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Probabilistic Learning of Torque Controllers
from Kinematic and Force Constraints

Jõao Silv́erio1, Yanlong Huang1, Leonel Rozo1, Sylvain Calinon2;1 and Darwin G. Caldwell1

Abstract— When learning skills from demonstrations, one is
often required to think in advance about the appropriate task
representation (usually in either operational or con�guration
space). We here propose a probabilistic approach for simulta-
neously learning and synthesizing torque control commands
which take into account task space, joint space and force
constraints. We treat the problem by considering different
torque controllers acting on the robot, whose relevance is
learned probabilistically from demonstrations. This information
is used to combine the controllers by exploiting the properties
of Gaussian distributions, generating new torque commands
that satisfy the important features of the task. We validate the
approach in two experimental scenarios using 7-DoF torque-
controlled manipulators, with tasks that require the consider-
ation of different controllers to be properly executed.

I. I NTRODUCTION

The �eld of Learning from Demonstration (LfD) [1] aims
for a user-friendly and intuitive human-robot skill transfer.
However, in general, when modeling demonstrations one
must think in advance about the relevant variables to en-
code. Selecting these variables strongly depends on the task
requirements, with motor skills often being represented in
either operational or con�guration space. The prior de�nition
of the relevant space may require considerable reasoning or
trial-and-error, contradicting the LfD concept. This process
becomes even more cumbersome when the robot is required
to physically interact with the environment, introducing
additional task constraints such as interaction forces (the term
constraintshere refers to consistent features in demonstra-
tions, that should be accurately reproduced). Consider the
example shown in Fig. 1, where a robot is �rst required
to apply a force with the end-effector, and then perform
a con�guration space movement. In this case, encoding
demonstrations in either operational or con�guration spaces
alone will not result in proper execution.

We here propose an approach for simultaneously learning
different types of task constraints and generating torque
control commands that encapsulate the important features
of the task. Figure 2 gives an overview of the approach.
We treat the problem by considering different torque con-
trollers acting on the robot, with each one being responsible
for the ful�llment of a particular type of constraint (e.g.
desired interaction forces, Cartesian/joint positions and/or
velocities). We discuss such controllers in Section III. From
demonstrations of a task, we propose to learn the importance

1 Department of Advanced Robotics, Istituto Italiano di Tecnologia,
Genova, Italy (e-mail: name.surname@iit.it).

2 Idiap Research Institute, Martigny, Switzerland (e-mail: syl-
vain.calinon@idiap.ch).

This work was supported by the Italian Ministry of Defense.

Fig. 1: Example of a task that demands two different controllers. First, the
robot should close a shaker (left), by applying a force alongx1 , a skill that
requires force control. Subsequently, it must perform a shake with its wrist
joint q6 (right), thus a con�guration space controller is desirable.

of each controller using probabilistic representations of the
collected data (Section V). We then exploit a set of linear
operators, de�ned for each individual controller, that take
into account the state of the robot and contact with the
environment to transform the control references into torque
commands, with associated importance. Finally, we com-
bine the commands, represented as independent Gaussian-
distributed torque references, through a fusion of controllers,
carried out by a product of Gaussians (Section IV). We hence
obtain a �nal torque reference, used to control the robot. Our
contribution with respect to the state-of-the-art is three-fold:

1) A probabilistic formulation for jointly learning torque
controllers from demonstrations, by exploiting the
properties of Gaussian distributions.

2) The consideration of not only kinematic tasks (at
Cartesian/joint space level) but also force-based ones.

3) An approach that is compatible with various prob-
abilistic learning algorithms that generate Gaussian
distributed references or trajectories.

The proposed approach is evaluated in two scenarios with
7-DoF robots (Section VI). In the �rst case, we use a cocktail
shaking task, employing force control, to prove that the ap-
proach can accommodate both force- and position/velocity-
based skills. The second scenario shows that the approach
can be used to combine partial demonstrations, allowing for
demonstrating the sub-tasks of each controller independently.

