDog_H15_HgA H6 - H6 H28 A Pires et al 2006 1

Dog 0 Portugal Europe AY706488 H13 eDog_H13_HgA H8 - H8 H1 A A Pires et al 2006 6

Dog 0 Portugal Europe AY706485 H10 eDog_H10_HgA H7 - H7 H21 A A Pires et al 2006 19

Dog 0 Portugal Europe AY706482 H07 eDog_H07_HgA H2 - H2 H17 A A Pires et al 2006 16

Dog 0 Portugal Europe AY706479 H04 eDog_H04_HgA H8 - H8 H1 A A Pires et al 2006 3

Dog 0 Portugal Europe AY706494 H19 eDog_H19_HgA H11 - H11 H42 A A Pires et al 2006 1

Dog 0 Portugal Europe AY706501 H26 eDog_H26_HgB H20 - H20 H25 B B Pires et al 2006 1

Dog 0 Portugal Europe AY706502 H27 eDog_H27_HgC H3 - H3 H4 C C Pires et al 2006 1

Dog 0 Portugal Europe AY706507 H32 eDog_H32_HgC H18 - H18 H34 C C Pires et al 2006 1

Dog 0 Portugal Europe AY706508 H33 eDog_H33_HgB H9 - H9 H25 B B Pires et al 2006 3

Dog 0 Portugal Europe AY706511 H36 eDog_H36_HgA H8 - H8 H1 A A Pires et al 2006 2

Dog 0 Portugal Europe AY706512 H37 eDog_H37_HgC H3 - H3 H4 C C Pires et al 2006 2

Dog 0 Portugal Europe AY706514 H39 eDog_H39_HgC H3 - H3 H4 C C Pires et al 2006 1

Dog 0 Portugal Europe AY706515 H40 eDog_H40_HgD H16 - H16 H47 D D Pires et al 2006 4

Dog 0 Portugal Europe AY706518 H43 eDog_H43_HgA H4 - H4 H20 A A Pires et al 2006 2

Dog 0 Portugal Europe AY706519 H44 eDog_H44_HgA H13 - H13 H44 A A Pires et al 2006 1

Extant
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Dog 0 Portugal Europe AY706520 H45 eDog_H45_HgB H12 - H12 H43 B B Pires et al 2006 3

Dog 0 Portugal Europe AY706521 H46 eDog_H46_HgA H11 - H11 H42 A A Pires et al 2006 1

Dog 0 Portugal Europe AY706522 H47 eDog_H47_HgA H10 - H10 H41 A A Pires et al 2006 1

Dog 0 Portugal Europe AY706523 H48 eDog_H48_HgA H7 - H7 H21 A A Pires et al 2006 1

Dog 0 Portugal Europe AY706524 H49 eDog_H49_HgB H9 - H9 H25 B B Pires et al 2006 1

Dog 0 Portugal Europe AY706476 H01 eDog_H01_HgA H11 - H11 H42 A A Pires et al 2006 6

Dog 0 Portugal Europe AY706477 H02 eDog_H02_HgD H22 - H22 H37 D D Pires et al 2006 1

Dog 0 Portugal Europe AY706478 H03 eDog_H03_HgC H3 - H3 H4 C C Pires et al 2006 1

Dog 0 Portugal Europe AY706481 H06 eDog_H06_HgD H16 - H16 H47 D D Pires et al 2006 1

Dog 0 Portugal Europe AY706483 H08 eDog_H08_HgA H2 - H2 H17 A A Pires et al 2006 2

Dog 0 Portugal Europe AY706486 H11 eDog_H11_HgB H9 - H9 H25 B B Pires et al 2006 4

Dog 0 Portugal Europe AY706487 H12 eDog_H12_HgB H9 - H9 H25 B B Pires et al 2006 1

Dog 0 Portugal Europe AY706492 H17 eDog_H17_HgB H9 - H9 H25 B B Pires et al 2006 9

Dog 0 Portugal Europe AY706496 H21 eDog_H21_HgA H8 - H8 H1 A A Pires et al 2006 12

Dog 0 Portugal Europe AY706498 H23 eDog_H23_HgC H3 - H3 H4 C C Pires et al 2006 7

Dog 0 Portugal Europe AY706499 H24 eDog_H24_HgA H4 - H4 H20 A A Pires et al 2006 5

Dog 0 Spain Europe D83627 A11_m430 eDog_A11a_HgA H2 - H2 H17 A A Pang et al 2009 1

Dog 0 Spain Europe D83627 A11_R79 eDog_A11b_HgA H2 - H2 H17 A A Pang et al 2009 1

Dog 0 Spain Europe AB007385 A11_m343 eDog_A11c_HgA H2 - H2 H17 A A Pang et al 2009 1

Dog 0 Spain Europe AB007385 A11_m344 eDog_A11d_HgA H2 - H2 H17 A A Pang et al 2009 1

Dog 0 Spain Europe AB007385 A11_m401 eDog_A11e_HgA H2 - H2 H17 A A Pang et al 2009 1

Dog 0 Spain Europe AB007385 A11_R77 eDog_A11f_HgA H2 - H2 H17 A A Pang et al 2009 1

Dog 0 Spain Europe AY656744 A11_m498 eDog_A11g_HgA H2 - H2 H17 A A Pang et al 2009 1

Dog 0 Portugal Europe AB007396 A19_m440 eDog_A19_HgA H9 - H7 H21 A A Pang et al 2009 1

Dog 0 Spain Europe U96639 A20_R32 eDog_A20_HgA H9 - H7 H21 A A Pang et al 2009 1

Dog 0 Spain Europe AY656751 A34_R34 eDog_A34_HgA H23 - H23 H59 A A Pang et al 2009 1

