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Abstract

A grid-based fast multipole method (GB-FMM) for optimizing three-dimensional

(3D) numerical molecular orbitals in the bubbles and cube double basis has been de-

veloped and implemented. The present GB-FMM method is a generalization of our

recently published GB-FMM approach for numerically calculating electrostatic poten-

tials and two-electron interaction energies. The orbital optimization is performed by

integrating the Helmholtz kernel in the double basis. The steep part of the functions

in the vicinity of the nuclei is represented by one-center bubbles functions, whereas

the remaining cube part is expanded on an equidistant 3D grid. The integration of

the bubbles part is treated by using one-center expansions of the Helmholtz kernel in

spherical harmonics multiplied with modified spherical Bessel functions of the first and

second kind, analogously to the numerical inward and outward integration approach for
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calculating two-electron interaction potentials in atomic structure calculations. The ex-

pressions and algorithms for massively parallel calculations on general-purpose graph-

ics processing units (GPGPU) are described. The accuracy and the correctness of the

implementation has been checked by performing Hartree-Fock self-consistent-field cal-

culations (HF-SCF) on H2, H2O and CO. Our calculations show that an accuracy of

10−4 to 10−7 Eh can be reached in HF-SCF calculations on general molecules.

1 Introduction

Molecular electronic structure calculations are usually performed by using global basis sets

of some kind. The most popular alternative is Gaussian type orbital (GTO) basis sets,

whereas Slater type orbitals (STO) and plane-wave (PW) expansions are also employed.1–3

The slow convergence to the basis-set limit is a common denominator for the global basis-set

approaches. Basis-set limit calculations can be performed by utilizing local numerical basis

sets.4–30 However, the large computational costs of real-space electronic structure calcula-

tions limit the general use of such approaches. The advent of massively parallel computers

with a huge number of central processing units (CPU) or general-purpose graphics process-

ing units (GPGPU) renders local basis-set approaches feasible.31–42 Efficient algorithms can

be developed because the algorithms of fully numerical approaches are relatively simple in-

volving huge amount of similar data. Thus, it is possible to design computational methods

with the aim to run the program in parallel on thousands or millions of processing units with

very little communication between the processors.

The aim of this research project is to develop fully numerical electronic structure methods

for calculations on general molecules using massively parallel computers. To reach that goal

we use a double basis where the steep parts of the functions around the nuclei are expanded

in one-center functions and the remainder is expanded on an equidistant three-dimensional

(3D) grid. The computational time for the one-center functions is negligible as compared to

the computational time for the 3D grid functions. To speed up the computations one has to
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preliminary focus on the parallelization of the projection of the one-center functions and the

treatment of the functions on the grid. We have recently developed a computational approach

for calculating two-electron interaction energies and potentials in a massively parallel fashion

that runs very efficiently on GPGPUs.43 We demonstrated in that work that an N0 scaling

of the wall time can be achieved when many processors are available. Thus, the wall time

for calculations of the two-electron interactions were independent of the number of grid

points. We reached the limit of Amdahl’s law, where the sequential part of the calculation

determines the total computational time. In the parallel version of our code, calculating an

electrostatic potential lasted at that time about two minutes, whereas the computational

time using the sequential code took about an hour for the largest grid when one CPU was

utilized. The keys to the success were the grid-based fast multipole method (GB-FMM) and

the use of GPGPUs. GB-FMM avoids explicit calculations of the long-ranged contributions

to the two-electron interactions. Instead, these contributions can be rapidly obtained by

calculating multipole moments. The linear transformations of the our integration approach

are matrix-multiplication driven in the innermost loops implying that they run very efficient

on GPGPUs. The grid-based identification of the the one-center functions also run efficiently

on GPGPUs, because they comprise lots of similar computations.

In this work, we extend the GB-FMM methods to the integration of the Helmholtz

kernel,44–49 which can be used for optimizing numerical orbitals.9,29,50 The structure of the

expressions are similar to those for the Poisson kernel i.e., the Coulomb integral expression.

The optimization of the orbitals by using the Helmholtz kernel is an iterative process as

it involves orbital energies and a given set of guess orbitals e.g., the ones of the previous

iteration. The one-center part of the functions can be integrated analytically in the angular

dimensions, whereas in the radial direction they are integrated numerically using inward and

outward integration in combination with Bessel functions.51

In Section 2, we describe the numerical integration of the Helmholtz kernel in the bubbles

and cube basis. The theory and implementation of the grid-based fast multipole method
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to integrate the Helmholtz kernel and how the approach is used for updating orbitals are

discussed in Section 3 with further details given in the Appendix. The Hartree-Fock energies

and some timings for calculations on H2, H2O and CO are reported in Section 4.

2 The Helmholtz Kernel Expression

2.1 Function Representation

We employ a double numerical basis, where all functions (ν(x, y, z)) are divided into a three-

dimensional (3D) Cartesian cube part (ν∆(x, y, z)) and a part consisting of one-center func-

tions at each nucleus A, called bubbles.18 Bubbles functions are written as numerical one-

dimensional radial functions multiplied with spherical harmonics (Y m
l (θ, ϕ)). The expansion

coefficients νAlm(r) of the bubbles are values of the functions in discrete radial points with

respect to atom A multiplied with spherical harmonics having angular momentum quantum

numbers l = [0, lMAX] and m = [−l, l]. The entire function can be evaluated in Cartesian

coordinates as

ν(x, y, z) = ν∆(x, y, z) +
∑
A

lMAX∑
l=0

l∑
m=−l

νAlm(r)Y m
l (θ, ϕ), (1)

where Y m
l (θ, ϕ) are the real spherical harmonics in Racah’s normalization. All contributions

are formally considered as the cube part contains the remainder after the bubbles have been

projected out.

