RAIN ATTENUATION PREDICTION BASED ON RAINDROP SIZE DISTRIBUTION MEASUREMENT IN MALAYSIA

MANHAL JAAFAR JABER ALHILALI

A thesis submitted in fulfilment of the requirements for the award of the degree of
Doctor of Philosophy

School of Electrical Engineering
Faculty of Engineering
Universiti Teknologi Malaysia

SEPTEMBER 2018
To my beloved parents...
ACKNOWLEDGEMENT

I would like to acknowledge and extend my heartfelt gratitude to my main supervisor, Prof. Dr. Jafri Din, who made all this possible, for his valuable advice, guidance and support throughout this forming experience.

I gratefully acknowledge Prof. Carlo Capsoni of Politecnico di Milano, and Dr. Antonio Martellucci of Europian Space Agency, and Dr. Merhala Thurai of Colorado state university, and Dr Michael Schönhuber of Joanneum Research for providing valuable comments and sharing their knowledge Through the monthly online meetings. A special thanks to Felix Cuervo For the training he provide during the installation of the 2DVD and all the online help monitoring the equipment. Without their guidance, I would never have been able to write this thesis.

I am very grateful to the colleagues of the propagation group in Radio Communication Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia (UTM), especially Dr. Lam Hong Yin for his valuable assistance, encouragement and comments during my entire study. Sincere thanks to Mr.Yazid for his help during installation and maintainability of the equipments at PI8, UTM.

My heartfelt thanks and appreciation go to my parents, family and friends for their support over all these years. Thank you for everything you have done for me.

Finally, I acknowledge Universiti Teknologi Malaysia (UTM) and Ministry of Education Malaysia for providing support throughout my entire PhD program. I am grateful to all of my colleagues and others who provided assistance on various occasions; unfortunately, it is not possible to name all of them in my limited space.
ABSTRACT

Attenuation due to rain at frequencies above 10 GHz in temperate climates and above 7 GHz in tropical ones is a critical factor for both terrestrial and satellite link system designers. Knowledge of the rain drop size distribution (DSD) is essential for an accurate estimate of the attenuation experienced by electromagnetic waves traveling through the rain. Large uncertainties remain in the variability of DSDs and their dependence on rainfall types and climatological regimes. Such uncertainties are much more critical in the equatorial region, where there are only limited experimental results of DSD data. In this study, a two-year measurement of DSD, using a 2D video distrometer (2DVD) installed for the first time in UTM Johor Malaysia, has been used. The 2DVD is an advanced instrument that not only can measure large ranges of DSD but also can capture the raindrop shape, axial ratio, oscillation mode and drop fall velocity, so it can provide a higher accuracy of estimations than any other instrument. A millimeter wave (mmwave) link operating at 38 GHz and a meteorological station installed at the same location, as well as earlier DSD data from Kuala Lumpur, are used to validate the findings. Based on the statistical analysis of the measured data samples, DSD parameters are computed using T-Matrix calculations. Specific attenuation of mmwave signals is presented for vertical and horizontal polarisations. Satisfactory results are achieved in comparison with other prediction models. Further, the study separates stratiform and convective rain types using the characteristics of the main DSD parameters. Seasonal variations are studied to elucidate characteristics of DSD in the Asian monsoon region. It is found that DSDs are affected by diurnal convective cycles and seasonal variations in precipitation characteristics. The implications of the variations on specific attenuation are presented. The results of this study will be helpful for the proper design and allocation of the wireless communication system to achieve the expected quality of service (QoS) in Malaysia.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xx</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxi</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1
1.1 Research Background 1
1.2 Problem Statement 3
1.3 Research Objectives 4
1.4 Scope of Work 5
1.5 Research Contributions 5
1.6 Thesis Organization 6

