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Abstract 

Due to digitalization trends and rapid technological development, cars are becoming more 
technologically advanced with an on-going trend towards fully automated vehicles. Understanding 
possible changes in user preferences and the impact on mobility of autonomous driving is of great 
importance for policy and transport planning authorities in light of urbanization trends, demographic 
change, and environmental challenges. Despite the relevance of the topic, there are limited empirical 
insights on user preferences, once autonomous driving becomes available. To close this gap and 
analyze the potential changes in the value of travel time savings (VTTS) resulting from the availability 
of autonomous driving, an online survey using revealed and stated preference methods was conducted. 
In the survey user preferences toward currently available and future available modes of transportation 
were assessed using two discrete choice experiments. VTTS calculations are based on an estimated 
joint mixed logit model. The results of the study show an average VTTS reduction of 41% for 
autonomous driving compared to driving a conventional car, however, only for commuting trips. For 
leisure or shopping trips, no significant changes in the VTTS were found. Considering shared 
autonomous vehicles (SAV), the results indicate that using SAV is perceived as a less attractive option 
than using a privately owned autonomous vehicle. Translating the results into policy implications, a 
potential conflict between individual benefits of autonomous driving and societal goals is identified. 
Finally, policy recommendations are discussed.    
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1. Introduction  

In recent decades, the trends towards digitalisation and rapid developments in technology have led to 
ever-increasing automation in all areas of daily life. As a result, road vehicles, too, are becoming more 
technologically advanced in their automation and connectivity and there is a continuing trend towards 
fully autonomous vehicles (Fagnant and Kockelman, 2015). In terms of automated driving functions, 
vehicles can be classified into five levels – ranging from driver assistance and partial automation 
(level 1 and 2), through conditional automation (level 3) and high automation (level 4) to full 
automation (level 5), in other words potentially driverless (SAE, 2014). The highest level of 
automation (level 5) can enable new mobility services (Lenz and Fraedrich, 2016), such as shared 
autonomous vehicles (SAVs). These vehicles are not privately owned by a single person, but provided 
by a company. They can be then used on demand - either as individual autonomous car-sharing 
services, similar to current taxi services, or as an autonomous ride-sharing service, where people with 
destinations near each other can share the ride, having the advantage of lower cost per kilometre travel, 
although with somewhat higher waiting times than those associated with autonomous car-sharing 
services (Kröger and Kickhöfer, 2017). Both kinds of services could complement traditional public 
transport (e.g. solving the first-/last-mile problem), or even, where it is deficient today, act as a 
substitute (Yap et al., 2016, Mosquet et al., 2015, Ohnemus and Perl, 2016). From a user perspective, 
these services could allow true door-to-door trips for individuals not having access to a car today 
(Burns et al., 2013).  
 
There are high expectations placed on autonomous driving, amongst which are: a higher level of safety 
on the roads; reduced congestion; provision of individual mobility to people currently not allowed or 
not able to drive; and enabling people who use a car to undertake other activities, while also travelling 
in a more comfortable way (Trommer et al., 2016, Anderson et al., 2014, Litman, 2014). At the same 
time, as travel time can be spent in a more pleasurable or more productive way, using a car might 
become more attractive. Moreover, considering a use case where autonomous vehicles (AVs) make up 
part of a car-sharing fleet, the use of individual mobility options might become attractive for an even 
broader group of users who cannot – or do not wish to – own a private vehicle. Consequently, if using 
a motor vehicle becomes more attractive and, additionally, available to a broader user group, the result 
will be more vehicles on the road and more vehicle-kilometres travelled (Trommer et al., 2016, 
Gucwa, 2014, Childress et al., 2014, Harper et al., 2016). Thus, despite the potential benefits of 
autonomous driving, there is also a risk of causing additional traffic and hence adding to, rather than 
resolving, transport-related challenges.  
 
In summary, it is expected that autonomous driving may significantly change travel behaviour and 
mode choice, potentially transforming our understanding of mobility in a way that is hard to predict at 
this point. At the same time, understanding user preferences, once autonomous driving is available, 
becomes increasingly relevant in the light of urbanisation trends, demographic change, and 
environmental challenges. Even though vehicles with level 5 automation will potentially enter the 
market no sooner than 2027 (ERTRAC, 2015, Dokic et al., 2015, PWC, 2015) and it might take 
decades for the technology to reach a substantial penetration rate (Trommer et al., 2018, 
Nieuwenhuijsen et al., 2018, Litman, 2018), anticipating its future impact on mobility is crucial for 
developing a desirable transition pathway of the technology. Along these lines, offering early insights 
into the potential impact of automation on user preferences is of great importance for policy and 
transport planning authorities. Those insights are crucial to design strategies and in evaluating future 
possible scenarios, in order to integrate AVs into transport systems in a way that allows for their full 
potential to unfold, while preventing, or at least mitigating, potential negative developments. 
 
The examination of mode choice preferences in theoretical and empirical studies in transport usually 

centres around estimating the value of travel-time savings (VTTS). The concept of VTTS reflects the 

reality, derived from microeconomic theory, that people take transport decisions in the context of a 

constrained time budget – this constraint determines how people choose whether they spend their time 

on one activity or on another, and how much they would pay to avoid having to spend time on a 

particular activity (Hensher, 2011). The subjective VTTS is therefore defined as the willingness to pay 

for one unit of travel time saving (Jara-Diaz, 2000). In the context of autonomous driving, it is 
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reasonable to assume that the perception of time spent in a vehicle might change (from present-day 

values) in a positive way – that is, the VTTS for autonomous driving might decrease (i.e. the disutility 

of travel time become less negative). This is because people can spend their time in a more pleasurable 

or productive way; and, moreover, the stress level in tiresome traffic situations, such as congestion or 

monotonous routine commuting trips, might reduce when riding autonomously (Becker and Axhausen, 

2016). There thus arises the question, when considering the impact of these changes on travel 

behaviour and mode choice: what variation in the VTTS can be expected, once autonomous driving is 

available? Furthermore, estimating the VTTS for new mobility options, such as SAVs, becomes ever 

more relevant when forecasting mode choice decisions. 
 
There is a large body of theoretical and empirical literature dedicated to the estimation of the VTTS 

for the currently available modes of transport as national studies on mode choices and the role of 

VTTS (e.g., Axhausen et al., 2015, Arup, ITS Leeds and Accent, 2015) are an important base for 

transport infrastructure and policy planning. Results from previous studies on VTTS show that the 

values differ between modes of transport, according to trip purposes, and depending on the trip 

distance; they are also affected by specific characteristics of the route, such as the level of congestion 

or the need to change mode or vehicle en route (Abrantes and Wardman, 2011, Shires and de Jong, 

2009). For instance, the VTTS for commuting trips is found to be higher than that for leisure or 

shopping trips, and driving in congestion is associated with a higher VTTS than driving in a free-

flowing traffic (Abrantes and Wardman, 2011). Also, car passengers are found to have a lower VTTS 

than car drivers (Mackie et al., 2003). Therefore, when considering how automation might affect 

VTTSs, we can expect that there will be a reduction in the VTTS since users travel as passengers in a 

way that is similar to using taxis or taking public transport (although in fact AVs will exhibit 

substantial advantages over these alternatives, in terms of privacy afforded and the range of activities 

that can be performed en route, especially if the internal configuration of the vehicle can be 

personalised). However, empirical data is required to validate this assumption, and to find out how 

riding autonomously in a privately owned car differs from riding in an SAV. 

 

While the VTTS for current existing modes of transport can be estimated by relying upon revealed or 

stated preference (SP) methods, seeking to establish the VTTS for novel (as yet unavailable) mobility 

options, such as autonomous driving, is possible only using SP approaches or plausible assumptions. 

