
Forward and Inverse Methods in Optimal Control and
Dynamic Game Theory

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Chaitanya Awasthi

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

Andrew Lamperski and Rajesh Rajamani

August, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Minnesota Digital Conservancy

https://core.ac.uk/display/275573216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© Chaitanya Awasthi 2019

ALL RIGHTS RESERVED

Acknowledgements

I am grateful to a lot of people at the University of Minnesota. I am particularly thankful to my

adviser, Prof. Andrew Lamperski, for his patience and guidance over the years. I am also very

thankful to my co-adviser, Prof. Rajesh Rajamani, and my committee member Prof. Timothy

Kowalewski.

A big thank you also goes to John Gardner, who surely missed an opportunity to write a

book from all the questions I have asked him over the years. Thank you to Prof. Chris Hogan

as well for helping me whenever I was in need.

I would also like to thank the members of my present home, Medical Robotics and Devices

Lab, for their companionship and support while I was writing my thesis.

Finally, I wouldn’t be here if it weren’t for my parents, Shri Tej Shankar Awasthi and Smt.

Chetna Awasthi, and their unconditional love and support. To them, I thank from the bottom

of my heart. Everything that I am or may become, I owe it to them.

Thank you to each and everyone of you!

i

Dedication

To Chanakya and Plato, two of my favorite teachers from antiquity.

ii

Abstract

Optimal control theory is ubiquitous in mathematical sciences and engineering. However, in a

classroom setting we barely move beyond linear quadratic regulator problems, if at all. In this

work, we demystify the necessary conditions of optimality associated with nonlinear optimal

control by deriving them from first principles. We also present two numerical schemes for

solving these problems. Moving forward, we present an extension of inverse optimal control,

which is the problem of computing a cost function with respect to which observed state and

control trajectories are optimal. This extension helps us to handle systems which are subjected

to state and/or control constraints. We then generalize the methodology of optimal control

theory to solve constrained non-zero sum dynamic games. Dynamic games are optimization

problems involving several players who are trying to optimize their respective cost functions

subject to constraints. We present a novel method to compute Nash equilibrium associated

with a game by combining aspects from direct and indirect methods of solving optimal control

problems. Finally, we study constrained inverse dynamic games, which is a problem analogous

to constrained inverse optimal control method. Here, we show that an inverse dynamic game

problem can be decoupled and solved as an inverse optimal control problem for each of the

players individually. Throughout the work, examples are provided to demonstrate efficacy of

the methods developed.

iii

Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Tables vii

List of Figures viii

List of Abbreviations x

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis statement . 2

1.3 Objectives . 2

1.4 Contribution . 3

1.4.1 Major Contribution . 3

1.4.2 Minor Contribution . 4

1.5 Outline of Work . 4

2 Literature Review and Background 5

2.1 Related Work . 5

2.2 Elbow Manipulator . 8

iv

3 Optimal Control 9

3.1 Constrained Optimal Control . 9

3.2 Necessary Conditions of Optimality . 11

3.2.1 Problem Formulation . 11

3.2.2 Derivation of Necessary Conditions of Optimality 12

3.2.3 Necessary Conditions of Optimality . 14

3.2.4 Complete Set of Necessary Conditions for Optimality 19

3.3 Linear Quadratic Regulator . 20

4 Numerical Methods in Optimal Control 23

4.1 Introduction . 23

4.2 Methods of Optimal Control . 24

4.3 Direct Method . 25

4.3.1 Transcription . 25

4.3.2 Nonlinear Programming . 26

4.4 Trapezoidal Collocation Method . 27

4.5 Pseudospectral Collocation Method . 29

4.5.1 Orthogonal Polynomials . 30

4.5.2 Collocation Points . 31

4.5.3 Lagrange Polynomials . 31

4.6 Simulations . 34

4.7 Results and Discussion . 37

5 Inverse Optimal Control 41

5.1 Constrained Inverse Optimal Control . 41

5.1.1 Problem Statement . 41

5.1.2 Residual Function Optimization . 44

5.1.3 Improving Accuracy of IOC . 44

5.2 Simulations . 46

5.3 Results and Discussion . 48

6 Dynamic Games 54

6.1 Problem Formulation of Dynamic Games . 54

v

6.2 Semi-direct Method . 56

6.2.1 Semi-Direct Method for Unconstrained Dynamic Games 56

6.2.2 Semi-Direct Method for Constrained Dynamic Games 57

6.3 Simulations . 59

6.4 Results and Discussion . 60

7 Inverse Dynamic Games 63

7.1 Problem Formulation for Inverse Differential Games 63

7.2 Simulations . 65

7.3 Results and Discussion . 66

8 Conclusion and Future Work 70

References 72

Appendix A. Glossary 79

vi

List of Tables

5.1 Comparison of weight vector from forward and inverse optimal control 49

7.1 Comparison of weight vector from forward and inverse dynamic games 67

vii

List of Figures

2.1 A robot manipulator with coordinate frames attached 7

4.1 This figure plots state (a.) and control (b.) trajectories for unicycle model. As

can be seen, the constraints (c.) are satisfied throughout the trajectory. 38

4.2 This figure plots state (a.) and control (b.) trajectories for cart-pole model. As

can be seen, the constraints (c.) are satisfied throughout the trajectory. 39

4.3 This figure plots state (a.) and control (b.) trajectories for elbow manipulator

model. This problem does not have any mixed and/or control constraints. 40

5.1 This figure compares the state (a.) and control (b.) trajectories for the unicy-

cle model computed using true (actual) and learned (predicted) cost functions.

As can be seen, the computed costs are sufficiently accurate to reproduce the

original trajectories. We also see that the dual feasibility constraint (c.) as well

complementary slackness (d.) are satisfied. Here constraint g = u+ x1

6 51

5.2 This figure compares the state (a.) and control (b.) trajectories for the cart-

pole model computed using true (actual) and learned (predicted) cost functions.

As can be seen, the computed costs are sufficiently accurate to reproduce the

original trajectories. We also see that the dual feasibility constraint (c.) as well

complementary slackness (d.) are satisfied. Here constraints g1 = −u − 0.2 and

g2 = u− 0.2, respectively. 52

5.3 This figure compares the state (a.) and control (b.) trajectories for the elbow

manipulator model computed using true (actual) and learned (predicted) cost

functions. As can be seen, the computed costs are sufficiently accurate to re-

produce the original trajectories. This problem does not have any mixed and/or

control constraints. 53

viii

6.1 This figure plots the state (a.) and control (b.) trajectories for the duopolistic

competition. As can be seen, the constraint (c.) is satisfied throughout the

trajectory. 61

6.2 This figure plots the state (a.) and control (b.) trajectories for the nonlinear

polynomial game. As can be seen, the constraints (c.) are satisfied throughout

the trajectory. 62

7.1 This figure compares the state (a.) and control (b.) trajectories for the duopolistic

competition problem computed using true (actual) and learned (predicted) cost

functions. As can be seen, the computed costs are sufficiently accurate to repro-

duce the original trajectories. We also see that the dual feasibility constraint (c.)

as well complementary slackness (d.) are satisfied. Here constraint g = x+ u1 + 5. 68

7.2 This figure compares the state (a.) and control (b.) trajectories for the non-

linear polynomial game computed using true (actual) and learned (predicted)

cost functions. As can be seen, the computed costs are sufficiently accurate to

reproduce the original trajectories. We see that while the dual feasibility con-

straint (c.) is satisfied throughout the trajectory, the same cannot be said for

complementary slackness (d.), which is violated at the very beginning of the tra-

jectory. Here constraint g1,P layer1 = −uPlayer1 − 1, g2,P layer2 = uPlayer1 − 1,

gPlayer2 = x2 + uPlayer2 − 1 . 69

ix

List of Abbreviations

3D 3 Dimensional

BVP Boundary Value Problem

DOF Degree of Freedom

DRE Differential Riccati Equation

FK Forward Kinematics

IK Inverse Kinematics

IOC Inverse Optimal Control

IVP Initial Value Problem

KKT Karush-Kuhn-Tucker

LQR Linear Quadratic Regulator

NLP Nonlinear Program

OCP Optimal Control Problem

ODE Ordinary Differential Equation

PS Pseudospectral method

SQP Sequential Quadratic Programming

TPBVP Two Point Boundary Value Problem

x

Chapter 1

Introduction

In this introductory chapter, we present the motivation behind our work, the objectives of this

work including original contributions of the author, and the outline of the work.

1.1 Motivation

Optimal control theory as developed in early part of the 20th century has seen an enormous

progress in areas as diverse as space exploration [1,2], chemical reactors [3,4], vehicle navigation

[5], among others. Several numerical methods [6], such as direct methods [7,8], indirect methods

[9, 10], dynamic programming [11, 12], etc., have emerged over the years to accurately solve

optimal control problems. Although the algorithms in use are plenty, a look at the published

literature can easily intimidate a beginner. There is therefore a clear need to completely spell

out these algorithms in such a way that a novice can be able to read the work and apply to their

own research.

Inverse optimal control (IOC), as the name suggests, is the inverse problem of the optimal

control theory. Whereas a forward problem (or, just an optimal control problem) is that of

generating optimal state and control trajectories by minimizing a certain cost function subjected

to constraints, the inverse problem is that of trying to infer an underlying cost function given

optimal (usually locally optimal) control and state trajectory data. The applications of IOC

have enormous potential in the field of robot learning, autonomous navigation among others

[13–15]. While some methods exist to solve IOC problems, it is either the case that they use

1

2

techniques from machine learning and do not take advantage of elegant mathematical framework

provided by control theory [16], or they deal with only linear systems [17], or they involve only

unconstrained systems [18], among other things. Therefore, we need a control theoretic method

to address these shortcomings.

Dynamic games can be thought of as an extension to optimal control. While problems in

optimal control are based in single objective optimization, dynamic games are typically multi-

objective optimization problems with several players in cooperative or non-cooperative setting

trying to optimize their respective cost functions [19, 20]. Dynamic games have found applica-

tions in defense [21, 22], biological systems [23], among others. Compared to optimal control,

less work has been done in the area of dynamic games with a control-theoretic view in mind.

While problems have been solved in the case of linear quadratic dynamic games [24,25], as well

as some nonlinear dynamic games [26], solution of constrained non-zero sum nonlinear dynamic

games can hardly be found in the literature. This shows a clear need of solution strategies to

solve such problems.

Inverse dynamic games are analogous to IOC problems, except multiple players are involved.

Of all the three areas mentioned above (i.e., optimal control theory, inverse optimal control, and

dynamic games), this area has the least presence in the literature. While some work in inverse

differentials games exists such as [27–29], none of them deal with the problem of constrained

nonlinear non-zero sum dynamic games. This necessitates a need to address this deficiency.

1.2 Thesis statement

The unifying theme of this work is based in solving constrained problems in forward and inverse

optimal control using control-theoretic methods, and then generalizing these methods to solve

problems in dynamic and inverse dynamic games.

1.3 Objectives

To accomplish the goal as put forth in the thesis statement, the present work will begin by de-

riving necessary conditions of optimality for constrained optimal control problems using calculus

of variations. As such, these necessary conditions can only be used to solve limited problems in

3

control theory analytically. In the subsequent chapter, details will be provided for implemen-

tation of numerical methods to solve more general nonlinear problems. Use of optimal control

methods is important because the solution to optimal control problems will be used to solve

constrained inverse optimal control problems. A novel algorithm, based on necessary optimality

conditions and residual minimization, will be presented to solve these inverse optimal control

problems. Another novel algorithm, based again on necessary optimality conditions, will be

presented to solve constrained non-zero sum dynamic games. Finally, it will be shown that an

inverse dynamic game problem can be reduced to decoupled problems in residual minimization

of individual players, which can then be solved using the method employed for solving inverse

optimal control problems.

1.4 Contribution

1.4.1 Major Contribution

• Pedagogical introduction to solving nonlinear optimal control problems using classical

collocation method (trapezoidal) and state-of-the-art pseudospectral method (PS method)

• A general nonlinear optimal control solver with capabilities such as:

– choice between pseudospectral (Legendre) or local discretization (Trapezoidal)

– nonlinear path constraints on states and/or control variables (equality/inequality)

– isoperimetric constraints (or, integral constraints)

– bounds on states and/or control variables

– running (Lagrange) and terminal (Mayer) costs

– shortest time problems

– easy extension to multiphase problems

– accuracy comparable to popular open source softwares such as PSOPT

• Solution of constrained inverse optimal control problems

• Solution of differential games using semi-direct method

• Solution of inverse differential games

4

1.4.2 Minor Contribution

• A unified framework for solving constrained initial value problems (IVP), boundary value

problems (BVP) and two-point boundary value problems (TPBVP)

• Derivation of robot kinematics and dynamics of a non-planar 3 DOF robot and its control

using classical and modern methods

1.5 Outline of Work

The chapters in this work are described below:

Chapter 2 presents relevant literature in forward and inverse optimal control as well as

forward and inverse dynamic games. It also includes a description of a 3 DOF robot model,

which is a full nonlinear robot model simulated by the author to be used in later chapters.

Chapter 3 presents nonlinear optimal control problem and derives necessary conditions of

optimality using calculus of variations. These conditions are then used on an LQR problem to

derive the closed-loop optimal controller.

Chapter 4 is presents two numerical methods for solving nonlinear optimal control problems.

These methods are described in a pedagogical manner and are applied to three example problems.

Chapter 5 talks about inverse optimal control problem and develops a general framework to

solve these problems in the light of corresponding forward problems being constrained. It also

provides simulation results to show the efficacy of the method.

Chapter 6 presents constrained dynamic game problem and provides a novel way to compute

Nash equilibrium of nonzero-sum games. Simulations are provided to show the method in action.

Chapter 7 presents inverse dynamic game problem and provides a method to solve it using

an extension of inverse optimal control method. It also provides simulations to support the

theoretical developments.

Chapter 8 provides concluding remarks on the methods developed in the work. It also

discusses the current shortcomings of the various methods presented in the work and potential

avenues of future work.

Appendix A provides a glossary of major technical terms used throughout the work.

Chapter 2

Literature Review and

Background

In this chapter we review important literature in the field of optimal and inverse optimal control,

as well as dynamic and inverse dynamic games.

2.1 Related Work

Optimal control problems can be seen as problems in trajectory optimization. There are several

ways in which such problems can be formulated [6,30,31]. Classical methods in optimal control

such as trapezoidal or Hermite-Simpson have been in use for some time and have extensive

literature [32, 33]. While pseudospectral methods were first used in the solution of partial

differential equations in the 1970s in the works of Orszag et al. [34,35], pseudospectral methods,

as used in optimal control theory, only made their appearance in the mid 1990s in the works of

Elnagar et al. [36, 37], Ross et al. [38–40], among others.

Inverse optimal control (IOC), as the name suggests, is the inverse problem whereby we

impute a cost function from given observations. Inverse optimal control, and the closely related

field of inverse reinforcement learning, have found many applications in areas such as under-

standing human locomotion [13], control of quadcopters [16], and autonomous navigation [41].

IOC has its early beginnings in the work of Kalman [42]. The method has a very close

5

6

analogue in the machine learning community, and is called inverse reinforcement learning. Much

work has been done in the field of inverse reinforcement learning since the early 2000s. A max-

margin algorithm was presented in [16] to recover an unknown reward function from observations

of a Markov decision process. The method was eventually used to autonomously navigate a

helicopter using trajectories generated by human expert. Another widely studied technique

is the maximum entropy reinforcement learning algorithm from [41]. The algorithm utilizes

the principle of maximum entropy to systematically select a policy that is consistent with the

observed trajectory data.

