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Probabilistic Learning of Torque Controllers
from Kinematic and Force Constraints

Jdao Siheériot, Yanlong Huang, Leonel Rozé, Sylvain CalinoR! and Darwin G. Caldwel

Abstract—When learning skills from demonstrations, one is
often required to think in advance about the appropriate task
representation (usually in either operational or con guration
space). We here propose a probabilistic approach for simulta-
neously learning and synthesizing torque control commands
which take into account task space, joint space and force
constraints. We treat the problem by considering different
torque controllers acting on the robot, whose relevance is
learned probabilistically from demonstrations. This information

is used to. Com.bln.e the controllers _by exploiting the properties Fig. 1: Example of a task that demands two different controllers. First, the
of Gau$3|an dlstrlbutlons, generating new torque cqmmands robot should close a shaker (left), by applying a force abonga skill that
that satisfy the important features of the task. We validate the rgquires force control. Subsequently, it must perform a shake with its wrist
approach in two experimental scenarios using 7-DoF torque- joint g¢ (right), thus a con guration space controller is desirable.

controlled manipulators, with tasks that require the consider- . I .
ation of different controllers to be properly executed. of each controller using probabilistic representations of the

collected data (Section V). We then exploit a set of linear
operators, de ned for each individual controller, that take
The eld of Learning from Demonstration (LfD) [1] aims into account the state of the robot and contact with the
for a user-friendly and intuitive human-robot skill transferenvironment to transform the control references into torque
However, in general, when modeling demonstrations ongommands, with associated importance. Finally, we com-
must think in advance about the relevant variables to emine the commands, represented as independent Gaussian-
code. Selecting these variables strongly depends on the tafiktributed torque references, through a fusion of controllers,
requirements, with motor skills often being represented iBarried out by a product of Gaussians (Section 1V). We hence
either operational or con guration space. The prior de nitiongbtain a nal torque reference, used to control the robot. Our
of the relevant space may require considerable reasoning &ntribution with respect to the state-of-the-art is three-fold:

trial-and-error, contradicting the LfD concept. This_ Process 1y A probabilistic formulation for jointly learning torque
becomes even more cumbersome when the robot is required controllers from demonstrations, by exploiting the

to physically interact with the environment, introducing properties of Gaussian distributions.
additional task constraints such as interaction forces (the termz) The consideration of not only kinematic tasks (at
constraintshere refers to consistent features in demonstra- Cartesian/joint space level) but also force-based ones.

tions, that should be accurately reproduced). Consider the3) An approach that is compatible with various prob-

example shown in Fig. 1, where a robot is rst required abilistic learning algorithms that generate Gaussian
to apply a force with the end-effector, and then perform distributed references or trajectories.

a conguration space movement. In this case, encodin . . . .
demongtrations inpeither operational or con guration spac % The proposed approach is evaluated in two scenarios with
e'?—DOF robots (Section VI). In the rst case, we use a cocktail

alone will not result in proper execution. King task loving f ol t that th
We here propose an approach for simultaneously learnifng o< ng task, empioying force control, 1o prove that the ap-
oach can accommodate both force- and position/velocity-

different types of task constraints and generating torq . ;
control commands that encapsulate the important featur gsed skills. The second scenario shows that the approach

of the task. Figure 2 gives an overview of the approachcan be used to combine partial demonstrations, allowing for

We treat the problem by considering different torque Conc_iemons’[ratlng the sub-tasks of each controller independently.

trollers acting on the robot, _With each one being r_esponsible Il. RELATED WORK

for the fulllment of a particular type of constraint (e.g. o

desired interaction forces, Cartesian/joint positions and/or 1h€ Problem of combining controllers can be broadly
velocities). We discuss such controllers in Section I1I. Fronfivided into two types of approaches. In [2], [3], [4], the

demonstrations of a task, we propose to learn the importan@dthors use a weighted combination of individual torque

controllers, with each controller responsible for a particular

! Department of Advanced Robotics, Istituto Italiano di Tecnologiasub-task (e.g. balance, manipulation, joint limit avoidance).