While relying on plausible assumptions and sensitivity analysis on the basis of simulation models 

might provide significant insight into the possible impacts of automation, empirical research is still 

required in order to address the users’ perspective and to validate/provide data input for travel 

behavioural models upon which the simulation tools are based. Along these lines, there are early 

simulation studies which report that a reduction in the VTTS through automation might potentially 

lead to an increase in travel demand and in car mode share (Gucwa, 2014, Childress et al., 2014, 

Kröger et al., 2016, Wadud et al., 2016, Correia and van Arem, 2016), but they simply rely upon 

assumption to quantify the extent to which the VTTS will be affected by automation. While the 

technique of SP suffers from shortcomings when used to address new, for the respondents unfamiliar, 

alternatives, it still can help gaining empirical insights about potential user preferences regarding 

autonomous driving. Acknowledging the limitations of SP, using them and interpreting their results 

with care, can be a suitable tool to consider the user perspective on the new technology.             

Early empirical works have addressed the VTTS for autonomous driving by relying on the SP 

approach (Yap et al., 2016, Winter et al., 2017, Krueger et al., 2016, Steck et al., 2018, de Looff et al., 

2018). The focus of most of them is user preferences regarding different types of SAV, owing to the 

higher level of uncertainty about the impact of these new mobility options compared to privately 

owned AVs. The results broadly indicate differences between early and late adopters of these services 

(Winter et al., 2017), as well as showing that using an SAV alone and sharing the journey are 

perceived as two distinct mobility options (Krueger et al., 2016). These differences might be partly 

related to psychological barriers associated with sharing a ride with strangers as such acceptance 

issues were found in early studies on carpooling service (e.g., Correia and Viegas, 2011). Considering 

a privately owned AV, there is early empirical evidence for a reduction of the VTTS for commuting 
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trips (Steck et al., 2018) and for an AV with an office interior compared to a an AV with a leisure one 

(de Looff et al., 2018, Correia et al., 2019). The results from the latter study confirm also a theoretical 

reduction in VTTS for work vehicle derived by the authors from the existing microeconomics theory 

on perceived VTTS (see Correia et al., 2019). Simultaneously, a rather higher VTTS was found for the 

use of AVs as a first-/last-mile solution, suggesting concerns in attitude towards and perception of the 

technology (Yap et al., 2016). However, these studies focus mainly on specific use cases of 

autonomous driving and the characteristics of the trips that AVs are used for (first-/last-mile, car- or 

ride-sharing, commuting, etc.). Moreover, in most cases only motorised modes of transport have been 

considered, and a baseline can only be a comparison with existing values from the literature, as the 

studies focus only on user preferences when future mobility options are available. An exception here is 

the study from Correia et al. (2019), where the same experiment was conducted with a different 

sample presenting a chauffeur-driven vehicle instead of an AV. At the same time, we suggest that 

assessing preferences regarding currently available modes of transport of the same sample can be a 

more accurate base line. This is because changes in the preferences can be directly addressed avoiding 

additional error sources, such as differences in the samples or in the methodology used. 

The aim of this study is to contribute to the field by closing these research gaps by providing empirical 

evidence on how autonomous driving might change the VTTS and choice of mode. The study 

addresses both privately owned AVs and SAVs. Moreover, while the SP approach provides powerful 

insights into the aforementioned new use cases, the lack of familiarity of the population with these 

options might affect the accuracy of their responses. Therefore, we have focused our analysis on 

higher-level features, such as that of the VTTS. Along these lines, and in order to have a better 

depiction of the situation regarding available choices, we contrast current preferences (also based on 

SP, but considering currently available mobility options) with potential choices when AVs become 

available. The results of the study can potentially constitute an important building block in the 

planning of future strategic policy steps for the implementation of autonomous driving into existing 

transport systems. 

2. Study design and data set 

To address the value of travel-time savings (VTTS) for autonomous driving, an online survey was 

conducted in 2017. The respondents were contacted by a professional service provider using an online 

panel, and the sample, consisting of 511 respondents, was drawn to represent the age and gender 

distribution in the German population of the age group between 18 and 69 years old. After removing 

incomplete/implausible records, and non-trading, lexicographic and inconsistent response patterns, as 

well as response of an implausible duration, the final sample consisted of 485 individual records of 

adequate quality for inclusion. To assess the VTTS for autonomous driving, a combination of revealed 

and stated preference (SP) methods was applied following a pivot design, i.e. a discrete-choice 

experiment with the attributes of the alternatives pivoted around a given value, as proposed by 

Hensher and Greene (2002). Additionally, the survey includes questions on individual travel patterns, 

socioeconomic data, and willingness to use and pay for autonomous driving functions. 

In the revealed preference part of the survey, the respondents were asked to report details of their 

regular commuting, leisure or shopping trips. The reported trips were used as reference trips for 

creating individual decision situations in the SP part of the survey by reducing or increasing the trip 

time and cost of each alternative around a computed base level. The base level for the mode of 

transport which is currently used by the respondents was computed using the reported trip duration. 

The individual base levels for all other alternatives were estimated using the reported trip length and 

additional data from the literature (see notes in Table 1). The SP part consisted of two discrete-choice 

experiments. In the first choice experiment, the respondents had to choose between currently available 

modes of transport for their reported trip, including walk, bicycle, privately owned car and public 

transport. The second discrete-choice experiment additionally included mobility options available in 

the future: two autonomous driving concepts to replace a privately owned conventional car – a 

privately owned vehicle with automation capability, and a shared autonomous vehicle (SAV), i.e. an 

autonomous vehicle (AV) that can be used on demand. As the SAV combines characteristics of taxi 
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and car-sharing concepts, we named this mobility option ‘driverless taxi’ in the survey and in the 

video used for introducing the concept in order to provide a ready understanding of its characteristics 

to the participants. This was done because we assumed that a significant part of the general population 

is not familiar with on-demand or shared vehicle services (both as a term and as a service) and that a 

taxi service is the one closest to the concept that we looked at. In this paper we will, however, refer to 

this alternative using the term ‘SAV’.   

The two autonomous driving concepts were presented to the participant by means of two short 

animated videos before the second choice experiment. Acknowledging that the responses regarding 

autonomous driving are highly affected by the way the concept is presented, we used the videos 

instead of only providing text description, presented how a trip with an AV might looks like instead of 

showing only information about such vehicles, and described the usage of AVs in as neutral a way as 

possible avoiding evaluative adjectives. An autonomous vehicle was described as “a road vehicle 

which can perform the driving task, i.e., can brake, steer and accelerate by itself. The driver doesn´t 

have to pay attention to the traffic or to take care of the driving task and can use the travel time for 

other activities (such as reading, watching movies, surfing in internet).” In the videos, the main 

character, Mrs Schmidt, uses her privately owned AV or an SAV to reach her destination. Both 

vehicles are shown picking her up from her location and dropping her off at a given destination. 

Hence, there is no access and egress time, but she need to wait for the vehicle. In the privately owned 

AV, Mrs. Schmidt could choose whether she wants to drive manually or ride autonomously. This 

description of the vehicle’s capabilities allows us to avoid confronting the respondents with two 

different vehicle types in the choice sets (a conventional vehicle and an AV), as this would make the 

choice situation more complicated and would require an early purchase decision about an AV. 

Consequentially, if a respondent chooses to use an AV for the trip, then he/she could decide whether 

riding autonomously or driving manually (i.e., using the AV as a conventional car). An additional 

question after the choice experiments addresses the preferences of each of the respondents regarding 

riding autonomously or driving manually. We used this question in model estimation to distinguish 

between the perceptions of the time spent in an AV riding autonomously and in an AV driving 

manually (i.e., using an AV as a conventional car). Confronting respondents with a privately owned 

car able to drive autonomously allows for assessing willingness to use the function and its impact on 

the time evaluation instead of assessing car purchase, which is a more complex decision process. 