2 LITERATURE REVIEW 8
2.1 Introduction 8
2.2 Electromagnetic Wave Propagation 8
 2.2.1 Propagation in Free Space 9
 2.2.2 Atmospheric Effects 10
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>The Physics of Rain</td>
<td>12</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Rain Microphysical Properties</td>
<td>14</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Rainfall Rate</td>
<td>17</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Absorption and Scattering of Radio Waves by Raindrops</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Raindrop Size Distribution Models</td>
<td>18</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Laws and Parsons Drop Size Distribution Model</td>
<td>19</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Marshall and Palmer Drop Size Distribution Model</td>
<td>20</td>
</tr>
<tr>
<td>2.4.3</td>
<td>The Modified Gamma Drop Size Distribution Model</td>
<td>21</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Weibull Drop Size Distribution Model</td>
<td>23</td>
</tr>
<tr>
<td>2.4.5</td>
<td>The Joss Drop Size Distribution Model</td>
<td>23</td>
</tr>
<tr>
<td>2.4.6</td>
<td>Lognormal Drop Size Distribution Model</td>
<td>24</td>
</tr>
<tr>
<td>2.4.7</td>
<td>Comparison of Distribution Models</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Method for Parameters Estimation</td>
<td>25</td>
</tr>
<tr>
<td>2.6</td>
<td>The Specific Rain Attenuation</td>
<td>27</td>
</tr>
<tr>
<td>2.7</td>
<td>Review of Rainfall Attenuation Prediction Models</td>
<td>28</td>
</tr>
<tr>
<td>2.7.1</td>
<td>The ITU-R Rain Attenuation Model</td>
<td>28</td>
</tr>
<tr>
<td>2.7.2</td>
<td>The Crane Rain Attenuation Model</td>
<td>29</td>
</tr>
<tr>
<td>2.8</td>
<td>Malaysian Climate</td>
<td>31</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Seasonal Variation</td>
<td>32</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Diurnal Variation</td>
<td>33</td>
</tr>
<tr>
<td>2.9</td>
<td>Summary</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>METHODOLOGY</td>
<td>36</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>Overview of Methodology</td>
<td>36</td>
</tr>
<tr>
<td>3.3</td>
<td>The 2D Video Disdrometer</td>
<td>37</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Principle of Measurement by 2D-Video-Disdrometer</td>
<td>39</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Measurable and Derived Quantities</td>
<td>41</td>
</tr>
</tbody>
</table>
3.3.3 Specifications and Current Implementation

3.4 The 2D Video Disdrometer Maintenance and Calibration

3.4.1 Evaluating the Background Video Signal

3.4.2 Adjusting the Background Video Signal Level

3.4.3 Check Coarse Alignment of the Optical Planes

3.4.4 Precise Measurement of the Optical Plane Distances

3.4.5 Cleaning Optical Elements

3.4.6 Changing Illumination Unit Lamps

3.5 The 2D Video Disdrometer Software

3.5.1 Display and Analysis of Raw Data

3.5.2 Display and Analysis of Hydrometeor data

3.5.3 Raindrop Orientation Software

3.6 The Automated Weather Station

3.7 Data Collection, Processing and Analysis

3.8 Summary

4 RAINFALL MICROPHYSICAL OBSERVATIONS

4.1 Introduction

4.2 Raindrop shapes

4.3 Classification of Rain Types

4.4 Seasonal and Diurnal Variation Characteristics

4.5 Summary

5 MODELLING OF PRECIPITATION AND RAIN ATTENUATION

5.1 Introduction

5.2 Composite Raindrop Spectra
5.3 Computation of the Specific Attenuation due to Rain
5.4 Comparison of Attenuation Measurements
5.5 The Critical Diameters for Rainfall Attenuation
5.6 Summary