2.2 Bound-State Helmholtz Equation

The Helmholtz equation for bound electronic states reads

(−1

2
∇2 + κ2)f(r) = g(r), (2)
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where −1
2
∇2 is the kinetic energy operator and κ is a real number. The Helmholtz equation

has also previously been used for updating the orbitals in numerical self-consistent field (SCF)

electronic structure calculations9,29,50 In the iterative SCF scheme, the updated orbitals

ψ
(i+1)
n (r) are obtained as

ψ(i+1)
n (r) =

(
−∇2 − 2ε(i)n

)−1 [−2V (i)
n (r)ψ(i)

n (r)
]
. (3)

where the source function g(r) in Eq. (2) consists of twice the SCF interaction potential Vn(r)

between the electrons in orbital n with the rest of the electrons, multiplied with the orbital

ψn(r) of iteration (i). The parameter κ is obtained from the orbital energy in iteration (i)

as κ =

√
−2ε

(i)
n . The Laplacian of the denominator in Eq. (3) can be eliminated by using

an integral transformation

(
−∇2 − 2ε(i)n

)−1
g(r) =

(
−∇2 + κ2

)−1
g(r) =

∫
exp(−κ|r− r′|)

4π|r− r′|
g(r′)dr′. (4)

By inserting Eq. (4) to Eq. (3) we arrive at50

ψ(i+1)
n (r) = −

∫
exp(−κ|r− r′|)

4π|r− r′|
[2V (i)

n (r′)ψ(i)
n (r′)]dr′. (5)

In spherical coordinates, the integrand (kernel) in Eq. (4) can be expanded in a formally

infinite series as51

exp(−κ|r− r′|)
|r− r′|

=
2κ

π

∞∑
l=0

Îl+ 1
2
(κr<)K̂l+ 1

2
(κr>)(2l + 1)Pl(cos(ϕ)), (6)

where Îl+ 1
2

and K̂l+ 1
2

are the first and second modified spherical Bessel functions of order l,

Pl(cos(ϕ)) is a Legendre polynomial of order l and ϕ is the angle between vectors r and r′.

The smaller and the larger of r and r′ is denoted by r< = min(r, r′) and r> = max(r, r′).

By using complex spherical harmonics Yml (θ, ϕ), the expression for the bound-state kernel

becomes
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exp(−κ|r− r′|)
|r− r′|

= 8κ
∞∑
l=0

Îl+ 1
2
(κr<)K̂l+ 1

2
(κr>)

l∑
m=−l

Yml (θ, ϕ)Y−ml (θ′, ϕ′). (7)

An similar expression is obtained when using real spherical harmonics Y m
l (θ, ϕ).

3 The Grid-Based Fast Multipole Method

3.1 Domain Division

The procedure for the numerical integration of the Helmholtz kernel is similar to the one

used for calculating two-electron interaction potentials by integrating the Poisson kernel.43

The six-dimensional kernel integral expression in Eq. (3) and Eq. (4) can be divided into

subdomains representing near-field and far-field contributions depending on the distance

between r and r′. In the grid-based fast multipole method (GB-FMM) for calculating of two-

electron interaction,43 we considered only source functions that can be accurately expanded

on an equidistant grid as the cube functions in the double basis, whereas here we employ the

double basis where the steep part of the functions are taken into account by using bubbles

functions and the remainder is expanded on an equidistant 3D grid.

The application of the Helmholtz kernel (G(r, r′)) in Eq. (8) is divided into the bubbles,

near-field (NF) and far-field (FF) contributions, where the kernel of the bubbles part is

expanded in local one-center functions and the kernel of the cube is treated numerically in

3D

∫
G(r, r′)g(r′)dr′ =

∑
A

∫
G(r, r′)gA(r′)dr′ +

∫
G(r, r′)g∆

NF(r′)dr′ +

∫
G(r, r′)g∆

FF(r′)dr′

(8)

To compute the cube part of the Helmholtz kernel for a given source function, the com-

putational domain is further divided into a number of subdomains called boxes. The number
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of boxes depends on the size and shape of the studied molecule. Here, we consider only the

case with cubic shapes of the domain and boxes, because cubic shapes of the domains lead

readily to a tree-data structure where each node has eight children. The obtained octree

structure has 8M equal-sized boxes, where M is the maximum level. The boxes at level i are

children of corresponding boxes at level i− 1, where i = 1,M . Level i = 0 means the entire

computational domain.

Figure 1: The grey squares represent the boxes belonging to the near-field of the red square,
whereas the white ones belong to its far field. The circles illustrate overlapping and nonover-
lapping domains representing the near-field and far-field contributions, respectively. The
local far field is shown in blue.

To judge whether a given box b belongs to the near-field or far-field of box a, each box

is enclosed by the smallest possible sphere. All boxes b that have an overlapping sphere

with box a belong to the near-field of a, whereas the rest of the boxes belongs to its far-

field. Because the bubbles functions and boxes overlap, they belong to the near-field of

each box. The domain division is illustrated in Figure 1, where three boxes are enclosed by

corresponding spheres. We can see that the box inside the green sphere does not belong to

the near field of the red box a, as there is no overlap of the spheres. The blue sphere overlaps

with the red one, indicating that the enclosed gray box belongs to the near field of the red
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box. The far-field interaction is further split into local and distant contributions. The local

far-field of box a consists of all the sibling boxes of the nearest neighbors of a that do not

belong to the near-field of a. The local far-field of a are shown with blue squares in Figure 1.

To achieve an efficient parallelization, the boxes are distributed among the computational

processes in such a way that the communication is minimized. In the best case, the shape of

the domain of one process is cubic and the domain consists of one box at level i and all its

children. For instance, if M = 2 and there are eight processes, the domain of each process

consists of one box at level 1 and all its eight child boxes at level 2. Later in this article, we

use the notation Domain(i, L) to refer to boxes at a given level L, the calculations of which

is preformed by prosess i.

3.2 Near-field Operator

The radial dependence of the bubbles functions fAlm(r) representing a bubbles contribution

to the updated orbital are obtained by integrating the radial part of the bubbles contribution

to the Helmholtz kernel for each l and m value of the spherical harmonics

fAlm(r) = 8κ
[
K̂l+ 1

2
(κr)

∫ r

0

gAlm(s)Îl+ 1
2
(κs)s2ds (9)

+ Îl+ 1
2
(κr)

∫ ∞
r

gAlm(s)K̂l+ 1
2
(κs)s2ds

]
.