Dog 0 Portugal Europe DQ480502 D6_m464 eDog_D6a_HgD H24 - H24 H60 D D Pang et al 2009 1

Dog 0 Spain Europe DQ480502 D6_R33 eDog_D6b_HgD H24 - H24 H60 D D Pang et al 2009 1

Wolf 0 Spain Europe DQ480505 1 eWolf8_Hg1 - H3 H25 H40 n/a WolfHg1 Bjornerfeldt et al  2006 1

Wolf 0 Iberia Europe EF380226 ClupMIT1 eWolf7_Hg1 - H4 H26 H51 n/a WolfHg1 Parra et al , unpublished 17

Wolf 0 Iberia Europe EF380227 ClupMIT2 eWolf6_Hg1 - H6 H28 H51 n/a WolfHg1 Parra et al , unpublished 1

Wolf 0 Iberia Europe EF380228 ClupMIT3 eWolf5_Hg1 - H5 H27 H52 n/a WolfHg1 Parra et al , unpublished 2

Wolf 0 Iberia Europe EF380229 ClupMIT4 eWolf4_Hg1 - H3 H25 H40 n/a WolfHg1 Parra et al , unpublished 6

Wolf 0 Portugal Europe KT448278 CLU_PT eWolf3_Hg1 - H3 H25 H40 n/a WolfHg1 Koeplfi  et al , 2015 1

Wolf 0 Portugal Europe KU644668 PortugueseWolf eWolf2_Hg1 - H3 H25 H40 n/a WolfHg1 Koblmuller et al  2016 1
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Wolf 0 Spain Europe KU644670 SpanishWolf2 eWolf1_Hg1 - H4 H26 H51 n/a WolfHg1 Koblmuller et al  2016 1

Wolf 0 Iberia Europe same as DQ480505 wH-1A eWolf31 - H3 H25 H40 n/a WolfHg1 Pires  et al  2017 46

Wolf 0 Portugal Europe JX845621 wH-4 eWolf11_Hg1 - H7 H29 H53 n/a WolfHg1 Pires  et al  2017 1

Wolf 0 Portugal Europe JX845622 Wh-2 eWolf12_Hg1 - H4 H26 H51 n/a WolfHg1 Pires  et al  2017 3

Wolf 0 Portugal Europe JX845625 wH-1C eWolf15_Hg1 - H3 H25 H40 n/a WolfHg1 Pires  et al  2017 3

Wolf 0 Spain Europe JX845623 wH-3 eWolf14_Hg1 - H5 H27 H52 n/a WolfHg1 Pires  et al  2017 1

Wolf 0 Portugal Europe JX845624 wH-1B eWolf13_Hg1 - H3 H25 H40 n/a WolfHg1 Pires  et al  2017 1

Wolf 0 Portugal Europe

not different from Pires et 

al. (2006) GenBank 

AY706485 and AY706523 

(887 bp, dog haplotypes H10 

and H48, respectively)

w5 eWolf28_Hg2 - H8 H7 H21 n/a WolfHg2 Pires  et al  2017 1

Wolf 0 Iberia Europe AF008137 W1 eWolf17_Hg1 - H3 H25 H40 Wolf Hg1 Wolf Hg1 Vila et al 1997 1 *2

Wolf 0 Finland Europe AF115698 W13 eWolf21_Hg2 - - - H56 Wolf Hg2*1 Wolf Hg2*1 Randi et al, unpublished 3

Wolf 0 Bulgaria Europe AF115700 W15 eWolf22_Hg2 - - - H57 Wolf Hg2*1 Wolf Hg2*1 Randi et al, unpublished 1

Wolf 0 Bulgaria Europe AF115701 W16 eWolf23_Hg2 - - - H58 Wolf Hg2*1 Wolf Hg2*1 Randi et al, unpublished 10

Wolf 0 Slovakia/Bulgaria Europe AF115707 W17/D5 eWolf24_Hg2 - - - H1 Wolf Hg2*1 Wolf Hg2*1 Randi et al, unpublished 5

Wolf 0 Bulgaria Europe AF115714 W18/D13 eWolf25_Hg2 - - - H17 Wolf Hg2*1 Wolf Hg2*1 Randi et al, unpublished 1

Wolf 0 Spain Europe AF115702 W19 eWolf10_Hg1 - H5 H27 H52 Wolf Hg1 Wolf Hg1 Randi et al, unpublished 1

Wolf 0 Spain Europe AF115703 W20 eWolf9_Hg1 - H3 H25 H40 Wolf Hg1 Wolf Hg1 Randi et al, unpublished 2

Wolf 0 Italia Europe AF115699 W14 eWolf16_Hg2 - - - H54 Wolf Hg2*1 Wolf Hg2*1 Randi et al, unpublished 101

Wolf 0 Latvia/Russia/Sweden Europe AF098123 W9 eWolf18_Hg2 - - - H21 Wolf Hg2*1 Wolf Hg2*1 Koop et al  1999 1*2

Wolf 0 Ukraine Europe DQ421803 W15 eWolf19_Hg2 - - - H28 Wolf Hg2*1 Wolf Hg2*1 Pilot et al  2006 8

Wolf 0 Bulgaria/Greece Europe DQ421804 W17 eWolf20_Hg2 - - - H55 Wolf Hg2*1 Wolf Hg2*1 Pilot et al  2006 4

Wolf 0 Ukraine Europe DQ421805 W18 eWolf26_Hg2 - - - H19 Wolf Hg2*1 Wolf Hg2*1 Pilot et al  2006 1

Wolf 0 Romania Europe AF338810 W8 eWolf27_Hg2 - - - H58 Wolf Hg2*1 Wolf Hg2*1 Valiere et al  2003 1