6 CONCLUSIONS
6.1 Conclusions
6.2 Future Works

REFERENCES
Appendices A – C
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Joss DSD constants</td>
<td>24</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison</td>
<td>25</td>
</tr>
<tr>
<td>3.1</td>
<td>2DVD performance specifications</td>
<td>44</td>
</tr>
<tr>
<td>3.2</td>
<td>Recorded-to-total time ratio in percent on a yearly basis for the period July 2015 to June 2017.</td>
<td>68</td>
</tr>
<tr>
<td>4.1</td>
<td>Frequency of Precipitation of the Classified Rain Types</td>
<td>76</td>
</tr>
<tr>
<td>4.2</td>
<td>Mean, variance ((\text{Var})), standard deviation ((\text{Std})), min, max, and 5th and 95th percentiles of integral rain parameters ((D_{\text{MAX}}), (D_0), (\log_{10} N_W), and liquid water content (LWC)) at the three research locations (Johor, Gan, Manus).</td>
<td>80</td>
</tr>
<tr>
<td>4.3</td>
<td>Integral Rain Parameters Derived for different monsoons period</td>
<td>82</td>
</tr>
<tr>
<td>5.1</td>
<td>Integral Rain Parameters for different rain types</td>
<td>88</td>
</tr>
<tr>
<td>5.2</td>
<td>Statistics of DSD parameters derived from disdrometer data</td>
<td>88</td>
</tr>
<tr>
<td>5.3</td>
<td>Numerical values of the extinction cross sections power law coefficients at frequency of 1 to 100 GHz</td>
<td>91</td>
</tr>
<tr>
<td>5.4</td>
<td>Frequency-dependent coefficients for estimating specific rain attenuation.</td>
<td>94</td>
</tr>
<tr>
<td>5.5</td>
<td>Comparison of the 2DVD and ITU-R Recommendation P.838-3 estimations of rain-specific attenuation dB/km at 38 GHz for (H) and (V) polarization, presented according to rain rate mm/h.</td>
<td>98</td>
</tr>
<tr>
<td>5.6</td>
<td>Specific rain attenuation at different frequencies at (R= 3, 30) mm/h.</td>
<td>100</td>
</tr>
</tbody>
</table>
5.7 The peak diameters that contributed for maximum attenuation.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Specific attenuation caused by oxygen and water vapour at microwave and millimetre wave frequencies (Crane, 1996)</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>computed shapes for D=1 to 6 mm with origin at the center of mass, with dashed circles of the same diameter for comparison (Beard et al., 2010)</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Mean and 95% confidence interval of axial ratio to Drop size from Thurai and Bringi (2005) 80 m disdrometer measurement compared with Beard and Chuang (1987) upper and lower bounds (Thurai and Bringi, 2005)</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Rainfall rate exceeded for 0.01% of an average year (ITU-R Study Group 3, 2012).</td>
<td>31</td>
</tr>
<tr>
<td>2.6</td>
<td>Seasonal wind direction: a). Northeast monsoon season, b). Southwest monsoon season (Abdullah et al., 2011).</td>
<td>33</td>
</tr>
<tr>
<td>2.7</td>
<td>Seasonal variation of monthly accumulated rainfall and temperature in Singapore, average of 1981-2000 data are extracted from Chronological Scientific Tables (Kozu et al., 2006)</td>
<td>33</td>
</tr>
<tr>
<td>2.8</td>
<td>Diurnal variation of rainfall during a 2-hour period for four monsoon seasons in Singapore (Kozu et al., 2006).</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow diagram of research methodology</td>
<td>37</td>
</tr>
</tbody>
</table>
3.2 Flow diagram for obtaining the specific attenuation from DSD
3.3 Measurement principle of the Compact 2D-Video-Distrometer (Schönhuber et al., 2007).
3.4 components of the 2D-Video-Distrometer (Schönhuber et al., 2007).
3.5 Interior view of the outdoor unit.
3.6 outdoor unit of the 2DVD
3.7 Example for a very smooth and even video signal within acceptable limits.
3.8 Placing a hexagon key roughly into the middle of the Fresnel lens.
3.9 Example for a video signal that is too low (cf. left edge of the video signal).
3.10 Example for a video signal exceeding the norm video level and thus being not suitable for normalisation.
3.11 E Alignment tool for the compact 2D-Video-Distrometer, the two parallel slits used for determining the coarse alignment of the optical planes and the slit’s vertical division bars.
3.12 Pattern for throwing the steel spheres during the plane distance measurements installed in position over the sampling area.
3.13 Cleaning the mirror contained in the illumination unit.
3.14 Cleaning the slit plates.
3.15 Using a pair of tongs to extract the old light bulb.
3.16 Inserting the new lamp into the socket.
3.17 Asynchronous View of raw data by VIEW_AB.
3.18 Synchronous View of raw data by VIEW_AB.
3.19 The main display of VIEW_HYD to show Hydrometeor data.
3.20 The Rainrate versus Time (Full Screen) display of VIEW_HYD.
3.21 Drop Size Distribution (Full Screen) display of VIEW_HYD.
3.22 Vertical Velocity vs. Diameter (Full Screen) display of VIEW_HYD.
3.23 Horizontal Velocity vs. Diameter (Full Screen) display of VIEW_HYD.

3.24 Oblateness versus Diameter (Full Screen) display of VIEW_HYD.

3.25 Hydrometeor's front and side view(Full Screen) display of VIEW_HYD.

3.26 8 mm sphere with horizontal motion.