II. RELATED WORK

The problem of combining controllers can be broadly
divided into two types of approaches. In [2], [3], [4], the
authors use a weighted combination of individual torque
controllers, with each controller responsible for a particular
sub-task (e.g. balance, manipulation, joint limit avoidance).
Other works frame the problem as a multi-level prioritization
[5], [6], where lower importance tasks are executed without
compromising more important ones, typically in a hierarchi-



Fig. 2: Diagram of the proposed approach. Demonstrations of a task are given to the robot, while recording different types of data, such as positions,
velocities and interaction forces. To each type of data, an individual controller is assigned, and the corresponding references are modeled as Gaussian
distributions, encapsulating each controller's importance. During task execution, linear operatorsA andb, which depend on the chosen controllers as well
as the robot's state and the interaction forces, transform the references into probabilistic torque commands. These torques are combined by taking into
account their variance, through the product of Gaussians, whose result is then fed to the robot as a torque� task that satis�es the important task features.

cal manner with a null space formulation. As a result, tasks
with low importance are only executed if they do not affect
high priority ones, potentially requiring platforms with a high
number of degrees of freedom. Both kinds of approaches
have their own merits, with the former allowing for a more
�exible organization of tasks as well as smooth transitions
between them (according to their weight pro�les) and the
latter ensuring that high priority tasks are always executed.

In contrast to manually setting weights [2], in this paper
we are interested in learning them from human demonstra-
tions. Learning controller importance has been addressed
in different manners, from reinforcement learning (RL) [3],
[4], [7] to LfD [8], [9], [10]. The main differences between
these two branches lie on the type of prior knowledge, with
RL requiring a priori information in the form of reward or
cost functions – which can be hard to formulate in some
cases – and LfD approaches demanding task demonstrations.
The present work shares connections with [8], [9], [10],
where the problem of combining constraints in task and joint
spaces is addressed. The �rst important difference is that such
approaches use velocity controllers, which only take into
account kinematic constraints. In this work, we exploit torque
controllers, that allow for a straightforward consideration
of desired interaction forces at the end-effector. Previous
work in LfD has addressed learning forces, either alone [11]
or in hybrid position-force control settings [12], [13], [14].
Here, we go one step further and consider interaction forces,
Cartesian positions and joint trajectories simultaneously into
the learning framework. The second relevant difference is
that [8], [9], [10] model data using Gaussian Mixture Models
(GMM), while in the present work, although GMM are
used as an example, we generalize the solution to a wider
range of probabilistic modeling approaches. In particular,
we show that the probabilistic combination of controllers
is compatible with any trajectory modeling technique that
generates Gaussian-distributed outputs. Despite that we here
showcase this property by exploiting Gaussian Process
Regression (GPR) [15], in Section VI-B, other techniques
such as Probabilistic Movement Primitives (ProMP) [16]
may potentially be used.

III. T ORQUECONTROLLERS– CONFIGURATION AND

OPERATIONAL SPACE

Inspired by works in which a combination of torque
controllers results in a �exible importance assignment and

smooth transitions between different tasks [2], [3], [4],
we propose a strategy where the controller combination is
learned from demonstrations. In this section we de�ne the
individual controllers that we exploit for con�guration and
operational space control. Formally, we follow a model-
based approach to control the robot using torques, by as-
suming a rigid-body system withN joints whose dynamics
are given by M (q) •q + C (q; _q) _q + g(q) = � , where
q; _q; •q 2 RN denote joint angles, velocities and accelera-
tions, M (q) 2 RN � N corresponds to the inertia matrix,
C (q; _q) 2 RN denotes the the Coriolis and centrifugal terms
and g(q) 2 RN is a gravity term. The total torques acting
on each joint are given by� 2 RN .

Robot control is achieved using a torque command� u ,
formed from a task-related term� task and a term that
compensates for the dynamics of the robot� dyn , i.e.,

� u = � task + � dyn ; (1)

where � dyn is computed from the inverse dynamics model
(assumed to be known). In this work we are interested in
fusing controllers that ful�ll different task requirements, thus
we focus on the term� task . Here, when referring to tasks,
we are concerned with the tracking of reference trajectories
(e.g. positions, forces).

The de�nition of � task depends on the space where tasks
are represented. For instance, when a task requires the
manipulation of an object (e.g. pick and place),� task must
be de�ned such that position and orientation constraints
at the end-effector are ful�lled with respect to the object.
If, additionally, manipulation requires physical contact (e.g.
object insertion, cooperative handling of objects),� task

must also accommodate desired interaction forces. In other
applications, where gestures or speci�c con�gurations of
the kinematic chain are required,� task is more adequately
formulated as a con�guration space controller. We now
describe the controllers that we exploit for the different types
of tasks, denoting� task simply by � .

A. Con�guration space controller

Con�guration space controllers are used to track joint posi-
tions and velocities. Here we exploit proportional-derivative
(PD) controllers of the form

� q = K P
q (qd � q) + K D

q ( _qd � _q); (2)



whereK P
q ; K D

q 2 RN � N are joint stiffness and damping gain
matrices, andq; _q; qd; _qd 2 RN are the current and desired
joint positions and velocities. An additional feed-forward
term •qd 2 RN is often added to (2), for improved tracking
performance, as in [17]. As we shall see, it is straightforward
to accommodate this term in our approach, if required.