Inverse reinforcement learning methods based on likelihood optimization were applied to

imitation learning problems in [43]. They applied the method to predict the turn decisions

of taxi drivers. Inverse optimal control was used by [13] to learn human motion trajectories.

They posed the problem as a bi-level optimization in which they solved the optimal control

problem for a given set of parameters in an inner loop and minimized the deviations between

computed and observed trajectories in an outer loop. Inverse optimal control based on local

approximation of the reward function was examined in [15]. Their method involved optimizing

a likelihood function which was derived by modelling expert’s behavior using maximum entropy

inverse reinforcement learning. This work utilized efficient local approximations of the reward

functions, which enabled the method to scale to larger problems than is typically possible for

inverse optimal control methods.

More closely related to the present work, [17] developed a method for estimating cost func-

tions based on residual minimization of observations using Karush-Kuhn-Tucker (KKT) con-

ditions. The resulting optimization problem is convex and they successfully used it to learn

the underlying cost function. Even in cases in which the forward problem was not convex, the

method was able to approximate the true cost function using a convex cost function which was

capable of mimicking the observed behavior. The residual minimization approach of [17] was ex-

tended in [18]. This work utilized a control-theoretic framework to solve inverse optimal control

problems for deterministic nonlinear systems. They demonstrated that control costs could be

calculated from a quadratic optimization problem derived from Pontryagin’s minimum principle.

Inverse optimization for constrained discrete-time problems was studied in [44, 45], also based

on minimizing a residual from the KKT conditions. The work in [44] also examined the effects

of unmodeled dynamics and uncertain observations and proposed a bounded error approach to

7

inverse optimization.

Dynamic games arise when multiple agents with differing objectives interact over time [19,24].

Dynamic games have many applications including pursuit-evasion [46], active-defense [47, 48],

economics [49], human interaction [50, 51], autonomous driving [52], and the smart grid [53].

Compared to centralized problems, however, less is known for game-theoretic settings. For

cooperative problems, a method similar to the max-margin method from [16] was proposed

in [54]. The maximum entropy method was extended to Markov games [55]. While these methods

have a potential advantage of being model free, they also do not exploit model information when

it is available.

Inverse dynamic games are important because they can help provide useful information

about the intent of the players based on their actions. This particular area of investigation is

still developing with some recent advances that include [27,28].

Figure 2.1: A robot manipulator with coordinate frames attached

8

2.2 Elbow Manipulator

For the purposes of present work, a 3 DOF non-planar robot (as shown in Figure 2.1) will be

used as one of the several dynamic systems for simulation studies. This robot is sometimes also

called as an elbow manipulator. While all other example problems to be presented in this work

are either straightforward to model (using Newtonian or Lagrangian mechanics) or borrowed

from literature, this elbow manipulator is completely modeled (in the joint space) by the author

and includes modeling of often neglected Coriolis term. The kinematics of the robot is described

using Denavit-Hartenberg parameters. This model is thoroughly tested using classical control

schemes like PID control for point to point as well as trajectory tracking control. As such, it

will serve as one of the most sophisticated dynamic system in this work. The idea for this robot

(including Figure 2.1) is borrowed from [56].

Chapter 3

Optimal Control

Optimal control (OC) is a branch of modern control theory in which a sequence of control inputs

are generated by solving some optimization problem. These control inputs are then guaranteed

to be (locally) optimal with respect to some cost function. In this chapter, necessary conditions

of optimality will be derived from first principles using calculus of variations. An application of

these necessary conditions is used to derive closed-loop optimal controller for LQR problem.

3.1 Constrained Optimal Control

The problem of optimal control is to find a control law for a given dynamic system such that a

certain performance criterion is met. In its mathematical form, the problem therefore is to find

the control trajectory u(t), the state trajectory x(t), to minimize the cost function

9

10

min
u

J [u] =ϕ[x(tf), tf] +

∫ tf

t0

L[t, (x(t), u(t)]dt

subject to the dynamic constraint,

ẋ(t) = f [t, x(t), u(t)], t ∈ [t0, tf]

path constraint,

hL <= h[t, x(t), u(t)] <= hU , t ∈ [t0, tf]

bound constraints,

uL <= u(t) <= uU , t ∈ [t0, tf]

xL <= x(t) <= xU , t ∈ [t0, tf]

and, boundary conditions,

φ[t0, x(t0), tf , x(tf)] = 0

(3.1)

where, formally [57],

– u ∈ U , x ∈ X

– (U, X) are space of admissible functions (for ex., u ∈ C1(Ω), x ∈ C1(Ω), where C1(Ω)

is the space of continuous functions)

– Ω ⊂ IRn, n ≥ 1 is a bounded open set, a point in Ω is denoted by

t = (t1, ..., tn)

– u : Ω→ IRnu , nu ≥ 1, u = (u1, ..., unu)

– x : Λ→ IRnx , nx ≥ 1, x = (x1, ..., xnx), and hence

∇x =
(
∂xj
∂ti

)1≤j≤nx

1≤i≤n
∈ IRnx×n ∴ ẋ =

(
∂xj
∂ti

)1≤j≤nx

i=1
∈ IRnx

– ϕ : IRnx × Ω→ IR

– L : Ω× IRnx × IRnu → IR

– f : Ω× IRnx × IRnu → IRnx

– h : Ω× IRnx × IRnu → IRnh

– φ : Ω× IRnx × IRnu → IRnφ

However, less formally, we use the following simpler definitions

11

– u : [t0, tf]→ IRnu

– x : [t0, tf]→ IRnx

– ϕ : IRnx × IR→ IR

– L : [t0, tf]× IRnx × IRnu → IR

– f : [t0, tf]× IRnx × IRnu → IRnx

– h : [t0, tf]× IRnx × IRnu → IRnh

– φ : IRnx × IR× IRnx × IR→ IRnφ

Here, nx, nu, nh, nφ represent the dimensionality of the state vector, control vector, path

constraint vector, and boundary conditions, respectively.

The cost function, J, expressed by (3.1) is said to be in Bolza form. The cost function

without the integral term is said to be in Mayer form, and with the integral term alone is said

to be in Lagrange form.

3.2 Necessary Conditions of Optimality

3.2.1 Problem Formulation

Let us simplify the very general problem stated in the previous section to only consider free

endpoint and fixed final time problems. We also lump the inequality constraints in a single

constraint vector g(t). The problem can now be formally stated as:

min
u

J(u) = φ(tf , xf) +

∫ tf

t0

L(t, x(t), u(t)) dt

s.t. ẋ(t) = f(t, x(t), u(t))

g(t, x(t), u(t)) ≤ 0

x(0) = xstart

x(tf) = xfree

(3.2)

Notation:

x(t) ∈ Rnx is the state vector

u(t) ∈ Rnu is the control vector

12

J(u) is the scalar cost function

L(t, x(t), u(t)) : R× Rnx × Rnu → R is the running cost

f(t, x(t), u(t)) : R× Rnx × Rnu → Rn is the system dynamics

g(t, x(t), u(t)) : R× Rnx × Rnu → Rs is the mixed inequality constraint vector

Assumptions:

We make some assumptions on the optimal control problem for it to be well posed and amenable

to the analysis of this paper.

1) f [t, x(t), u(t)] is assumed to be continuous in time and differentiable in state and control

variables.

2) ∇xf [t, x(t), u(t)] is continuous in both time and control variables.

3) The control variable is at least piecewise continuous in time.

4) The running cost L[t, x(t), u(t)] is differentiable in both state and control variables, and

the terminal cost φ(tf , xf) is differentiable in states.

5) The mixed inequality constraint, g[t, x(t), u(t)] is continuous in time, state and control

variables and differentiable in state and control variables.

3.2.2 Derivation of Necessary Conditions of Optimality

To discuss the problem of optimal control under mixed inequality constraints, we first define

the Hamiltonian, H and the Lagrangian, L as follows (for brevity, we will, at times, omit the

time dependence of variables in the equations to follow):

H (t, x, u, p) = L(t, x, u) + pT f(t, x, u) (3.3)

L (t, x, u, p, µ) = H (t, x, u, p) + µT g(t, x, u) (3.4)

where p ∈ Rnx is an adjoint variable and µ ∈ Rk is a multiplier. We also define the state-

dependent control region as

Λ(t, x) = {u ∈ Rnu |g(t, x, u) ≤ 0} ⊂ Rnu (3.5)

We now present some mathematical background which we will make use of in deriving the

necessary optimality conditions.

13

Mathematical Preliminaries

Definition 1 (Variation): A variation δx(t), in the context of calculus of variations, is defined

as difference between perturbed trajectory, x(t) and nominal solution trajectory, x∗(t), i.e.,

δx(t) = x(t)− x∗(t)

Definition 2 (Increment of a functional): Given a functional F (x), the increment of a

functional, ∆F , is defined as:

∆F = F (x(t) + δx(t))− F (x(t))

=

(
∂F

∂x

)
δx+

1

2!

(
∂2F

∂x2

)
(δx2) + . . .

= δF + δ2F + . . .

Definition 3 (First variation of a functional): Given a functional F (u, v), the first variation

of the functional, δF (u, v), in the neighborhood of (u,v), is the first order term in the increment

of a variation ∆F (u, v):

δF (u, v) =
∂F (u, v)

∂u
δu+

∂F (u, v)

∂v
δv

We now present a few properties of a variation, a lemma, and a theorem, all without proof,

which we would make use of later to derive the necessary optimality conditions.

Properties of a variation

1. δ(x(t) + y(t)) = δx(t) + δy(t)

2. d
dt (δx(t)) = δ(ẋ(t))

3.
∫ tf
t0
δx(t) dt = δ(

∫ tf
t0
x(t) dt)

Lemma: (Fundamental Lemma of Calculus of Variations) If for every continuous function

h(t), it is the case that ∫ tf

t0

h(t)δx(t) dt = 0

where the variation δx(t) is continuous in t ∈ [t0, tf], then

h(t) = 0 ∀t ∈ [t0, tf]

14

Theorem: (Lagrange Multiplier Theorem)

Let x∗ be a local minimum of

min
x

f(x)

s.t. h(x) = 0

Also, assume that the constraint gradients ∇h1(x∗), ...,∇hm(x∗) are linearly independent (con-

straint qualification). Then, there exists a unique vector λ∗ = (λ∗1, . . . , λ
∗
m), called a Lagrange

multiplier vector, such that

∇f(x∗) +

m∑
i=1

λ∗i∇hi(x∗) = 0

Although this is a necessary condition of optimality, it is not the only condition. We also need

x∗ to satisfy the condition h(x∗) = 0. The two conditions can be repackaged elegantly in terms

of a Lagrangian function defined as

L(x, λ) = f(x) +

m∑
i=1

λihi(x)

The necessary conditions can now be stated compactly as

∇xL(x∗, λ∗) = 0 ∇λL(x∗, λ∗) = 0

3.2.3 Necessary Conditions of Optimality

We are now in a position to state a formulation of Pontryagin’s minimum principle that is used

when dealing with optimal control problems with mixed inequality constraints. The formal

statement of the theorem is presented in [58] and we paraphrase and prove its weak form here.

Theorem: Let (x∗, u∗) be an optimal pair for (3.2) over a fixed interval [0,T], such that

u∗ is right-continuous with left-hand limits and the linear independence constraint qualification

(LICQ) holds for every triple {t, x∗(t), u(t)}, t ∈ [0,T] with u ∈ Ω(t, x∗(t)), then there exists

a costate trajectory p(t) mapping [0,T] into Rnx , piecewise continuous multiplier function µ(t)

mapping [0,T] into Rns and the following conditions hold almost everywhere:

u∗(t) = argmin
u∈Λ(t,x∗)

H (t, x∗(t), u, p(t)) (3.6)

∂L ∗

∂u
(t, x, u, p(t), µ(t)) = 0 (3.7)

15

ṗ(t) = −∂L ∗

∂x
(t, x, u, p, µ)(

∂φ

∂x
− p
)∣∣∣∣∣

tf

t0

= 0
(3.8)

µ(t) ≥ 0 (3.9)

µ(t)T g∗(t, x, u) = 0 (3.10)

Note: A symbol with an asterisk as a superscript either indicates an optimal variable or indicates

evaluation of the symbol with respect to the optimal pair (x∗, u∗).

Proof: The terminal cost φ(tf , xf) in J(u), can be written using Fundamental Theorem of

Calculus, as

φ(tf , xf)−���
��:0

φ(t0.x0) =

∫ tf

t0

dφ(t, x)

dt
dt (3.11)

where we set φ(t0, x0) to zero, by assumption.

Also, let us add slack variable λ to the inequality constraint and set

g(t, x, u, λ) = g(t, x, u) + λ2 = 0 (3.12)

As a result, we can modify our original cost function J(u) to J(u) and reformulate (3.2) as:

min
u

J(u) =

∫ tf

t0

[dφ(t, x)

dt
+ L(t, x, u)

]
dt

s.t. ẋ(t) = f(t, x(t), u(t))

g(t, x(t), u(t), λ(t)) = 0

x(0) = xstart

x(tf) = free

(3.13)

Using Lagrange Multiplier Theorem, the augmented cost function can be written as

Ja(u, p, µ, λ) =

∫ tf

t0

[dφ(t, x)

dt
+ L(t, x, u) + pT (f(t, x, u)− ẋ) + µT g(t, x, u, λ)

]
dt (3.14)

If (u∗, p∗, µ∗, λ∗) is a locally optimal solution to the minimization of (3.14), then it must be

the case that in the vicinity of the solution, any small perturbations in (u, p, µ, λ) should satisfy

the following condition

16

Ja(u∗, p∗, µ∗, λ∗) ≤ Ja(u∗ + ∆u, p∗ + ∆p, µ∗ + ∆µ, λ∗ + ∆λ)

= Ja(u∗, p∗, µ∗, λ∗) +
∂Ja
∂u

δu+
∂Ja
∂p

δp

+
∂Ja
∂µ

δµ+
δJa
∂λ

δλ+ higher order terms

(3.15)

Inequality (3.15) holds if

∂Ja
∂u

= 0

∂Ja
∂p

= 0

∂Ja
∂µ

= 0

∂Ja
∂λ

= 0

(3.16)

(3.16) can be written as first variation in cost function Ja(u, p, µ, λ) as,

δJa(u, p, µ, λ) = 0 (3.17)

(3.17) is therefore a necessary condition for optimality and will be used in proof of the

theorem.