Simultaneously, given that the first choice experiment included a conventional car in the choice-set, 

this experiment is used as a control groups and allows validating the results on preferences toward use 

of a privately owned car. In contrast to the privately owned car (i.e., the privately owned AV), the 

SAV was presented as a vehicle which has no steering wheel or brakes, and so could not be driven 

manually. A ride with an SAV could additionally be shared with other passengers who have similar 

origin and destination with the advantage of lower cost for the service users. This, however, was only 

described in a short text and was not shown in the video as it was only an additionally considered 

aspect and not the main scope of the study. Selected scenes from the videos are presented in the 

appendix.    

Each of the two discrete-choice experiments consisted of eight choice situations. The attributes, along 

with the attribute levels used in the experiments are summarised in Table 1. Since we aimed to assess 

the individual trade-offs between time and cost, we considered the travel, access/egress and waiting 

times as well as the cost of the different alternatives. In order to confront the respondents with realistic 

alternatives, we used a pivot design based on the reported trip length and duration combined with 

additional information on the average speeds and costs of each transport mode in Germany to create 

the characteristics of the alternatives. The range of reduction and increase around the computed values 

follow the variation used in the national survey on VTTS for Germany conducted by Axhausen et al. 

(2015). The SAV had an additional attribute showing whether the respondent will use the vehicle 

alone, or will have to share the vehicle with other passengers. When sharing a ride, the cost per 

kilometre was reduced proportionally. In this way, the concept of comparing car-sharing with ride-

sharing could be approached without introducing an additional mobility option into the choice set. 
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Table 1. Attributes and their levels 

Mode of 

transport 

Walk Bike Public transport 

Attribute: 

Attribute 

levels 

Time: −30% | −10% | +20% 

of the reported trip time 

(Speed: 4.9 km/h) 

Time: −30% | −10% | +20% of 

the reported trip time (Speed: 

15 km/h) 

In-vehicle time: −30% | −10% | 

+20% of the reported trip time 

(Speed: 18–51 km/h*) 

   Access/egress time: 2 | 5 | 10 min 

   Waiting time: 2 | 5 | 10 min 

   Costs: −30% | −10% | +20% of 

estimated cost for the trip  (1.5 - 6 

Euro*) 

Mode of 

transport 

Conventional car 

(only in the first experiment) 
Autonomous vehicle 

(only in the second choice 

experiment) 

Shared autonomous vehicle 

(only in the second choice 

experiment) 

Attribute: 

Attribute 

levels 

In-vehicle time: −30% | 

−10% | +20% of the reported 

trip time (Speed: 26–

68 km/h*) 

In-vehicle time: −30% | −10% | 

+20% of the reported trip time 

(Speed: 26–68 km/h*) 

In-vehicle time: −30% | −10% | 

+20% of the reported trip time 

(Speed: 26–68 km/h*) 

 Access/egress time: 2 | 5 | 

10 min 

  

  Waiting time: 2 | 5 | 10 min Waiting time: 2 | 5 | 10 min 

   Ride-sharing: no | yes 

 Costs: −30% | −10% | +20% 

of estimated cost for the trip 

(0.20 Euro/min*) 

Costs: −30% | −10% | +20% of 

estimated cost for the trip 

(0.20 Euro/min*) 

Costs: −30% | −10% | +20% of 

estimated cost for the trip 

(0.20 Euro/min*) 

*distance-dependent estimation 

Note: Average speeds per mode of transport were computed using the German National Household Travel Survey, MiD (DLR and infas, 

2010); the costs per kilometre for the privately owned car were drawn from ADAC (2017) – only fuel and maintenance costs were included; 
the price for using a shared autonomous vehicle followed results from current analysis (Kröger and Kickhöfer, 2017); distance-dependent 

costs for public transport were drawn from existing rates for Germany starting from 1.5 Euro; season, year or student pass/tickets for public 

transport were not considered 

 

In order to enhance the data quality of the experiments by maximising the information obtained from 
each choice situation, a Bayesian efficient design was created using the software Ngene 
(ChoiceMetrics, 2012). The priors, i.e. the parameters for the estimation of the efficient design, were 
drawn from model estimations using the data collected in a pre-test with 30 participants prior to the 
field test. Despite the small sample size of the pre-test, the relevant priors were significant and also of 
the expected range and sign. Following suggestions from the literature, a statistically more efficient 
design can be generated even when limited information about the parameters is given (Bliemer and 
Rose, 2005). Moreover, we optimised the design for different trip lengths in order to consider the 
effect of trip distance on mode choice. 
 
Table 2 provides an overview of the characteristics of the reference trips reported in the revealed 

preference part of the survey and a comparison of the study sample with the German National 

household travel survey, Mobilität in Deutschland or MiD 2008 (DLR and infas, 2010). The reference 

trips refer, as mentioned above, to regular trips made by the participant used as a reference for creating 

individual decision situations in the SP. The descriptive analysis shows that commuting trips are on 

average longer than shopping and leisure trips. A comparison of the modal split between trip purposes 

shows that the privately owned car is the preferred mode of transport across all trip purposes. Leisure 

and shopping trips are characterised by a higher share of trips made by foot, which can be attributed to 

the short distances involved. After the privately owned car, public transport is the second most popular 

mode of transport for commuting trips. When comparing these values with the average characteristics 

of trips in the German National household travel survey MiD 2008 (DLR and infas, 2010), similar 

tendencies can be observed in both trip distance statistics and the modal split. Only commuting trips 

are on average longer in the study sample than in MiD 2008; also, some active modes of transport 

(bicycle for shopping trips, and walk for leisure trips) are underrepresented and public transport (for 

commuting and leisure trips) overrepresented in the study sample when compared to MiD 2008. 
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Table 2. Overview of the characteristics of the reported reference trips compared to the German National household 

travel survey MiD 2008 (DLR and infas, 2010) 

Trip purpose: commuting  leisure shopping  

 

Study 

sample 

(n=172) 

MiD 2008 

Study 

sample 

(n=142) 

MiD 2008  

Study 

sample 

(n=171) 

MiD 2008  

Trip distance statistics [km] 

1
st
 quartile 5 3 3 1 1 1 

Median 15 9 6 4 3 2 

Mean (std. 

dev.) 
18 (17) 14 (16) 11 (15) 9 (13) 5 (7) 5 (8) 

3
rd

 quartile  25 19 12 10 6 5 

Mode of transport [%]* 

Walk  9 8 20 32 31 26 

Bicycle  8 11 12 10 4 11 

Public 

transport  
23 14 13 6 4 3 

Privately 

owned car  
61 67 55 51 61 61 

*Note: (%) refers to the modal share, within the trip purpose, of this mode  

 

Further descriptive analysis was carried out of the distribution of socioeconomic characteristics within 

the study sample, and then compared to the characteristics of the German population as a whole. The 

study sample was recruited to be representative by age and gender for Germany. A comparison of the 

share of individuals belonging to different income classes shows that solely persons with high income 

were underrepresented in the study sample – this was probably due to the method of sample 

recruitment, which involved a small payment of 2 Euro as an incentive to take part in the survey. 