Genoya, ltaly (e-mail: name.surname@iiti. - _ Other works frame the problem as a multi-level prioritization
Idiap Research Institute, Martigny, Switzerland (e-mail: syl- . .

vain.calinon@idiap.ch). [5], [6], where lower importance tasks are executed without

This work was supported by the Italian Ministry of Defense. compromising more important ones, typically in a hierarchi-
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Fig. 2: Diagram of the proposed approach. Demonstrations of a task are given to the robot, while recording different types of data, such as positions,
velocities and interaction forces. To each type of data, an individual controller is assigned, and the corresponding references are modeled as Gaussian
distributions, encapsulating each controller's importance. During task execution, linear opAraiasb, which depend on the chosen controllers as well

as the robot's state and the interaction forces, transform the references into probabilistic torque commands. These torques are combined by taking into
account their variance, through the product of Gaussians, whose result is then fed to the robot as adgrqtmat satis es the important task features.

cal manner with a null space formulation. As a result, tasksmooth transitions between different tasks [2], [3], [4],
with low importance are only executed if they do not affecive propose a strategy where the controller combination is
high priority ones, potentially requiring platforms with a highlearned from demonstrations. In this section we de ne the
number of degrees of freedom. Both kinds of approacheésdividual controllers that we exploit for con guration and
have their own merits, with the former allowing for a moreoperational space control. Formally, we follow a model-
exible organization of tasks as well as smooth transitiondased approach to control the robot using torques, by as-
between them (according to their weight pro les) and thesuming a rigid-body system witN joints whose dynamics
latter ensuring that high priority tasks are always executedare given byM (q)g + C(q;q)a + g(gq) = , where

In contrast to manually setting weights [2], in this papeq;q; 8 2 RN denote joint angles, velocities and accelera-
we are interested in learning them from human demonstréens, M (q) 2 RN N corresponds to the inertia matrix,
tions. Learning controller importance has been address&@i{q;q) 2 RN denotes the the Coriolis and centrifugal terms
in different manners, from reinforcement learning (RL) [3],and g(q) 2 RN is a gravity term. The total torques acting
[4], [7] to LfD [8], [9], [10]. The main differences between on each joint are given by 2 RN .
these two branches lie on the type of prior knowledge, with Robot control is achieved using a torque command
RL requiringa priori information in the form of reward or formed from a task-related termus and a term that
cost functions — which can be hard to formulate in someompensates for the dynamics of the robgj, , i.e.,
cases — and LfD approaches demanding task demonstrations.
The present work shares connections with [8], [9], [10], u= task t dyn; 1)
where the problem of combining constraints in task and joint
spaces is addressed. The rstimportant difference is that su
approaches use velocity controllers, which only take int
account kinematic constraints. In this work, we exploit torqu
controllers, that allow for a straightforward consideration"
of desired interaction forces at the end-effector. Previo o
work in LfD has addressed learning forces, either alone [1 F.g. posmqr}s, forces).
or in hybrid position-force control settings [12], [13], [14]. The de nition of task_depends on the space Where_ tasks
Here, we go one step further and consider interaction forced® .reprelsented. For' Instance, .when a task requires the
Cartesian positions and joint trajectories simultaneously in anipulation of an object (e_.g. pick an_d pla(_:e)“k must_
the learning framework. The second relevant difference e dened such that position a_nd orientation constr_amts
that [8], [9], [10] model data using Gaussian Mixture Model&t the -gnd-effector are f!“ lled W!th respegt to the object.
(GMM), while in the present work, although GMM are If, .addlt]onally, mampulauon requires physical pontact (e.q.
used as an example, we generalize the solution to a wid‘@:lf”ect insertion, cooperatlve. har_ldllng c_)f ObjectS)ask
range of probabilistic modeling approaches. In particuIaF,nusf[ also accommodate desired mtera_lctlon forces._ In other
we show that the probabilistic combination of controllersapp“(_:at'onsf where gestures_ or Specic con gurations of
is compatible with any trajectory modeling technique tha e kinematic chain are requwed{ask Is more adequately
generates Gaussian-distributed outputs. Despite that we hifgnulated as a con guration space controller. We now
showcase this property by exploiing Gaussian Proce scribe the co.ntrollers Fhat we exploit for the different types
Regression (GPR) [15], in Section VI-B, other techniquef tasks, denoting sk Simply by

such as Probabilistic Movement Primitives (ProMP) [16]A Con auration space controller
may potentially be used. : 9 P

ere gyn is computed from the inverse dynamics model
assumed to be known). In this work we are interested in
using controllers that ful Il different task requirements, thus
e focus on the term (s . Here, when referring to tasks,

e are concerned with the tracking of reference trajectories

Con guration space controllers are used to track joint posi-
tions and velocities. Here we exploit proportional-derivative
(PD) controllers of the form