Using the definition of total derivative, (3.14) can be expanded to

Ja(u, p, µ, λ) =

∫ tf

t0

{[∂φ
∂t

+
∂φ

∂x
ẋ
]

+ L(t, x, u) + pT (f(t, x, u)− ẋ) + µT g(t, x, u, λ)

}
dt (3.18)

Letting

L(t, x, ẋ, u, p, µ, λ) =

{[∂φ
∂t

+
∂φ

∂x
ẋ
]

+ L(t, x, u) + pT (f(t, x, u)− ẋ) + µT ḡ(t, x, u, λ)

}
results in

Ja(u, p, µ, λ) =

∫ tf

t0

L(t, x, ẋ, u, p, µ, λ) dt (3.19)

To minimize (3.19), we set its first variation to zero (see (3.17)) to get

δJa(u, p, µ, λ) = δ

∫ tf

t0

L(t, x, ẋ, u, p, µ, λ) dt = 0 (3.20)

Using Property 3 of a variation,

δ

∫ tf

t0

L(t, x, ẋ, u, p, µ, λ) dt =

∫ tf

t0

δL(t, x, ẋ, u, p, µ, λ) dt (3.21)

17

Using Definition 3, we can rewrite (3.21) as (we subsequently drop the arguments of L and

other functions for brevity)∫ tf

t0

δL dt =

∫ tf

t0

{
∂L

∂x
δx+

∂L

∂ẋ
δẋ+

∂L

∂u
δu+

∂L

∂p
δp+

∂L

∂µ
δµ+

∂L

∂λ
δλ

}
dt (3.22)

Rewriting the second term in the above eqn. using integration by parts, we get∫ tf

t0

∂L

∂ẋ
δẋ dt =

∂L

∂ẋ
δx
∣∣∣tf
t0
−
∫ tf

t0

d

dt

(
∂L

δẋ

)
δx dt (3.23)

Substituting the above expression in (3.22), we have∫ tf

t0

δL dt =

∫ tf

t0

{(
∂L

∂x
− d

dt

(
∂L

∂ẋ

))
δx+

∂L

∂u
δu+

∂L

∂p
δp+

∂L

∂µ
δµ+

∂L

∂λ
δλ

}
dt+

∂L

∂ẋ
δx
∣∣∣tf
t0

(3.24)

Using the definition of L and g, we expand the above eqn. to get,∫ tf

t0

δL dt =

∫ tf

t0

[{(
���

���
��∂

∂x

[
∂φ

∂t
+
∂φ

∂x
ẋ

]
+
∂L

∂x
+ pT

∂f

∂x
+ µT

∂g

∂x

)

− d

dt

(
���

���
��∂

∂ẋ

[
∂φ

∂t
+
∂φ

∂x
ẋ

]
− p
)}

δx+

{
∂L

∂u
+ pT

∂f

∂u
+ µT

∂g

∂u

}
δu

+

{
f − ẋ

}
δp+

{
g + λ2

}
δµ+

{
2µTλ

}
δλ

]
dt+

∂L

∂ẋ
δx
∣∣∣tf
t0

(3.25)

The two terms above canceled because simplification of the first term gives

∂

∂x

[
∂φ

∂t
+
∂φ

∂x
ẋ

]
=

∂2φ

∂x∂t
+
∂2φ

∂x2

while simplification of the second term gives

d

dt

(
∂

∂ẋ

[
∂φ

∂t
+
∂φ

∂x
ẋ

])
=

d

dt

(
∂φ

∂x

)[
∵

∂

∂ẋ

(
∂φ

∂t

)
= 0

]

=
∂

∂x

(
∂φ

∂x
ẋ

)
+
∂

∂t

(
∂φ

∂x

)
[using definition of total derivative]

=
∂2φ

∂x2
ẋ+

∂2φ

∂t∂x

which are the same (using Clairaut’s theorem).

18

Simplifying (3.25), we have∫ tf

t0

δL dt =

∫ tf

t0

[{(
∂L

∂x
+ pT

∂f

∂x
+ µT

∂g

∂x

)
+ ṗ

}
δx

+

{
∂L

∂u
+ pT

∂f

∂u
+ µT

∂g

∂u

}
δu+

{
f − ẋ

}
δp

+

{
g + λ2

}
δµ+

{
2µTλ

}
δλ

]
dt+

∂L

∂ẋ
δx
∣∣∣tf
t0

(3.26)

Since (3.26) is the first variation in cost function Ja(u, p, µ, λ), the entire expression must evaluate

to zero.

While we will make use of the fact that the expression under the integral and the non-integral

expression are independently equal to zero, we do not prove it here (see [59] for some insight).

Thus, ∫ tf

t0

[{(
∂L

∂x
+ pT

∂f

∂x
+ µT

∂g

∂x

)
+ ṗ

}
δx

+

{
∂L

∂u
+ pT

∂f

∂u
+ µT

∂g

∂u

}
δu+

{
f − ẋ

}
δp

+

{
g + λ2

}
δµ+

{
2µTλ

}
δλ

]
dt = 0

(3.27)

and,

∂L

∂ẋ
δx
∣∣∣tf
t0

=

(
∂φ

∂x
− p
)∣∣∣∣∣

tf

δx(tf) = 0

[∵ x(tf) is free but x(t0) is specified]

or,

(
∂φ

∂x
− p
)∣∣∣∣∣

tf

= 0

(3.28)

(3.28) is often referred to as transversality condition.

With reference to (3.27), the constraint

ẋ = f(t, x, u) (3.29)

must be satisfied by the optimal solution so that coefficient of δp is zero. The Lagrange

multipliers, p, are arbitrary, so let us select them in such a way to make the coefficient of δx

equal to zero, i.e.,

ṗ = −∂L
∂x
− pT ∂f

∂x
− µT ∂g

∂x
(3.30)

19

The remaining variations δu, δµ, and δλ are independent, so, using fundamental lemma of

calculus of variations, their coefficients must be independently zero, thus

∂L

∂u
+ pT

∂f

∂u
+ µT

∂g

∂u
= 0 (3.31)

g + λ2 = 0 (3.32)

2µTλ = 0 (3.33)

Using (3.32), (3.33) it can be shown that

µT g = 0 (3.34)

Furthermore, while we are skipping the argument, it can be shown, using (3.30), that

µ(t) ≥ 0 (3.35)

Using (3.3) and (3.4), (3.30) can be rewritten as

ṗ = −∂L

∂x
(3.36)

Similarly, using (3.3) and (3.4), (3.31) can be rewritten as

∂L

∂u
= 0 (3.37)

This completes the proof of the theorem. �

3.2.4 Complete Set of Necessary Conditions for Optimality

In addition to the conditions derived above, few additional conditions are required for the pair

(x,u) to be optimal. We now present the complete set of necessary optimality conditions and

classify them as such:

Stationarity
∂L ∗

∂u
(t, x, u, p, µ) = 0 (N1)

ṗ(t) = −∂L ∗

∂x
(t, x, u, p, µ)(

∂φ

∂x
− p
)∣∣∣∣∣

tf

= 0
(N2)

20

Primal feasibility

ẋ(t) =
∂L∗

∂p
(t, x, u, p, µ)

x(0) = x0

(N3)

g(t, x(t), u(t)) ≤ 0 (N4)

Dual feasibility

µ(t) ≥ 0 (N5)

Complementary slackness

µ(t)T g∗(t, x, u) = 0 (N6)

3.3 Linear Quadratic Regulator

Before we begin the study of nonlinear optimal control problems, we will derive important and

relevant results for a class of problems known as linear quadratic regulator (LQR). In this special

class of optimal control problems, the dynamics of the system are linear and the cost function

considered is quadratic in state and control variables. The (unconstrained) problem is thus to

find optimal control and state trajectories, u(t) and x(t), respectively, that minimize the cost

function

We now apply the necessary optimality conditions derived above to the case where the cost

function is quadratic, the dynamics are linear, and there are no additional constraints on the

system (like the inequality constraints). The goal of the problem is to regulate the dynamic

system.

We show that in the case of LQR, the necessary conditions are reduced to a differential

Riccati equation (DRE) and the resulting controller is a unique gain multiplied by the solution

of DRE. The problem is formally stated as:

min
u

J(u) =
1

2

∫ tf

t0

(
(x(t)TQx(t) + u(t)TRu(t)

)
dt (3.38)

subject to the dynamic constraint,

ẋ(t) = Ax(t) +Bu(t), t ∈ [t0, tf]

x(0) = x0

(3.39)

21

where,

Q is a positive semi-definite state weighting matrix,

R is a positive definite control weighting matrix,

N is a cross-coupling matrix between state and control,

A is a system matrix, and

B is a control input matrix.

In this case, the Hamiltonian is given by

H =
1

2
(xTQx+ uTRu+ 2xTNu) + pT (Ax+Bu) (3.40)

Because there are no inequality constraints, L and H are the same here (see (3.3), (3.4)).

Applying the necessary conditions of optimality, we have

ẋ = ∇pH = Ax+Bu (3.41)

ṗ = −∇xH = −(Qx+Nu+AT p) (3.42)

0 = ∇uH = Ru+BTx+BT p (3.43)

Applying the transversality conditions to our problem with fixed final time (i.e. δtf = 0)

and free end state (δxf 6= 0), we get

p(tf) = 0 (3.44)

(since ϕ = 0 in our case as there is no end point cost).

As we can see, (3.41) returns the original state dynamics and is therefore known as state

dynamics equation. Similarly, (3.42) is known as co-state equation and (3.43) is known as optimal

control equation. It is important to note that while (3.41) and (3.42) are differential equations,

(3.43) is an algebraic equation. Also important to note is that while the state dynamics equation

marches forward in time (due to boundary condition, x(0) = x0), the co-state equation marches

backward in time (due to boundary condition, p(tf) = 0). As such, the two differential equations

constitute a two-point boundary value problem (TPBVP) as opposed an initial value problem

(IVP) which is simpler to solve.

Solving for the optimal control input, u(t), using (3.43), we get

u = −R−1(NTx+BT p) (3.45)

However, as it is, u(t) is a function of both the state vector, x and co-state vector, p and we

would like to find an expression for u(t) in terms of x alone. Therefore, we guess the following

22

relationship between x and p. Let

p(t) = P (t)x(t) (3.46)

where P is some square matrix of size nxn. Since p(tf) = 0, we set P (tf) = 0 at the end time

so the equality is satisfied. Differentiating (3.46) with respect to time, we get

ṗ = Ṗ x+ Pẋ

= Ṗ x+ P (Ax+Bu) (using (3.41))

= Ṗ x+ P (Ax−BR−1(NTx+BT p)) (using (3.43))

= (Ṗ + PA− PBR−1NT − PBR−1BTP)x (using (3.46)) (3.47)

Now, substituting (3.45) in (3.43) and setting it equal to LHS of (3.47), we get

− (Qx−NR−1(NTx+BT p) +AT p) = (Ṗ + PA− PBR−1NT − PBR−1BTP)x

=⇒ −(Q−NR−1NT −NR−1BTP +ATP)x = (Ṗ + PA− PBR−1NT − PBR−1BTP)x

=⇒ (Ṗ + PA− PBR−1NT − PBR−1BTP +Q−NR−1NT −NR−1BTP +ATP)x = 0

(3.48)

Since x is arbitrary in (3.48), it must be the case that its coefficient is zero. We therefore have

the following equality:

Ṗ + PA− PBR−1NT − PBR−1BTP +Q−NR−1NT −NR−1BTP +ATP = 0 (3.49)

which is known as the differential riccati equation (DRE).

We know have an optimal controller, u(t), that is a solution to out problem of optimal

control. Substituting (3.46) in (3.45), we get a linear fullstate feedback controller

u(t) = −R−1(NT +BTP (t))x(t) (3.50)

or,

u(t) = −K(t)x(t) (3.51)

where K(t) = R−1(NT + BTP (t)) and P(t) is the solution to the DRE given by (3.48)

subject to P (tf) = 0.

While the necessary conditions of optimality are very useful in finding optimal solutions,

most of the nonlinear optimal control problems do not admit such analytical solutions. As a

result, in the next chapter, we present two very useful and important numerical schemes to

compute the solution to such problems.

Chapter 4

Numerical Methods in Optimal

Control

In this chapter, we present two numerical methods for solving constrained nonlinear optimal

control problems. These methods are then implemented on three example cases.

4.1 Introduction

Let us recall the nonlinear optimal control problem that we are trying to solve:

min
u

J(u) = φ(tf , xf) +

∫ tf

t0

L(t, x(t), u(t)) dt

s.t. ẋ(t) = f(t, x(t), u(t))

g(t, x(t), u(t)) ≤ 0

x(0) = xstart

x(tf) = xfree

(4.1)

Before we present the two numerical schemes, we take a brief look at some of the methods

that are available to us, as well their shortcomings.

23

24

4.2 Methods of Optimal Control

In the previous chapter, we derived an analytical solution to the OCP when the cost function

is quadratic and the state dynamics are linear. However, generally speaking, these problems

are seldom linear and no analytical expressions exist for optimal controller. Such (nonlinear)

problems can be solved using three distinct methods which are:

1. Dynamic programming: This method requires solving the Hamilton-Jacobi-Bellman

equation in the entire state space. Typically, the problems are solved within the mathematical

framework of Markov decision processes. This method works well for low dimensional problems

and generally provides globally optimal solution. However, it does not scale well for higher

dimensional systems because it involves discretization of the state space.

2. Indirect method: This method involves solving problems within the mathematical frame-

work of calculus of variations. The problem is solved using Euler-Lagrange equation along with

transversality condition to account for boundary conditions. The optimal control itself is found

using Pontryagin’s minimum principle. The resulting set of equations lead to TPBVP and is

then solved numerically. This method is only suitable for simple problems where the control

trajectories are smooth and continuous. The solutions resulting from this method usually tend

to be numerically unstable. Also, good initial co-state (or, adjoint variable) estimates are re-

quired to initialize the problem.

3. Direct method: This method discretizes the original continuous time optimal control

problem into a finite dimensional nonlinear programming problem. It then solves it using a

nonlinear programming solver such as sequential quadratic programming (SQP), interior-point

method, etc. This method is also known as the direct transcription method because it directly

transcribes the OCP into an NLP. Due to its better applicability in both high and low dimen-

sional systems, as well as low overhead for implementation, this method is going to be the focus

of our work.

25

4.3 Direct Method

As mentioned earlier, the direct method discretizes an infinite dimensional function optimization

problem and converts it into a finite dimensional parameter optimization problem. This step

is also known as transcription. The resulting optimization problem is an NLP and is typically

solved using optimization solvers such as SQP. Transcription methods generally fall into two

categories, namely, shooting methods and collocation methods. The major difference is based

on how each method enforces the dynamic constraint. While shooting methods use simulation to

explicitly enforce the dynamic constraint, collocation methods enforce the dynamics on a series

of points (known as collocation points) along the trajectory. While shooting methods may be

easier to implement, they quickly become inadequate when dealing with complicated problems,

such as highly nonlinear constraints, etc. Therefore, in this work, we will focus exclusively on

collocation methods.

Collocation methods

Collocation methods directly represent state and control trajectory using decision variables, and

enforce the constraints (dynamic or static) only at certain specific points along the trajectory.

These specific points are what are known as collocation points. Five main steps are involved in

order to convert a continuous time optimal control problem into a discrete NLP (transcription),

and another two steps are involved once an NLP has been formulated (nonlinear programming).

These seven steps are listed as under:

4.3.1 Transcription

1. Choose time grid size and type

The grid type is either chosen to be uniform or non-uniform. Each of the two types have their

advantages and disadvantages. For example, while uniform grid is easy and straightforward to

implement, it leads to Runge’s phenomenon, which is a problem of oscillation at the edges of

the (time) interval when using polynomial interpolation. On the other hand, while non-uniform

grid can easily overcome Runge’s phenomenon, there are many ways to implement it and care

must be taken to ensure that function approximation respects the non-uniform nature of grid.

2. Discretize state and control vectors

Once a grid has been chosen, the state and the control trajectories can be discretized on the

26

same grid. The specific discretization procedure depends on the type of method chosen.