3. Theoretical and modelling framework 

The most common approach to address discrete choices in transportation is based on the random 
utility theory, which postulates that an individual, n, assigns a specific utility to every available 
alternative, i, and chooses the one that maximises his/her net personal utility (McFadden, 1974; 
Ortúzar and Willumsen, 2011). As the modeller does not have information about all elements 
considered by each individual, the net utility 𝑈𝑛,𝑖 of the alternative i for the individual n is represented 
through a measurable deterministic part and a random, i.e. stochastic, component. The deterministic 
part is a vector of the explanatory variables including the attributes of the alternatives, as well as the 
socioeconomic characteristics of the individuals. The stochastic component, represented through the 
error term εn,i, accounts for all relevant attributes ignored by the modeller. Assuming an additive 
linearity, the expected utility of the alternative i can therefore be expressed as follows: 
 

𝑈𝑛,𝑖 = 𝛽𝑋𝑛,𝑖 + 𝜀𝑛,𝑖                           (1), 

 

where 𝛽 is a vector of parameters to be estimated. The assumptions regarding the error term εn,i, would 

lead to different model specifications. The most common assumption is that the random residuals are 

independent and identically distributed (iid) following a Gumbel (also called Extreme Value Type I, or 

EV1) distribution, which leads to the Multinomial Logit (MNL) model (McFadden, 1974, Ortúzar and 

Willumsen, 2011). Hence, the MNL does not allow for any consideration of heterogeneity among the 

respondents, nor can it capture the pseudo-panel nature of the discrete-choice data (i.e. more than one 

response per respondent). In order to cope with these restrictions inherent in the MNL, it is possible to 

rely upon a Mixed Logit (ML; Boyd and Mellman, 1980, Cardell and Dunbar, 1980, Train, 2009) 

specification, which allows relaxing the assumptions that the model parameters are the same for all 

individuals in the sample, and likewise the assumption that there is no correlation across observations 
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from the same respondent (Hensher and Greene, 2002; Revelt and Train, 1998). The utility function of 

an ML with pseudo-panel data extends equation (1) to the following formulation: 

    
𝑈𝑛,𝑖,𝑡 =  𝑏𝑋𝑛,𝑖,𝑡 + η𝑛𝑋𝑛,𝑖,𝑡 + 𝜀𝑛,𝑖,𝑡                          (2) 

 

In equation (2), the coefficient vector 𝛽 from equation (1) is represented as 𝛽𝑛 = 𝑏 +  η𝑛, where b is 

the population mean and the η𝑛 is a random term following a distribution to be established by the 

analysis with zero mean and a standard deviation to be estimated. Estimating 𝑏 as a random parameter 

allows for analysis of different evaluations of Xn,i,t across the respondents. The t represents the choice 

situations with which a single respondent n is confronted. Therefore, 𝑏 +  η𝑛  is assumed not to vary 

across t taking into account that the evaluation of the attributes of the alternatives remains the same 

across all observations associated with the same respondent. Consequently, in the ML the probability 

of choosing the alternative i is a weighted mean of the MNL probabilities at a specific η, weighted 

over the distribution of η. In the following formulation, the choice probability 𝐿𝑛,𝑖 represents the MNL 

probabilities for a given value of η:     
                  

𝑃𝑛,𝑖 = ∫ 𝐿𝑛,𝑖(𝛽)ƒ(β|η) 𝑑β                      (3) 

 

Considering that one individual faces t choice situations, the probability of observing a set of 

individual choices can be expressed as follows: 
 

 

  𝐿𝑛,𝑖(𝛽) = ∏ (
𝑒

𝛽𝑋𝑛,𝑖,𝑡

∑ 𝑒
𝛽𝑋𝑛,𝑗,𝑡𝐽

𝑗=1

)𝑇
𝑡=1                            (4) 

 

All model estimations were performed using the software PythonBiogeme (Bielaire, 2003). An 

iterative procedure was used to obtain the final model. As we are dealing with two separated 

experiments with common alternatives and variables, it is reasonable to consider that the valuation of 

attributes by the same individuals across the different experiments will be similar. Therefore, common 

parameters are considered, acknowledging possible scale differences, using a similar technique akin to 

the technique used to model with RP and SP data simultaneously (Train, 2009; Ortúzar and 

Willumsen, 2011). In a first step, two distinct models were estimated – a model based on the data from 

the discrete-choice experiment on user preferences regarding currently available modes of transport, 

and a second model based on the data for alternatives available in the future. Common variables were 

used in both models in order to enable a comparison between the results. One exception to this was 

variables available in only one of the two choice experiments, for example access/egress time for 

conventional car in the first one, and the attributes of the SAV in the second one. In the next step of 

the analysis, a joint model based on the data from both choice experiments was estimated. To account 

for differences between the effects of unobserved factors in the two experiments, as well as for the 

different number of options, separate alternative-specific constants are estimated for current and future 

choices. The utility functions for the experiment on future preferences are scaled by a constant 

parameter µ, which accounts for differences in the variability of the error terms. 

In early estimations, the effect of the trip purpose on travel-time perception was tested by estimating 
coefficients for the interaction between in-vehicle time and the trip purpose, but no significant 
differences between different trip types were found for most of the alternatives. Statistically significant 
differences were only found between time perception when driving on commuting trips compared to 
driving on leisure/shopping trips suggesting a more negative perception of the time spent driving 
to/from work. These results can be related to trip characteristics, such as length, routine character, high 
risk for heavy traffic and time pressure on working days which make driving a tedious task when 
commuting. As the focus of the study was exploring the changes in time valuation resulting from 
automation and potential differences between the different trip purposes are important indicators for 
factors affecting these changes, the interaction between trip purpose, driving manually compared to 
riding autonomously, and in-vehicle time was included in the final model estimation. The effect of age 
and gender was also tested in early model estimations. However, as none of these variables showed 
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any significant effect on potential user preferences regarding autonomous driving, they have been 
excluded from the final models. In contrast to this, a possession of a driving license and/or public 
transport pass had both a significant effect on mode choices and thus, they were included in the final 
model. Furthermore, an interaction between cost and the income class a person belongs to was 
included in the model in order to examine potential differences in perception of cost depending on 
income.    
 
To indicate respondents’ preferences regarding riding autonomously, as opposed to driving manually 
in a privately owned AV, two dichotomous variables were computed on the basis of an additional 
question in the survey which asked for these preferences on a five-point Likert-scale. The respondents 
could choose on a scale between “riding only autonomously” to “driving only manually”. The 
dichotomous variable for autonomous driving was computed using the responses on the scale related 
to the choice for riding “only autonomously” or “most of the time autonomously”. Consequentially, 
the variable which indicates preference for driving manually refers to the choices of driving “partly 
autonomously/partly manually”, “most of the time manually”, and “only manually”. Two coefficients 
– for the interaction between in-vehicle time valuation, and the preference towards driving 
autonomously compared to driving manually – were estimated. Using a similar procedure, two 
different coefficients for the perception of in-vehicle time in an SAV - one for the situation when a 
person uses the vehicle alone, and one for when he/she has to share the ride – were estimated. Whether 
a ride with an SAV is a shared one or the person is travelling alone was one of the attributes that 
describe this alternative itself in the choice experiment (see Table 1). The attributes of the alternatives, 
the trip types and the socioeconomic factors which were included in the final model are presented in 
Table 3.  

Table 3. List of variables included in the final model 

Variable  Description 

TIMEi in-vehicle time for mode i (minutes) 

COSTi travel cost of mode i (€) 

AETi access/egress time for mode i (minutes) 

WTi waiting time for mode i (minutes) 

RIDE-SHARING dummy variable for sharing the ride in the SAV with other persons [corresponds to 

the level/value of the attribute “ride-sharing” in the choice experiment where 0 = 

travelling alone, 1 = ride-sharing/ the ride is shared with other passengers; “ride-

sharing” was one of the attributes that describe the alternative SAV]  

MANUALLY dummy variable indicating preference for driving the privately owned AV manually 

[computed using the answers on the question “Imagine that you have your own 

automated vehicle that you can use for the reported trip. Would you use this vehicle 

in an autonomous or in manual mode?”; value ´1´ of this dummy variable 

corresponds to the following original scale values: “partly autonomously/partly 

manually”, “most of the time manually”, “only manually”]    

AUTONOMOUSLY dummy variable indicating preference for driving the privately owned AV 

autonomously [computed using the answers on the question used also to compute 

the dummy variable ´Manually´; value ´1´ of this dummy variable corresponds to the 

following original scale values: “only autonomously”, “most of the time 

autonomously”]     
COMMUTING dummy variable for commuting trips 

LEISURE/SHOPPING dummy variable for leisure or shopping trips 

DL dummy variable indicating possession of driving licence 

PT PASS dummy variable indicating possession of public transport pass 

INCOME j dummy variable indicating which income class a respondent belongs to (low: up to 

€1,500/month, middle: €1,500 – €3,000/month, high: more than €3,000/month) 

 
The joint mixed logit model was estimated using an iterative procedure to explore relevant random 
effects. This allowed considering the pseudo-panel nature of the data, i.e. to account for the correlation 
among the preferences associated with the same respondent (Walker et al., 2007). The coefficients for 
in-vehicle time as well as for access/egress and waiting time were included as random parameters in 
the model in order to examine potential heterogeneity in preferences across respondents. Only time 
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elements for which a significant heterogeneity in the preferences was found were considered as 
random parameters in the final model. This includes random parameters for the following time 
elements: en-route time for walking and cycling; in-vehicle time for public transport, for an SAV as 
ride-sharing, and for autonomous driving on commuting trips; access/egress time for conventional car 
and for public transport (however, only in the future scenario), and waiting time for AV/SAV.  