Dog 6736 Romania Europe dryad.8gp06 aEurA23 aDog_aEurA23_HgD - - - H37 A/D D Pionnier-Capitan 2010 1

Dog 6736 Romania Europe dryad.8gp06 aEurA24 aDog_aEurA24_HgD - - - H37 A/D D Pionnier-Capitan 2010 1

Dog 6736 Romania Europe dryad.8gp06 aEurA25 aDog_aEurA25_HgD - - - H37 A/D D Pionnier-Capitan 2010 1

Dog 6736 Romania Europe dryad.8gp06 aEurA26 aDog_aEurA26_HgD - - - H37 A/D D Pionnier-Capitan 2010 1

Dog 6736 Romania Europe dryad.8gp06 aEurA27 aDog_aEurA27_HgD - - - H37 A/D D Pionnier-Capitan 2010 1

Dog 6736 Romania Europe dryad.8gp06 aEurA28 aDog_aEurA28_HgD - - - H37 A/D D Pionnier-Capitan 2010 1

Dog 6736 Romania Europe dryad.8gp06 aEurA29 aDog_aEurA29_HgD - - - H37 A/D D Pionnier-Capitan 2010 1

Dog 6200 Romania Europe dryad.8gp06 aEurA35 aDog_aEurA35_HgD - - - H38 D D Pionnier-Capitan 2010 1

Dog 6200 Romania Europe dryad.8gp06 aEurA36 aDog_aEurA36_HgD - - - H37 D D Pionnier-Capitan 2010 1

Dog 6200 Romania Europe dryad.8gp06 aEurA37 aDog_aEurA37_HgD - - - H37 A/D D Pionnier-Capitan 2010 1

*1Haplotypes included are not representative of the whole Eurasia

*2 Frequency not found; it is assumed presence/absence
Chalcolithic
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Dog 6200 Romania Europe dryad.8gp06 aEurA38 aDog_aEurA38_HgD - - - H26 D D Pionnier-Capitan 2010 1

Dog 4800 Ukraine Europe dryad.8gp06 aEurA50 aDog_aEurA50_HgD - - - H26 D D Pionnier-Capitan 2010 1

Dog 4800 Moldova Europe dryad.8gp06 aEurA51 aDog_aEurA51_HgD - - - H37 A/D D Pionnier-Capitan 2010 1

Dog 5000-4300 Portugal Europe KY014680 LYEP72 aDog_LYEP72_HgA H4 - H4 H20 A A Pires et al  2019 1

Dog 5000-4300 Spain Europe KY014671 LYEP54 aDog_LYEP54_HgC H3 - H3 H4 C C Pires et al  2019 1

Dog 5000-4300 Spain Europe KY014668  LYEP50 aDog_LYEP50_HgC H5 - H5 H35 C C Pires et al  2019 1

Dog 5000-4300 Portugal Europe KY014666 LYEP23 aDog_LYEP23_HgC H3 - H3 H4 C C Pires et al  2019 1

Dog 5000-4300 Portugal Europe KY014665 LYEP22 aDog_LYEP22_HgA H6 - H6 H28 A A Pires et al  2019 1

Dog 5000-4300 Portugal Europe KY014664  LYEP20 aDog_LYEP20_HgC H3 - H3 H4 C C Pires et al  2019 1

Dog 5000-4300 Portugal Europe KY014663 LYEP17 aDog_LYEP17_HgA H2 - H2 H17 A A Pires et al  2019 1

Dog 5000-4300 Portugal Europe KY014662  LYEP16 aDog_LYEP16_HgA H7 - H7 H21 A A Pires et al  2019 1

Dog 5000-4300 Portugal Europe KY014661  LYEP15 aDog_LYEP15_HgC H3 - H3 H4 C C Pires et al  2019 1

Dog 5000-4300 Portugal Europe KY014660 LYEP14 aDog_LYEP14_HgA H2 - H2 H17 A A Pires et al  2019 1

Dog 5000-4300 Portugal Europe KY 014659 LYEP13 aDog_LYEP13_HgC H3 - H3 H4 C C Pires et al  2019 1

Dog 5000-4300 Portugal Europe KY 014658  LYEP12 aDog_LYEP12_HgA H2 - H2 H17 A A Pires et al  2019 1

Dog 5000-4300 Portugal Europe KY014656 LYEP9 aDog_LYEP9_NGS_454_HgA H8 - H8 H1 A A Pires et al  2019 1

Dog 5000-4300 Portugal Europe KY014657 LYEP11 aDog_LYEP11_NGS_454_HgA H6 - H6 H28 A A Pires et al  2019 1

Dog 4000 Spain Europe KY014669  LYEP51 aDog_LYEP51_NGS_454_HgC H3 - H3 H4 C C Pires et al  2019 1

Dog 4000 Spain Europe KY014670  LYEP53 aDog_LYEP53_NGS_454_HgC H3 - H3 H4 C C Pires et al  2019 1

Dog 5000-4300 Portugal Europe KY014655 LYEP8 aDog_LYEP8_HgC H3 - H3 H4 C C Pires et al  2019 1

Dog 5000-4300 Portugal Europe KY014654  LYEP7 aDog_LYEP7_HgA H2 - H2 H17 A A Pires et al  2019 1

Wolf ϰϬϴϱ–ϯϴϱϲ Portugal Europe KY014649 LYEP27 aWolf1_Hg1 - H3 H25 H40 WOLF Hg1 WOLF Hg1 Pires et al  2019 1

Dog 5000-4300 Portugal Europe n/a LYEP9 aDog_LYEP9_NGS_Illu H8 - H8 H1 n/a A This study 1