In Eq. (9), gAlm(s) is the radial dependence of the bubbles source function at nucleus A, which

is multiplied with the same spherical harmonics as fAlm(r).

The near-field contribution to the updated orbital f∆
a (r) in box a is evaluated using

the source function of the boxes g∆
b (r), where boxes b belong to the near field of box a.

The near-field contributions to the updated orbital are calculated by employing the same

numerical integration approach as used for the whole domain in the sequential implementa-

tion of our code.18,50 The denominator of the Helmholtz kernel is eliminated by the integral
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transformation

exp(−κ|r− r′|)
|r− r′|

=
2√
π

∫ ∞
0

exp(−t2(r− r′)2 − κ2/4t2)dt. (10)

By applying Eq. (10) to the cube part of the source function of boxes g∆
b (r) in Eq. (3) one

obtains

f∆
a (r) =

2√
π

∫ ∞
0

exp(−κ2/4t2)Qa(r, t)dt, (11)

where

Qa(r, t) =

∫
exp(−t2(r− r′)2)g∆

b (r′)d3r′. (12)

One integration is needed for each box, because all the nearest neighbor boxes are included

in that calculation, i.e., the evaluation of the nearfield contribution at the red area in Figure

1 can be evaluated by performing single numerical integration over the gray and red areas.

The algorithm for the calculation of the near-field contribution to the updated orbital is

shown in Figure 2.

evaluate bubbles potential using Eq. (9);
forall the boxes a ∈ Domain(i, M) do

evaluate orbital contribution to box a, f∆
a (r), from the cube source function of the

nearest neighbor boxes g∆
b (r) using Eq. (11) and Eq. (12).;

end

Figure 2: Evaluation of the near-field contributions to the orbital update.

3.3 Far-field Contributions

In the evaluation of far-field contributions to the updated orbital, the spherical harmonics

expansion of the Helmholtz kernel is employed. The present method is similar to the GB-

FMM approach for calculating Coulomb potentials. The GB-FMM approach for integrating

the Helmholtz kernel is based on the two relations originating from the addition theorem in

9



Eq. (7). The first of them is the generalized multipole expansion

Mm
l (g∆

b , rp) =

∫
g∆
b (r)Rm

l (r− rp)dr =

∫
g∆
b (r)Îl+ 1

2
(κr′)Y m

l (θ′, ϕ′)dr, (13)

where rp is the vector from origin to the center of the multipole expansion, and r′ = r−rp =

(r′, θ′, ϕ′). The internal part, Rm
l (r′), is regular for small input vector distances. The other

relation is the local expansion

Lml (g∆
b , rp) =

∫
g∆
b (r)Sml (r− rp)dr =

∫
g∆
b (r)K̂l+ 1

2
(κr′)Y m

l (θ′, ϕ′)dr, (14)

in which Sml (r − rp) is singular at r = rp. By using these relations, the orbital update can

be expressed using a generalized multipole expansion as

fa(r) =
1

4π

∫
exp(−κ|r− r′|)
|r− r′|

g∆
b (r′)dr′ =

8κ

4π

∞∑
l

l∑
m=−l

K̂l+ 1
2
(κr)Y m

l (θ, ϕ)Mm
l (g∆

b ,~0) (15)

By using local expansion it can be written as

fa(r) =
1

4π

∫
exp(−κ|r− r′|)
|r− r′|

g∆
b (r′)dr′ =

8κ

4π

∞∑
l

l∑
m=−l

Îl+ 1
2
(κr)Y m

l (θ, ϕ)Lml (g∆
b ,~0). (16)

However, the addition theorem in Eq. (7) limits the use of Eq. (15) to orbital contributions

f∆
a (r) that are localized inside a sphere of radius r centered at the origin, whereas Eq. (16)

can be used when the source function g∆
b (r) vanishes in the same sphere. This is analogous to

the momentum expansion in the Coulomb case. Thus, it is the fundamental reason why the

multipole method can be employed for calculating orbital-update contributions in a given

subdomain from nonadjacent subdomains.

The use of Eq. (13) and Eq. (15) solves the scalability problem of the Helmholtz operator.

However, the performance of the far-field evaluation based on these equations can still be
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improved. The idea of the FMM approach is to explore translations of multipoles of local

expansions and the conversion of multipole expansions to local expansions.52 The expansions

reduce the number of evaluations needed to calculate the far-field contribution to f∆
a (r) inside

the sphere. We use the generalized GB-FMM approach in our final algorithm described in

Figure 4. The implementation of the translation and conversion of the multipole expansions

is discussed in the next subsection.

forall the boxes a ∈ Domain(i, M) do
calculate multipole moments of box a, centered at ra using Mm

l (g∆
a , ra) in Eq. (13);

end
communicate multipole moments at level M ;
for level = M-1; level ≥ minlevel; level=level-1 do

forall the boxes b ∈ Domain(i, level) do
foreach box a ∈ Children(b) do

Translate Mm
l (g∆

a , ra) to Mm
l (g∆

a , rb) (See Subsection 3.4);
add the translated multipole moments to Mm

l (g∆
b , rb);

end

end
communicate multipole moments at level level;

end

Figure 3: Multipole moment evaluation using computation process i

evaluate multipole moments at all levels as described in Figure 3 ;
for level = minlevel; level ≤ M; level=level+1 do

forall the boxes b ∈ Domain(i, level) do
foreach box a ∈ LFF (b) do

Convert Mm
l (g∆

a , ra) to Lml (g∆
a , rb) (See Subsection 3.4);

add the translated multipole moments to Lml (g∆
b , rb);

end
use Lml (g∆

b , rb) to evaluate f∆
FF (r) in all grid points of box b using Eq. (16);

add f∆
FF (r) to the final result f∆(r);

end

end

Figure 4: Calculation of the far-field contribution to the orbital update using computational
node i
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3.4 Expansion Translation and Conversion

Useful expressions for calculating the multipole expansions in Eq. (13) and Eq. (14) are

developed in this subsection. We concentrate on reformulating the integrands. Thus, for

clarity we omit the integration symbol. The expansions of the multipole expressions are per-

formed using complex spherical harmonics. Thus, the multipole expansions in real spherical

harmonics Rm
l (r) and Sml (r) have to be converted to the corresponding representation in

complex spherical harmonics before they are evaluated.