B. Position controller in operational space

Operational space controllers are aimed at tracking Carte-
sian poses with the end-effector of the robot. Here, we
consider the case of tracking position references, but the
approach remains valid for the consideration of orientations.
We assume that the end-effector of the robot is driven by a
force, that is proportional to the output of a PD controller,

F x = �M (q)
�

K P
x (x d � x ) + K D

x ( _x d � _x )
�

; (3)

where �M (q) = ( J (q)M (q) � 1J (q)> ) � 1 is the Cartesian
inertia matrix of the end-effector, whose positions and linear
velocities (current and desired) are respectively denoted by
x ; x d; _x ; _x d 2 RM (with M being the dimension of the oper-
ational space). The Jacobian matrixJ (q) 2 RM � N , gives the
differential kinematics of the robot's end-effector_x = J (q) _q
and K P

x ; K D
x 2 RM � M are Cartesian stiffness and damping

gain matrices. The end-effector forceFx is converted to joint
torques as in [17],

� x = J (q)> F x : (4)

C. Force controller

In this case we consider a proportional controller that
tracks a desired force at the end-effector (see [18], Ch. 11):

F u = K P
F (F d � F ); � F = J (q)> F u ; (5)

whereF ; F d 2 RM are current and desired contact forces
(measured using a F/T sensor at the end-effector), and (4) is
used to map the force command at the end-effector to joint
torques� . Finally, K P

F 2 RM � M is a proportional gain matrix.

IV. PROBABILISTIC TORQUECONTROLLERS

In this section, we formalize the fusion of torque con-
trollers as an optimization problem and lay out the prob-
abilistic treatment of control commands. Let us consider
a robot employingP controllers – as those de�ned in
Section III – at any given moment, corresponding to
P different sub-tasks that can be executed in series or
in parallel. Each controller generates a torque command
� (p) 2 RN ; p = 1 ; : : : ; P. Also, let us assume we have ac-
cess to a precision matrix (which will be explained in Section
IV-B), denoted by� (p) 2 RN � N , providing information
about the respective importance of the different controllers.
We formalize the problem of fusingP control commands as
the optimization

�̂ = arg min
�

PX

p=1

�
� � � (p)

�>
� (p)

�
� � � (p)

�
; (6)

� In the remainder of the paper we drop dependencies onq, e.g.
�M = �M (q); J = J (q), etc.

whose objective function corresponds to a weighted sum of
quadratic error terms, with the weight of each term given
by the matrices� (p) . The solution and error residuals of (6)
can be computed analytically, and correspond to the mean
and covariance matrix of a Gaussian distributionN (�̂ ; �̂ � )
given by the product ofP Gaussians, with means� (p) and
precision matrices� (p) ,

�̂ = �̂ �

PX

p=1

� (p) � (p) ; �̂ � =
� PX

p=1

� (p)
� � 1

; (7)

where precision matrices are the inverse of covariance ma-
trices � (p)

� , i.e. � (p) = � (p) � 1

� . The connection between the
solution of (6) and the product of Gaussians (7) allows for
exploiting the structure of the controllers de�ned in Section
III to fuse torque commands, given Gaussian-distributed ref-
erences. In particular, this is achieved by taking advantage of
the linearity of the controllers (Section IV-A) in combination
with the linear properties of Gaussians (Section IV-B).

A. Linear controller structure

Control commands (2)–(5) are linear with respect to the
reference trajectories. The controller equations can thus be
re-written in a way that highlights this linear structure. For
the joint space torque controller (2) we obtain

� q =
h
K P

q K D
q

i �
qd
_qd

�
�

h
K P

q K D
q

i �
q
_q

�

, � q = A q

�
qd
_qd

�
+ bq; (8)

where A q =
h
K P

q K D
q

i
and bq = �

h
K P

q K D
q

i� q
_q

�
.

Similarly, the Cartesian position and force controllers

(4)–(5) can be formulated as� x = A x

�
x d

_x d

�
+ bx , with

A x = J > �M
h
K P

x K D
x

i
, bx = � J > �M

h
K P

x K D
x

i� x
_x

�
, and

� F = A F F d+ bF , with A F = J >K P
F andbF = � J > K P

F F .
Note that linearity also applies if feed-forward terms are
included in the controllers, e.g.•x d; •qd. In such cases, these
terms simply need to be included in the reference vec-
tor and A can be extended with the identity matrix, e.g.
[q>

d _q>
d •q>

d]> andA q =
h
K P

q K D
q I

i
, for a con�guration

space controller.