The distribution of the random parameters was simulated using 8,000 MLHS (Modified Latin 
Hypercube Sampling) draws (Hess et al., 2006); the large number of draws was decided on to reflect 
the high number of dimensions over which the likelihood function must be integrated. Initially, a 
normal distribution was assumed for all random parameters including the random components for the 
pseudo-panel (i.e. agent) effect. From behaviour perspective, however, the normal distribution might 
not be the most appropriate one when estimating time parameters in the context of mode choices. 
Alternatives to the normal distribution coping with some of its shortcomings, including the fact that its 
unbounded and symmetrical nature might cause a significant proportion of the distribution to exhibit 
wrong signs, are the lognormal and the triangular distribution (Hess et al., 2005). Therefore, these two 
distributions were tested for the random time coefficients in the further model estimations, while the 
random components related to the pseudo-panel effect were assumed to follow a normal distribution in 
all estimated models. Insignificant variance parameters were found using the lognormal distribution 
instead of the normal one which suggests less adequate fit to the study data. Assuming triangular 
distribution, on the other hand, provided better results than a normal or log-normal distribution (both 
in terms of model adjustment and plausibility of the estimated parameters, i.e. percentage of the 
population exhibiting the expected sign for the time parameters). The comparison of the models was 
performed in two steps. First, a comparison on the basis of the Akaike information criterion (AIC) 
favours the model assuming triangularly distributed random parameters. Second, we used the 
cumulative distribution functions for the selected distribution types and the model data to calculate the 
amount of values that exhibit a non-intuitive (positive) sign for the time parameters. The results show 
a smaller amount of time parameter values over zero in the model assuming triangularly distributed 
random parameters compared to the other models. Thus, in the final model, a triangular distribution 
for the random time coefficients is used.   
 
Symmetrical triangular distributions were simulated in Biogeme as the sum of two independently and 
uniformly distributed random variables (U1 and U2) ranging between -1 and 1. Consequently, the 
triangular distribution is given by ß + σ *0.5*(U1+U2), where ß represents the mean and σ the semi-
range of the distribution. After estimating the parameters ß and σ, we have calculated the standard 
deviation for each random parameter for which a symmetrical triangular distribution was assumed 
using the following formulation: η = √6(σ ∗ 2)/12. 
 
 

4. Results and discussion 

4.1. Estimated model coefficients 

The results of the final separate models are summarised in Table 4. The table gives an overview of the 
estimated model coefficients (ß), the estimated (or calculated) standard deviations (η) of the random 
coefficients, and the model fit of the model. Overall, the estimated model parameters show plausible 
signs and values.  
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Table 4. Results of the two distinct mixed logit model estimation 

 Current preferences Future preferences 

Coefficient 
Est. 

value ß 

Est./ 

calc. 

value η              

t-value 

ß 

t-value 

η 

Est. 

value ß 

Est. / 

calc. 

value η              

t-value 

ß 

t-value 

η 

ASC CAR 0 fixed  - - 

             η CAR                 3.6                (11.64)                 -                - 

ASC AV - - 0 fixed  

             η AV                  -                 -                -2.32                (-8.53) 

ASC WALK  6.7 (6.03) 10.7 (7.96) 

             η WALK                1.42                 (2.08)               2.73                 (4.57) 

ASC BICYCLE -2.76 (-4.67) -1.56 (-2.81) 

              η BICYCLE                3.1                 (7.02)               4.62                 (9.15) 

ASC PT -0.74 (-0.84) -3.11 (-2.37) 

              η PT                1.02                 (2.73)               4.13                 (8.74) 

ASC SAV - - -1.00 (-3.15) 

             η SAV                -                 -                1.31                 (3.74) 

ß TIME WALK −0.344 (−11.02) −0.433 (−10.52) 

            η TIME WALK (triangular dist.)               0.140                 (10.03)               -0.184                (-10.12) 

ß TIME BICYCLE −0.234 (−8.02) −0.273 (−9.15) 

           η TIME BICYCLE (triangular dist.)               0.106                 (4.84)               0.124                 (8.05) 

ß TIME PT −0.0652 (−5.99) −0.0457 (−3.21) 

           η TIME PT (triangular dist.)               0.005                 (0.23)                0.045                 (4.68) 

ß TIME CAR commuting −0.106 (−6.13) - - 

ß TIME CAR leisure/shopping −0.0627 (−3.15) - - 

ß TIME AV MANUALLY commuting - - -0.0915 (-6.05) 

ß TIME AV MANUALLY leisure/shopping - - -0.0519 (-2.78) 

ß TIME AV AUTONOMOUSLY commuting - - -0.0587 (-2.75) 

         η TIME AV AUTONOMOUSLY commuting (triangular dist.) - -               0.053                 (1.69) 

ß TIME AV AUTONOMOUSLY leisure/shopping - - -0.0598 (-2.63) 

ß TIME SAV used individually - - -0.0931 (-5.48) 

ß TIME SAV ride-sharing - - -0.0979 (-5.8) 

             η TIME SAV ride-sharing (triangular dist.)                -                -                -0.033                 (-1.65) 

ß WAITING TIME PT -0.082 (-2.57) -0.09 (−3.7) 

ß WAITING TIME AV & SAV - - -0.109 (-6.94) 

             η WAITING TIME AV & SAV (triangular dist.)                 -                 -               -0.118                 (5.42) 

ß ACCESS/EGRESS TIME PT -0.153 (-3.12) -0.026 (-0.77) 

             η ACCESS/EGRESS TIME PT (triangular dist.)               0.136                 (2.09)                -               - 

ß ACCESS/EGRESS TIME CAR -0.141 (-5.44) - - 

              η ACCESS/EGRESS TIME CAR; (triangular dist.)               0.118                 (2.83)                -                - 

ß COST LOW INCOME −1.08 (−5.89) −1.19 (−8.41) 

ß COST MIDDLE INCOME −0.70 (−5.97) −0.949 (−8.61) 

ß COST HIGH INCOME −0.523 (−4.77) −0.585 (−6.82) 

ß RIDE-SHARING - - 0.0999 (0.42) 

ß PT PASS on WALK  3.88 (5.34) - - 

ß PT PASS on BICYCLE 4.56 (6.23) 1.81 (2.94) 

ß PT PASS on PT 5.35 (8.53) 3.1 (4.68) 

ß DRIVING LICENCE on WALK -2.95 (−2.88) -4.66 (−3.8) 

ß DRIVING LICENCE on PT -3.68 (−4.65) -1.92 (−1.58) 

Model Fit   

Log-likelihood (0) 

Log-likelihood (final) 

ρ
2
 

Estimated Parameters 

Observations 

- 5378.82 

- 1897.952 

 0.647 

28 

3880 

- 6244.62 

- 2689.44 

 0.569 

35 

3880 

 

To justify the estimation of the joint model, the relationship between the common parameters (time 

elements parameters for common modes of transport and cost parameters) in the two distinct models 

was examined. The comparison shows that they exhibit similar tendencies and are highly correlated 

with each other (see Figure 1). In general terms, the magnitude of the estimated parameters is slightly 

larger in the future preferences models, which is indicative for a smaller variance, but the differences 

are minimal. Therefore, it seems plausible to estimate a joint model considering common parameters 

across the experiments.         
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Figure 1: Relationship between the common parameters in the model on current preferences and the model on 

future preferences 

 

Table 5 summarizes the results from the estimated joint model. The table presents again the estimated 

model coefficients, including the estimated deviations of the random coefficients as well as the scaling 

parameter µ. Additionally, it is indicated when the parameters are related only to current or only to 

future conditions (i.e., are estimated only using the data from the first or only from the second choice 

experiment). The results show that the models estimated separately for the current and future choice 

situation do not statistically outperform the joint model considering common parameters in both 

choice situations (χ
2
(9) = 4.782, p > 0.05). However, considering the joint model allows for a direct 

comparison of the changes in marginal utilities associated with the introduction of AVs.    