3. Discretize cost function

Discretizing cost function involves approximating the integral cost function (such as Riemann

sum approximation). However, this step too depends on the particular transcription method

chosen.

4. Discretize and enforce dynamic constraint

Dynamic constraint typically refers to the differential equation that the system needs to satisfy

at every node of the grid. Again, this step depends on the chosen transcription method.

5. Discretize and enforce static constraints

Discretizing static constraint is straightforward and one only needs to ensure that the constraint

is enforced at every node of the chosen grid.

4.3.2 Nonlinear Programming

6. Solve the NLP

Steps 1-5 listed above were part of the transcription process which converts an infinite dimen-

sional functional optimization problem to a finite dimensional parameter optimization problem.

Following transcription, we now have an NLP which can be solved using a number of solvers

such as SQP, interior-point method, etc.

7. Interpolate the solution

Solving the NLP results in optimal state and control vectors at the chosen grid points. Depend-

ing on the choice of collocation method, this NLP solution is interpolated to generate smooth

trajectories between the nodes.

Collocation methods are a family of methods that can use either local or global function ap-

proximation, uniform or non-uniform grids, or can have several other distinguishing features, de-

pending upon the choices made in the steps 1-7 mentioned above. In the context of present work,

two methods will be implemented, namely trapezoidal collocation method and pseudospectral

collocation method. While the former is an easy to implement and easy to understand method,

it is less accurate and requires far more (typically uniform) grid points than the latter method,

which while not intuitive, is far more accurate and requires much less (non-uniform) grid points.

While there is no sharp distinction among collocation methods, one way in which they

27

can be divided is orthogonal and non-orthogonal methods. In orthogonal collocation method,

orthogonal polynomials are used to approximate state and control trajectories. Orthogonal

polynomials have very appealing numerical properties which makes it is easy to use them for

performing integration, differentiation and interpolation procedures, procedures which as we

have seen in steps 1-7 above, are essential for solution of optimal control problem.

On the other hand, classical methods such as trapezoidal and Hermite-Simpson, are non-

orthogonal collocation methods as they use non-orthogonal polynomials for state and control

trajectory approximation. All Runge-Kutta schemes typically belong to non-orthogonal col-

location methods. For example, constant approximation between grid points leads to Euler’s

method, linear approximation between grid points leads to trapezoidal method, etc. More ad-

vanced methods such as those based on higher order

The two methods that we will present in this work, namely trapezoidal collocation and pseu-

dospectral collocation, are non-orthogonal and orthogonal methods, respectively. It is important

to note that while non-uniform grid can be chosen for the trapezoidal method, it is relatively

more tedious than its uniform grid based cousin, which is something we want to avoid given

trapezoidal rule is only second order accurate anyway. If not for the slow convergence of trape-

zoidal method, compared to the much faster pseudospectral method, trapezoidal method does

quite well on problems which are generally considered difficult.

We now describe the two methods in detail and present a framework for solving optimal

control problems using them.

4.4 Trapezoidal Collocation Method

This is a local method and so the discretization of optimal control problem described above

involves local approximation between the grid points. In this method, the control trajectory is

approximated as a linear spline between grid points and the state trajectory is approximated as

a quadratic spline. We now describe in detail the steps involved in implementing the Trapezoidal

method for solving optimal control problems [60].

28

1. Grid type

We will use a uniform grid type for this method which means

t→ t0, ..., tk, ..., tN

where N is the number of segments and N + 1 is the number of nodes in the grid (or, grid

points). These grid points become what are known as collocation points.

2. Discretized state and control vectors

Depending on the chosen collocation points, the state and control trajectories are discretized at

those points. The discretized trajectories now become decision variables in the optimal control

problem.

u→ u0, ..., uk, ..., uN

x→ x0, ..., xk, ..., xN

where uk is a discrete representation of the control trajectory at the kth collocation point.

Likewise, xk is a discrete representation of the state trajectory at the kth collocation point. In

other words, xk = x(tk) and uk = u(tk). uk and xk are now finite dimensional vectors of size

nx and nu, respectively.

3. Integral approximation for cost function

The cost function is approximated using trapezoidal rule to give:

J = φ(tf , xf) +

∫ tf

t0

L(t, x(t), u(t)) dt ≈ φ(tk, xk) +

N−1∑
k=0

1

2
hk(Lk + Lk+1) (4.2)

where hk = tk+1− tk = h = constant (because we chose a uniform grid), and Lk = L(tk, xk, uk).

4. Enforcing system dynamics as dynamic constraint

In trapezoidal method, the system dynamics are enforced at each collocation point by integrating

the dynamics and approximating the resulting integral using trapezoidal rule as mentioned in

the previous step. We therefore have:

ẋ = f∫ tk+1

tk

ẋ dt =

∫ tk+1

tk

f dt

xk+1 − xk ≈
1

2
h(fk+1 + fk)

The last equation leads us the constraint which is applied between every pair of collocation

points k ∈ {0, ..., N − 1}

xk+1 = xk +
1

2
h(fk+1 + fk) (4.3)

29

5. Enforce static constraints

The static constraints are simply enforced at all collocation points such that

g(t, x(t), u(t)) ≤ 0 → g(tk, xk, uk) ≤ 0, ∀k ∈ {0, ..., N} (4.4)

6. Resulting NLP

Following steps 1-5, we now have the following NLP:

min
u0,...,uN
x0,...xN

J = φ(tk, xk) +

N−1∑
k=0

1

2
hk(Lk + Lk+1)

s.t. xk+1 = xk +
1

2
h(fk+1 + fk), ∀k ∈ {0, ..., N − 1}

g(tk, xk, uk) ≤ 0 ∀k ∈ {0, ..., N}

x0 = xstart

xN = xfree

(4.5)

This NLP is then solved using SQP solver.

7. Solution interpolation

Because trapezoidal collocation works by approximating control trajectory as varying linearly

between the grid points, it is constructed as

u(t) ≈ uk +
τ

h
(uk+1 − uk) for every interval, t ∈ [tk, tk+1] (4.6)

where τ = t− tk.

Next, because the dynamics too are approximated as varying linearly between the grid points,

this means that the state approximation, which is an integral of the dynamics, is approximated

via quadratic splines. This leads to the following construction of the state trajectory

x(t) ≈ xk + fkτ +
τ2

2h
(fk+1 − fk) for every interval, t ∈ [tk, tk+1] (4.7)

where τ = t− tk.

4.5 Pseudospectral Collocation Method

Pseudospectral methods are state-of-the-art collocation methods for solving optimal control

problems. Unlike, trapezoidal method which used uniform grid and local polynomials for ap-

proximating states and controls , this method uses non-uniform grid and global polynomials

30

for approximating state and control trajectories. Using these methods, the state and control

trajectories are approximated as weighted sum of smooth basis functions, such as Legendre or

Chebyshev polynomials in the interval [−1, 1]. One of the major advantages of this method over

classical optimal control methods (such as the trapezoidal method) is the exponential conver-

gence rate of the solution which is faster than any polynomial rate (typical in case of classical

methods). Another advantage of this method is its use of relatively small number of grid points

to yield solutions high accuracy [38,61,62].

Before we provide the sequence of steps needed to implement this method, we take a quick

detour to talk about orthogonal polynomials and types of collocation points, two concepts which

lie at the heart of pseudospectral methods.

4.5.1 Orthogonal Polynomials

Orthogonal polynomials Pn(τ) are a class of polynomials defined over an interval [t0, tf] such

that they obey the following orthogonality condition:

∫ tf

t0

w(τ)Pm(τ)Pn(τ)dτ =

1, if m = n

0, if m 6= n

(4.8)

where w(τ) is a weighting function.

In our method, we will use Legendre polynomials as the choice for orthogonal polynomials.

Other polynomials such as Chebyshev polynomials can also be used, which result in a variant of

pseudospectral optimal control method. The Legendre polynomials Pn(τ) are the eigenfunctions

of a singular Sturm-Lioville problem:

(1− τ2)
d2Pn(τ)

dτ2
− 2τ

dPn(τ)

dτ
+ n(n+ 1)Pn(τ) = 0 (4.9)

where n(n + 1) = λ is generally called eigenvalue of the problem. The differential equation is

solved for particular values of λ to yield the eigenfunctions Pn(τ). The Legendre polynomials

are orthogonal over the interval [−1, 1] with weight function w = 1. A Legendre polynomial of

order N can be generated from:

PN (τ) =
1

2NN !

dN

dτN
(τ2 − 1)N (4.10)

31

4.5.2 Collocation Points

One can also get variants of pseudospectral methods depending on how the collocation points

are chosen. If none of the end points of the interval [−1, 1] are included as collocation points,

we get Legendre-Gauss (LG) points. If one of the end points of the interval is included as a

collocation point, we get Legendre-Gauss-Radau (LGR) points. If both the end points of the

interval are included as collocation points, we get Legendre-Gauss-Lobatto (LGL) points [63].

In this work, LGL points (or nodes) will be used. These nodes are the roots of ṖN (τ) together

with −1 and 1. For example, if N = 3, the collocation points τk(k = 0, ..., N) are

[τ0, τ1, τ2, τ3] = [−1,−0.4472, 0.4472, 1]

where τ1, τ2 are the roots of the Legendre polynomial Ṗ3(τ).

4.5.3 Lagrange Polynomials

In the case of pseudospectral methods, Lagrange polynomials are used to approximate state

and control trajectories via global polynomials. Given a set of N + 1 distinct collocation points

τ0, ..., τN and the value of a function at those points , i.e., f(τ0), ..., f(τN), a unique polynomial

P (τ) of degree at most N exists such that

P (τk) = f(τk), ∀k ∈ {0, ..., N}

This polynomial is defined as

P (τ) =

N∑
k=0

f(τk)Lk(τ)

where

Lk(τ) =

N∏
i=0,i6=k

τ − τi
τk − τi

(4.11)

Here P (τ) is known as the Lagrange polynomial and Lk(τ) are called Lagrange basis polynomials.

We now describe the steps involved in implementing Legendre pseudospectral optimal control

method.

1. Grid type

A non-uniform grid is chosen for collocation. Because Legendre polynomials are orthonormal

in the interval [−1, 1], the independent variable t ∈ [t0, tf] is mapped to a new independent

32

variable τ ∈ [−1, 1] via the following affine transformation:

τ ← 2

tf − t0
t− tf + t0

tf − t0
(4.12)

Because of this transformation, the original OCP is transformed to the following new OCP:

min
u

J(u) = φ(tf , x(1)) +
tf − t0

2

∫ 1

−1

L(τ, x(τ), u(τ)) dτ

s.t. ẋ(τ) =
tf − t0

2
f(τ, x(τ), u(τ)), τ ∈ [−1, 1]

g(τ, x(τ), u(τ)) ≤ 0, τ ∈ [−1, 1]

x(−1) = xstart

x(1) = xfree

(4.13)

The collocation points τk associated with the non-uniform grid were described in the previous

subsection.

2. Discretized state and control vectors

Based on the collocation points, the state and control trajectories are defined as:

u→ u(τ0), ..., u(τk), ..., u(τN)

x→ x(τ0), ..., x(τk), ..., x(τN)

We now use Lagrange polynomials to approximate state trajectories as:

x(τ) ≈ xN (τ) =

N∑
k=0

x(τk)Lk(τ) (4.14)

Similarly, we approximate control trajectories as:

u(τ) ≈ uN (τ) =

N∑
k=0

u(τk)Lk(τ) (4.15)

where xN (τ), uN (τ) are Lagrange polynomials of degree N and Lk(τ) are the Lagrange basis

functions as defined by (4.11).

3. Integral approximation for cost function

The cost function is approximated using Gaussian quadrature. Note that if the integrand is

a polynomial of degree ≤ 2N − 1, the integral can be computed exactly over then interval

τ ∈ [−1, 1].

J(u) = φ(tf , x(1)) +
tf − t0

2

∫ 1

−1

L(τ, x(τ), u(τ)) dτ

≈ φ(tf , x(1)) +
tf − t0

2

N∑
k=0

L(τk, x(τk), u(τk))wk

(4.16)

33

wk =
2

N(N + 1)

1

PN (τk)2
(4.17)

where wk are the quadrature weights associated with the integral approximation and PN is the

Legendre polynomial of degree N .

4. Enforcing system dynamics as dynamic constraint

Taking the derivative of (4.14), we get

ẋ(τ) ≈ ẋN (τ) =

N∑
k=0

x(τk)L̇k(τ) (4.18)

This can be written as

ẋ(τk) ≈ ẋN (τk) =

N∑
i=0

Dkix
N (τi) (4.19)

where Dki is an (N + 1)x(N + 1) differentiation matrix given by

Dki =



−PN (τk)
PN (τi)

1
τk−τi , if k 6= i

N(N+1)
4 , if k = i = 0

−N(N+1)
4 , if k = i = N

0, otherwise

(4.20)

The constraint enforced at each collocation point k ∈ {0, ...N} is therefore

xN (τk) =

N∑
i=0

Dkix
N (τi) =

tf − t0
2

f(τk, x(τk), u(τk)) (4.21)

5. Enforce static constraints

The static constraints are simply enforced at all collocation points such that

g(τ, x(τ), u(τ)) ≤ 0 → g(τk, x(τk), u(τk)) ≤ 0, ∀k ∈ {0, ..., N} (4.22)

6. Resulting NLP

Following the transcription steps 1-5, we end up with the following NLP:

min
u0,...,uN
x0,...xN

J = φ(tf , x(1)) +
tf − t0

2

N∑
k=0

L(τk, x(τk), u(τk))wk

s.t.

N∑
i=0

Dkix
N (τi) =

tf − t0
2

f(τk, x(τk), u(τk)), ∀k ∈ {0, ..., N}

g(tk, xk, uk) ≤ 0 ∀k ∈ {0, ..., N}

x(−1) = xstart

x(1) = xfree

(4.23)

34

This NLP is now solved using SQP.

7. Solution interpolation

The interpolation of the state and control vectors is done using Lagrange polynomials using

(4.14)-(4.15), respectively.

4.6 Simulations

We now present three nonlinear optimal control problems of increasing difficulty. These prob-

lems will be used again in the next chapter to demonstrate the application of inverse optimal

control.

1) Kinematic unicycle

A kinematic unicycle

As our first example, we consider a kinematic unicycle. It is subjected

to the following optimal control problem:

min
u
J =

∫ 2

0

(9x2
1 + 2x2

2 + 5x2
3 + u2) dt

s.t. ẋ =


cos(x3)

sin(x3)

u



x =


x1, x position

x2, y position

x3, heading

 u =
[
angular velocity

]

u+
x1

6
≤ 0

x(0) =


1

2

0


x(2) = xfree

(4.24)

Here, x ∈ R3 is the state vector of the system and u ∈ R is the control input to the system.

35

2) Cart-pole problem

A cart-pole balancer

As our second example case, we present a dynamic system in the

form of a cart-pole balancer. Here, a pendulum is attached to a

cart and has to be balanced by applying a force as an input to the

cart. The optimal control problem in this case is presented as:

min
u
J =

∫ 2

0

(xTQx+ uTRu) dt

s.t. ẋ =


ẋ1

ẋ2

ẍ1

ẍ2



x =


x1, cart linear position

x2, cart linear velocity

x3, pole angular position

x4, pole angular velocity

 u =
[
force

]

−0.2 ≤ u ≤ 0.2

x(0) =


1

0.2

0

0

 x(tf) = free

(4.25)

ẍ1 =
1

mc +mp sin2(x2)
[u+mp sin(x2)(lẋ2

2 + g cos(x2))]

ẍ2 =
1

l(mc +mp sin2(x2))
[−u cos(x2)−mplẋ

2
2 cos(x2)− (mc +mp)g sin(x2)]

Q =


0.5 0 0 0

0 9 0 0

0 0 1 0

0 0 0 6

 R = 3

Here, x ∈ R4 are the states of the system and u ∈ R is the control input to the system and the

Q,R are the weighting matrices associated with state and control trajectories, respectively.