Dog 5000-4300 Portugal Europe n/a LYEP11 aDog_LYEP11_NGS_Illu H6 - H6 H28 n/a A This study 1

Dog 4000 Spain Europe n/a  LYEP51 aDog_LYEP51_NGS_Illu - - - - - - This study 1

Dog 4000 Spain Europe n/a  LYEP53 aDog_LYEP53_NGS_Illu H3 - H3 H4 n/a C This study 1

Dog 4110 Italy Europe AY741669 aEurA08 aDog_aEurA08_HgC - - - H4 C C Verginelli  et al  2005 1

Dog ϱϯϬϬ–ϰϱϬϬ BP Sweden Europe AY673655 12 aDog_SE12_HgC - - - H36 C C Malmström et al  2008 1

Dog ϱϯϬϬ–ϰϱϬϬ BP Sweden Europe AY673656 13 aDog_SE13_HgC - - - H4 C C Malmström et al  2008 1

Dog ϱϯϬϬ–ϰϱϬϬ BP Sweden Europe AY673658 15 aDog_SE15_HgC - - - H4 C C Malmström et al  2008 1

Dog ϱϯϬϬ–ϰϱϬϬ BP Sweden Europe AY673659 16 aDog_SE16_HgA - - - H17 A A Malmström et al  2008 1

Dog ϱϯϬϬ–ϰϱϬϬ BP Sweden Europe AY673660 17 aDog_SE17_HgC - - - H4 C C Malmström et al  2008 1

Dog ϱϯϬϬ–ϰϱϬϬ BP Sweden Europe AY673661 18 aDog_SE18_HgC - - - H4 C C Malmström et al  2008 1

Neolithic
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Dog ϱϯϬϬ–ϰϱϬϬ BP Sweden Europe AY673649 2 aDog_SE2_HgC - - - H24 C C Malmström et al  2008 1

Dog ϱϯϬϬ–ϰϱϬϬ BP Sweden Europe AY673664 21 aDog_SE21_HgC - - - H4 C C Malmström et al  2008 1

Dog ϱϯϬϬ–ϰϱϬϬ BP Sweden Europe AY673665 22 aDog_SE22_HgC - - - H4 C C Malmström et al  2008 1

Dog ϱϯϬϬ–ϰϱϬϬ BP Sweden Europe AY673668 25 aDog_SE25_HgC - - - H4 C C Malmström et al  2008 1

Dog ϱϯϬϬ–ϰϱϬϬ BP Sweden Europe AY673650 3 aDog_SE3_HgA - - - H17 A A Malmström et al  2008 1

Dog ϱϯϬϬ–ϰϱϬϬ BP Sweden Europe AY673651 4 aDog_SE4_HgA - - - H20 A A Malmström et al  2008 1

Dog ϱϯϬϬ–ϰϱϬϬ BP Sweden Europe AY673666 23 aDog_SE23_HgC - - - H4 C C Malmström et al  2008 1

Dog ϱϯϬϬ–ϰϱϬϬ BP Sweden Europe AY673662 19 aDog_SE19_HgC - - - H4 C C Malmström et al  2008 1

Dog 6315 Hungary Europe dryad.8gp06 aEurA01 aDog_aEurA01_HgC - - - H4 C C Frantz et al  2016 1

Dog 6315 Hungary Europe dryad.8gp06 aEurA02 aDog_aEurA02_HgC - - - H4 C C Frantz et al  2016 1

Dog 6315 Hungary Europe dryad.8gp06 aEurA03 aDog_aEurA03_HgD - - - H26 D D Frantz et al  2016 1

Dog 6315 Hungary Europe dryad.8gp06 aEurA04 aDog_aEurA04_HgC - - - H4 C C Frantz et al  2016 1

Dog 6315 Hungary Europe dryad.8gp06 aEurA05 aDog_aEurA05_HgA - - - H20 A A Frantz et al  2016 1

Dog 6315 Hungary Europe dryad.8gp06 aEurA06 aDog_aEurA06_HgC - - - H4 C C Frantz et al  2016 1

Dog 6315 Hungary Europe dryad.8gp06 aEurA07 aDog_aEurA07_HgC - - - H4 C C Frantz et al  2016 1

Dog 6315 Hungary Europe dryad.8gp06 aEurA17 aDog_aEurA17_HgC - - - H24 C C Frantz et al  2016 1

Dog 6315 Hungary Europe dryad.8gp06 aEurA18 aDog_aEurA18_HgC - - - H4 C C Frantz et al  2016 1

Dog 6315 Hungary Europe dryad.8gp06 aEurA19 aDog_aEurA19_HgC - - - H4 C C Frantz et al  2016 1

Dog 4900-4700 cal Ireland Europe dryad.8gp06/PRJEB13070 Iri4000 aDog_Iri4000_HgC - - - H4 C C Frantz et al  2016 1

Dog 6093 France Europe dryad.8gp06 aEurA20 aDog_aEurA20_HgC - - - H4 C C Pionnier-Capitan 2010 1

Dog 6093 France Europe dryad.8gp06 aEurA21 aDog_aEurA21_HgC - - - H4 C C Pionnier-Capitan 2010 1

Dog 6093 France Europe dryad.8gp06 aEurA22 aDog_aEurA22_HgC - - - H4 C C Pionnier-Capitan 2010 1

Dog 6000 France Europe dryad.8gp06 aEurA33 aDog_aEurA33_HgD - - - H27 D D Pionnier-Capitan 2010 1

Dog 6000 France Europe dryad.8gp06 aEurA34 aDog_aEurA34_HgA - - - H28 A A Pionnier-Capitan 2010 1