Sml (r) = K̂l+ 1
2
(κr)Yml (θ, ϕ) (17)

Rm
l (r) = Îl+ 1

2
(κr)Yml (θ, ϕ).

The relation between complex (Yml (θ, ϕ)) and real spherical harmonics (Y m
l (θ, ϕ)) is

Yml (θ, ϕ) =



1√
2

[
Y −ml (θ, ϕ)− iY m

l (θ, ϕ)
]
, m < 0

Y m
l (θ, ϕ), m = 0

(−1)m√
2

[
Y m
l (θ, ϕ) + iY −ml (θ, ϕ)

]
, m > 0

. (18)

and the conversion in the opposite direction is

Y m
l (θ, ϕ) =



−1√
2

[
Yml (θ, ϕ)− (−1)mY−ml (θ, ϕ)

]
, m < 0

Yml (θ, ϕ), m = 0

1√
2

[
Y−ml (θ, ϕ) + (−1)mYml (θ, ϕ)

]
, m > 0

. (19)

Several approaches to perform the generalized multipole expansions53–55 and some bound

state Helmholtz expansions48 have been described in the literature. In this work, we use a

similar nomenclature as used in Refs. 53–55.

Generally, a set of reexpansion coefficients, (E|F )s,ml,n (r′pq), are employed for transferring
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the linear expansion coefficients Fm
l (rq) at one expansion point (rq) to another multipole

expansion Em
n (rp) at position rp

Em
n (rp) =

∞∑
l=0

l∑
s=−l

(E|F )s,ml,n (r′pq)F
s
l (rq), (20)

where Em
n (rp) and F s

l (rq) are regular (R) or singular (S) complex spherical harmonics ex-

pansions and (E|F )s,ml,n can be reexpansion coefficients from singular to singular, (S|S)s,ml,n ,

from regular to regular, (R|R)s,ml,n , or from regular to singular, (S|R). The computational

complexity of the approach can be reduced from O(N 4) to O(N 3) by first rotating the ex-

pansion to an orientation where the translation vector is along the z-axis. The complexity

parameter N is proportional to the length of the multipole expansion. The expansion is

then reexpanded in that direction and the resulting expansion is afterwards rotated back

to the original direction. The complexity of the algorithm is then reduced because in the

expansion to Em
n (rp) there is no angular dependency in the expansion coefficients and thus

there are no contributions from F s
l (rq) coefficients where s 6= m. The expression in Eq. (20)

then becomes

Em
n (rp) =

∞∑
l=|m|

(E|F )ml,n(r′pq)F
m
l (rq), (21)

where (E|F )ml,n(r′pq) = (E|F )m,ml,n (r′pq) are the coaxial reexpansion coefficients.

We employ the rotation-translation-backrotation approach to transfer expansions de-

scribed in Figure 5. The rotations are performed for real spherical harmonics expansions

before and after they are converted and reexpanded, using the approach of Blanco et al.56.

Generating coaxial reexpansion coefficients for the bound state case required some changes

in existing algorithms developed for the non-bound case. These modifications are discussed

in Subsection 3.4.1.
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1. Rotate the real input expansion, Sml (rq) or Rm
l (rq) to a position where the z-axis is

oriented along the translation vector rpq, using expressions in Ref. 56.

2. Convert the rotated real input expansion to complex input expansion Sml (rq) orRm
l (rq)

with Eq. (18).

3. Generate the coaxial translation coefficients (E|F )ml,n(r′pq) as described in Subsection
3.4.1

4. Apply the coaxial translation coefficients to the complex input expansion using Eq. (21)
yielding the complex output expansion Sml (rp) or Rm

l (rp).

5. Convert the complex output expansion back to real output expansion Sml (rp) or Rm
l (rp)

using Eq. (19).

6. Rotate the real output expansion back to the original orientation.

Figure 5: Expansion algorithm for real spherical harmonics expansions.

3.4.1 Coaxial Translation Coefficient Generation

A large number of approaches have been developed for constructing coaxial reexpansion

coefficients for Helmholtz expansions and for bound-state Helmholtz expansions.45,48 We

have here developed a bound-state version of the recursion approach by Gumerov et al.53,54,

where all coefficients (E|F )m,ml,n (r′pq) can be obtained from only a few initial values. We have

reevaluated the equations in Ref. 53 for the bound state case. Proofs and detailed derivation

are presented in Appendix A. Here, we report the two recursion relations in Eq. (22) and

Eq. (23), that are modified and more useful versions of Theorems 5 and 6.

(E|F )ml,n+1(r′pq) =
asl (E|F )s,ml+1,n(r′pq) + asl−1(E|F )s,ml−1,n(r′pq)− amn−1(E|F )ml,n−1(r′pq)

amn
(22)

(E|F )m+1
l,n+1(r′pq) =

bml+1(E|F )ml+1,n(r′pq) + b−m−1
l (E|F )ml−1,n(r′pq)− bmn (E|F )m+1

l,n−1(r′pq)

b−m+1
n+1

. (23)
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Eq. (23) is used when n = m yielding

(E|F )m+1
l,m+1(r′pq) =

bml+1(E|F )ml+1,m(r′pq) + b−m−1
l (E|F )ml−1,m(r′pq)

b−m+1
m+1

, (24)

where the last term of the numerator in Eq. (23) vanishes because m + 1 > n = m − 1.