36

3) Elbow manipulator

An elbow manipulator

As our final example, we present a 3 dof robot manipulator com-

monly known as an elbow manipulator. The dynamics of the robot

is described in robot joint space, although a task space description

is also straightforward, using manipulator jacobian. It is actuated

by three motors at each of the three joints. The optimal control

problem corresponding to the robot is:

min
u
J =

∫ 3

0

(xTQx+ uTRu) dt

s.t. M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = κu

x =

x1−3 = θ1−3, joint angles1−3

x4−6 = θ̇1−3, joint velocities1−3


u =

[
u1−3, joint torques1−3

]

x(0) =



π
6

π
8

π
14

0

0

0


x(tf) = free

(4.26)

Q =



2.5 0 0 0 0 0

0 4 0 0 0 0

0 0 1.5 0 0 0

0 0 0 0 0 0

0 0 0 0 0.5 0

0 0 0 0 0 1


R =


1 0 0

0 3 0

0 0 2



Here, x ∈ R6 is the state vector of the system and u ∈ R3 is the control input to the system. κ

is a scaling factor which is used to ensure the numerical stability of the inverse optimal control

problem, to be discussed in the next chapter.

37

4.7 Results and Discussion

Note: All the example problems presented here are solved using MATLAB’s fmincon function

with SQP solver.

The kinematic unicycle problem as well as the cart-pole problem were solved using trapezoidal

transcription method on a grid of 50 and 100 points, respectively. The elbow manipulator prob-

lem was solved using pseudospectral method on a grid of 30 nodes. While the unicycle and

cart-pole problems have mixed inequality constraint and control saturation constraint, respec-

tively, the elbow manipulator problem was solved without any such constraints. This was done

so as to show that the methodology used in solving the first two constrained problems can also

be used to solve an unconstrained problem. Because all three example problems are regulation

problems, we can see from the plots that both state and control trajectories are trying to reg-

ulate to zero value. Also, because both unicycle and cart-pole problems are subject to control

constraints, we can see from their respective control plots that the control actions get saturated.

As a result, we see non-smooth control trajectories. Elbow manipulator problem, on the other

hand, admits smooth control trajectories due to absence of any constraints.

A few additional comments are in order with respect to elbow manipulator problem. Firstly,

only the joint angle plots are shown in Figure 4.3 a. This is done so as to avoid clutter in the

plot but the joint velocity trajectories do behave expectedly. Secondly, a scaling parameter,

κ, is used so as to make the corresponding inverse optimal control problem (which is to be

discussed in the next chapter) numerically stable. The use, or lack thereof, of κ, does not affect

the numerical stability of the current (forward) optimal control problem. Lastly, no scaling

parameter is needed for the inverse problem if gravity compensation is done.

Finally, as a check to validate the accuracy of optimal control solutions, we can see that the

constraints in both unicycle and cart-pole are satisfied throughout the trajectories.

As mentioned previously, the state and control trajectory data for each of the three problems

will serve as the input to the inverse optimal control method to be presented in the next chapter.

38

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

S
ta

te
s

x
1

x
2

x
3

States

(Color)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time

-6

-5

-4

-3

-2

-1

0

C
o
n

tr
o
l

u

Control

(Color)

a. States b. Control

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time

-6

-5

-4

-3

-2

-1

0

1

C
o
n

s
tr

a
in

t

c. Constraint

Figure 4.1: This figure plots state (a.) and control (b.) trajectories for unicycle model. As can

be seen, the constraints (c.) are satisfied throughout the trajectory.

39

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time

-1

-0.5

0

0.5

1

1.5

S
ta

te
s

x
1

x
2

x
3

x
4

States

(Color)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

C
o
n

tr
o
l

u

Control

(Color)

a. States b. Control

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

C
o
n

s
tr

a
in

t

c. Constraint

Figure 4.2: This figure plots state (a.) and control (b.) trajectories for cart-pole model. As can

be seen, the constraints (c.) are satisfied throughout the trajectory.

40

0 0.5 1 1.5 2 2.5 3

Time

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

S
ta

te
s

x
1

x
2

x
3

States

(Color)

0 0.5 1 1.5 2 2.5 3

Time

-1

-0.5

0

0.5

1

1.5

2

2.5

3

C
o
n

tr
o
ls

u
1

u
2

u
3

Controls

(Color)

a. States b. Controls

Figure 4.3: This figure plots state (a.) and control (b.) trajectories for elbow manipulator

model. This problem does not have any mixed and/or control constraints.

Chapter 5

Inverse Optimal Control

The problem of optimal control is to find a controller which is optimal with respect to perfor-

mance metric. Commonly, this metric is known as the cost function and the controller tries to

minimize this cost function to yield a set of optimal control inputs. Usually, the cost function is

an integral cost function and is minimized along the trajectory of the system from some initial

state to some final state of the system.

Inverse optimal control (IOC) is the (inverse) problem of trying to find the underlying cost

function with respect to which the state and control trajectories are (locally) optimal. In this

chapter, we extend the method of Johnson et al. [18] to impute cost functions when the systems

involve state and/or control constraints.

5.1 Constrained Inverse Optimal Control

In the case of unconstrained IOC problem with only Lagrange cost, Johnson et al. were able

to setup the inverse problem as an LQR. However, when we incorporate mixed inequality con-

straints (i.e., constraints containing both state and control vectors) and/or control constraints,

the LQR structure of the problem no longer exists.

5.1.1 Problem Statement

We now present a generalization of the inverse problem in the light of mixed inequality con-

straints in the Bolza form.

41

42

We now consider optimal control problems of the form

minimize
u

∫ tf

t0

cTφ(t, x(t), u(t)) dt

s.t. ẋ(t) = f(t, x(t), u(t))

g(t, x(t), u(t)) ≤ 0

x(0) = xstart

x(tf) = free

(5.1)

Notation:

x(t) ∈ Rnx is the state vector.

u(t) ∈ Rnu is the control vector.

f(t, x(t), u(t)) : R× Rnx × Rnu → Rnx is the system dynamics.

φ(t, x(t), u(t)) : R× Rnx × Rnu → Rk is known feature vector; k is the length of feature vector.

c ∈ Rk is weight vector.

g(t, x(t), u(t)) : R × Rnx × Rnu → Rs is path inequality constraint; s is the size of constraint

vector.

cTφ(t, x(t), u(t)) is the scalar cost function

∇zq is gradient of function q with respect to variable z.

We now make following assumptions on the optimal control problem for it to be well posed

and amenable to the analysis of this work.

1) f [x(t), u(t)] is assumed to be continuous in time and differentiable in state and control vari-

ables.

2) ∇xf [x(t), u(t)] is continuous in both time and control variables.

3) The control variable is at least piecewise continuous in time.

4) The feature or basis vector φ[x(t), u(t)] is differentiable in both state and control variables.

5) The functions that appear in equation (7) are not explicit function of time

6) The inequality path constraint, g[t, x(t), u(t)] is continuous in time, state and control variables

and differentiable in state and control variables.

To discuss the problem of optimal control under mixed inequality constraints, we first define

the Hamiltonian, H and the Lagrangian, L as follows (for brevity, we will, at times, omit the

time dependence of variables in the equations to follow):

H (t, x, u, p) = cTφ(t, x, u) + pT f(t, x, u) (5.2)

43

L (t, x, u, p, µ) = H (t, x, u, p) + µT g(t, x, u) (5.3)

where p ∈ Rnx is the adjoint variable and µ ∈ Rk is the Lagrange multiplier. We also define the

state-dependent control region as

Λ(t, x) = {u ∈ Rnu |g[t, x, u] ≤ 0} ⊂ Rnu (5.4)

We are now in a position to state a formulation of Pontryagin’s minimum principle that is used

when dealing with optimal control problems with mixed inequality constraints. The results are

based on the necessary conditions of optimality derived in Chapter 3 and are presented here

again for convenience:

u∗(t) = argmin
u∈Λ(t,x∗)

H(t, x∗(t), u, p(t))

∇uL∗(t, x, u, p(t), µ(t)) = 0

ṗ(t) = −∇xL∗(t, x, u, p(t), µ(t))

p(tf) = 0

µ(t) ≥ 0

µ(t)T g∗(t, x, u) = 0

(5.5)

Applying the aforementioned necessary conditions to our problem of optimal control, we

have

−ṗ(t) = cT∇xφ(t, x, u) + pT∇xf(t, x, u) + µT∇xg(t, x, u)

p(tf) = 0
(5.6)

0 = cT∇uφ(t, x, u) + pT∇uf(t, x, u) + µT∇ug(t, x, u) (5.7)

Assuming similar naming convention as [18], we let

ṗ(t) = v(t) (5.8)

z(t) =


c

p(t)

µ(t)

 (5.9)

44

The residual function r[c, p(t), v(t), µ(t)] is then defined by assuming slack in the necessary

conditions of optimality as

r[z(t), v(t)] =

∇xφ
∣∣∣T
(x,u)
∇xf

∣∣∣T
(x,u)
∇xg

∣∣∣T
(x,u)

∇uφ
∣∣∣T
(x,u)
∇uf

∣∣∣T
(x,u)
∇ug

∣∣∣T
(x,u)

 z(t) +

I
0

 v(t) (5.10)

5.1.2 Residual Function Optimization

We now state the optimization problem which is a result of constrained inverse optimal control.

The solution to this residual optimization problem recovers the underlying weight vector.

minimize
z(t),v(t)

∫ tf

t0

||r[z(t), v(t)]||2 dt

s.t. ṗ(t) = v(t)

p(tf) = 0

µ(t) ≥ 0

µ(t)T g(x(t), u(t)) = 0

(5.11)

where the last two conditions are also known as complementary slackness which appear here

due to mixed inequality constraint present in forward optimal control.

Note that this is a convex optimization problem with input v(t) and state z(t). Thus, it

is amenable to efficient numerical solution via transcription methods such as those described

in [31].

5.1.3 Improving Accuracy of IOC

When learning a cost function from observations, the performance of the IOC method improves

as the number of trajectories or observations is increased. Consider k trajectories which may

begin from different initial conditions, but run for the same length of time tf . We label these

k state and control trajectories as (x(j), u(j)) ∀j ∈ {1, ..., k}. In this case, the IOC variables of

interest, v(t), z(t), and r(z(t), v(t)) are extended to include the information from k trajectories

45

so that:

v = ṗ =


ṗ(1)

...

ṗ(k)

 z =


c

p

µ

 =



c

p(1)

...

p(k)

µ(1)

...

µ(k)


To make the notation succinct, we make the following simplifications in reference to (5.10). Let

A =

∇xφ
∣∣∣T
(x,u)

∇uφ
∣∣∣T
(x,u)

 B =

∇xf
∣∣∣T
(x,u)

∇uf
∣∣∣T
(x,u)



C =

∇xg
∣∣∣T
(x,u)

∇ug
∣∣∣T
(x,u)

 I =

I
0


Using the above notation, we can rewrite (5.10) as

r(z(t), v(t)) =
[
A B C

]
z(t) + I v(t) (5.12)

Extending to k trajectories, we get

r(z(t), v(t)) =
A(1)

...

A(k)

B(1) 0 0

0
. . . 0

0 0 B(k)

C(1) 0 0

0
. . . 0

0 0 C(k)

 z(t) +


I (1) 0 0

0
. . . 0

0 0 I (k)

 v(t)

(5.13)

As a result of incorporating k observations, note that the resulting residual vector, r(z(t), v(t)),

has a lot of sparse structure. This structure is utilized when solving the residual minimization

problem (5.11).

Remarks

Following remarks are now in order:

1. Convex Optimization: Note that (5.11) is a convex optimal control problem with input v(t)

46

and state z(t). Thus, it is amenable to efficient numerical solution via transcription methods

such as those described in [31].

2. Normalization: In the absence of any normalization procedure, (5.11) can be trivially solved

by z = 0. However, in many applications, we know some part of the cost function from domain

specific knowledge. Therefore, we can often choose one of the weights in weight vector c to be

equal to 1. More generally, we can impose the constraints that ci ≥ 0 and
∑k
i=1 ci = 1 (see [45]).

3. Sufficiency condition: The present work does not provide any sufficiency result to show that

the computed solution is indeed a minimum of the problem, the sufficiency condition is implicitly

assumed. This is a common assumption in the literature [18,59,60].

5.2 Simulations

This section presents the same three example problems from the previous chapter, but this time

they will be used to implement inverse optimal control method discussed in this chapter. A

description of the three examples is provided again for convenience.

1) Kinematic Unicycle

min
u
J =

∫ 2

0

(9x2
1 + 2x2

2 + 5x2
3 + u2) dt

s.t. ẋ =


cos(x3)

sin(x3)

u



x =


x1, x position

x2, y position

x3, heading

 u =
[
angular velocity

]

u+
x1

6
≤ 0

x(0) =


1

2

0


x(2) = xfree

(5.14)

47

2) Cart-pole balancing

min
u
J =

∫ 2

0

(xTQx+ uTRu) dt

s.t. ẋ =


ẋ1

ẋ2

ẍ1

ẍ2



x =


x1, cart linear position

x2, cart linear velocity

x3, pole angular position

x4, pole angular velocity

 u =
[
force

]

−0.2 ≤ u ≤ 0.2

x(0) =


1

0.2

0

0


x(tf) = free

(5.15)

where,

ẍ1 =
1

mc +mp sin2(x2)
[u+mp sin(x2)(lẋ2

2 + g cos(x2))]

ẍ2 =
1

l(mc +mp sin2(x2))
[−u cos(x2)−mplẋ

2
2 cos(x2)− (mc +mp)g sin(x2)]

Q =


0.5 0 0 0

0 9 0 0

0 0 1 0

0 0 0 6

 R = 3

48

3) Elbow manipulator

min
u
J =

∫ 3

0

(xTQx+ uTRu) dt

s.t. M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = κu

x =

x1−3 = θ1−3, joint angles1−3

x4−6 = θ̇1−3, joint velocities1−3

 u =
[
u1−3, joint torques1−3

]

x(0) =



π
6

π
8

π
14

0

0

0


x(tf) = free

(5.16)

Q =



2.5 0 0 0 0 0

0 4 0 0 0 0

0 0 1.5 0 0 0

0 0 0 0 0 0

0 0 0 0 0.5 0

0 0 0 0 0 1


R =


1 0 0

0 3 0

0 0 2



5.3 Results and Discussion

Note: All the example problems presented here are solved using MATLAB’s fmincon function

with SQP solver.

Figure 5.1 a,b. show the state and control trajectories for the kinematic unicycle. As we can

see, the predicted state and control trajectories virtually lie on top of the actual simulated

trajectories. As a check on the validity of the IOC method, we can also see that dual constraint

(c.) as well as complementary slackness condition (d.) are satisfied.