Dog 6200 France Europe dryad.8gp06 aEurA32 aDog_aEurA32_HgC - - - H4 C C Pionnier-Capitan 2010 1

Dog 6570 Germany Europe dryad.8gp06 aEurA40 aDog_aEurA40_HgC - - - H4 C C Pionnier-Capitan 2010 1

Dog 6570 Germany Europe dryad.8gp06 aEurA41 aDog_aEurA41_HgC - - - H29 C C Pionnier-Capitan 2010 1

Dog 6570 Germany Europe dryad.8gp06 aEurA42 aDog_aEurA42_HgD - - - H26 D D Pionnier-Capitan 2010 1

Dog 7379 Romania Europe dryad.8gp06 aEurA47 aDog_aEurA47_HgD - - - H30 D D Pionnier-Capitan 2010 1

Dog 7379 Romania Europe dryad.8gp06 aEurA48 aDog_aEurA48_HgC - - - H24 C C Pionnier-Capitan 2010 1

Dog 6200 France Europe dryad.8gp06 aEurA56 aDog_aEurA56_HgC - - - H31 C C Pionnier-Capitan 2010 1

Dog 6200 France Europe dryad.8gp06 aEurA57 aDog_aEurA57_HgC - - - H4 C C Pionnier-Capitan 2010 1

Dog 6098 Russia Nothern Asia dryad.8gp06 aEurA62 aDog_aEurA62_HgA - - - H20 A A Pionnier-Capitan 2010 1

Dog 6098 Russia Nothern Asia dryad.8gp06 aEurA63 aDog_aEurA63_HgA - - - H32 A A Pionnier-Capitan 2010 1

Dog 6700 Romania Europe dryad.8gp06 aEurA49 aDog_aEurA49_HgD - - - H26 D D Pionnier-Capitan 2010 1
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Dog 5750 France Europe dryad.8gp06 aEurA67 aDog_aEurA67_HgC - - - H4 C C Pionnier-Capitan 2010 1

Dog 5750 France Europe dryad.8gp06 aEurA68 aDog_aEurA68_HgB - - - H25 B B Pionnier-Capitan 2010 1

Dog 4349 France Europe dryad.8gp06 aEurA30 aDog_aEurA30_HgC - - - H4 C C Pionnier-Capitan 2010 1

Dog 4349 France Europe dryad.8gp06 aEurA31 aDog_aEurA31_HgD - - - H26 D D Pionnier-Capitan 2010 1

Dog 7930 Iran SW Asia dryad.8gp06 aEurA71 aDog_aEurA71_HgD - - - H26 D D Pionnier-Capitan 2010 1

Dog 7930 Iran SW Asia dryad.8gp06 aEurA72 aDog_aEurA72_HgD - - - H26 D D Pionnier-Capitan 2010 1

Dog 7930 Iran SW Asia dryad.8gp06 aEurA73 aDog_aEurA73_HgD - - - H26 D D Pionnier-Capitan 2010 1

Dog 7930 Iran SW Asia dryad.8gp06 aEurA74 aDog_aEurA74_HgD - - - H26 D D Pionnier-Capitan 2010 1

Dog 7930 Iran SW Asia dryad.8gp06 aEurA75 aDog_aEurA75_HgD - - - H26 D D Pionnier-Capitan 2010 1

Dog 7930 Iran SW Asia dryad.8gp06 aEurA76 aDog_aEurA76_HgD - - - H26 D D Pionnier-Capitan 2010 1

Dog 7930 Iran SW Asia dryad.8gp06 aEurA77 aDog_aEurA77_HgD - - - H26 D D Pionnier-Capitan 2010 1

Dog 5775 Switzerland Europe dryad.8gp06 aEurA81 aDog_aEurA81_HgC - - - H4 C C Pionnier-Capitan 2010 1

Dog 5775 Switzerland Europe dryad.8gp06 aEurA82 aDog_aEurA82_HgC - - - H4 C C Pionnier-Capitan 2010 1

Dog 5775 Switzerland Europe dryad.8gp06 aEurA83 aDog_aEurA83_HgC - - - H4 C C Pionnier-Capitan 2010 1

Dog 5775 Switzerland Europe dryad.8gp06 aEurA84 aDog_aEurA84_HgD - - - H33 D D Pionnier-Capitan 2010 1

Dog 5775 Switzerland Europe dryad.8gp06 aEurA85 aDog_aEurA85_HgD - - - H26 D D Pionnier-Capitan 2010 1

Dog 5904 Russia Nothern Asia dryad.8gp06 aEurA64 aDog_aEurA64_HgA - - - H20 A A Pionnier-Capitan 2010 1

Dog 5904 Russia Nothern Asia dryad.8gp06 aEurA65 aDog_aEurA65_HgA - - - H20 A A Pionnier-Capitan 2010 1

Dog 5904 Russia Nothern Asia dryad.8gp06 aEurA66 aDog_aEurA66_HgA - - - H20 A A Pionnier-Capitan 2010 1

Dog 5500-5300 France Europe EU287462 VTC3 aDog_aEurA15_HgC - - - H4 C C Deguilloux et al  2009 1

Dog 5500-5300 France Europe EU287461 VTC2 aDog_aEurA14_HgC - - - H4 C C Deguilloux et al  2009 1

Dog 5500-5300 France Europe EU287460 VTC1 aDog_aEurA13_HgC - - - H34 C C Deguilloux et al  2009 1

Dog 5500-5000 Portugal Europe KY014653 LYEP5 aDog_LYEP5_HgA H2 - H2 H17 A A Pires et al  2019 1

Dog 7173-6990 cal Germany Europe KX379529 HXH aDog_HXH_HgC - - - H35 C C Botigué et al  2017 1