Eq. (22) and Eq. (24) have the following forms for the (R|R) translation

(R|R)ml,n+1(r′pq) =
asl (R|R)s,ml+1,n(r′pq) + asl−1(R|R)s,ml−1,n(r′pq)− amn−1(R|R)ml,n−1(r′pq)

amn
(25)

(R|R)m+1
l,m+1(r′pq) =

bml+1(R|R)ml+1,m(r′pq) + b−m−1
l (R|R)ml−1,m(r′pq)

b−m+1
m+1

. (26)

For (S|S), they become

(S|S)ml,n+1(r′pq) =
−asl (S|S)s,ml+1,n(r′pq)− asl−1(S|S)s,ml−1,n(r′pq)− amn−1(S|S)ml,n−1(r′pq)

amn
(27)

(S|S)m+1
l,m+1(r′pq) =

−bml+1(S|S)ml+1,m(r′pq)− b−m−1
l (S|S)ml−1,m(r′pq)

b−m+1
m+1

(28)

and finally for (S|R)

(S|R)ml,n+1(r′pq) =
−asl (S|R)s,ml+1,n(r′pq)− asl−1(S|R)s,ml−1,n(r′pq)− amn−1(S|R)ml,n−1(r′pq)

amn
(29)

(S|R)m+1
l,m+1(r′pq) =

−bml+1(S|R)ml+1,m(r′pq)− b−m−1
l (S|R)ml−1,m(r′pq)

b−m+1
m+1

. (30)

A fast and efficient algorithm to generate all needed coaxial reexpansion coefficients is

summarized in Figure 6.
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forall the 0 ≤ n ≤ nmax do
evaluate (E|F )0

n,0(r′pq) and (E|F )0
0,n(r′pq) [See Eq. (55)), Eq. (56), and Eq. (58)];

end
communicate multipole moments at level M ;
for m = 0; m ≤ nmax; m=m+1 do

for n = m, n ≤ nmax; n=n+1 do
for l = m, l ≤ nmax; l=l+1 do

Evaluate (E|F )ml,n+1(r′pq) [See Eq. (25), Eq. (27), and Eq. (29)];

end

end
Evaluate (E|F )m+1

l,m+1(r′pq) [See Eq. (26), Eq. (28), and Eq. (30))];

end

Figure 6: The algorithm for generating the coaxial reexpansion coefficients

4 Results

The methods described in the previous sections have been implemented in a computer pro-

gram using Fortran 2008 and Cuda C. The correctness and efficiency of the implementation

has been demonstrated by performing Hartree-Fock calculations on H2, H2O, and CO. We

compare the Hartree-Fock energies that are obtained using the parallel implementation em-

ploying the grid-based fast multipole method (GB-FMM) for the Coulomb and Helmholtz

kernels with results obtained using the serial code employing our full numerical integration

scheme.50 The accuracy, timings and computational scaling of the parallel version of the

GB-FMM approach are demonstrated by performing calculations using various inputs.

4.1 Benchmark Calculations on Small Molecules

The main factors affecting the accuracy in our approach are the grid spacings for the one

dimensional grid of the bubbles and the 3D grid of the cube. Because of the steep shape

of the bubbles functions, it is important to have a very dense bubbles grid. However, the

computational costs as a function of the grid size of the bubbles grid are very small as

compared to the increase in the computational costs when using denser grids for the cube.

To avoid significant uncertainties due to the employed bubbles grid, we use in this work a
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very large number of grid points to describe the radial dependence of the bubbles functions.

The number of radial grid points is 36001 for hydrogen covering a radial range of r = [0, 20]

Å. For the other atoms, the number of grid points of the bubbles is scaled with the nuclear

charge. Thus, the computational accuracy as a function of the number of grid points given

in Table 1 depends only on the employed cube grid.

Other factors that affect the accuracy of the grid-based operators are the lengths of the

multipole expansions. The input and output lMAX values represent the maximum angular

quantum number for the multipoles in Eq. (13) and the corresponding number of multipole

moments used in the evaluation of the resulting local expansion in Eq. (16), respectively.

Corresponding expansion parameters also exist in the GB-FMM expression of the Coulomb

operator.43 In the present calculations, we use lINMAX = lOUTMAX = 22 for the Helmholtz opera-

tor, and lINMAX = lOUTMAX = 12 for the Coulomb operator.

Table 1: The calculated Hartree-Fock energies for H2, H2O, and CO as a function of the grid
step h. The energies are obtained using the GB-FMM and the full numerical integration
scheme using the serial code, respectively.

Grid step H2 H2O CO
Serial
h = 0.20 -1.130375595 -76.071028544 -112.789501793
h = 0.15 -1.134032068 -76.067244799 -112.792867814
h = 0.10 -1.133735078 -76.067470421 -112.792763416
h = 0.05 -1.133629272 -76.067474784 -112.792666765

GB-FMM
h = 0.20 -1.130401575 -76.071171715 -112.790388750
h = 0.15 -1.133965953 -76.067135946 -112.793050452
h = 0.10 -1.133733946 -76.067473821 -112.792763956
h = 0.05 -1.133628982 -76.067471491 -112.792668171

Literature values -1.133629571a -76.067419b -112.792463c

aRefs. [6,9] b Ref. [57] c Ref. [58]

The accuracy for the energies for H2, H2O, and CO in Table 1 calculated using the full

numerical integration (serial) and the GB-FMM approaches is practically the same for a

given set of parameters. The reference energy for H2 have been calculated using numerical
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methods. The reference energies for H2O and CO have been calculated using very large

Gaussian basis sets.57,58 Some values in Table 1 are lower than the energy in the basis-set

limit, since numerical approaches are generally fully variational only when approaching the

basis-set limit due to a variety of numerical approximations that have been introduced. The

approximations are very accurate for dense grids, whereas for coarser grids, the numerical

approximations may lead significant errors and energies that are slightly below the basis-set

limit.

Using a dense grid with h = 0.05, the H2 calculation converges in eigth iterations when

an energy threshold of 0.01 µEh is used. In this example, the initial guess led to an error

of 9 mEh and each iteration reduced the energy difference to the correct result by more than

80%.

4.2 Performance

The main advantages with the GB-FMM approach is that the long-range contributions are

accurately approximated by using multipole expansions leading to significant reduction in

the computational efforts and an algorithm that formally scales linearly with the size of the

grid. Furthermore, since the linear transformation of the near-field contributions, the bubbles

projection, and the multipole method are well aimed for parallel computers a significant speed

up is obtained when employing GPGPUs. The linear scaling of the algorithm is demonstrated

by performing calculations on H2 using three different computational resources consisting of

one, two, and four identical nodes, respectively, each of them equipped with two NVIDIA

Tesla K40 GPGPUs. The input parameters were chosen to be the same as used in the

benchmarking calculations with a grid step h of 0.05.