3.27 Same as Figure 3.26 after correction for distortion by horizontal motion.

3.28 Automated weather station in UTM

3.29 One year of measurements. (a) Daily rainy minutes (red lines separate the monsoons based on wind direction and time period), (b) Daily wind direction in degrees, (c) monthly accumulated rain amount in mm

3.30 Monthly measured rainfall and temperature averaged over 2 years of measurements.

3.31 CCDF of rainfall (2 year averaged) using disdrometer and AWS measurements, in comparison with ITU-R

4.1 Snap-shot of front and side view of a drop with D=0.5 mm.

4.2 Snap-shot of front and side views of a drop with D=0.66 mm.

4.3 Snap-shot of front and side view of a drop with D=0.77 mm.

4.4 Snap-shot of front and side view of a drop with D=0.9 mm.

4.5 Snap-shot of front and side view of a drop with D=1.01 mm.

4.6 Snap-shot of front and side view of a drop with D=1.48 mm.

4.7 Snap-shot of front and side view of a drop with D=1.52 mm.

4.8 Snap-shot of front and side view of a drop with D=2 mm.

4.9 Snap-shot of front and side view of a drop with D=3.07 mm.

4.10 Snap-shot of front and side view of a drop with D=4.07 mm.

4.11 Snap-shot of front and side view of a drop with D=5.18 mm.

4.12 Snap-shot of front and side view of a drop with D=5.35 mm.

4.13 Histogram of D_m and $\log_{10} N_w$ for (a) the total categorized data set, (b) convective subset, (c) stratiform subset, and (d) transitional subset. Mean values, standard deviation (STD), and skewness (SK) are also shown in the respective panels.
4.14 Location of Johor, Gan Island, Manus Island, with other location of DSD research in the South-east Asia region.

4.15 Normalised histograms of measured 2DVD DSD data in the three research locations (Johor, Gan, Manus): (a) maximum diameter D_{MAX} (mm), (b) median diameter D_0 (mm), and (c) number concentration $\log_{10} N_W$ (unitless).

4.16 Scatterplot of D_m and $\log_{10} N_w$ for convective (red filled circles), stratiform (blue filled circles), and transitional (purple filled circles) rain types. The two gray rectangles correspond to the maritime and continental convective clusters reported by Bringi et al. (2003). The orange dashed line is that of Bringi et al. (2003) for stratiform rain.

4.17 The percentage occurrence of different rain types during different precipitation periods.

4.18 Diurnal variation of rainfall during a 2-hour period for the four monsoon seasons.

4.19 Averaged DSDs in four monsoon seasons around 3 mm/h and 30 mm/h ranges.

4.20 Scatterplot of D_m and $\log_{10} N_w$ for NE (red filled circles), SW (blue filled circles), and Inter-monsoons (black filled circles) seasons.

5.1 Composite raindrop spectrum curves (fitted to the observations) for the convective, the stratiform, and the transitional rain types, as well as for the total categorized data set.

5.2 Relationship between natural raindrop mean axial ratio and equivalent diameter in red, compared Beard-Chung model Beard and Chuang (1987), with the upper and lower bounds as dashed lines.

5.3 Example of 2DVD measurements of one event at 38 GHz; (a) one-minute rainfall intensity, (b) rain-specific attenuation for H Polarization, (c) rain-specific attenuation for V polarization and (d) differential rain-specific attenuation.
5.4 Specific attenuation from 2DVD in natural rain, with derived power law fit, compared with other fits from the ITU-R Recommendation P.838-3 ITU (2005) Kuala Lumpur data Lam et al. (2012) and Singapore data Kumar et al. (2010).