Dog 4850-4582 cal Germany Europe KX379528 CTC aDog_CTC_HgC - - - H4 C C Botigué et al  2017 1

Dog 4290 ± 40 Portugal Europe KY014667 LYEP28 aDog_LYEP28_HgA H2 - H2 H17 A A Pires et al  2019 1

Dog 7550 France Europe dryad.8gp06 aEurA69 aDog_aEurA69_HgC - - - H4 C C Pionnier-Capitan 2010 1

Dog 9197 Romania Europe dryad.8gp06 aEurA43 aDog_aEurA43_HgC - - - H4 C C Pionnier-Capitan 2010 1

Dog 9197 Romania Europe dryad.8gp06 aEurA44 aDog_aEurA44_HgC - - - H24 C C Pionnier-Capitan 2010 1

Dog 9197 Romania Europe dryad.8gp06 aEurA45 aDog_aEurA45_HgC - - - H4 C C Pionnier-Capitan 2010 1

Dog 9197 Romania Europe dryad.8gp06 aEurA46 aDog_aEurA46_HgC - - - H4 C C Pionnier-Capitan 2010 1

Dog 6372 Estonia Europe dryad.8gp06 aEurA52 aDog_aEurA52_HgC - - - H24 C C Pionnier-Capitan 2010 1

Dog 6372 Estonia Europe dryad.8gp06 aEurA53 aDog_aEurA53_HgC - - - H4 C C Pionnier-Capitan 2010 1

Dog 6372 Estonia Europe dryad.8gp06 aEurA54 aDog_aEurA54_HgC - - - H24 C C Pionnier-Capitan 2010 1

Mesolithic
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Dog 6372 Estonia Europe dryad.8gp06 aEurA55 aDog_aEurA55_HgC - - - H24 C C Pionnier-Capitan 2010 1

Dog 8921 Romania Europe dryad.8gp06 aEurA58 aDog_aEurA58_HgC - - - H4 C C Pionnier-Capitan 2010 1

Dog 7550 France Europe dryad.8gp06 aEurA70 aDog_aEurA70_HgC - - - H4 C C Pionnier-Capitan 2010 1

Dog 7845-7625 Portugal Europe KY014683 LYEP75 aDog_LYEP75_HgA H2 - H2 H17 A A Pires et al  2019 1

Dog 7680-7485 Portugal Europe KY014682  LYEP74 aDog_LYEP74_HgA H1 - H1 H17 A A Pires et al  2019 1

Dog 7915-7605 Portugal Europe KY014677 LYEP68B aDog_LYEP68B_HgA H2 - H2 H17 A A Pires et al  2019 1

Dog 7680-7450 Portugal Europe KY014676  LYEP68A aDog_LYEP68A_HgC H3 - H3 H4 C C Pires et al  2019 1

Dog 7835-7685 Portugal Europe KY014675  SEP002 aDog_SEP002_HgA H2 - H2 H17 A A Pires et al  2019 1

Dog 7965-7848 Portugal Europe KY014652 LYEP3 aDog_LYEP3_HgA H2 - H2 H17 A A Pires et al  2019 1

Wolf 9670 Italy Europe AY741668 PIC3 aWolf2_Hg2 - - - H17 n/a WOLF Hg2 Verginelli  et al  2005 1

Wolf 9860 Italy Europe AY741667 PIC2 aWolf5_Hg1 - - - H25 n/a WOLF Hg2 Verginelli  et al  2005 1

Dog 13229 Romania Europe dryad.8gp06 aEurA59 aDog_aEurA59_HgC - - - H22 C C Pionnier-Capitan 2010 1

Dog 12500 Germany Europe KF661094 Ger12500 aDog_Ger12500_HgC - - - H4 n/a C Thalmann et al  2013 1

Dog 13250 Israel SW Asia dryad.8gp06 aEurA39 aDog_aEurA39_HgA - - - H21 A A Pionnier-Capitan 2010 1

Dog 12701 France Europe dryad.8gp06 aEurA60 aDog_aEurA60_HgC - - - H4 C C Pionnier-Capitan 2010 1

Canis sp. 33500 Russia Nothern Asia KF661092 Russia/33,500 aCanissp_Rus33500 - - - H3 n/a n/a Thalmann et al  2013 1

Canis sp. 36000 Belgium Europe KF661079 Belgium/36,000 aCanissp_Belgium36000 - - - H23 n/a n/a Thalmann et al  2013 1

Wolf 14000 Portugal Europe KY014651  LYEP46 aWolf3_Hg2 - H1 H3 H4 WOLF Hg2 WOLF Hg2 Pires et al  2019 1

Wolf 80886±31265 Portugal Europe KY014650 LYEP44 aWolf4_Hg2 - H2 H2 H17 WOLF Hg2 WOLF Hg2 Pires et al  2019 1

Wolf 14670 Italy Europe AY741666 aEurA10 aWolf6_Hg2 - - - H4 n/a WOLF Hg2 Verginelli  et al  2005 1

Wolf 20790 CzechRep Europe DQ852634 a6 aWolf7_Hg2 - - - H5 WOLF Hg2 WOLF Hg2 Stil ler et al  2006 1

Wolf 44250 CzechRep Europe DQ852635 a11 aWolf8_Hg2 - - - H3 WOLF Hg2 WOLF Hg2 Stil ler et al  2006 1

Wolf 41710 CzechRep Europe DQ852636 a14 aWolf9_Hg2 - - - H6 WOLF Hg2 WOLF Hg2 Stil ler et al  2006 1

Wolf 15199 Russia Nothern Asia DQ852638 a21 aWolf10_Hg2 - - - H7 WOLF Hg2 WOLF Hg2 Stil ler et al  2006 1