The relative timings of different parts of the SCF calculation as a function of the number

of computational nodes are plotted in Figure 7. With the employed computational resources,

it takes 78.2 seconds wall time to perform one self-consistent-field (SCF) iteration on one

node. With two and four nodes, one SCF iteration takes 42.6 s and 23.6 s, respectively.
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The corresponding computational times for applying the Coulomb operator are 6.83 s, 3.47

s, and 1.81 s. Since the Helmholtz operator requires longer multipole expansions and the

reexpansion coefficients have to be reevaluated at each application of the operator because

of the energy dependence, it consumes more computational resources or 21.12 s, 10.80 s, and

5.51 s when using one, two, and four nodes, respectively.
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Figure 7: The relative speed up as a function of the number of computational nodes used
for evaluating the Coulomb potential (red), the Helmholtz potential (green), and the total
time for one SCF iteration (blue) for H2 when employing the GB-FMM algorithms.

The timings show that the numerical methods scale practically linearly with the number

of computational nodes. The linear scaling is almost perfect for the GB-FMM operators,

whereas a small deviation from perfect linear scaling is obtained for the entire program.

The main reasons for the deviation are the communication between the nodes, which is not

present for the one-node case, and some segments of the software that are not parallelized.
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The timings presented here are only for the current version of our software. The scaling of

the whole program can be improved by eliminating some currently limiting bottlenecks, since

there are not any fundamental reasons that prevent perfect parallelization. Calculations on

H2 is the worst case as far as the communication between computational nodes is concerned,

because it that case most of the computational time is used in the potential evaluation that

involves over 95% of the communication, whereas for larger systems more computational

time goes to other functions in the code without significant communication.

Since the main part of the computations is performed on the GPGPUs, most efforts have

been put on the optimization of the GPGPU part of the code, whereas the CPUs have not

been maximally utilized. Thus, the CPUs are often idling when the calculations employ

the GPGPUs. By utilizing the CPUs more efficiently one can expect significant increase in

the computational speed without any needs for changes in the underlying algorithms. By

starting two processes per each computational node, the computational time for an SCF

loop on four nodes decreases by 13% from the 23.6 s to 20.6 s. The gain is partly due to

a more effective usage of CPUs, but it also leads to a better use of the GPGPUs, as more

CPUs submit computational tasks to the GPGPUs.

The calculations have in this work been performed on rather small molecules using modest

computational resources. The algorithms allow other kind of parallelization schemes when

a large number of nodes equipped with GPGPUs are employed. However, additional divide

and conquer schemes are not only an option, such approaches will also be necessary because

of the large memory requirement needed when calculating on large molecules.

5 Conclusions

We have developed a grid-based fast multipole method (GB-FMM) for optimizing numerical

molecular orbitals and implemented it in our fully numerical Hartree-Fock code for electronic

structure calculations on general molecules. The steep cusps in the vicinity of the nuclei are
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considered by using a double basis, where the steep part of the functions are expanded

in numerical one-center functions multiplied with spherical harmonics (bubbles), whereas

the remainder of the functions (cube) is expanded on a three-dimensional (3D) equidistant

grid. The Helmholtz kernel for the bubbles is integrated in spherical symmetry and a 3D

numerical integration is performed for the cube part. We showed in this work that the cube

integration can be made significantly faster by calculating the long-ranged contributions to

the Helmholtz kernel by using a generalized grid-based fast multipole method. Thus, the

time-consuming 3D integration has to be performed only for the near-field contributions.

The use of an equidistant tensorial grid leads to homogeneous data structures and simple

algorithms with little communication. The algorithms are well aimed for massively parallel

computations using for example GPGPUs. The numerical Hartree-Fock calculations are

shown to scale largely linearly with the number of computational nodes. By using a large

number of GPGPUs, the computational speed for the 3D integration can be made faster

than the rest of the calculations suggesting that the computational wall time can become

independent of the grid size.
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Appendix A

In this Appendix, we rigorously prove that the recursion relations for multipole expansions

lead to Eq. (22) and Eq. (23). The proof and the obtained recursion relations are very similar

to the ones derived for the general Helmholtz equation by Gumerov et al.53,54

A.1. Derivatives for Multipole Expansions

We mainly follow the proof by Gumerov et al., and merely discussing the differences caused by

replacing spherical Bessel and spherical Hankel functions (jn and hn) with modified spherical

Bessel functions of the first (Îl+ 1
2
) and second kind (K̂l+ 1

2
), respectively. For details of the

proof, we recommend the original papers by Gumerov et al.53–55.
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In the proof, the following differentiation operators in the spherical coordinates are used

∂z =
∂

∂z
= µ

∂

∂r
+

1− µ2

r

∂

∂µ
, µ = cos(θ). (31)

∂xy =
∂

∂x
+ i

∂

∂y
=

eiϕ

r
√

1− µ2
[(1− µ2)(r

∂

∂r
− µ ∂

∂µ
) + i

∂

∂ϕ
)],

∂xy =
∂

∂x
− i ∂

∂y
=

e−iϕ

r
√

1− µ2
[(1− µ2)(r

∂

∂r
− µ ∂

∂µ
)− i ∂

∂ϕ
)],

∇ = ix
∂

∂x
+ iy

∂

∂y
+ iz

∂

∂z
= ix

1

2
(∂xy + ∂xy)− iy

i

2
(∂xy − ∂xy)

=
1

2
(ix − iiy)∂xy +

1

2
(ix + iiy)∂xy + iz∂z

We define the functions Sml (r) and Rm
l (r) in Eq. (32) and Eq. (33), where the angular part is

expanded in complex spherical harmonics and the radial part is Bessel functions of first and

second kind, respectively. We note that the normalization constant Nm
l = N−ml and that

Pm
l (µ) = P−ml (µ). We use the shorter Nm

l , Pm
l (µ) instead of N

|m|
l and P

|m|
l in the proof.