5.5 Comparison of rain-specific attenuation CCDFs of H Polarization at 38 GHz.

5.6 Specific rain attenuation at 24 and 85 GHz for both V and H polarisation.

5.7 Seasonal mean Specific attenuation against the Drop Size Diameter at 38Ghz.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2DVD</td>
<td>2D Video Distrometer</td>
</tr>
<tr>
<td>DSD</td>
<td>Drop size Distribution</td>
</tr>
<tr>
<td>EHF</td>
<td>Extremely High Frequency</td>
</tr>
<tr>
<td>FSA</td>
<td>Forward Scattering Amplitude</td>
</tr>
<tr>
<td>HF</td>
<td>High Frequency</td>
</tr>
<tr>
<td>IUT</td>
<td>Indoor User Terminal</td>
</tr>
<tr>
<td>LF</td>
<td>Low Frequency</td>
</tr>
<tr>
<td>MJO</td>
<td>Maddan - Julian Oscillation</td>
</tr>
<tr>
<td>NE</td>
<td>Northeast</td>
</tr>
<tr>
<td>OU</td>
<td>Outdoor Unit</td>
</tr>
<tr>
<td>PSU</td>
<td>Power Supply Unit</td>
</tr>
<tr>
<td>QPE</td>
<td>Quantitative Precipitation Measurements</td>
</tr>
<tr>
<td>QPF</td>
<td>Quantitative Precipitation Forecast</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunication Union</td>
</tr>
<tr>
<td>UTM</td>
<td>University Teknologi Malaysia</td>
</tr>
<tr>
<td>ITCZ</td>
<td>Inter Tropical Convergence Zone</td>
</tr>
<tr>
<td>SW</td>
<td>Southwest</td>
</tr>
<tr>
<td>preNE</td>
<td>Pre-Northeast</td>
</tr>
<tr>
<td>preSW</td>
<td>Pre-Southwest</td>
</tr>
<tr>
<td>PDF</td>
<td>Probability Density Function</td>
</tr>
<tr>
<td>M-P</td>
<td>Marshall-Palmer</td>
</tr>
<tr>
<td>MoM</td>
<td>Method of Moments</td>
</tr>
<tr>
<td>MLE</td>
<td>Max likelihood estimation</td>
</tr>
<tr>
<td>T-C</td>
<td>Two component rain attenuation model</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>CCDF</td>
<td>Complimentary Cumulative Distribution Function</td>
</tr>
<tr>
<td>XPD</td>
<td>Cross-Polar Discrimination</td>
</tr>
<tr>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>STD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>Sk</td>
<td>Skewness</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>Specific attenuation</td>
</tr>
<tr>
<td>σ</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>λ</td>
<td>Wave Length</td>
</tr>
<tr>
<td>R</td>
<td>Rain Rate</td>
</tr>
<tr>
<td>P</td>
<td>Power</td>
</tr>
<tr>
<td>A_R</td>
<td>Effective aperture</td>
</tr>
<tr>
<td>$N(D)$</td>
<td>Raindrop size Distribution Function</td>
</tr>
<tr>
<td>D_m</td>
<td>Mass Weighted Diameter</td>
</tr>
<tr>
<td>D_{max}</td>
<td>Maximum Drop Size</td>
</tr>
<tr>
<td>D_i</td>
<td>Drop size in bin i</td>
</tr>
<tr>
<td>D_0</td>
<td>Median Diameter</td>
</tr>
<tr>
<td>d_a</td>
<td>Size Interval</td>
</tr>
<tr>
<td>N_0</td>
<td>Maximum Raindrop size Distribution</td>
</tr>
<tr>
<td>μ</td>
<td>Mean Shape Parameter</td>
</tr>
<tr>
<td>Λ</td>
<td>Slope Parameter</td>
</tr>
<tr>
<td>N_t</td>
<td>Total Concentration</td>
</tr>
<tr>
<td>N_w</td>
<td>Generalized Intercept Parameter</td>
</tr>
<tr>
<td>f_h</td>
<td>Horizontal Scattering Amplitude</td>
</tr>
<tr>
<td>f_v</td>
<td>Vertical Scattering Amplitude</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of Publications</td>
<td>117</td>
</tr>
<tr>
<td>B</td>
<td>2DVD IUT Software Manual</td>
<td>118</td>
</tr>
<tr>
<td>C</td>
<td>2DVD Raindrop Orientation Software Package</td>
<td>119</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Research Background

The significant developments in the radar, earth-space and terrestrial communications, resulted in the development of the wireless transmission media, evolving over low frequency (LF), high frequency (HF), extremely high frequency (EHF) radio, to microwave and millimetre wave transmission, to free space optics, each having its distinct properties, advantages and disadvantages (Proakis et al., 1994; Tomasi, 1987). The availability of wider bandwidths for carrying wireless signals at the millimetre wave spectrum is of major interest for the industry. Such bandwidths are useful for many applications, such as improved anti-jam performance for secure communications, video distribution, high speed data transmission and smaller component sizes (Marcus and Pattan, 2005).