Figure 5.2 a,b. show the state and control trajectories for the cart-pole problem. Here again,

the predicted trajectories are in close agreement with the actual simulated trajectories. As a

check on the validity of the IOC method, we can also see that dual constraint (c.) as well as

49

Table 5.1: Comparison of weight vector from forward and inverse optimal control

System

Feature vector

(φ)

Weight vector (from

forward method)

(c = ctrue)

Learned weight vector

(from inverse method)

(c = clearned)

Minimized residual

function (r)

Kinematic unicycle φ = [x2
1, x

2
2, x

2
3, u

2] [9, 2, 5, 1] [8.9867, 1.9733, 4.9898,1] 2.767× 0−04

Cart-pole balancing φ = [x2
1, x

2
2, x

2
3, x

2
4, u

2] [0.5, 9, 1, 6, 3] [0.5, 9.2268, 1, 5.9829, 2.9952] 3.258× 10−05

Elbow manipulator
φ = [x2

1, x
2
2, x

2
3, x

2
4, x

2
5,

x2
6, u

2
1, u

2
2, u

2
3]

[2.5, 4, 1.5, 0, 0.5

1, 1, 3, 2]

[2.4751, 3.9029, 1.4668, 0.0083, 0.4892

0.9724, 1, 2.9299, 1.9573]
5.070× 10−05

complementary slackness condition (d.) are satisfied. Another important thing to note is that

the box constraint in this problem is handled by breaking down the constraint into two separate

constraints g1, g2.

Finally, Figure 5.3 a,b. show the state and control trajectories for the robot problem. Like

in the previous two cases, the predicted trajectories are indistinguishable from the actual tra-

jectories. However, unlike the last two cases, this problem does not have state and/or control

constraints.

While Figures 5.1-5.3 provide visual description of the results, Table 5.1 provides a quanti-

tative measure of the performance of the inverse optimal control method. It compares the true

cost functions and the learned cost functions and also provides a value for the residual function.

The quality of the solution can be judged from its value of final residual function: the lower the

value of the residual, the better IOC method was able to recover the underlying cost function.

While the inverse optimal control method perform well in recovering the underlying cost

functions in all example cases, the feature errors can be further reduced by either sampling the

observations at a faster rate, or by observing more trajectories. In a real life scenario, if the

sensors recording the observational data cannot sample at a faster rate, simply more trajectories

can be observed. On the other hand, if recording data for several trajectories is cumbersome,

high resolution sensors can be used to sample more in a given time for a given trajectory.

Cost function, as mentioned in this work, has sometimes interchangeably been used with the

weight vector. However, it is important to note that they are distinct. A cost function is com-

posed of a weight vector and a feature vector. Feature vectors are generally domain dependent

and require knowledge of the expert to construct it from experience and sound judgment. Once

50

a feature vector is passed to the inverse optimal control, the inverse methods then try to learn

the weight vector. The weight vector indicates the relative importance of the different features

present in the feature vector. In this paper, the weight vector is always assumed to be positive.

In reality, one will never have access to true cost function so that it can be compared against

learned cost function. The best one can do is to learn an underlying cost function which respects

the constraints and compare the predicted trajectories from that cost function with the actual

trajectories generated by the system of interest. Typically, the expert will have some knowledge

about the ways in which a given system is constrained. These constraints should be passed to

the inverse methods so that a correct cost function can be learned. If the expert fails to account

for the constraints that may be present in a system, it is very likely that the learned cost function

will perform poorly. Also, it is possible that if enough trajectories are not observed, the cost

function learned maybe incorrect. This is because the inverse methods may not have been able

to sample the feasible state/control space completely. Another point to note is that although

the feature vectors in the examples provided were chosen to be quadratic for reasons of physical

intuition, it is possible to choose the feature vectors to be non-quadratic, if the problem so

desires. The inverse methods will still be able to provide locally optimal solution to the residual

minimization problem in (5.11)

In the case of unicycle and cart-pole problem, we estimated the weight vector using two

trajectories, while in the case of elbow manipulator, we only used a single trajectory. For

unconstrained problems, a single trajectory is typically sufficient to learn the cost weights.

However, for constrained systems, a single trajectory often does not give sufficient information

to learn the cost. In particular, optimal solutions for problems with input constraints often

exhibit control saturation throughout the trajectory. A saturated control constraint implies

that the corresponding cost is sufficiently small to allow saturation, but the precise cost weight

cannot be obtained. We can improve the likelihood of observing unsaturated trajectories by

simply observing more trajectories.

51

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

S
ta

te
s

x
1

x
2

x
3

States

(Color)

Actual

Predicted

Comparison

(Line spec)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time

-6

-5

-4

-3

-2

-1

0

C
o

n
tr

o
l

u

Control

(Color)

Actual

Predicted

Comparison

(Line spec)

a. States b. Control

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time

-1

0

1

2

3

4

5

6

7

8

M
u
lt
ip

li
e
r

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

C
o
m

p
le

m
e
n
ta

ry
 s

la
c
k
n
e
s
s

10-16

c. Dual feasibility d. Complementary slackness

Figure 5.1: This figure compares the state (a.) and control (b.) trajectories for the unicycle

model computed using true (actual) and learned (predicted) cost functions. As can be seen,

the computed costs are sufficiently accurate to reproduce the original trajectories. We also see

that the dual feasibility constraint (c.) as well complementary slackness (d.) are satisfied. Here

constraint g = u+ x1

6 .

52

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time

-1

-0.5

0

0.5

1

1.5

S
ta

te
s

x
1

x
2

x
3

x
4

States

(Color)

Actual

Predicted

Comparison

(Line spec)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

C
o

n
tr

o
l

u

Control

(Color)

Actual

Predicted

Comparison

(Line spec)

a. States b. Control

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time

-2

0

2

4

6

8

10

12

14

16

M
u

lt
ip

li
e
rs

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

C
o
m

p
le

m
e
n
ta

ry
 s

la
c
k
n
e
s
s

10-21

c. Dual feasibility d. Complementary slackness

Figure 5.2: This figure compares the state (a.) and control (b.) trajectories for the cart-pole

model computed using true (actual) and learned (predicted) cost functions. As can be seen,

the computed costs are sufficiently accurate to reproduce the original trajectories. We also see

that the dual feasibility constraint (c.) as well complementary slackness (d.) are satisfied. Here

constraints g1 = −u− 0.2 and g2 = u− 0.2, respectively.

53

0 0.5 1 1.5 2 2.5 3

Time

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

S
ta

te
s

x
1

x
2

x
3

States

(Color)

Actual

Predicted

Comparison

(Line spec)

0 0.5 1 1.5 2 2.5 3

Time

-1

-0.5

0

0.5

1

1.5

2

2.5

3

C
o
n

tr
o
ls

u
1

u
2

u
3

Controls

(Color)

Actual

Predicted

Comparison

(Line spec)

a. States b. Controls

Figure 5.3: This figure compares the state (a.) and control (b.) trajectories for the elbow

manipulator model computed using true (actual) and learned (predicted) cost functions. As can

be seen, the computed costs are sufficiently accurate to reproduce the original trajectories. This

problem does not have any mixed and/or control constraints.

Chapter 6

Dynamic Games

Dynamic games arise when multiple agents with differing objectives interact over time. They

can be thought of as an obvious extension to single objective optimization problems (such as

optimal control problems). Dynamic games are a natural framework for studying interactive

behaviors which are not fully cooperative, and not fully competitive. Such games are called

non-zero sum. Consider the case of vehicle driving. Drivers prioritize individual speed, safety,

and comfort. While drivers are largely indifferent to the behavior and costs of others, they will

cooperate to prevent collisions. Furthermore, different individuals have varying behaviors based

on their particular objectives. For example, some prioritize speed, while others prioritize safety.

In nature, non-zero sum behavior arises when animals are largely indifferent to one-another,

unless they need to compete for a resource.

In this chapter, we present a novel method for solving Nash equilibrium solution of a dynamic

game. We also present two example cases where the solution is computed using this method.

6.1 Problem Formulation of Dynamic Games

Consider an N player nonzero-sum open-loop dynamic game where every player i ∈ {1, ..., N}

has an associated performance index Ji. The dynamics associated with state of the game evolve

via a coupled nonlinear set of differential equations ẋ = f(t, x, u1, ..., uN). The goal of each

player is to minimize their own performance index by an appropriate choice of control action

54

55

ui. The actions of the other agents are denoted by u−i. The problem is stated formally as:

Ji(ui, u−i) = minimize
ui

∫ tf

t0

cTi φi(t, x(t), u1(t), ..., uN (t)) dt

s.t. ẋ(t) = f(t, x(t), ui(t), u−i(t))

gi(t, x(t), ui(t), u−i(t)) ≤ 0

x(0) = xstart

x(tf) = free

(6.1)

Because we are considering deterministic dynamics and open-loop trajectories, the performance

index, Ji(ui, u−i) can be viewed as function of the inputs. Before we proceed further, we provide

some useful definitions which will be relevant to the present work.

Definition (Zero-sum dynamic game): A dynamic game in which each player’s gains or

losses is exactly balanced by the gains or losses of other players. This leads to the overall gains

and losses to sum exactly to zero. This game is also called as strictly competitive.

In contrast with a zero-sum dynamic game, a nonzero-sum game can be seen as a less

restrictive game setting.

Definition (Nonzero-sum dynamic game): A dynamic game in which the overall gains

and losses can be less than or more than zero. In a nonzero-sum dynamic game, every player

tries to minimize its own performance index, by choosing an optimal ui. This setting can be

either competitive or cooperative or a mixture of both.

The optimality of the control input ui leads to the concept of an (open-loop) Nash equilib-

rium.

Definition (Nash equilibrium): A dynamic game involving N players is said to be in a

local open-loop Nash equilibrium if any admissible control action ui in a neighborhood of u∗i of

the ith player is such that

J(u∗i , u
∗
−i) ≤ J(ui, u

∗
−i). (6.2)

We will often refer to a solution satisfying (6.2) in a neighborhood simply as a Nash equilibrium.

Indeed, it is a Nash equilibrium of the game in a restricted neighborhood.

In the present work, we focus our attention to solving only nonzero-sum dynamic games.

Following similar development as in the case of optimal control, the Hamiltonian, H and

the Lagrangian, L associated with the ith player is

Hi(t, x, ui, u−i, pi) = cTi φi(t, x, ui, u−i) + pTi f(t, x, ui, u−i) (6.3)

56

Li(t, x, ui, u−i, pi, µi) = Hi(t, x, ui, u−i, pi) + µTi gi(t, x, ui, u−i) (6.4)

At a Nash equilibrium, every player simultaneously minimizes its own performance index

subject to dynamics of the game and player constraints. Thus, every player i ∈ {1, ..., N}

satisfies the following set of necessary conditions:

Stationarity

∇uiL∗i (t, x, ui, u−i, pi(t), µi(t)) = 0 (P1)

ṗi(t) = −∇xL∗i (t, x, ui, u−i, pi(t), µi(t))

pi(tf) = 0
(P2)

Primal feasibility

ẋ(t) = f(t, x(t), ui(t), u−i(t)

x(0) = x0

(P3)

gi(t, x(t), ui(t), u−i(t)) ≤ 0 (P4)

Dual feasibility

µi(t) ≥ 0 (P5)

Complementary slackness

µi(t)
T g∗i (t, x, ui, u−i) = 0 (P6)

6.2 Semi-direct Method

We now present a solution strategy to deal with non-zero sum dynamic games. To our knowledge,

the method we present here is novel and is now described below.

6.2.1 Semi-Direct Method for Unconstrained Dynamic Games

Recall that (6.1) is subject to mixed inequality constraint gi(t, x(t), ui(t), u−i(t)) ≤ 0, for every

player i. Let us ignore this constraint so we can focus on the unconstrained problem. This

problem results in necessary conditions of optimality given by eqns. (P1)-(P3). As such, these

set of equations result in a two-point boundary value problem (TPBVP) and can be solved us-

ing solvers such as bvp4c provided by MATLAB. However, in this paper, we provide a solution

technique which we call semi-direct method. The method can be described as recasting the

TPBVP as an optimal control feasibility problem. Formally, the problem can be described as:

57

minJ = 0

s.t. ẋ(t) = f(t, x(t), ui(t), u−i(t))

x(0) = x0

ṗi(t) = −∇xL∗i (t, x, ui, u−i, pi(t), µi(t))

pi(tf) = 0

∇uiL∗i (t, x, ui, u−i, pi(t), µi(t)) = 0

∀i ∈ {1, ..., N}

(6.5)

It is important to note that (6.5) is solved simultaneously for every player i.

We now see that the necessary conditions of optimality (P1)-(P3), comprising of a set of

differential equations, can be seen as the constraints in an optimal control problem.

6.2.2 Semi-Direct Method for Constrained Dynamic Games

The approach we developed for the unconstrained case has powerful consequences because it

can be easily extended to the constrained case. This generalization is not possible with TP-

BVP solvers. In the constrained case, we add the remaining necessary conditions of optimality

(P4)-(P6) (related to the constraints). The problem can again be posed as an optimal control

feasibility problem:

58

minJ = 0

s.t. ẋ(t) = f(t, x(t), ui(t), u−i(t))

x(0) = x0

ṗi(t) = −∇xL∗i (t, x, ui, u−i, pi(t), µi(t))

pi(tf) = 0

∇uiL∗i (t, x, ui, u−i, pi(t), µi(t)) = 0

gi(t, x(t), ui(t), u−i(t)) ≤ 0

µi(t) ≥ 0

µi(t)
T gi(t, x, ui, u−i) = 0

∀i ∈ {1, ..., N}

(6.6)

As noted previously for the unconstrained dynamic game, (6.6) is solved simultaneously for

every player i.

Therefore, the cost of going from unconstrained case to a constrained is only addition of

extra constraints to the feasibility problem which could be solved using standard optimization

solvers.

We have thus shown that any dynamic game consisting of multiple players, with each player

optimizing their own performance index, as well as being subjected to game dynamics and con-

straints, can be reduced to a single (trivial, since J=0) objective optimization problem subject to

dynamic and path constraints.

Remarks about Semi-Direct Method

1. The reason we call our method semi-direct is due to the fact that we combine both, direct

and indirect methods used for solving optimal control problems, to solve the dynamic game

problem given by (6.1). This problem essentially reduces to a feasibility problem because there

is no objective function to optimize over. Any solution which lies in the feasible space of (6.6)

is an optimal solution to the original problem (6.1).

2. The present work does not provide any existence or uniqueness results for Nash equilibrium

solution, nor does it provide any sufficiency results to prove that the equilibrium is necessarily a

59

minimum of the dynamic game. The work is only concerned with showing that if a Nash equilib-

rium exists, then the semi-direct method can be used to compute state and control trajectories

of the players that are in Nash equilibrium.

6.3 Simulations

In this section, we present two example cases of dynamic games to demonstrate and evaluate

the performance of the semi-direct method. The example cases include duopolistic competition

scenario and a nonlinear polynomial game, both problems were inspired from [26].

1) Duopolistic competition

As our first example case, we consider the following linear-quadratic nonzero-sum differential

game:

min
u1

J1 =
1

2

∫ 3

0

(x2 + 2u2
1) dt

min
u2

J2 =
1

2

∫ 3

0

(4x2 + u2
2)

s.t. ẋ = x+ u1 + u2

x+ u1 + 5 ≤ 0

x(0) = x0

x(3) = xfree

(6.7)

Here, x ∈ R is the state vector of the game and u ∈ R2 is the control vector whose elements

consists of the control actions for Player 1 and Player 2.