I1l. TORQUECONTROLLERS— CONFIGURATION AND
OPERATIONAL SPACE

Inspired by works in which a combination of torque
controllers results in a exible importance assignment and q=K (';(qd q)+ K E(qd Q); (2)



whereK f;; K 5 2RN N are joint stiffness and damping gain whose objective function corresponds to a weighted sum of
matrices, and); q;q4;dq 2 RN are the current and desired quadratic error terms, with the weight of each term given
joint positions and velocities. An additional feed-forwardby the matrices (P The solution and error residuals of (6)
termey 2 RN is often added to (2), for improved tracking can be computed analytically, and correspond to the mean
performance, as in [17]. As we shall see, it is straightforwardnd covariance matrix of a Gaussian distributhr§”; ")

to accommodate this term in our approach, if required.  given by the product oP Gaussians, with means® and

o . . recision matrices P,
B. Position controller in operational space P

Operational space controllers are aimed at tracking Carte- , _ A X M (). A X ™ L )
sian poses with the end-effector of the robot. Here, we - ’ B ’
consider the case of tracking position references, but the p=L p=L
approach remains valid for the consideration of orientationg/here precision matrices are the inverse of covariance ma-
We assume that the end-effector of the robot is driven by taices ™, ie. ®= (® _ The connection between the
force, that is proportional to the output of a PD controller, solution of (6) and the product of Gaussians (7) allows for
b b _ exploiting the structure of the controllers de ned in Section
Fx=M(q) Ki(xa x)+Kx(xa X5 ) |l to fuse torque commands, given Gaussian-distributed ref-
where M (q) = (J(q)M (q) Y (qr) ® is the Cartesian erences. !n particular, this is achiev_ed by tak_ing adva_mta_ge of
inertia matrix of the end-effector, whose positions and Iineatrh.e Imear_|ty of the conFroIIers (Secﬂ_on IV-A) n combination
" : . with the linear properties of Gaussians (Section 1V-B).
velocities (current and desired) are respectively denoted by
X;Xd;%; %42 RY (with M being the dimension of the oper- A. Linear controller structure
ational space). The Jacobian matiikg) 2 RM N, gives the
differential kinematics of the robot's end-effector J (q)q
andK P:K 2 2RM M gre Cartesian stiffness and dampin
gain matrices. The end-effector forEg is converted to joint

torques as in [17],

Control commands (2)—(5) are linear with respect to the
reference trajectories. The controller equations can thus be
e-written in a way that highlights this linear structure. For
the joint space torque controller (2) we obtain

h P Di q h P Di q
— > . - d
x = Jd(ay Fx: 4) a= Kg Kg Qy Kg Kq q
C. Force controller
. . . L oq=Ag J g ®)
In this case we consider a proportional controller that q 9 qq a
tracks a desired force at the end-effector (see [18], Ch. 11): h i i q
— P D — P D
Fu=KP(Fg F); - = J@) Fu: ) where Aq = K, Ky and b= K4 Ky :
) Similarly, the Cartesian position and force controllers
whereF ;F 4 2 RM are current and desired contact forces X4 ]
(measured using a F/T sensor at the end-effector), and (4)f§—(5) can be formulated asx = Ax + by, with
used to map the force command at the end-effector to joint . h b D' . h b D' X
torques. Finally, K, 2RM M is a proportional gain matrix. Ax=J"M K, K5, b= M K, K, and
IV. PROBABILISTIC TORQUE CONTROLLERS F=ApFgtbe, withAg = J)K{ andbe = I KEF.

. . : : Note that linearity also applies if feed-forward terms are

In this section, we formalize the fusion of torque con- . )

L included in the controllers, e.g.q; 84. In such cases, these

trollers as an optimization problem and lay out the prob- : . .

- - terms simply need to be included in the reference vec-
abilistic treatment of control commands. Let us consider

a robot employingP controllers — as those de ned in tor and A can be ext_emje(g W'tg the identity matnx., €.9.
Section Il — at any given moment, corresponding tdda du &l andAq= Kg K I, foraconguration
P different sub-tasks that can be executed in series §Pace controller.

m(pg)z;rzllﬁ I_' pEfih -thgoilojgog?gte Laste;ssint]oer%:l"ee h‘g’rgrgz@. From probabilistic references to probabilistic torques
cess to a precision matrix (which will be explained in Section Gaussian distributions are popular in robot learning and
IV-B), denoted by ® 2 RN N providing information control due to their properties of product, conditioning and
about the respective importance of the different controlleréinéar transformation. Here, we consider Gaussian-distributed