Overall, all estimated coefficients for the time and cost attributes have a significant effect on the mode 

choice. The alternative-specific time coefficients were compared with each other using a  t-Test for 

generic parameters in order to analyse whether there are statistically significant differences between 

the coefficients. The following formulation was used for the estimations:  

(ß1 − ß2 ) / √(𝑠1
2 + 𝑠2

2 − 2 ∗ 𝑠12
2 ), where ß1 and ß2 are the estimated parameters which are compared 

with each other, 𝑠1
2 and 𝑠2

2  are their variances, and 𝑠12
2  is their covariance. The comparisons and the 

calculated t-values are reported in the following part. 

The results of the estimations and the comparison of the estimated coefficients for current and future 

preferences (which can be directly compared given the estimation approach) show that, for commuting 

trips, riding autonomously (ßtime AV autonomously commuting = -0.0621) is perceived less negatively than 

driving a conventional car nowadays (ßtime car commuting = -0.105; t = 1.65, p < 0.05 considering a one-

tailed t-test as the direction of the effect is known a priori). Along these lines, the results also suggest 

that people perceive time spent in a conventional car (ßtime car commuting = -0.105) and in an AV which is 

used as a conventional one (i.e., is driven manually; ßtime AV manually commuting = -0.0966) similarly (t = -

0.37, p > 0.05). Differences between riding AVs autonomously and manually are nearly significant (t 

= 1.59 -tailed test) and point in the same direction. Furthermore, the results show that when 

driving manually (current and future preferences), leisure trips are perceived less negatively than 

communing trips (ßtime car leisure/shopping = -0.0649 and ßtime car commuting = -0.105, t = 1.84, p < 0.05; ßtime AV 

manually leisure/shopping = -0.0539 and ßtime AV manually commuting = -0.0966, t = 2.23, p < 0.05). This difference, 

however, vanishes when driving autonomously. In general, the perception of time spent on leisure 

trips is perceived similarly, disregarding whether the vehicles are driven manually or autonomously. 

Moreover, there is a significant heterogeneity across the respondents in the perception of in-vehicle 

time riding autonomously on commuting and thus, the reported difference refers to the average value 

of the sample. 

A comparison of autonomous driving with using other modes of transport shows that riding 

autonomously in a privately owned vehicle (ßtime AV autonomously commuting = -0.0621) is perceived similarly 

to spending in-vehicle time on public transport (ßtime PT  = -0.0577; t = - 0.21, p > 0.05). At the same 

time, riding in an SAV (ßtime SAV ride-sharing = -0.11) is found to be less attractive than using either 

privately owned AV riding autonomously (ßtime AV autonomously commuting = -0.0621; t = 2.12, p < 0.05) or 
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public transport (ßtime PT  = -0.0577; t = - 2.92, p < 0.05). Furthermore, when considering the in-vehicle 

time in an SAV, no significant differences were found between using the shared vehicle alone (ßtime SAV 

used individually = -0.103) and sharing the ride with strangers (ßtime SAV ride-sharing = - 0.11; t = -0.45, p > 0.05). 

A similar tendency is evident in that the coefficient for a shared ride (ßride-sharing = 0.118) is likewise not 

significant. Simultaneously, there is a significant heterogeneity in the sample regarding perception of 

in-vehicle time when sharing the ride, but no differences across the respondents for the perception of 

time spent riding in an SAV alone. 
 

Table 5. Results of the joint mixed logit model estimation 

Coefficient Est. value ß Est./ calc. value η              t-value ß t-value η 

ASC CAR; current    0 fixed  

             η CAR; current                            3.36                      (10.65) 

ASC AV; future 0 fixed  

             η AV; future                            2.39                       (8.83) 

ASC WALK; current  6.58 (5.73) 

             η WALK; current                            -1.23                       (-2.16) 

ASC WALK; future  10.2 (8.08) 

              η WALK; future                           2.77                       (5.44) 

ASC BICYCLE; current -2.83 (-5.56) 

              η BICYCLE; current                           3.01                       (7.61) 

ASC BICYCLE; future -1.47 (-2.75) 

              η BICYCLE; future                            -4.58                       (-10.69) 

ASC PT; current -1.03 (-1.13) 

              η PT ; current                            -1.44                       (-2.36) 

ASC PT; future -3.23 (-2.11) 

              η PT ; future                            -4.41                       (-8.28) 

ASC SAV; future -0.927 (-2.83) 

             η SAV; future                             -1.15                       (-2.53) 

ß TIME WALK −0.366 (−12.54) 

            η TIME WALK; (triangular dist.)                             0.152                       (12.2) 

ß TIME BICYCLE −0.233 (−11.69) 

            η TIME BICYCLE; (triangular dist.)                            0.100                       (10.41) 

ß TIME PT −0.0577 (−5.83) 

           η TIME PT; (triangular dist.)                            0.039                       (3.85) 

ß TIME CAR commuting; current −0.105 (−5.96) 

ß TIME CAR leisure/shopping, current −0.0649 (−3.32) 

ß TIME AV MANUALLY commuting; future -0.0966 (-6.33) 

ß TIME AV MANUALLY leisure/shopping; future -0.0539 (-2.94) 

ß TIME AV AUTONOMOUSLY commuting; future -0.0621 (-2.98) 

          η TIME AV AUTONOMOUSLY commuting; future; (triangular dist.)                          0.063                       (2.55) 

ß TIME AV AUTONOMOUSLY leisure/shopping; future -0.0643 (-2.60) 

ß TIME SAV used individually; future -0.103 (-5.98) 

ß TIME SAV ride-sharing; future -0.11 (-6.45) 

             η TIME SAV ride-sharing; future; (triangular dist.)                        0.039                       (2.37) 

ß WAITING TIME PT -0.088 (−3.8) 

ß WAITING TIME AV & SAV -0.112 (-7.06) 

             η WAITING TIME AV & SAV; future; (triangular dist.)                        0.298                      (5.59) 

ß ACCESS/EGRESS TIME PT; current -0.151 (-3.12) 

             η ACCESS/EGRESS TIME PT; current; (triangular dist.)                        0.120                       (1.66) 

ß ACCESS/EGRESS TIME PT; future -0.031 (-0.87) 

ß ACCESS/EGRESS TIME CAR; current -0.142 (-5.4) 

              η ACCESS/EGRESS TIME CAR; current; (triangular dist.)                       0.140                       (3.03) 

ß COST LOW INCOME −0.991 (−8.56) 

ß COST MIDDLE INCOME −0.806 (−9.25) 

ß COST HIGH INCOME −0.561 (−7.89) 

µ (SCALING PARAMETER; applied on the data set for future preferences)  1.15  (0.102) 

ß RIDE-SHARING; future 0.118 (0.49) 

ß PT PASS on WALK; current  4.26 (5.98) 

ß PT PASS on BICYCLE; current 4.72 (7.27) 