2) Nonlinear polynomial game

As our second example, we consider a model for a nonlinear electric circuit managed by two

companies employing different cost metrics for the consumed electricity. The objective of the

game is to minimize the cost incurred by each electric company:

60

min
u1

J1 =
1

2

∫ 3

0

(2x2
1 + 7x2

2 + u2
1 + u2

2) dt

min
u2

J2 =
1

2

∫ 3

0

(3x2
1 + 8x2

2 + u2
1 + u2

2) dt

s.t. ẋ =

 x2

x2
1 + u1 + u2


− 1 ≤ u1 ≤ 1

x2 + u2 ≤ 1

x(0) = x0

x(3) = xfree

(6.8)

Here, x ∈ R2 is the state vector of the game and u ∈ R2 is the control vector whose elements

consists of the control actions for Player 1 and Player 2.

6.4 Results and Discussion

Note: Both example problems presented here are solved using MATLAB’s fmincon function

with SQP solver.

The duopolistic competition problem as well as the nonlinear polynomial game problem were

solved using trapezoidal transcription method on a grid of 50 points, each. Both problems are

subjected to either mixed inequality constraints and/or control constraints.

Figure 7.1 a,b. show state and control trajectories of the two players in the duopolistic

competition. The control action of player 1 shows some non-smooth behavior due to control

saturation imposed via the mixed-inequality constraint in the system. As a check to validate

solution accuracy, we see that the control constraint in Figure 7.1 c. is respected at all times.

Figure 7.2 a,b. show state and control trajectories of the two players in the nonlinear

polynomial game. Unlike the previous game, this game is 2-dimensional. It also has multiple

constraints. The control actions of neither player shows any non-smooth behavior, which means

that the two players did not saturate their control. As a check to validate the accuracy of the

solution, we see that the control constraint in Figure 7.1 c. is again respected at all times.

The state and control trajectory data for both these problems will serve as the input to the

inverse dynamic game method to be presented next.

61

0 0.5 1 1.5 2 2.5 3

Time

-7

-6

-5

-4

-3

-2

-1

0

1

S
ta

te

x

State

(Color)

0 0.5 1 1.5 2 2.5 3

Time

-20

-15

-10

-5

0

5

10

15

C
o

n
tr

o
ls

u
Player 1

u
Player 2

Controls

(Color)

a. State b. Controls

0 0.5 1 1.5 2 2.5 3

Time

-10

-8

-6

-4

-2

0

2

C
o
n

s
tr

a
in

t

c. Constraint

Figure 6.1: This figure plots the state (a.) and control (b.) trajectories for the duopolistic

competition. As can be seen, the constraint (c.) is satisfied throughout the trajectory.

62

0 0.5 1 1.5 2 2.5 3

Time

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

S
ta

te
s

x
1

x
2

States

(Color)

0 0.5 1 1.5 2 2.5 3

Time

-7

-6

-5

-4

-3

-2

-1

0

1

C
o

n
tr

o
ls

u
Player 1

u
Player 2

Controls

(Color)

a. States b. Controls

0 0.5 1 1.5 2 2.5 3

Time

-6

-5

-4

-3

-2

-1

0

1

C
o
n

s
tr

a
in

ts

c. Constraints

Figure 6.2: This figure plots the state (a.) and control (b.) trajectories for the nonlinear

polynomial game. As can be seen, the constraints (c.) are satisfied throughout the trajectory.

Chapter 7

Inverse Dynamic Games

Since non-zero sum behaviors often arise in real-world settings, control systems that interact with

humans should ideally account for this non-zero sum behavior. In particular, ideal controllers

would exploit cooperation while protecting against adversarial behavior. However, a challenge

that immediately arises is that the costs of interacting agents are often not known. In order to

design control systems that account for cooperation and competition, systematic methods for

modeling the costs would be beneficial.

Inverse dynamic games is the analogous problem to inverse optimal control, only in this,

multiple objectives as well as multiple players may be involved. In this chapter, we present a

general framework to solve nonzero-sum inverse dynamic game problems by showing that they

can be reduced to decoupled residual minimization problems of individual players.

7.1 Problem Formulation for Inverse Differential Games

Recall from the previous chapter that a dynamic game problem can be stated as:

Ji(ui, u−i) = minimize
ui

∫ tf

t0

cTi φi(t, x(t), u1(t), ..., uN (t)) dt

s.t. ẋ(t) = f(t, x(t), ui(t), u−i(t))

gi(t, x(t), ui(t), u−i(t)) ≤ 0

x(0) = xstart

x(tf) = free

(7.1)

63

64

where i ∈ {1, ..., N} are the N players with their associated cost functions Ji, ui is the

control action of player i and u−i is the control action of every other player. All the players are

subjected to the dynamics f and constraints gi.

Since at a Nash equilibrium, every player i must simultaneously minimize their own per-

formance index Ji, we use the necessary conditions (P1-P6) listed in the previous chapter to

formulate an inverse dynamic game problem.

The co-state equations for each player can be written more explicitly as

−ṗi(t) = cTi ∇xφ(t, x, ui, u−i) + pTi ∇xf(t, x, ui, u−i)µ
T
i ∇xg(t, x, ui, u−i)

pi(tf) = 0
(7.2)

0 = cTi ∇uiφi(t, x, ui, u−i) + pTi ∇uif(t, x, ui, u−i) + µTi ∇uigi(t, x, ui, u−i) (7.3)

Now that we have necessary optimality conditions for every player in the game, setting

ṗi = vi(t) zi(t) =


ci

pi(t)

µi(t)

 (7.4)

the residual function in the case of dynamic games can be defined as (analogous to the case of

optimal control)

ri(zi(t), vi(t)) =

∇xφi
∣∣∣T
(x,ui,u−i)

∇xf
∣∣∣T
(x,ui,u−i)

∇xgi
∣∣∣T
(x,ui,u−i)

∇uiφ
∣∣∣T
(x,u,u−i)

∇uif
∣∣∣T
(x,ui,u−i)

∇uigi
∣∣∣T
(x,ui,u−i)

 zi(t) +

I
0

 vi(t) (7.5)

Since each player independently minimizes its own performance index, the residual function

of every player, as defined by (7.5), is minimized independently too. This is a key insight in

our development of the inverse dynamic games method. No matter how strongly coupled the

dynamic game is, the performance index of every player can be computed by solving decoupled

residual minimization problems.

More formally, the performance index of every player i can be imputed by solving the corre-

sponding residual optimization problem:

65

minimize
zi(t),vi(t)

∫ tf

t0

||ri(zi(t), vi(t))||2 dt

s.t. ṗi(t) = vi(t)

pi(tf) = 0

µi(t) ≥ 0

µi(t)
T gi(t, x(t), ui(t)) = 0

(7.6)

Note again that this is a convex optimal control problem with input vi(t) and state zi(t) and

can be solved efficiently. This residual minimization problem can also be extended to handle

multiple observations of a given player by following similar developments as shown in the case

of inverse optimal control method (5.13).

7.2 Simulations

This section presents the same example problems from the previous chapter, but this time they

will be used to implement inverse dynamic game method discussed in this chapter. A description

of the two examples is provided again for convenience.

1) Duopolistic competition

min
u1

J1 =
1

2

∫ 3

0

(x2 + 2u2
1) dt

min
u2

J2 =
1

2

∫ 3

0

(4x2 + u2
2)

s.t. ẋ = x+ u1 + u2

x+ u1 + 5 ≤ 0

x(0) = x0

x(3) = xfree

(7.7)

66

2) Nonlinear polynomial game

min
u1

J1 =
1

2

∫ 3

0

(2x2
1 + 7x2

2 + u2
1 + u2

2) dt

min
u2

J2 =
1

2

∫ 3

0

(3x2
1 + 8x2

2 + u2
1 + u2

2) dt

s.t. ẋ =

 x2

x2
1 + u1 + u2


− 1 ≤ u1 ≤ 1

x2 + u2 ≤ 1

x(0) = x0

x(3) = xfree

(7.8)

7.3 Results and Discussion

Note: Both example problems presented here are solved using MATLAB’s fmincon function

with SQP solver.

Figure 7.1 a,b. show the state and control trajectories for the duopolistic game. As we can

see, the predicted state and control trajectories virtually lie on top of the actual simulated

trajectories. As a check on the validity of the inverse dynamic game method, we can also see

that dual constraint (c.) as well as complementary slackness condition (d.) are satisfied.

Figure 7.2 a,b. show the state and control trajectories for the non-linear polynomial game.

Here again, the predicted trajectories are in close agreement with the actual simulated trajec-

tories. As a check on the validity of the IOC method, we can see that dual constraint condition

(c.) is satisfied. However, the same cannot be said for the complementary slackness condition

(d.) as it is violated in the very beginning. Looking at how accurately the inverse game method

predicts the state and control trajectory, as well as the vanishing value of the residual function

(Table 7.1) this constraint violation can be attributed to numerical inaccuracies in the imple-

mentation. Another important thing to note is that the box constraint in this problem is handled

by breaking down the constraint gPlayer1into two separate constraints g1,P layer1, g2,P layer2.

While Figures 7.1-7.2 provide visual description of the results, Table 7.1 provides a quantita-

tive measure of the performance of the inverse dynamic game method, which is basically multiple

call to the inverse optimal control method as had been shown in the chapter. It compares the

67

Table 7.1: Comparison of weight vector from forward and inverse dynamic games

System

Feature vector

(φ)

Weight vector (from

forward method)

(c = ctrue)

Learned weight vector

(from inverse method)

(c = clearned)

Residual function

minimization (r)

Duopolistic competition
Player 1: φ1 = [x2, u2

1]

Player 2: φ2 = [x2, u2
2]

Player 1: [1, 2]

Player 2: [4, 1]

Player 1: [1, 2]

Player 2: [3.9997, 1]

Player 1: 1.04× 10−10

Player 2: 9.702× 10−07

Nonlinear polynomial game
Player 1: φ1 = [x2

1, x
2
2, u

2
1, u

2
2]

Player 2: φ2 = [x2
1, x

2
2, u

2
1, u

2
2]

Player 1: [2, 7, 1, 1]

Player 2: [3, 8, 1, 1]

Player 2: [2, 7, 1, 1]

Player 2: [3, 8, 1, 1]

Player 1: 6.524× 10−11

Player 2: 3.443× 10−12

true cost functions and the learned cost functions and also provides a value for the residual

function. The quality of the solution can be judged from its value of final residual function: the

lower the value of the residual, the better IOC method was able to recover the underlying cost

function.

Much of discussion from Chapter 5 about the inverse optimal control method applies equally

well in the case of inverse dynamic game method and is not repeated here to minimize redun-

dancy.

68

0 0.5 1 1.5 2 2.5 3

Time

-7

-6

-5

-4

-3

-2

-1

0

1

S
ta

te

x

States

(Color)

Actual

Predicted

Comparison

(Line spec)

0 0.5 1 1.5 2 2.5 3

Time

-20

-15

-10

-5

0

5

10

15

C
o

n
tr

o
ls

u
Player 1

u
Player 2

Controls

(Color)

Actual

Predicted

Comparison

(Line spec)

a. States b. Control

0 0.5 1 1.5 2 2.5 3

Time

-2

0

2

4

6

8

10

12

14

16

18

M
u
lt
ip

li
e

r

0 0.5 1 1.5 2 2.5 3

Time

-2

-1

0

1

2

C
o
m

p
le

m
e
n
ta

ry
 s

la
c
k
n
e
s
s

10-14

c. Dual feasibility d. Complementary slackness

Figure 7.1: This figure compares the state (a.) and control (b.) trajectories for the duopolistic

competition problem computed using true (actual) and learned (predicted) cost functions. As

can be seen, the computed costs are sufficiently accurate to reproduce the original trajectories.

We also see that the dual feasibility constraint (c.) as well complementary slackness (d.) are

satisfied. Here constraint g = x+ u1 + 5.

69

0 0.5 1 1.5 2 2.5 3

Time

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

S
ta

te
s

x
1

x
2

States

(Color)

Actual

Predicted

Comparison

(Line spec)

0 0.5 1 1.5 2 2.5 3

Time

-7

-6

-5

-4

-3

-2

-1

0

1

C
o

n
tr

o
ls

u
Player 1

u
Player 2

Controls

(Color)

Actual

Predicted

Comparison

(Line spec)

a. States b. Control

0 0.5 1 1.5 2 2.5 3

Time

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
u

lt
ip

li
e
rs

0 0.5 1 1.5 2 2.5 3

Time

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

C
o

m
p
le

m
e
n

ta
ry

 s
la

c
k
n

e
s
s

c. Dual feasibility d. Complementary slackness

Figure 7.2: This figure compares the state (a.) and control (b.) trajectories for the nonlinear

polynomial game computed using true (actual) and learned (predicted) cost functions. As can

be seen, the computed costs are sufficiently accurate to reproduce the original trajectories. We

see that while the dual feasibility constraint (c.) is satisfied throughout the trajectory, the same

cannot be said for complementary slackness (d.), which is violated at the very beginning of the

trajectory. Here constraint g1,P layer1 = −uPlayer1 − 1, g2,P layer2 = uPlayer1 − 1, gPlayer2 =

x2 + uPlayer2 − 1

Chapter 8

Conclusion and Future Work

In this thesis, we presented a control-theoretic method of solving constrained inverse optimal

control problems. We also provided a solution strategy, in the form of novel semi-direct method,

to solve constrained dynamic games. Finally, we extended the constrained optimal control

method to solve constrained inverse dynamic game problems. Throughout our work, we provided

several examples to test the efficacy of our methods, both visually (via plots) and quantitatively

(via tables).

We began by deriving necessary conditions of optimality for a nonlinear optimal control

problem using calculus of variations in Chapter 3. We then brought up the fact that almost

all nonlinear optimal control problems cannot be solved analytically or in closed-form, so we

presented two methods, namely, trapezoidal collocation and pseudospectral collocation, for nu-

merical solutions of optimal control problems in Chapter 4. These two chapters had in mind a

beginner student or a non-expert who’ll able to read and understand the text without having

to spend an enormous amount of time understanding technicalities and heavy jargon present in

the current literature. The examples provided at the end of Chapter 4 were not only used for

demonstrating the results from implementing the two numerical schemes, but were also used for

generating optimal trajectory data which was used in Chapter 5. In Chapter 5, we extended the

method of Johnson et al. [18] to impute cost functions from optimal trajectory data when the

dynamic systems were subjected to mixed and/or control constraints. The examples provided

at the end of the chapter not only accurately predicted the underlying cost function, but the

residual function associated with problem gave us a metric to judge the quality of the solution.

70

71

Chapter 6 extended single objective optimal control problem to multi-objective dynamic game

problem and provided a novel method for computing Nash equilibrium, which is regarded as

an optimal strategy. This method, called as semi-direct method, used necessary conditions of

optimality developed in Chapter 3 and turned them into a feasibility problem for the dynamic

game. The feasibility problem is then solved using a standard NLP solver. We again employed

the examples used in this chapter not only for the purpose of demonstration of the efficacy of

the method, but also to generate optimal trajectory data to be used in Chapter 7. Finally,

in Chapter 7, we showed that the inverse dynamic game problem can be reduced to decoupled

inverse optimal control problems. These problems can then be solved using our extended inverse

optimal control method developed in Chapter 5.