We formalize the problem of fusing control commands as control references and exploit the previously de ned linear
the optimization operators to formulate probabilistic torque controllers. Let us

rst consider a con guration space controller, with desired

X ® ® ©) joi G 2N
N =argmin P P P, (6) joint state N q »where ;2 R“" and 42

p=1

qr
R2N 2N gre the mean and covariance matrix of a Gaussian,

In the remainder of the paper we drop dependenciesqore.g. Modeling the probability distribution of joint positions and
M =M (q);J = J(q), etc. velocities. Per the linear properties of Gaussian distributions,



the con guration space controller (8) yields a new Gaussiadifferent advantages; see [19] for a review. Two popular
N( ¢ .q) with mean and covariance given by approaches are GMM, combined with Gaussian Mixture
Regression [20], and GPR [15]. We now review these two

0= Aa q* ba; 9 = Aa g ©) techniques, and expand on their use in the context of PTC.
- X
Similarly, for x_g N i x andFq N ¢; F , A Gaussian Mixture Model/Gaussian Mixture Regression
we obtain (GMM/GMR)
— . _ > We consider demonstration datasets compriset dhta-
=A + by; x = A AL; 10 . ) . : .
X X X ) o (10) points organized in a matrix 2 R® T. Each datapoint,
and is represented with input/output dimensions indexedl by
— . _ > ., I
FEAF £+ b FEAR FAR (1D O,sothat , = § 2RP with D=D, +Do. It can for

respectively. This type of controller has a probabilistic Nagxample representt a concatenation of time stamps with end-

ture as the torque commands are generated from Gaussigcior poses, joint angles or measured forces. A GMM,
distributions and result in new Gaussians. We therefore ref@l‘\coding the joint probability distributio®( ': °) with

to them asprobabilistic torque c.ontrollers{PTC). . K states and parameters= f ;; .; ig<, (respectively
A generic PTCp=1;:::;P, is thus fully specied by  he prior, mean and covariance matrix of each stjte

4 N ®. ® . FAM: b(p)g; (12) can _be_ es_timated from such a dataset_ through Exp_ectation-
Maximization (EM) [20]. After a GMM is tted to a given

P = AP (P 4 pP). P = AP (PpP)N. dataset, GMR can subsequently be used to synthesize new

. behaviors, for new inputs' 2 RP' , by means of the condi-
where 4 denotes a generic control reference. Note that tht?onal probabilityP ( °j '), yielding a normally-distributed

set of linear parametefy_\(p);b(p)g is permanently updated, o it 5 1 N (i o); see [20] for details.
for each controller, during execution, as it depends on the We exploit GMM/GMR to estimate desired trajectories for

state of the robot and its interaction with the environmenéach controller through the mean, , as well as their im-

thr;)ughg;%{lx;_& andF. .  trai . ing G sportance through the covariance matrix. In GMM/GMR,
probabilistic representation of trajectories using Gaussy,ariance matrices model the variability in the data, in

stan d(;strlbutlonf (#Zzhhaz tthe .ad\t/ﬁnta;ge of ;nodelmg th§ddition to the correlation between the variables. Figure
second moment of the data In the form 0 c_:ovarlancg(a) illustrates this aspect, where we see that the variance
matrices. This is exploited herep)to express th_e |mportan<]:((39reSsed by GMR (shown as an envelope around the mean)

of eagh cont;olrller N denoteddpy( ; asa funcpon %)f.the re ects the datapoint distribution in the original dataset. In

covariance of the corresponding reference trajectory : the context of PTCs, high variability in the demonstrations

®= ® = AP ®pA® 1: (13) of the p-th controller results in large covariance matrices

(P From (13), it follows that the corresponding controller

Note thatA ® is typically non-squared. This operator mapgPrecision matrix (P will be small and, thus, the control
constraints from spaces with different dimensions (e.g. cofiéference ®) will be tracked less accurately. GMM/GMR is,