Wolf 32500 Russia Nothern Asia DQ852640 a26 aWolf11_Hg2 - - - H8 n/a WOLF Hg2 Stil ler et al  2006 1

Wolf 48020 Russia Nothern Asia DQ852641 a28 aWolf12_Hg2 - - - H9 WOLF Hg2 WOLF Hg2 Stil ler et al  2006 1

Wolf 49930 Russia Nothern Asia DQ852642 a29 aWolf13_Hg2 - - - H9 n/a WOLF Hg2 Stil ler et al  2006 1

Wolf LateGlacial Belgium Europe DQ852644 a33 aWolf14_Hg2 - - - H7 WOLF Hg2 WOLF Hg2 Stil ler et al  2006 1

Wolf LateGlacial Belgium Europe DQ852645 a34 aWolf15_Hg2 - - - H10 WOLF Hg2 WOLF Hg2 Stil ler et al  2006 1

Wolf PleniGlacial Belgium Europe DQ852646 a36 aWolf16_Hg2 - - - H11 WOLF Hg2 WOLF Hg2 Stil ler et al  2006 1

Wolf PleniGlacial Belgium Europe DQ852647 a37 aWolf17_Hg2 - - - H12 WOLF Hg2 WOLF Hg2 Stil ler et al  2006 1

Wolf 13681 Belgium Europe DQ852648 a38 aWolf18_Hg2 - - - H13 WOLF Hg2 WOLF Hg2 Stil ler et al  2006 1

Wolf 24780 Belgium Europe DQ852649 a42 aWolf19_Hg2 - - - H14 WOLF Hg2 WOLF Hg2 Stil ler et al  2006 1

Wolf 21810 Belgium Europe DQ852650 a44 aWolf20_Hg2 - - - H2 WOLF Hg2 WOLF Hg2 Stil ler et al  2006 1

Palaeotlithic
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Wolf 27580 Germany Europe DQ852653 a48 aWolf21_Hg2 - - - H15 WOLF Hg2 WOLF Hg2 Stil ler et al  2006 1

Wolf 34310 Hungary Europe DQ852660 a61 aWolf22_Hg2 - - - H16 WOLF Hg2 WOLF Hg2 Stil ler et al  2006 1

Wolf 27520 Ukraine Europe DQ852661 a17 aWolf23_Hg2 - - - H8 WOLF Hg2 WOLF Hg2 Stil ler et al  2006 1

Wolf 29650 Ukraine Europe DQ852662 a18 aWolf24_Hg2 - - - H8 n/a WOLF Hg2 Stil ler et al  2006 1

Wolf 14500 Switzerland Europe KF661091 Switzerland 2 aWolf25_Hg2 - - - H18 n/a WOLF Hg2 Thalmann et al  2013 1

Wolf 14500 Switzerland Europe KF661087 Switzerland 1 aWolf26_Hg2 - - - H19 n/a WOLF Hg2 Thalmann et al  2013 1

Wolf 22000 Russia Nothern Asia KF661085 Russia 22,000 aWolf27_Hg2 - - - H8 n/a WOLF Hg2 Thalmann et al  2013 1

Wolf 18000 Russia Nothern Asia KF661081 Russia 18,000 aWolf28_Hg2 - - - H20 n/a WOLF Hg2 Thalmann et al  2013 1

Wolf 30000 Belgium Europe KF661080 Belgium 30,000 aWolf29_Hg - - - H14 n/a WOLF Hg2 Thalmann et al  2013 1

Wolf 22285–ϭϳϴϲϵ Italy Europe MH593822 OWW4 aWolf30_Hg2 - - - H1 WOLF Hg2 WOLF Hg2 Ciucani et al  2019 1

Wolf 17550 Italy Europe MH085476 OWW16 aWolf31_Hg2 - - - H2 WOLF Hg2 WOLF Hg2 Ciucani et al  2019 1

Wolf 23940 Italy Europe MH085475 OWW15 aWolf32_Hg2 - - - H2 WOLF Hg2 WOLF Hg2 Ciucani et al  2019 1

Wolf 23940 Italy Europe MH085474 OWW13 aWolf33_Hg2 - - - H2 WOLF Hg2 WOLF Hg2 Ciucani et al  2019 1

Wolf 17550 Italy Europe MH085473 OWW12 aWolf34_Hg2 - - - H3 WOLF Hg2 WOLF Hg2 Ciucani et al  2019 1

Wolf 23940 Italy Europe MH085472 OWW11 aWolf35_Hg2 - - - H2 WOLF Hg2 WOLF Hg2 Ciucani et al  2019 1

Wolf 24700 Italy Europe MH085471 OWW9 aWolf36_Hg2 - - - H1 WOLF Hg2 WOLF Hg2 Ciucani et al  2019 1

Wolf 23940 Italy Europe MH085470 OWW8 aWolf37_Hg2 - - - H2 WOLF Hg2 WOLF Hg2 Ciucani et al  2019 1
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Appendix VII. Graphical report of quality score per position in read (bp). 
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Figure 1. Graphical report of quality score per position in read (bp). a) LYEP9 read 1 and read 2 before removal of adapters; b) 

LYEP9 read 1 and read 2 after removal of adapters and low-quality bases (<30). 
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Figure 3. Graphical report of quality score per position in read (bp). a) LYEP51 read 1 and read 2 before removal of adapters; b) LYEP51 

read 1 and read 2 after removal of adapters and low-quality bases (<30). 
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Figure 2. Graphical report of quality score per position in read (bp). a) LYEP11 read 1 and read 2 before removal of adapters; b) 

LYEP11 read 1 and read 2 after removal of adapters and low-quality bases (<30). 
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b) 

Figure 4. Graphical report of quality score per position in read (bp). a) LYEP53 read 1 and read 2 before removal of adapters; b) 

LYEP53 read 1 and read 2 after removal of adapters and low-quality bases (<30). 
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Figure 5. Graphical report of quality score per position in read (bp). a) LYEP27 read 1 and read 2 before removal of adapters; b) 

LYEP27 read 1 and read 2 after removal of adapters and low-quality bases (<30). 
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Appendix VIII. Summary of each sample variants. 