While the work presented in this thesis addresses some of the gaps mentioned in the in-

troductory chapter (Chapter 1), there are some limitations to it. Firstly, in Chapter 4, we

assume that the solution which results from solving an optimal control problem is a minimal

solution. However, because we only used the necessary conditions of optimality without taking

into consideration sufficient conditions, we cannot guarantee that this solution is necessarily

a minimum. Again, in Chapter 6, we assume that the solution that results from solving the

optimization problem is a Nash equilibrium. However, without establishing the sufficient con-

ditions, we cannot guarantee that this is equilibrium is necessarily a minimum of the problem.

Moreover, we do not discuss whether this Nash equilibrium is always possible nor do we talk

about its uniqueness. Finally, the Chapters 6-7 only talk about nonzero-sum dynamic games.

For future work, we would like to study stochastic systems as well as systems with partially

known dynamics, neither of which is dealt in this work. We would also like to use the methods

we developed in this thesis to important systems such as swarm navigation of human drivers.

Lastly, we would like to extend our nonzero-sum dynamic framework to solve zero-sum dynamic

game problems.

References

[1] Nazareth S Bedrossian, Sagar Bhatt, Wei Kang, and I Michael Ross. Zero-propellant

maneuver guidance. IEEE Control Systems Magazine, 29(5):53–73, 2009.

[2] Christopher L Darby and Anil V Rao. Minimum-fuel low-earth orbit aeroassisted orbital

transfer of small spacecraft. Journal of Spacecraft and Rockets, 48(4):618–628, 2011.

[3] Ilse Y Smets, Johan E Claes, Eva J November, Georges P Bastin, and Jan F Van Impe.

Optimal adaptive control of (bio) chemical reactors: past, present and future. Journal of

process control, 14(7):795–805, 2004.

[4] Filip Logist, PMM Van Erdeghem, and JF Van Impe. Efficient deterministic multiple objec-

tive optimal control of (bio) chemical processes. Chemical Engineering Science, 64(11):2527–

2538, 2009.

[5] Sterling J Anderson, Steven C Peters, Tom E Pilutti, and Karl Iagnemma. An optimal-

control-based framework for trajectory planning, threat assessment, and semi-autonomous

control of passenger vehicles in hazard avoidance scenarios. International Journal of Vehicle

Autonomous Systems, 8(2-4):190–216, 2010.

[6] Anil V Rao. A survey of numerical methods for optimal control. Advances in the Astro-

nautical Sciences, 135(1):497–528, 2009.

[7] Oskar Von Stryk. Numerical solution of optimal control problems by direct collocation. In

Optimal Control, pages 129–143. Springer, 1993.

[8] Divya Garg, Michael A Patterson, Camila Francolin, Christopher L Darby, Geoffrey T

Huntington, William W Hager, and Anil V Rao. Direct trajectory optimization and

72

73

costate estimation of finite-horizon and infinite-horizon optimal control problems using a

radau pseudospectral method. Computational Optimization and Applications, 49(2):335–

358, 2011.

[9] AE Bryson, YC Ho, and GM Siouris. Applied optimal control: optimization, estimation,

and control, ieee trans. syst., man. Cybernet, 9(6):366–367, 1979.

[10] Angelo Miele. Gradient algorithms for the optimization of dynamic systems. In control and

Dynamic systems, volume 16, pages 1–52. Elsevier, 1980.

[11] Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas, and Dimitri P Bertsekas.

Dynamic programming and optimal control, volume 1. Athena scientific Belmont, MA, 1995.

[12] Francesco Borrelli, Mato Baotić, Alberto Bemporad, and Manfred Morari. Dynamic pro-

gramming for constrained optimal control of discrete-time linear hybrid systems. Automat-

ica, 41(10):1709–1721, 2005.

[13] Katja Mombaur, Anh Truong, and Jean-Paul Laumond. From human to humanoid loco-

motion—an inverse optimal control approach. Autonomous robots, 28(3):369–383, 2010.

[14] Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y Ng. An application of

reinforcement learning to aerobatic helicopter flight. In Advances in neural information

processing systems, pages 1–8, 2007.

[15] Sergey Levine and Vladlen Koltun. Continuous inverse optimal control with locally optimal

examples. arXiv preprint arXiv:1206.4617, 2012.

[16] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learn-

ing. In Proceedings of the twenty-first international conference on Machine learning, page 1.

ACM, 2004.

[17] Arezou Keshavarz, Yang Wang, and Stephen Boyd. Imputing a convex objective function. In

Intelligent Control (ISIC), 2011 IEEE International Symposium on, pages 613–619. IEEE,

2011.

[18] Miles Johnson, Navid Aghasadeghi, and Timothy Bretl. Inverse optimal control for deter-

ministic continuous-time nonlinear systems. In Decision and Control (CDC), 2013 IEEE

52nd Annual Conference on, pages 2906–2913. IEEE, 2013.

74

[19] Tamer Basar and Geert Jan Olsder. Dynamic noncooperative game theory, volume 23.

Siam, 1999.

[20] Finn Kydland. Noncooperative and dominant player solutions in discrete dynamic games.

International economic review, pages 321–335, 1975.

[21] Y Ho, A Bryson, and Sheldon Baron. Differential games and optimal pursuit-evasion strate-

gies. IEEE Transactions on Automatic Control, 10(4):385–389, 1965.

[22] Tal Shima and Oded M Golan. Linear quadratic differential games guidance law for dual

controlled missiles. IEEE Transactions on Aerospace and Electronic Systems, 43(3):834–

842, 2007.

[23] Immanuel M Bomze. Non-cooperative two-person games in biology: A classification. In-

ternational journal of game theory, 15(1):31–57, 1986.

[24] Dario Bauso. Game theory with engineering applications, volume 30. Siam, 2016.

[25] JC Engwerda et al. Feedback nash equilibria for linear quadratic descriptor differential

games. Automatica, 48(4):625–631, 2012.

[26] Z Nikooeinejad, A Delavarkhalafi, and M Heydari. Journal of Computational and Applied

A numerical solution of open-loop Nash equilibrium in nonlinear differential games based

on Chebyshev pseudospectral method. Journal of Computational and Applied Mathematics,

300:369–384, 2016.

[27] M Cody Priess, Richard Conway, Jongeun Choi, John M Popovich, and Clark Radcliffe.

Solutions to the inverse lqr problem with application to biological systems analysis. IEEE

Transactions on control systems technology, 23(2):770–777, 2014.

[28] Jairo Inga, Esther Bischoff, Timothy L Molloy, Michael Flad, and Sören Hohmann. Solution

sets for inverse non-cooperative linear-quadratic differential games. IEEE Control Systems

Letters, 2019.

[29] Timothy L Molloy, Jason J Ford, and Tristan Perez. Inverse noncooperative differential

games. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pages

5602–5608. IEEE, 2017.

75

[30] Anil V Rao. Trajectory optimization: a survey. In Optimization and optimal control in

automotive systems, pages 3–21. Springer, 2014.

[31] John T Betts. Survey of numerical methods for trajectory optimization. Journal of Guid-

ance control and dynamics, 21(2):193–207, 1998.

[32] JT Betts, SL Campbell, and A Engelsone. Direct transcription solution of optimal con-

trol problems with higher order state constraints: theory vs practice. Optimization and

Engineering, 8(1):1–19, 2007.

[33] John T Betts. Practical methods for optimal control and estimation using nonlinear pro-

gramming, volume 19. Siam, 2010.

[34] Douglas G Fox and Steven A Orszag. Pseudospectral approximation to two-dimensional

turbulence. Journal of Computational Physics, 11(4):612–619, 1973.

[35] Steven A Orszag. Comparison of pseudospectral and spectral approximation. Studies in

Applied Mathematics, 51(3):253–259, 1972.

[36] Gamal Elnagar, Mohammad A Kazemi, and Mohsen Razzaghi. The pseudospectral legendre

method for discretizing optimal control problems. IEEE transactions on Automatic Control,

40(10):1793–1796, 1995.

[37] Gamal N Elnagar and Mohammad A Kazemi. Pseudospectral chebyshev optimal control of

constrained nonlinear dynamical systems. Computational Optimization and Applications,

11(2):195–217, 1998.

[38] I Michael Ross and Fariba Fahroo. Legendre pseudospectral approximations of optimal

control problems. In New trends in nonlinear dynamics and control and their applications,

pages 327–342. Springer, 2003.

[39] I Michael Ross and Fariba Fahroo. Pseudospectral knotting methods for solving nonsmooth

optimal control problems. Journal of Guidance, Control, and Dynamics, 27(3):397–405,

2004.

[40] I Michael Ross and Mark Karpenko. A review of pseudospectral optimal control: From

theory to flight. Annual Reviews in Control, 36(2):182–197, 2012.

76

[41] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy

inverse reinforcement learning. In AAAI, volume 8, pages 1433–1438. Chicago, IL, USA,

2008.

[42] Rudolf Emil Kalman. When is a linear control system optimal. Journal of Basic Engineer-

ing, 86(1):51–60, 1964.

[43] Nathan Ratliff, Brian Ziebart, Kevin Peterson, J Andrew Bagnell, Martial Hebert, Anind K

Dey, and Siddhartha Srinivasa. Inverse optimal heuristic control for imitation learning. In

Artificial Intelligence and Statistics, pages 424–431, 2009.

[44] Adina M Panchea and Nacim Ramdani. Towards solving inverse optimal control in a

bounded-error framework. In American Control Conference (ACC), 2015, pages 4910–

4915. IEEE, 2015.

[45] Peter Englert, Ngo Anh Vien, and Marc Toussaint. Inverse kkt: Learning cost functions of

manipulation tasks from demonstrations. The International Journal of Robotics Research,

36(13-14):1474–1488, 2017.

[46] Ilan Rusnak. The lady, the bandits, and the bodyguards–a two team dynamic game. In

Proceedings of the 16th world IFAC congress, pages 934–939, 2005.

[47] Oleg Prokopov and Tal Shima. Linear quadratic optimal cooperative strategies for active

aircraft protection. Journal of Guidance, Control, and Dynamics, 36(3):753–764, 2013.

[48] Eloy Garcia, David W Casbeer, Khanh Pham, and Meir Pachter. Cooperative aircraft

defense from an attacking missile. In Decision and Control (CDC), 2014 IEEE 53rd Annual

Conference on, pages 2926–2931. IEEE, 2014.

[49] Fouad El Ouardighi, Steffen Jørgensen, and Federico Pasin. A dynamic game with monop-

olist manufacturer and price-competing duopolist retailers. OR spectrum, 35(4):1059–1084,

2013.

[50] Nathanaël Jarrassé, Themistoklis Charalambous, and Etienne Burdet. A framework to

describe, analyze and generate interactive motor behaviors. PloS one, 7(11):e49945, 2012.

[51] Y Li, G Carboni, F Gonzalez, D Campolo, and E Burdet. Differential game theory for

versatile physical human–robot interaction. Nature Machine Intelligence, 1(1):36, 2019.

77

[52] Nan Li, Mengxuan Zhang, Yildiray Yildiz, Ilya Kolmanovsky, and Anouck Girard. Game

theory-based traffic modeling for calibration of automated driving algorithms. In Control

Strategies for Advanced Driver Assistance Systems and Autonomous Driving Functions,

pages 89–106. Springer, 2019.

[53] Quanyan Zhu, Zhu Han, and Tamer Başar. A differential game approach to distributed de-

mand side management in smart grid. In Communications (ICC), 2012 IEEE International

Conference on, pages 3345–3350. IEEE, 2012.

[54] Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel, and Anca Dragan. Cooperative

inverse reinforcement learning. In Advances in neural information processing systems, pages

3909–3917, 2016.

[55] Brian D Ziebart, J Andrew Bagnell, and Anind K Dey. The principle of maximum causal

entropy for estimating interacting processes. IEEE Transactions on Information Theory,

59(4):1966–1980, 2013.

[56] Mark W Spong and Mathukumalli Vidyasagar. Robot dynamics and control. John Wiley

& Sons, 2008.

[57] Bernard Dacorogna. Introduction to the Calculus of Variations. World Scientific Publishing

Company, 2014.

[58] Richard F Hartl, Suresh P Sethi, and Raymond G Vickson. A survey of the maximum

principles for optimal control problems with state constraints. SIAM review, 37(2):181–

218, 1995.

[59] Donald E Kirk. Optimal control theory: an introduction. Courier Corporation, 2012.

[60] Matthew Kelly. An introduction to trajectory optimization: How to do your own direct

collocation. SIAM Review, 59(4):849–904, 2017.

[61] Divya Garg, Michael Patterson, William W Hager, Anil V Rao, David A Benson, and

Geoffrey T Huntington. A unified framework for the numerical solution of optimal control

problems using pseudospectral methods. Automatica, 46(11):1843–1851, 2010.

[62] Victor M Becerra. Psopt optimal control solver user manual. University of Reading, 2010.

78

[63] Divya Garg, Michael Patterson, William Hager, Anil Rao, David Benson, and Geoffrey

Huntington. An overview of three pseudospectral methods for the numerical solution of

optimal control problems. 2017.

Appendix A

Glossary

While care has been taken in this thesis to not excessively rely on the use of jargon, this cannot

always be achieved. This appendix defines jargon terms in a glossary.

• Calculus of variations – A branch of mathematics that deals with function minimization.

• Direct transcription – A procedure to convert a continuous time infinite dimensional

functional optimization problem to a finite dimensional parameter optimization problem.

• Feature vector – Part of the cost function that contains different features such as squares

of states, controls, etc.

• Functional – A functional whose input is another function (in contrast to a function

whose input is a point)

• Nash equilibrium – A strategy in non-cooperative zero-sum games where no player can

do better by unilaterally changing their strategy given the strategy of every other player.

• Parameter optimization – A problem which involves optimization over decision vari-

ables which are typically real numbers (in contrast to optimization over functions).

• Sequential Quadratic Programming – A nonlinear optimization solver which is used

after a problem is transcribed from functional optimization to parameter optimization.

• Weight vector – Part of the cost function that indicates relative importance of different

features present in the feature vector.

79

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Thesis statement
	Objectives
	Contribution
	Major Contribution
	Minor Contribution

	Outline of Work

	Literature Review and Background
	Related Work
	Elbow Manipulator

	Optimal Control
	Constrained Optimal Control
	Necessary Conditions of Optimality
	Problem Formulation
	Derivation of Necessary Conditions of Optimality
	Necessary Conditions of Optimality
	Complete Set of Necessary Conditions for Optimality

	Linear Quadratic Regulator

	Numerical Methods in Optimal Control
	Introduction
	Methods of Optimal Control
	Direct Method
	Transcription
	Nonlinear Programming

	Trapezoidal Collocation Method
	Pseudospectral Collocation Method
	Orthogonal Polynomials
	Collocation Points
	Lagrange Polynomials

	Simulations
	Results and Discussion

	Inverse Optimal Control
	Constrained Inverse Optimal Control
	Problem Statement
	Residual Function Optimization
	Improving Accuracy of IOC

	Simulations
	Results and Discussion

	Dynamic Games
	Problem Formulation of Dynamic Games
	Semi-direct Method
	Semi-Direct Method for Unconstrained Dynamic Games
	Semi-Direct Method for Constrained Dynamic Games

	Simulations
	Results and Discussion

	Inverse Dynamic Games
	Problem Formulation for Inverse Differential Games
	Simulations
	Results and Discussion

	Conclusion and Future Work
	References
	 Appendix A. Glossary