B. From probabilistic references to probabilistic torques

Gaussian distributions are popular in robot learning and
control due to their properties of product, conditioning and
linear transformation. Here, we consider Gaussian-distributed
control references and exploit the previously de�ned linear
operators to formulate probabilistic torque controllers. Let us
�rst consider a con�guration space controller, with desired

joint state
�
qd
_qd

�
� N

�
� q; � q

�
, where� q 2 R2N and� q 2

R2N � 2N are the mean and covariance matrix of a Gaussian,
modeling the probability distribution of joint positions and
velocities. Per the linear properties of Gaussian distributions,



the con�guration space controller (8) yields a new Gaussian
N (� q; � �;q ) with mean and covariance given by

� q = A q� q + bq; � �;q = A q� qA>
q: (9)

Similarly, for
�
x d

_x d

�
� N

�
� x ; � x

�
andF d � N

�
� F ; � F

�
,

we obtain

� x = A x � x + bx ; � �;x = A x � x A>
x ; (10)

and
� F = A F � F + bF ; � �;F = A F � F A>

F ; (11)

respectively. This type of controller has a probabilistic na-
ture as the torque commands are generated from Gaussian
distributions and result in new Gaussians. We therefore refer
to them asprobabilistic torque controllers(PTC).

A generic PTC,p = 1 ; : : : ; P, is thus fully speci�ed by

� d � N
�

� (p) ; � (p)
�

; f A (p) ; b(p) g; (12)

� (p) = A (p) � (p) + b(p) ; � (p)
� = A (p) � (p) A (p)> ;

where� d denotes a generic control reference. Note that the
set of linear parametersf A (p) ; b(p) g is permanently updated,
for each controller, during execution, as it depends on the
state of the robot and its interaction with the environment
throughq; _q, x ; _x andF .

A probabilistic representation of trajectories using Gaus-
sian distributions (12) has the advantage of modeling the
second moment of the data in the form of covariance
matrices. This is exploited here to express the importance
of each controller – denoted by� (p) – as a function of the
covariance of the corresponding reference trajectory� (p) :

� (p) = � (p) � 1

� =
�

A (p) � (p) A (p)>
� � 1

: (13)

Note thatA (p) is typically non-squared. This operator maps
constraints from spaces with different dimensions (e.g. con-
�guration and operational spaces) into a common space, that
of torque commands.

With the de�nition of � (p) in (13), torque commands can
be combined using (7). The problem of learning control com-
mands and their respective importance is thus framed as the
learning of reference trajectories as Gaussian distributions
N (� (p) ; � (p) ), and generating Gaussian-distributed torque
commandsN (� (p) ; � (p)

� ), which encapsulate the control
reference and its importance with respect to other controllers.
In previous work, controller weights are either set empirically
[2] or optimized through reinforcement learning [3], [4].
In contrast to these works, we employ probabilistic regres-
sion algorithms to learnN (� (p) ; � (p) ), and consequently
N (� (p) ; � (p)

� ); 8p = 1 ; :::; P, from human demonstrations.

V. L EARNING CONTROL REFERENCES FROM

DEMONSTRATIONS

In Section IV, we formalized our approach for combining
controllers. Here we show how the Gaussian modeling of
trajectories can be learned from demonstrations. Several
regression methods exist for this purpose, each offering

different advantages; see [19] for a review. Two popular
approaches are GMM, combined with Gaussian Mixture
Regression [20], and GPR [15]. We now review these two
techniques, and expand on their use in the context of PTC.

A. Gaussian Mixture Model/Gaussian Mixture Regression
(GMM/GMR)

We consider demonstration datasets comprised ofT data-
points organized in a matrix� 2 RD � T . Each datapoint� t
is represented with input/output dimensions indexed byI ,

O, so that� t =
�

� I
t

� O
t

�
2 RD with D = D I + DO . It can for

example represent a concatenation of time stamps with end-
effector poses, joint angles or measured forces. A GMM,
encoding the joint probability distributionP(� I ; � O ) with
K states and parameters� = f � i ; � i ; � i gK

i =1 (respectively
the prior, mean and covariance matrix of each statei ),
can be estimated from such a dataset through Expectation-
Maximization (EM) [20]. After a GMM is �tted to a given
dataset, GMR can subsequently be used to synthesize new
behaviors, for new inputs� I