ß PT PASS on BICYCLE; future 1.99 (3.07) 

ß PT PASS on PT; current 5.44 (8.58) 

ß PT PASS on PT; future 3.02 (4.74) 

ß DRIVING LICENCE on WALK; current -2.77 (−2.5) 

ß DRIVING LICENCE on WALK; future -4.28 (−3.55) 

ß DRIVING LICENCE on PT; current -3.62 (−4.48) 

ß DRIVING LICENCE on PT; future -1.92 (−1.35) 

Model Fit 
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Log-likelihood (0) 

Log-likelihood (final) 

ρ
2
 

Estimated Parameters 

Observations 

 -11623.44 

- 4589.783 

 0.605 

54 

7760 

Coefficients for access/egress and waiting times were estimated as mode-specific parameters instead 

of generic ones. This was in order to allow a comparison between a privately owned conventional car 

and an AV which differ in these aspects. The conventional car is presented as having an access/egress 

time, while the AV has a waiting time instead (as it picks up its passenger and drops them off at their 

destination). Overall, access/egress time and waiting time for public transport and for conventional car 

are perceived more negatively than the in-vehicle time. An exception is the estimated coefficient for 

access/egress time for public transport under future conditions (i.e., when AVs are available) which is 

not statistically significantly different from zero. As there was no difference between the perceptions 

of waiting time for a privately owned vehicle and for SAV in the early model estimations, the waiting 

time parameter was considered for both alternatives. The results indicate that waiting time for both 

autonomous driving concepts is perceived as slightly more negative than in-vehicle time, and that 

there is a significant heterogeneity in the perception of waiting time for AV/SAV across the 

respondents.  

 

The cost coefficients were estimated depending on the income class to which the respondents 

belonged. The results show, unsurprisingly, that individuals with a high income perceive cost less 

negatively than individuals with middle or low incomes, and that those with a middle income perceive 

cost less negatively than those with a low income. The perception of cost as influenced by trip purpose 

was tested in early model estimations, but no significant differences were found between the trip 

purposes. 

 

The characteristics of individual mobility, such as possession of a driving licence or a public transport 

pass, are also strongly related to mode choice preferences. Having a driving licence decreases the 

probability of choosing any modes of transport other than the car or an AV, with the exception of 

choosing a bicycle. Further, the probability of choosing AV or SAV is similarly affected by driving 

licence possession. Possession of a public transport pass, on the other hand, increases the probability 

of choosing any mode of transport other than the car or an AV – except that the probability of 

travelling by SAV is unaffected, remaining the same as the probability of travelling by AV. Overall, 

the effect of individual mobility characteristics seems not to change significantly when AVs become 

available.  

4.2. VTTS and policy implications 

Finally, we calculated the VTTS (in euros per hour) for each mode of transport, for each income class, 
using the following function: 
 

,

,




 




i

Time ii

i Cost j

j

U
TT

VTTS
U

TC




        (6) 

 

The VTTS presented in Table 6 were calculated based on the results of the final estimated joint mixed 
logit model. We calculated the VTTS for each mode of transport in Euros per hour separately for each 
income class. The VTTS calculations for the random time coefficients are based on the mean values of 
the random distribution, i.e., the estimated ß-time parameters. As the cost parameters used for 
calculating the VTTS within a single income class are fixed, the results from the comparison of 
statistical differences between the ß-time parameters reported in section 4.1. apply also for the VTTS 
reported in Table 6.    
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Table 6. Estimated value of travel-time savings for different modes of transport and income classes [in €/h] 

Mode of transport Income class 

 Low income Middle income High income 

Walk 22.2 27.3 39.1 

Bicycle 14.1 17.3 24.9 

Public transport 3.5 4.3 6.2 

Conventional car; commuting trips 6.4 7.8 11.2 

Conventional car; leisure/shopping trips 3.9 4.8 6.9 

Autonomous vehicle (manually driven); commuting trips  5.8 7.2 10.3 

Autonomous vehicle (manually driven); leisure/shopping trips 3.3 4.0 5.8 

Autonomous vehicle (riding autonomously); commuting trips  3.8 4.6 6.6 

Autonomous vehicle (riding autonomously); leisure/shopping 
trips 

3.9 4.8 6.9 

Shared autonomous vehicle (used individually) 6.2 7.7 11.0 

Shared autonomous vehicle (ride-sharing) 6.7 8.2 11.8 

 

As indicated above, there are differences in the perception of costs, depending on income class to 
which a person belongs. Thus, we have estimated the VTTS for each income class by using the cost-
coefficients corresponding to the particular income category. Consequentially, the estimated values for 
people with higher household income are higher than of those belonging to middle- or low-income 
classes, but the proportional differences between the mode-specific values remain the same across the 
income classes. The values for public transport and for conventional car are in the same range as 
existing values derived from a representative study on the values of travel time savings for Germany 
(Axhausen et al., 2015). This indicates that the results of the model estimations performed in the study 
presented in this paper are plausible.  
 
For commuting trips only, using riding autonomously leads to an average reduction in the VTTS by 
41% compared to driving a conventional car nowadays and it is perceived similar as time spent in 
public transport. However, owing to the additional access/egress and waiting time involved in 
travelling by public transport, it can be assumed that using an AV for commuting trips is more 
attractive than using public transport.  These results are in line with the results of a previous study on 
using AVs for commuting trips conducted in Germany (Steck et al., 2018). No significant effect was 
found regarding autonomous driving for leisure or shopping trips. This may be related to the fact that 
the VTTS for leisure and shopping trips are, in general, lower than the values for commuting trips. 
Also, as discussed above, due to the specific characteristics of commuting trips, commuters might be 
more likely to benefit from using travel time for other activities, and, in addition, automation can 
lower the stress caused by being stuck in traffic (see also Trommer et al., 2016). Moreover, the type of 
activities which individuals would like to perform in an AV can affect the travel time perception. For 
instance, as mentioned above, Correia et al. (2019) found differences in the VTTS for an AV with 
working compared to an AV with leisure interior. These results were in line with the authors´ 
theoretical assumption derived from the microeconomics theory that a work AV would have lower 
VTTS than a leisure one (Correia et al., 2019). Although the authors considered the different types of 
activities only for commuting trips, the trip purpose might also affect the desirable activities. In our 
study, desirable activities were not explicitly captured, but differences in time perception depending on 
trip purpose can be first indications for reasons behind potential preference changes. Hence, given the 
insights from recent studies and our results, the relationship between travel activities or other benefits 
from using an AV and trip characteristics (such as trip purpose) have to be further explored in a 
following works. 
 
The SAV seems to be perceived as a less attractive option than using a privately owned AV, but 
considering the additional access/egress and waiting time for public transport, it can be, from a user 
perspective, a viable alternative to it. Further, no differences were found in the in-vehicle time across 
the various trip purposes, neither was any difference seen when comparing use of the SAV alone with 
sharing the ride with strangers. This last result suggests that the respondents perceived both options 
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similarly – but this could be because the concept is, at this point in time, too abstract for most 
respondents to grasp adequately. Gaining insights into preferences regarding SAVs is important for 
future planning, since the SAV might be a viable mobility option supporting more efficient car use and 
contributing to a reduction in vehicle ownership. Since the results of this study are only partly in line 
with the results of previous studies, especially regarding ride-sharing, further research in this field is 
needed. Also, the willingness to use SAVs as a complementary instead of competitive option to public 
transport in areas where the public transport services are deficient today (e.g. periphery or rural areas) 
has to be explored in further works owing to the fact that public transport is in general more efficient 
in terms of number of passengers carried.     
 