These advantages can however be offset very easily due to increased propagation problems as the frequency of operation increases. Several propagation mechanisms affect these systems performances and constitute a major concern to system planners and designers. These mechanisms include ice depolarization, gaseous attenuation, sky noise, cloud and fog attenuation, rain attenuation and amplitude scintillation. However, attenuation due to rain is the most severe (Crane, 1980; Strangeways, 2006), especially at frequencies above 10 GHz, and particularly in tropical and equatorial regions like Malaysia (Lam et al., 2015). In fact, precipitation causes attenuation due to scattering and absorption of the electromagnetic energy and leads to significant performance degradation.
To understand how this attenuation is influenced by rain parameters, a detailed understanding of the inherent raindrop size distributions (DSD) and the corresponding scattering mechanisms at these operating frequencies is essential (Townsend et al., 2009). DSD is a fundamental microphysical property of precipitation. Understanding the variability of DSD is important for improving quantitative precipitation estimation (QPE) and microphysics parameterization in numerical weather prediction models for accurate quantitative precipitation forecast (QPF) (Milbrandt and Yau, 2005; Raupach and Berne, 2015; Zhang et al., 2006).

The differences in DSD characteristics have been studied around the world using surface disdrometer measurements and are known to vary both spatially and temporally across different precipitation types, atmospheric conditions, geographical locations or climatic regimes, and orography (Thurai et al., 2007; Tokay and Short, 1996; Ulbrich, 1983; Zhang et al., 2006). DSDs are also affected by diurnal convective cycles and seasonal variations in precipitation characteristics. The probable duration of rain, the time of day when it is likely to occur, and how frequently it happens are all important aspects to consider in the design of the wireless communication systems (Allnutt, 1989). It’s also found that the climate in the tropics is primarily organized by the intertropical convergence zone and the Madden-Julian oscillation (MJO), and is deeply influenced by monsoons (Zhang et al., 2006).

To that aim, numerous propagation measurement campaigns have been actively carried out to characterise behavior of DSD variation and the resulted rain attenuation experienced by wireless links. However, most of the studies have been concentrated in temperate regions (García-Rubia et al., 2013; Matricciani and Pawlina, 2000; Van de Kamp, 2003) that exhibit different DSD characteristics compared with tropical and equatorial regions. Therefore, characteristics of rain attenuation in temperate regions does not represent the characteristics of tropical and equatorial regions (ITU-R Study Group 3, 2012). Although several propagation studies have been carried in the past few decades at several locations in heavy rain regions such as Brazil, India, Indonesia (Castanet, 2011; Das et al., 2010; Marzuki et al., 2010) and Singapore and even Malaysia (Kumar, 2010; Lam, 2012). However, the features of precipitation in such areas are often dominated by local climatic peculiarities; furthermore, drop
size distribution measurement are usually expensive and time consuming and older disdrometer types underestimated the lower end of the distribution due its limitations (Thurai et al., 2016). Additionally, identifying the dominant modes of tropical rain variability still need to be investigated, causing a major source of uncertainty in ground-based, ship-borne, and spaceborne radar rainfall estimation (Raupach and Berne, 2015).

Therefore, this study is carried to explore those crucial statistics in an equatorial site by exploiting the DSD measurements carried out at Universiti Teknologi Malaysia (UTM) in Johor Bahru, Malaysia. The work seeks to determine the regional raindrop size distribution as well as present the statistical variations, and investigate it's corresponding specific attenuation.

1.2 Problem Statement

As mentioned earlier, the differences in DSD characteristics play a major role in the design of wireless communications especially millimetre wave systems. Therefore, several problem statements to be addressed in this thesis work are summarized below:

The knowledge of DSD is essential to make an accurate estimation of the attenuation experienced by electromagnetic waves travelling through rain. Although there have been numerous studies to understand, parametrize and estimate DSD from various locations, however, large uncertainties remain in variability of DSD and their dependence on rainfall types and climatological regimes. (Thurai et al., 2009). Such uncertainties are much more critical in equatorial region where there are only limited experimental results of DSD data. Therefore, it is worthwhile to further investigate and estimate the natural characteristics of DSD in Malaysia with respect to the experimental database available and several well-known DSD models from the established literature.

Besides the estimation of natural characteristics of DSD, attenuation of millimetre wave signal due to rain also can be estimated from the knowledge of rain
rates as recommended by ITU-R Recommendation (ITU, 2005). Such estimation provides specific attenuation values directly from the rainfall intensity without the needs of measured DSD data. However, employment of ITU-R recommendation P.838-3 might marked some discrepancies with respect to the calculated values derived from the measured DSD collected from different climatic region (Thurai et al., 2007). Hence, in order to estimate reliable specific attenuation values, it is therefore of key importance to carefully assess the relationship between specific attenuation and rainfall rate from this climatic region directly inferred from the measured DSD.