� 2 RD I , by means of the condi-
tional probabilityP(� O

� j� I
� ), yielding a normally-distributed

output � O
� j� I

� � N (� O ; � O ); see [20] for details.
We exploit GMM/GMR to estimate desired trajectories for

each controller through the mean� O , as well as their im-
portance through the covariance matrix� O . In GMM/GMR,
covariance matrices model the variability in the data, in
addition to the correlation between the variables. Figure
3(a) illustrates this aspect, where we see that the variance
regressed by GMR (shown as an envelope around the mean)
re�ects the datapoint distribution in the original dataset. In
the context of PTCs, high variability in the demonstrations
of the p-th controller results in large covariance matrices
� (p) . From (13), it follows that the corresponding controller
precision matrix� (p) will be small and, thus, the control
reference� (p) will be tracked less accurately. GMM/GMR is,
hence, an appropriate technique to select relevant controllers
based on the regularities observed in each part of the task
throughout the different demonstrations.

B. Gaussian Process Regression (GPR)

A Gaussian Process (GP) is a distribution over func-
tions, with a Gaussian prior on observations� O given by
� O � N (m (� I ); K (� I ; � I )) , where m (� I ) is a vector-
valued function yielding the mean of the process,K (� I ; � I )
denotes its covariance matrix and� I =[ � I

1 : : : � I
T ] 2 RD I � T

is a concatenation of observed inputs. The covariance matrix
is computed from a kernel function evaluated at the inputs,
with elementsK ij = k(� I

i ; � I
j ). Several types of kernel func-

tions exist; see e.g., [15].
Standard GPR allows for predicting a scalar function

� O
� = f (� I

� ) : RD I ! R. In robotics, one typically requires
multi-dimensional outputs, thus GPR is often employed sep-
arately for each output of a given problem. Here we follow
this approach to probabilistically model multi-dimensional
reference trajectories, such as those of joint angles or Carte-
sian positions. For each input point� I

� 2 RD I , the prediction



(a) GMR: The variance models the variability in the dataset.

(b) GPR: The variance models the uncertainty of the estimate (depending
on the presence/absence of training datapoints in the neighborhood).

Fig. 3: For a given set of datapoints (black dots), GMR and GPR compute
different and complementary notions of variance. The red line is the
regressed function, while the light red contour represents the computed
variance around the prediction.

Algorithm 1 Fusion of probabilistic torque controllers

1. Initialization
1: SelectP controllers (Section III) based on the task
2: Select appropriate regression algorithm (GMR, GPR)
3: Collect demonstrations for each controllerf � I

p ; � O
p gP

p=1

2. Model training
1: for p = 1 ; : : : ; P do
2: if regression algorithm is GMRthen
3: Choose GMM state numberK and estimate�
4: else if regression algorithm is GPRthen
5: Choose the kernelk(�; �) and its hyperparameters
6: end if
7: end for

3. Movement synthesis
1: for t = 1 ; : : : ; T do
2: for p = 1 ; : : : ; P do
3: Compute� (p) ; � (p) j� I

t , through GMR or GPR
4: UpdatefA (p); b(p)g based on the type of controller
5: Compute torque distributionN

�
� (p) ; � (p)

�

�

6: end for
7: Compute�̂ from (7) and� u from (1)
8: end for

of each output dimensiond = 1 ; :::; DO is thus given by

� d = m � + k � [K + � 2
n I ]� 1(� O d � m ); (14)

� 2
d = k �� � k � [K + � 2

n I ]� 1k � ; (15)

where � O d 2 RT is the observedd-th output di-
mension,k � = [ k(� I

� ; � I
1) : : : k(� I

� ; � I
T )], k �� = k(� I

� ; � I
� ),

m = m (� I ), m � = m (� I
� ), K = K (� I ; � I ), and� 2

n is an
additional hyperparameter modeling noise in the observations
(which acts as a regularization term). We concatenate the
predictions into one single multivariate Gaussian with mean
and covariance matrix given by

� O =
�
� 1 : : : � D O

�>
; � O = diag( � 2

1 ; : : : ; � 2
D O

): (16)

Since output dimensions are modeled separately, GPR
predictions are, in the standard case, uncorrelated, which
is evident from the structure of� O in (16). In contrast
to GMR, the estimated variance in GPR is a measure of
prediction uncertainty. Figure 3(b) illustrates this aspect, with
the variance increasing with the absence of training data
(t > 0:6s). This provides a way of assigning importance to
predictions, when different observations of a task occur. We
propose to exploit GPR if demonstration data is incomplete
or scarce and, in particular, for partially demonstrating a task
to each controller as separate sub-tasks.