Sml (r) = Nm
l K̂l+ 1

2
(κr)Pm

l (µ)eimϕ (32)

Rm
l (r) = Nm

l Îl+ 1
2
(κr)Pm

l (µ)eimϕ (33)

Theorem 1.

1

κ
∂zF

m
l (r) = aml−1F

m
l−1(r) + aml F

m
l+1, F = S,R, (34)

where

aml = 0 for l < |m|; aml = a
|m|
l =

√
(l + 1 + |m|)(l + 1− |m|)

(2l + 1)(2l + 3)
for l ≥ |m| (35)

29



Proof. We use following recursion relations for the Legendre polynomials

µPm
l (µ) =

1

(2l + 1)

[
(l +m)Pm

l−1(µ) + (l −m+ 1)Pm
l+1(µ)

]
, (36)

(1− µ2)dPm
l (µ) =

1

(2l + 1)

[
(l + 1)(l +m)Pm

l−1(µ)− l(l −m+ 1)Pm
l+1

]
(37)

and following for the spherical modified Bessel functions

fl−1(κr) =
l + 1

κr
fl(κr) + f

′

l (κr) (38)

fl+1(κr) = − l

κr
fl(κr) + f

′

l (κr)

where fl is (−1)lK̂l+ 1
2

or Îl+ 1
2

and the primes denote the first derivative. Using the first

expression in Eq. (31) and the expressions in Eq. (32) and Eq. (33) we obtain

1

κ
∂zF

m
l (r) = Nm

l e
imϕ
[
µPm

l (µ)f ′l (κr) +
fl(κr)

κr
(1− µ2)

dPm(µ)

dµ

]
=

Nm
l e

imϕ

(2l + 1)

{
(l + |m|)Pm

l−1(µ)
[
f ′l (κr) +

(l + 1)

κr

]
+(l − |m|+ 1)Pm

l+1(µ)
[
− l

κr
fl(κr) + f ′l (κr)

]}
=

κNm
l e

imϕ

(2l + 1)

{
(l + |m|)fl−1(κr)Pm

l−1(µ) + (l − |m|+ 1)Pm
l+1(µ)fl+1(κr)

}

where the following recursion relations can be identified,

1

κ
∂zF

m
l (r) =


−N0

0F
0
1 (r), l = 0

Nm
l

2l+1

[ (l+|m|)
Nm

l−1
Fm
l−1(r) + (l−|m|+1)

Nm
l+1

Fm
l+1(r)

]
, l ≥ 1

Thus for l ≥ 1,

aml =
Nm
l

Nm
l+1

(l − |m|+ 1)

(2l + 1)
=

√
(l + |m|+ 1)(l − |m|+ 1)

(2l + 1)(2l + 3)
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The final expression and the coefficients are the same as obtained for the Helmholtz

equation except for the sign between the first and the second term. This holds when the

other differential operators in Eq. (31) are applied to Sml (r) and Rm
l (r) in Eq. (32) and

Eq. (33). Therefore, proofs for Theorems 2, 3, and 4 are not given here. The reader who

wants to become acquainted with the other proofs can read the original articles by Gumerov

et al.53–55

Theorem 2. For κ 6= 0 and integer l and m

1

κ
∂xyF

m
l (r) = b−m−1

l+1 Fm+1
l+1 (r) + bml F

m+1
l−1 (r), (39)

where

bml =



√
(l−m−1)(l−m)
(2l−1)(2l+1)

, 0 ≤ m ≤ l,

−
√

(l−m−1)(l−m)
(2l−1)(2l+1)

, −l ≤ m < l,

0, |m| > l,

(40)

Theorem 3. For κ 6= 0 and integer l and m

1

κ
∂xyF

m
l (r) = bm−1

l+1 F
m−1
l+1 (r) + b−ml Fm−1

l−1 (r), (41)

where bml are defined in Eq. (40).

Theorem 4. For κ 6= 0 and integer l and m

1

κ
∇Fm

l (r) =
1

2
(ix − iiy)

[
b−m−1
l+1 Fm+1

l+1 (r) + bml F
m+1
l−1 (r)

]
(42)

+
1

2
(ix + iiy)

[
bm−1
l+1 F

m−1
l+1 (r) + b−ml Fm−1

l−1 (r)
]

+
1

2
iz
[
aml−1F

m
l−1(r) + aml F

m
l+1(r)

]
,

where aml and bml are defined in Eq. (39) and Eq. (40), respectively.
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A.2. Recurrence Relations for Translation Coefficients

In this subsection, we derive expressions for the coaxial reexpansion coefficients using the

derivatives presented in the previous subsection. We present proofs for the two theorems

that are needed for generating all coefficients (E|F )mln. The recursion relation in Theorem

5 allows us to increase n or l, whereas Theorem 6 provides a tool for increasing m. Since

the functions Rm
l and Sml in Eq. (32) and Eq. (33) follow the same recursion relation, the

expansion coefficients (E|F ) = (S|R), (S|S) or (R|R) can be obtained using the same

expression (Eq. (43))

Em
n (rp) = Em

n (rq + rpq) =
∞∑
l=0

l∑
s=−l

(E|F )s,ml,n (rpq)F
s
l (rq), (43)

where Em
n (rp), F

s
l (rq) are expansions of type S or R centered at points denoted by rp and

rq, respectively. rpq is the difference vector between the two centers. By denoting Dp as any

of the operators ∂/∂zp, ∂/∂xp ± i∂/∂yp with origin at rp one obtains for a fixed rpq

DpE
m
n (rp) = DqE

m
n (rq + rpq) =

∞∑
l=0

l∑
s=−l

(E|F )s,ml,n (rpq)DqF
s
l (rq), (44)

Theorem 5. For κ 6= 0 the following holds

amn−1(E|F )s,ml,n−1(rpq) + amn (E|F )s,ml,n+1(rpq) = asl (E|F )s,ml+1,n(rpq) + asl−1(E|F )s,ml−1,n(rpq) (45)

Proof. By setting Dp = κ−1∂/∂zp = κ−1∂/∂zq = Dq, and applying the operator to the

reexpansion coefficient of Eq. (43) one obtains according to Theorem 1

1

κ

∂

∂xp
Em
n (rp) =

∞∑
l=0

l∑
s=−l

[
amn−1(E|F )s,ml,n−1(rpq) + amn (E|F )s,ml,n+1(rpq)

]
F s
l (rq).