It is also crucial to investigates the influence of critical seasonal and diurnal variation of the in Malaysia localized climate. on the estimations of the attenuation to help provide better mitigation technique and provide high quality of service.

1.3 Research Objectives

Due to the technology development and the problems mentioned in the previous section, the main goal of this study is to provide valuable information for the millimeter wave propagation channel during rain in Equatorial regions, specifically Malaysia, other main objective are as listed below:

i To characterize the Raindrop Size Distribution (DSD), in Johor, Malaysia, and describe its seasonal variations and its dependency on precipitation types.

ii To analyze specific attenuation, and provide its relationship coefficients with rainfall rate based on the measured DSD.

iii To validate the performance of millimeter wave propagation, with respect to the characteristics of precipitation in Malaysia.
1.4 Scope of Work

The scope of this research consist of two parts, DSD investigation with detailed statistical analysis of it’s variation providing all the detailed characteristics of rain physics, and measure the specific attenuation directly from the DSD measurement using advanced T-Matrix Technique, to achieve that the scope points are:

i Analyze and characterize raindrop size distribution from the two-year 2D video disdrometer measurement, collected at Johor, Malaysia.

ii Statistical analyses of raindrop size distribution parameters directly from the measured DSD database, and compare it to other equatorial locations.

iii Inferred the specific attenuation due to precipitation for the millimeter wave frequencies and derived the coefficient of specific attenuation power law model.

iv Analyze the local climatology characteristics (i.e. seasonal and diurnal variations) in equatorial Malaysia based on the one-minute rainfall rate data-set recorded for 2 years.

1.5 Research Contributions

The need for higher band width has urged the use of frequencies above 10 GHz which is in tropical and equatorial regions frequently suffer from severe propagation impairments mainly due to rain. In order to over come these issues, accurate propagation channel models based on accurate estimations are required. To this aim this work mainly focused on characterizing and providing all possible information on the DSD inferred directly form 2DVD data and their variations with detailed classifications and modeling. The following are the points identified to be the main contribution for the requirement of propagation channel modeling:

i The first contribution concerned the statistical properties of raindrop size distribution parameters identified through the local measured raindrop size distribution in equatorial Malaysia. Such parameters are particular
importance for the calculation of specific rain attenuation through raindrop size
distributions models for the prediction of rain attenuation.

ii The second contribution is the determination of new power-law relationship
coefficients between specific attenuation and rainfall rate, which are directly
derived from the local disdrometer measurement in the heavy rain region.
These new coefficients allowed inferring the values of specific rain attenuation
in-both vertical and horizontal polarization.

iii Third Contribution is to provide detailed data on the seasonal and diurnal
variations of DSD parameters which can help not only propagation studies, but
can be used for meteorological analysis to help better understand the climate in
Equatorial regions.

1.6 Thesis Organization

This thesis is presented in five chapters. This chapter presents a brief research
background of the investigated topic, identifying the motivations which have led to this
research. The scientific objectives and the key contribution in this work are outlined
and highlighted with a clear identification of the novel content in the research. The
remaining chapters of the thesis are organized as follows.

Chapter 2 begins by discussing the electromagnetic propagation and the
atmospheric effect. Detailed physical and microp-physical properties of rain drops
are described, followed by a review of raindrop size distribution (DSD) together with
its models and the characteristics of specific attenuation and the models used in it’s
prediction. Main features of climatology characteristic in tropical and equatorial
regions, concentrating, in particular on equatorial Malaysia also discussed.

Chapter 3 investigates rain attenuation in an equatorial site by exploiting two
years of rain Drop Size Distribution (DSD) measurements collected by a disdrometer
in Johor, Malaysia. The methodology of the work is presented in this chapter, the
instruments used and the detail maintenance and calibration process. The chapter
further introduce data processing steps, the calculation of the main parameters, and database validation.

Chapter 4 focuses on the main characteristic of rain and its microphysical properties in tropical and equatorial regions, concentrating in particular on Johor, Malaysia. Details on the classification of rain types and seasonal variations are given.

Chapter 5 provides an analytical approach to raindrop size distribution and its effect on specific rain attenuation. Similarly, the influence of the disdrometers on specific rain attenuation over millimeter links in Malaysia is also analyzed. On the basis of the different rainfall regimes.

Chapter 6 presents the conclusion and future works. The major works in this thesis are concluded and summarized, followed by some constructive recommendations on the further work given.
REFERENCES