The overall approach is summarized in Algorithm 1 for
GMM or GP as trajectory modeling techniques.

VI. EVALUATION

We assess the performance of the proposed framework in
two different tasks. In one case, we exploit the variability
in the demonstrations, while, in the other, we consider the
prediction uncertainty. The experiments are conducted in two
different 7-DoF manipulators, enabled with torque control.
The reader is referred tohttp://joaosilverio.weebly.
com/iros18 for videos of both experiments.

A. Learning cocktail shaking skills with force constraints

We start our evaluation with a cocktail shaking task where
force and con�guration space control are employed. For this
task we use the torque-controlled KUKA light-weight robot.
The task is comprised of two sub-tasks (Fig. 1): a force-based
sub-task, where an interaction force (measured with a F/T
sensor mounted on the end-effector) must be tracked in order
to successfully close a cocktail shaker, and a con�guration
space sub-task, through which the robot performs a shake
using rhythmic joint movements. A joint space encoding of
the shaking movement is more likely to generate a proper
reproduction since rhythmic movements are typically less
consistent in operational space than in joint space [9]. We
aim to extract the activation of each sub-task from the
variability in the demonstrations, thus both force and joint
demonstrations are encoded in GMMs, together with time,
which is used as the input to GMR.

We collected 4 demonstrations of this task by kinesthet-
ically guiding the robot arm (gravity-compensated) to �rst
close the shaker and, second, to perform the shake with a
rhythmic motion of its 6th joint (see Fig. 1). Forp = 1 , the
force controller, we haveD = 4 , with datapoints encoding
time and sensed forces� (1)

t = [ t F1;t F2;t F3;t ]> (force
directions as indicated in Fig. 1). In the case of the joint
space controller,p = 2 , we haveD = 15 with datapoints
� (2)

t = [ t q1;t : : : q7;t _q1;t : : : _q7;t ]> , whereqn;t and _qn;t

denote the position and velocity of jointn at time stept. The
recorded trajectories were �ltered and sub-sampled to 200
points each, yielding a dataset withT = 800 datapoints for
each controller. Additionally, the joint space trajectories were
aligned using Dynamic Time Warping, in order to capture
the consistent shaking patterns in all demonstrations. Finally,
GMMs were �tted to the dataset of each controller, with
K = 7 andK = 15 states, respectively, chosen empirically.



Fig. 4: Dataset of demonstrated contact forces alongF1 (lines) and estimated
GMM states (blue ellipses).

Fig. 5: Dataset from jointq6 of the 7-DoF manipulator as a function of time
(lines). Red ellipses are the GMM states which model the joint probability
distribution between joint angles and time.

Figures 4 and 5 show the force and joint space datapoints,
together with the corresponding GMM states, forF1 (force
along the end-effectorx1-axis) and jointq6. For illustration
purposes, the GMM states are depicted as ellipses with
a width of one standard deviation. The negative sign in
the force measurements indicates that the applied force
is in opposite direction to the positivex1-axis, which is
expected due to the closing of the shaker occurring along
that direction. From these plots we conclude that both the
collected contact forces and joint angles have periods of high
and low variability. The periods of low variability mark the
regions where each sub-task should be predominant. In the
case ofF1, this happens at the beginning, where the force
is zero, and between5s and10s, where the contact force is
applied to close the shaker. On the other hand, the consistent
rhythmic patterns aftert = 15s in Fig. 5, mark the shaking
sub-task. Notably, in both cases, the GMM encoding is able
to capture this consistency, in the form of narrow Gaussians.
Figure 6 shows the retrieved control references using GMR,
given the time input. Here, the contours around thick lines
correspond to the predicted variance at each input point. In
both cases, GMM/GMR allows for a proper encoding and
retrieval of both mean control reference and variance.

The torque commands that were generated by each
controller during one reproduction of the task, as well

Fig. 6: GMR performed on the mixture models depicted in Figs. 4 and 5,
with solid lines representing the retrieved pro�les and the semi-transparent
contours depicting the prediction variance.Top: Retrieved contact force
pro�le F1 . Bottom: Predicted reference forq6 .