By applying Theorem 1 to the same equation but choosing expansion F l
m(rq) instead of the

32



reexpansion coefficients one yields

1

κ

∂

∂xp
Em
n (rp) =

∞∑
l=0

l∑
s=−l

(E|F )s,ml,n (rpq)
1

κ

∂

∂zq
F s
l (rq)

=
∞∑
l=0

l∑
s=−l

(E|F )s,ml,n (rpq)
[
asl−1F

s
l−1(rq) + aslF

s
l+1(rq)

]
=

∞∑
l=−1

l+1∑
s=−l−1

als(E|F )s,ml+1,n(rpq)F
s
l (rq) +

∞∑
l=1

l−1∑
s=−l+1

asl−1,n(E|F )s,ml−1,n(rpq)F
s
l (rq)

=
∞∑
l=0

l∑
s=−l

[
asl (E|F )s,ml+1,n(rpq) + asl−1(E|F )s,ml−1,n(rpq)

]
F s
l (rq),

where the double sums can be combined because the coefficients amn are zero when n < 0 or

m > |n|. The last line of the two previous expressions show that the theorem holds.

Theorem 6. For κ 6= 0 the following holds

bmn (E|F )s,m+1
l,n−1 (rpq)+b−m+1

n+1 (E|F )s,m+1
l,n+1 (rpq) = bs−1

l+1 (E|F )s−1,m
l+1,n (rpq)+b−sl (E|F )s−1,m

l−1,n (rpq) (46)

Proof. The proof is similar to the proof of Theorem 5. Now the operator ∂/∂z is replaced by

∂/∂x or ∂/∂y. The proof of Theorem 6 in Ref. 53 is the same, except for the sign between the

two terms on both sides of the expression, due to the sign differences in multipole reexpansion

coefficient recursions.

Although Theorems 5 and 6 are valid for the three types of reexpansion coefficients

[(R|R), (S|S) and (S|R)], it has to be emphasized that the signs are different in the respec-

tive recursion relations for (S|R) and (S|S) reexpansion coefficients. The explicit recursion

relations for (S|R) in Eq. (45) and Eq. (46) read

−amn−1(S|R)s,ml,n−1(rpq)− amn (S|R)s,ml,n+1(rpq) = asl (S|R)s,ml+1,n(rpq) + asl−1(S|R)s,ml−1,n(rpq) (47)
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and

−bmn (S|R)s,m+1
l,n−1 (rpq)− b−m+1

n+1 (S|R)s,m+1
l,n+1 (rpq) = bs−1

l+1 (S|R)s−1,m
l+1,n (rpq) + b−sl (S|R)s−1,m

l−1,n (rpq).

(48)

For (S|S) the corresponding recursion relations are

amn−1(S|S)s,ml,n−1(rpq) + amn (S|S)s,ml,n+1(rpq) = −asl (S|S)s,ml+1,n(rpq)− asl−1(S|S)s,ml−1,n(rpq) (49)

and

bmn (S|S)s,m+1
l,n−1 (rpq)+b

−m+1
n+1 (S|S)s,m+1

l,n+1 (rpq) = −bs−1
l+1 (S|S)s−1,m

l+1,n (rpq)−b−sl (S|S)s−1,m
l−1,n (rpq). (50)

The sign difference is caused by (−1)l, which is included in the definition of the second

modified spherical Bessel function K̂l+ 1
2

in Eq. (38). The sign factor affects the signs in the

expressions for the reexpansion coefficients of (S|S) and (S|R).

A.3. Initial Values for Translation Coefficients

The initial values of the (S|R)s,0l,0 coefficients can be easily obtained from recursion relations

above. Rewriting the definition for the reexpansion coefficients in Eq. (43) as

Smn (rp) = Smn (rq + rpq) =
∞∑
l=0

l∑
s=−l

(S|R)s,ml,n (rpq)Rs
l (rq), (51)

setting m = n = 0 and multiplying with 4κ√
π

one obtains

e−κrp

rp
=

4κ√
π
S0

0 (rp) =
4κ√
π
S0

0 (rq + rpq) =
4κ√
π

∞∑
l=0

l∑
s=−l

(S|R)s,0l,0 (rpq)Rs
l (rq). (52)
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Combining Eq. (7) and Eq. (17) one obtains

e−κrp

rp
= 8κ

∞∑
l=0

Îl+ 1
2
(κrq)K̂l+ 1

2
(κrpq)

l∑
m=−l

Yml (θq, ϕq)(−1)mY−ml (θpq, ϕpq) (53)

= 8κ
∞∑
l=0

l∑
m=−l

S−ml (−rpq)Rm
l (rq).

which together with Eq. (52) yield an expression for the initial values of the (S|R)s,0l,0 coeffi-

cients

(S|R)s,0l,0 (rpq) =
√

4πS−ml (−rpq) (54)

= (−1)m
√

4πK̂l+ 1
2
(κrpq)Y−ml (θpq, ϕpq).

For s = 0, the expression for translations along the z-axis (θpq = 0, ϕpq = 0) can be written

as

(S|R)0,0
l,0 (rpq) =

√
4πS0

l (−rpq) (55)

=
√

4πK̂l+ 1
2
(κrpq)Y0

l (0, 0).

=
√

2l + 1K̂l+ 1
2
(κrpq)

The (R|R)0,0
l,0 and S|S)0,0

l,0 values are

(R|R)0,0
l,0 (rpq) =

√
2l + 1Îl+ 1

2
(κrpq) (56)

and

(S|S)0,0
l,0 (rpq) =

√
2l + 1Îl+ 1

2
(κrpq). (57)
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Additionally, for all of the reexpansion coefficients, the following holds

(E|F )0,0
l,0 (rpq) = (−1)l(E|F )0,0

0,l . (58)

36