Turning to policy and transport planning implications, the study findings provide empirical arguments 
to support the case that, unless there is some form of policy intervention, the reduction of the VTTS of 
a privately owned car, especially for commuting trips, can lessen or eliminate some of the potential 
benefits of autonomous driving. As also discussed in previous studies, the reduction in the VTTS (and 
thus of the generalised cost of travel) can lead to an increase of the attractiveness of travelling in 
general, and a shift from non-motorised to motorised modes of transport, as well as increasing the 
tendency to travel longer distances, by bringing about a change in choice of destination (Bahamonde-
Birke et al., 2018; Wadud et al., 2016; Gruel and Stanford, 2016). This carries the potential of causing 
a substantial increase in travelled vehicle-kilometres, along with an overproportional increase in the 
negative externalities of transportation (as the relationship between the negative effects of polluting 
emissions and congestion is not linear) that may end up diminishing the social welfare.  
 
Along these lines, the fact that VTTS by means of autonomous driving would be reduced to the level 
of public transport, may also result in demand shift from public to private transportation putting the 
transit system under financial pressure. Therefore, when formulating policy measures, including 
pricing policy, designed to facilitate sustainable transport, the potential conflict between, on the one 
hand, improving the quality of individual mobility, and, on the other hand, challenges related to the 
transport system that arise from a reduced VTTS, has to be considered. Since improvements in traffic 
efficiency and road capacity arising from automation can be achieved only when the share of AVs on 
the street increases (Hartmann et al., 2017, Calvert et al., 2017) and especially if connectivity between 
the AVs (and infrastructure) is given (Milakis et al., 2017), policy measures are needed to ensure an 
efficient use of the technology from the point of its implementation into the transport system onwards. 
One possible strategy could be incentivising multimodality by facilitating the use of AVs, especially 
SAVs, as a solution to the first-/last-mile problem, and thereby improving the quality of public 
transport as a viable and reliable door-to-door mobility option (Scheltes and Correia, 2017). Such 
measures, however, would have to tackle the large negative incentives against transferring 
(represented through the waiting time coefficients in our model) that may prevent individuals to use 
AVs in that way and encourage riding AVs from origin to destination instead.  
 
Other viable policy measures, especially in urban areas, might include ones intended to facilitate the 
use of SAV, especially as a ride-sharing service. However, the results of our study suggest that this 
mobility alternative might be less preferable to users than a privately owned AV, which challenges the 
vision that AVs are mostly going to be used as shared vehicles. Hence, the potential for such measures 
– for example supporting the use of SAV by reducing prices, or permitting only SAVs in urban centres 
– needs to be explored in future studies concentrating on this topic, as substantial incentives may be 
required, while prohibition may face strong public opposition. Here again, the potential of using SAVs 
as a part of an integrated transport system, and as an alternative to the privately owned vehicles instead 
to public transport, has to be in focus of these analyses.       
 
All in one, the results of the study support the hypothesis that AVs will facilitate individual motorized 
mobility. Consequentially, in the absence of measures to impose additional restrictions on car usage or 
force users to internalise the externalities of their behaviour by means of pricing, such as tolling 
systems, there is a high risk of undesired shifts from non-motorized transportations modes and 
increases in travel demand (Bahamonde-Birke et al., 2018 Gruel and Stanford, 2016).  
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5. Conclusions 

The aim of the study was to estimate potential changes in the value of travel-time savings (VTTS) 
when autonomous driving becomes available. For this purpose, user preferences regarding currently 
available modes of transport and user preferences regarding modes of transport available in the future 
were compared using two discrete-choice experiments. The VTTSs for two concepts of autonomous 
driving – privately owned autonomous vehicle (AV) and a shared autonomous vehicle (SAV) – were 
calculated on the basis of the results of a joint mixed logit model. 
 
First, the results suggest a VTTS reduction of 41% for commuting trips for autonomous driving as 
compared to driving a conventional car nowadays. However, no changes in the VTTS were found for 
leisure or shopping trips, suggesting that a general VTTS reduction resulting from availability of 
autonomous driving cannot be confirmed by the study results. Second, in-vehicle time in an SAV is 
found to be perceived more negatively than using either a privately owned AV (riding autonomously) 
or public transport. However, here too, a consideration of the access/egress and waiting time besides 
the in-vehicle time associated with public transport suggests the potential for the SAV as a service that 
is an alternative – or complementary – to public transport. Third, policy implications that can be drawn 
from the results of the study suggest that there is a potential conflict between user benefits of 
autonomous driving and societal goals. This is related to the fact that a reduction of the VTTS for 
autonomous driving on commuting trips will potentially lead to an increase in vehicle-kilometres 
travelled. Similarly, as the reduction of VTTS mostly affects private transportation, it can also cause a 
shift in the demand from public transportation and non-motorized alternatives to privately owned 
vehicles. Both phenomena may pose a challenge to transport planners, as increases in the demand for 
private transportation at the expense of the demand for more efficient alternatives can cause an 
increase in the negative externalities of transportation and, hence,  welfare losses.   
 
Because the technology is not yet available in the market, any assessment of the impact of automation 
using stated preference methods has its limitations and it is highly dependent on the chosen study 
design, especially on the way new alternatives are presented. A privately owned AV can be presented 
to respondents in different ways, including presenting a fully automated vehicle in the same choice set 
with a conventional one or adding the function of automation as an attribute of the alternative “car”. 
We have chosen to present a car able to drive autonomously or manually upon request in order to 
avoid an implicit purchasing decision for a type of car which might potentially influence the choices of 
respondents. It is therefore important to interpret the results of the study from the background of the 
chosen design. Acknowledging the challenges related to stated preference methods in general, we have 
focused the analysis on higher-level constructs such as that of the VTTS. Furthermore, using a 
reference trip and addressing first the user preferences regarding current modes of transport (including 
a privately owned conventional car) allows considering individual knowledge and perceptions as a 
baseline and this improves the accuracy of the estimation of changes in VTTS. The approach used in 
this study provides a better understanding of user preference changes, as considering only future 
preferences would not capture the baseline, that is to say mode choice preferences under current 
conditions. Moreover, capturing both current mode choice preferences and future preferences 
considering new mobility options provides more accurate input for travel demand models, which are 
an important tool for analysing the possible impact of automation on travel behaviour.  
 
Last but not least, further empirical work on the effects of the way in which autonomous driving, and 
especially of SAVs, are introduced to the respondents is required. Using visual materials such as 
videos, as done in this study, might be better than providing only text description, but their limitations 
have to be considered when interpreting the results. Experience-centered methods, such as field tests 
or using virtual reality can be explored in future works on potential user preferences even though the 
higher cost of those methods might be a limitation.      
 
In summary, this study has provided valuable empirical insights into potential changes in the VTTS 
for autonomous driving. Further empirical research could explore the factors affecting the reduction of 
the VTTS for autonomous driving in more detail, including characteristics related to context, such as 
geographical factors, as well as current congestion levels or other restrictions on comfort levels. 
Furthermore, exploring attitudinal and perceptual variables could provide valuable insights into the 
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mode choice decision-making process, once the technology becomes available in the market. These 
can additionally contribute to the development of efficient measures for implementing and promoting 
the technology in a way which considers users’ needs and their mobility requirements. Along these 
lines, exploring the willingness to perform different activities while riding autonomously (e.g. 
working, reading) or to relax during the trip can contribute to evaluating the potential impact of 
autonomous driving on travel quality, economical welfare and well-being. Finally, the use of SAVs 
and their impact on vehicle ownership and mobility behaviour in general is an important avenue of 
research on which future studies should focus. Because this study focused on mode choice, vehicle 
purchase decisions were not considered. As discussed above, policy and transport planning authorities 
face new challenges resulting from the implementation of vehicle automation. Empirical evidence, as 
provided in this paper, is thus of great importance when considering and discussing both the 
opportunities, and also the risks, associated with implementing this technology. 
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Appendix 

Selected scenes from the videos used in the survey to introduce the concept of autonomous driving  

 

    
Figure 1: Video “privately owned autonomous vehicle (AV)” 

 

 

    
Figure 2: Video “shared autonomous vehicle (SAV)” 

 