Fig. 7: Generated torque commands for joint 6 during one reproduction of
the task. Red and blue curves show the torques generated by each individual
controller, with corresponding variance, obtained from the probabilistic
controller formulation in Section IV. The optimal torque, used by the robot,
is depicted in black.

as the optimal torque, are shown in Fig. 7. The latter
is obtained from the former two using (6), as described
in Section IV. We focus our analysis on jointq6, the
one which performs the shake. For each sub-task, we
used diagonal control gain matrices, chosen empirically
based on the desired tracking precision. In particular, we
usedK P

F =diag(4 ; 2; 2), K P
q =diag(50; 80; 20; 70; 20; 10; 6)

and K D
q = diag(14; 17; 8; 16; 8; 6; 4). The linear operators

f A (1) ; b(1) g; f A (2) ; b(2) g were constructed according to
Section IV-B asA (1)

t = � J >
t K P

F and b(1)
t = J >

t K P
F F t ,

for the contact force controller, andA (2)
t =

h
K P

q K D
q

i

and b(2)
t = �

h
K P

q K D
q

i� qt
_qt

�
, for the con�guration space

controller. Notice the sign change in the force operators,
compared to those in Section IV-B. This is due to the encoded
forces having an opposite sign to the desired direction of
end-effector movement. Figure 7 shows that the commanded
torque closely matches the torque from each of the individual
controllers, in the corresponding regions of low variance
(note that the weight of each controller is inversely pro-
portional to the variance, as per Eq. (13)). This is evident
in the beginning of the task, where the torques generated
by the force controller strongly in�uence the torques sent to
the robot, and fromt = 15s, where the shaking torques are
favored. This results in a reproduction where the complete
task is properly executed by, �rst, applying the desired
contact force and, second, performing the shaking movement.

B. Learning painting skills from separate demonstrations

In a second experiment we aim at showing that our
framework is compatible with probabilistic techniques other
than GMM. Here, we consider the scenario where a robot
assists a user to perform a painting task. We divide the
complete task into two sub-tasks: 1) a handover, where the
user gives the paint roller to the robot (Fig. 8-left), and
2) painting, where, in a different region of the workspace,
the robot helps the user paint a wooden board by applying
painting strokes (Fig. 8-right). We employ an operational
space controller (4) for the handover and a con�guration
space controller (2) for the painting.

Teaching controllers separately implies a trajectory mod-
eling technique that yields high variances when far from
each controller training region, thus we exploit GPR. The
3-dimensional position of the user right hand is, in this
case, used as an input to GPR, as opposed to time. Training



Fig. 8: Two persons demonstrate the painting task to the robot.Left: The
robot is shown how to receive the paint roller.Right: One person drives the
robot to demonstrate the painting strokes, while the other holds the board.

datapoints have the form� (1)
t = [ x H

t x R
t ] for the handover

sub-task and� (2)
t = [ x H

t qt ] for the painting sub-task.
Here,x H

t ; x R
t 2 R3 are the human and robot hand positions

at time t and qt 2 R7 is the joint space con�guration
of the manipulator. The reference trajectories of each sub-
task are thus 3- and 7-dimensional, respectively. In this
experiment we consider zero velocity references for both
controllers, _x d = 0, _qd = 0, and thus we used linear opera-

tors A (1)
t = J >

t
�M t K

P
x , b(1)

t = � J >
t

�M t

h
K P

x K D
x

i� x t

_x t

�
and

A (2)
t = K P

q and b(2)
t = �

h
K P

q K D
q

i� qt
_qt

�
. Moreover, we

set K P
x = diag(75; 75; 75), K D

x = diag(17:5; 17:5; 17:5)
and K P

q = diag(90; 250; 60; 50; 5; 5; 1:2), K D
q =

diag(2; 4; 1; 0:5; 0:1; 0:1; 0:05). One demonstration was col-
lected for each sub-task, as shown in Fig. 8, in different
regions of the workspace. Here, variance is a measure of
prediction uncertainty, unlike the previous task where it
encoded variability, thus one demonstration is suf�cient. For
each output, we used a Gaussian Process with a Matérn
kernel with� = 3=2 (see e.g., Chapter 4 in [15]), as it yielded
smooth predictions, a convenient feature for our setup where
the person may move in an unpredictable manner. Hyper-
parameters were optimized by minimizing the negative log
marginal likelihood of the observations [15]. Moreover, we
exploit the process meanm (x H ) to de�ne a prior on the
robot's behavior, in particular to have the robot keep a
safe posture outside of the region where demonstrations
are provided. We de�ne this neutral pose manually as a
joint space con�gurationm q = [0 0 0 1:1 � 0:2 0 0]> but
it could alternatively be demonstrated. Each elementmq

1, . . . ,
mq

7 de�nes the mean of each of the 7 joint space GPs. The
means of the task space GPsm x , also constant, are given
by the end-effector position yielded bym q.