 

LYEP9 
                   

Position 1351 2678 2683 2962 3196 4906 4940 5367 5444 6065 6401 6554 7593 8281 8368 8807 9911 10319 10611 

Reference A T G C T T T C T A C T T T C G A T A 

Alternative G TG A T C C C T C G T C C C T A ATG C T 
                    

Position 10992 13299 14977 15214 15620 15627 15639 15665 15814 16025 16660 16672 
       

Reference G T T G T A T T C T T C 
       

Alternative A A C A C G A C T C TCC T 
       

                    

LYEP11 
                   

Position 388 1019 2678 2683 2962 3093 3196 5367 5444 6065 8201 8281 8368 8807 8982 9911 10992 11793 13299 

Reference A T T G C T T C T A G T C G G A G T T 

Alternative G C TG A T C C T C G A C T A A ATG A C A 
                    

Position 15214 15627 15639 15652 15814 16025 
             

Reference G A T G C T 
             

Alternative A G A A T C 
             

                    

LYEP51 
                   

Position 381 733 1204 1748 1756 3598 4234 4503 5009 5367 5444 6470 7670 8323 8764 9222 9708 10533 10776 

Reference T T T T C G C A C C T G A A G C C A T 

Alternative A C C C T A T G T T C A G G T T T T C 
                    

Position 11250 11322 11323 11400 11402 11825 11963 12272 12636 12788 12813 13660 13708 14647 14692 15185 15508 15526 15611 

Reference T T C T T T C T T T G C C T G T C C T 

Alternative C C T C C C T C C C A T T C A C T T C 

Continued on the next page 
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LYEP53 
                   

Position 381 557 733 1204 1454 1748 1756 2232 2678 2683 3196 3406 3469 5009 5367 5444 5624 5732 6065 

Reference T A T T G T C A T G T C G C C T G A A 

Alternative A G C C A C T G TG A C T A T T C A T G 
                    

Position 6257 6470 7058 8221 8225 8281 8323 8368 8703 8760 8764 8807 8991 9078 9708 9860 9911 10386 10404 

Reference G G T A T T A C G A G G A T C C A G C 

Alternative A A C C C C G T A G T A G C T CA ATG A T 
                    

Position 10533 10776 10917 10992 11250 11322 11323 11400 11402 11572 11963 12330 12788 12813 13261 13299 13319 13618 13660 

Reference A T G G T T C T T A C A T G C T C A C 

Alternative T C A A C C T C C C T G C A T A T G T 
                    

Position 13708 13777 14647 14692 15185 15435 15484 15508 15526 15611 15650 15955 16671 
      

Reference C G T G T G A C C T T C T 
      

Alternative T A C A C A G T T C C T C 
      

                    

LYEP27 
                   

Position 2051 3034 3451 5520 5938 6620 7676 11042 13301 13803 14355 14672 
       

Reference C T C C C C T G C G G A 
       

Alternative T C T T T T C A T A A G 
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Appendix IX. HiSeq sequencing statistics for ancient samples. 

 
MITOCHONDRIAL 

Sample 
Total reads 
sequenced 

Number of reads 
after merge 

(forward and 
reverse sequence 

reads) 

Number of retained 
reads after removal of 

human+pig+chicken+cow 
contamination 

% of reads mapped 
human+pig+chicken+cow 
contamination genome 

Number of 
retained reads 
after alignment 

against 
endogenous 

mtDNA 

% of merged 
reads mapped 

against 
endogenous 
mtDNA (%) 

mean 
coverage of 

mtDNA 
genome 

% 
Duplicate 

reads 

LYEP9 50569242 38185926 38185850 0.0002 3919 0.010 17x 0.23 

LYEP11 44203964 30062441 30062342 0.0003 3537 0.012 12x 0.17 

LYEP51 47366572 32212912 32212896 0.00005 767 0.002 2x 0.08 

LYEP53 40676611 29837937 29837914 0.0001 1438 0.005 5x 0.10 

LYEP27 39883611 11615845 11615823 0.0002 625 0.005 1x 0.28 

NUCLEAR 

Sample 
Total reads 
sequenced 

Number of reads 
after merge 

(forward and 
reverse sequence 

reads) 

Number of retained 
reads after removal of 

human+pig+chicken+cow 
contamination 

% of reads mapped 
against 

human+pig+chicken+cow 
genome 

Number of 
retained reads 
after alignment 

against 
endogenous nDNA 

% of merged 
reads mapped 

against 
endogenous 

nDNA 

mean 
coverage of 

nDNA 
genome 

% 
Duplicate 

reads 

LYEP9 50569242 38185926 38158803 0.0710 1430570 3.75 0,043x 0.13 

LYEP11 44203964 30062441 30033302 0.0969 165224 0.55 0,002x 0.11 

LYEP51 47366572 32212912 32204132 0.0273 304451 0.95 0,006x 0.07 

LYEP53 40676611 29837937 29834021 0.0131 26131 0.09 0,0005x 0.07 

LYEP27 39883611 11615845 11610349 0.0473 71232 0.61 0.0009x 0.25 

note: endogenous DNA here is estimated based on the proportion of reads submitted to BWA that mapped without any quality score filtering. 

 