After hyperparameter estimation, we exploit GPR predic-
tions to fuse the torques from each controller and reproduce
the complete task. Notice that, during movement synthe-
sis, the system will observe different input data than that
used for training, as the user may move in regions where
demonstrations were not provided. One expects the robot
to stay in the pre-de�ned safe posture in those regions and
execute the demonstrated sub-tasks where they were shown.
Moreover, this should occur with smooth transitions between
torque commands when tasks change. Figure 9 shows one
reproduction of the complete task. The user starts by �ling
a wooden board, in a region of the workspace with no

Fig. 9: Reproduction of the painting task.Top: The user works on a wooden
board, while the robot keeps a safe posture (left). The paint roller is handed
over to the robot (right).Bottom: The robot applies painting strokes, as the
user's right hand moves up and down with the board.

Fig. 10: Torques from the 2nd joint during the painting task and their
variance. The �rst shaded area highlights the handover part of the movement,
where the optimal torques match those computed by the end-effector
position controller. The second shaded area highlights the task torques
during two painting strokes.

demonstration data (top, left). One can see that the robot
remains in the pre-selected neutral pose. As the user hands
the paint roller to the robot, the end-effector moves to grasp
it (top, right). Finally, the user grasps the board and moves
to a spacious region to perform the painting. As his right
hand moves up and down, the robot applies painting strokes
in the opposite direction. The robot is therefore capable of
identifying which controller should be active at any moment,
by exploiting the information contained in the data.

Figure 10 provides a quantitative analysis of the perfor-
mance of our method in this scenario, by showing the torques
involved in one reproduction. We focus the analysis on the
second joint of the robot (see Fig. 9, bottom left) since it
is highly important for this task. Even though we did not
consider a time-driven regression, we plot torques against
time, in order to have a clear and continuous view of how
the task evolved. The plot in Fig. 10 shows a clear separa-
tion between different moments of the task. Time intervals
0 � 7:5s, 15 � 27:5s, 37:5 � 40s, correspond to regions of
the workspace where no training data was provided and,
thus, the variance of both controllers is high and roughly
constant, as predictions are simultaneously uncertain. The
interval7:5� 15s (�rst highlighted region) corresponds to the
execution of the handover sub-task. Notice the decrease in
the variance of the torques for this task (green envelope) and
how these torques are matched by the optimal torque. Finally,



Fig. 11: Close up view of the handover and painting torques.Left: Optimal
torque (black) and operational space controller torque (green).Right:
Optimal and joint space controller torques (black and red).

the second highlighted time frame27:5 � 37:5s coincides
with the execution of the painting task. Here one can see
a decrease in the variance of the joint space controller (red
envelope), which is closely matched by the optimal torque, in
particular during the two strokes (two oscillations around30s
and35s). All other joints yielded equivalent observations.

For visualization purposes, in Fig. 11 we zoom in on
the torques that are used for each sub-task. In the leftmost
plot we see that the torques that are generated by the task
space controller (green line) are closely matched by the
optimal torque. Here, positive torques lower the end-effector
to a below posture for the handover (untilt � 7:5s),
while negative torques raise it to an above posture after
the handover (t > 12s). We observe an analogous result in
the rightmost plot, where the joint space controller torques
coincide. Here, positive torques apply vertical strokes from
top to bottom, and negative torques move the paint roller
back to the initial con�guration.

VII. C ONCLUSIONS ANDFUTURE WORK

We presented a novel probabilistic framework for fus-
ing torque controllers based on human demonstrations. It
improves on previous work by considering force-based,
Cartesian position and joint space constraints as well as
by being compatible with different probabilistic trajectory
modeling techniques. The experimental validation showed
that the approach allows robots to successfully reproduce
manipulation tasks that require the ful�llment of different
types of constraints, which are enforced by controllers acting
on different spaces. The results presented here open up
several future research challenges. One, connected to Section
V, concerns the formulation of a probabilistic technique
that can simultaneously encode and synthesize uncertainty
and variability in the observed data. Works like [21] are
a potential �rst step in this direction. Another promising
research direction pertains to the design of the individual
controllers. While in this paper we �xed the control gains,
works like [10], [13], [22] estimate them from demonstra-
tions by formulating the tracking problem as a LQR, which
could allow us to alleviate the need for gain design and
enhance safety in our framework. Finally, by exploiting the
null space of the robot as in [23], we can possibly improve
the extrapolation capabilities of the approach.
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