guration and operational spaces) into a common space, thagnce, an appropriate_ Fechnique to sglect relevant controllers
of torque commands. based on the regularltles observed' in each part of the task
With the de nition of ® in (13), torque commands can throughout the different demonstrations.
be combined using (7). The problem of learning control coms
mands and their respective importance is thus framed as t
learning of reference trajectories as Gaussian distributionsA Gaussian Process (GP) is a distribution over func-
N( ®: @) and generating Gaussian-distributed torquéons, with a Gaussian prior on observations given by
commandsN ( ®; ®) which encapsulate the control ~ N (m( ");K( '; ')), wherem( ') is a vector-
reference and its importance with respect to other controlleréalued function yielding the mean of the procesy, '; ')
In previous work, controller weights are either set empiricallienotes its covariance matrix and =[ } ::: $]2 RP' T
[2] or optimized through reinforcement learning [3], [4].1S @ concatenation of observed inputs. The covariance matrix
In contrast to these works, we employ probabilistic regreds computed from a kernel function evaluated at the inputs,
sion algorithms to leariN ( ®; ™) and consequently With element = k( i; ). Several types of kernel func-
N( ®; ®):8p=1;::;P, from human demonstrations. tions exist; see e.g., [15].
Standard GPR allows for predicting a scalar function
V. LEARNING CONTROL REFERENCES FROM °=1f('):RP' I R.In robotics, one typically requires
DEMONSTRATIONS multi-dimensional outputs, thus GPR is often employed sep-
In Section IV, we formalized our approach for combiningarately for each output of a given problem. Here we follow
controllers. Here we show how the Gaussian modeling dhis approach to probabilistically model multi-dimensional
trajectories can be learned from demonstrations. Severaference trajectories, such as those of joint angles or Carte-
regression methods exist for this purpose, each offerirgjan positions. For each input poirit 2 RP' |, the prediction

o Gaussian Process Regression (GPR)



Since output dimensions are modeled separately, GPR
predictions are, in the standard case, uncorrelated, which
is evident from the structure of , in (16). In contrast
to GMR, the estimated variance in GPR is a measure of
prediction uncertainty. Figure 3(b) illustrates this aspect, with
the variance increasing with the absence of training data
(t > 0:6s). This provides a way of assigning importance to
predictions, when different observations of a task occur. We
propose to exploit GPR if demonstration data is incomplete
or scarce and, in particular, for partially demonstrating a task
to each controller as separate sub-tasks.

The overall approach is summarized in Algorithm 1 for
GMM or GP as trajectory modeling techniques.

(b) GPR: The variance models the uncertainty of the estimate (depending

on the presence/absence of training datapoints in the neighborhood). VI. EVALUATION

Fig. 3: For a given set of datapoints (black dots), GMR and GPR compute We assess the performance of the proposed framework in

different and C(_)mplem_entary r]otions of variance. The red line is thﬁQIO different tasks. In one case, we exploit the variability

regressed function, while the light red contour represents the compute . . . .

variance around the prediction. in the demonstrations, while, in the other, we consider the
prediction uncertainty. The experiments are conducted in two

Algorithm 1 Fusion of probabilistic torque controllers different 7-DoF manipulators, enabled with torque control.

1. Initialization The reader is referred tatp://joaosilverio.weebly.

1: SelectP controllers (Section Ill) based on the task ~ com/iros18  for videos of both experiments.

2: Select appropriate regression algorithm (GMI} PGPR) A. Learning cocktail shaking skills with force constraints
- Collect demonstrations for each controlfery; ;gp_;

2. Model training We start our evalgation with a cocktail shaking task wher.e
for p=1::::;P do force and con guration space control are employed. For this

(a) GMR: The variance models the variability in the dataset.

w

; if regression algorithm is GMEhen task we use the torque-controlled KUKA light-weight robot.

3 Choose GMM state numbd¢ and estimate The task is comprised of two sub-tasks (Fig. 1): a force-based
4 else ifregression algorithm is GPRen sub-task, where an interaction force (measured with_ aFIT
5 Choose the kernd{( ; ) and its hyperparameters sensor mounted on the end-effector) must be tracked in order
6: end if to successfully close a cocktail shaker, and a con guration

7 end for space sub-task, through which the robot performs a shake

using rhythmic joint movements. A joint space encoding of

3. Movement synthesis the shaking movement is more likely to generate a proper

; for fto; 1’_‘ 1ng do reproduction since rhythmic movements are typically less
3: gomp’ljt.e-’ (0). (p)j | throuah GMR or GPR consistent in operational space than in joint space [9]. We
: ) (D) to 9 aim to extract the activation of each sub-task from the
4 UpdatefA ™ b™g b_aS?d 9” the type of controller variability in the demonstrations, thus both force and joint
5: Compute torque distributionl ~ ®; (P demonstrations are encoded in GMMs, together with time,
6: end for which is used as the input to GMR.

7. Compute” from (7) and  from (1) We collected 4 demonstrations of this task by kinesthet-
8: end for ically guiding the robot arm (gravity-compensated) to rst

close the shaker and, second, to perform the shake with a
rhythmic motion of its 6th joint (see Fig. 1). Fpr= 1, the
of each output dimensiod = 1;::;; D, is thus given by force controller, we hav® = 4, with datapoints encoding
time and sensed forcesﬁl) =[tFyt For Fax T (force

— 2 1/ o .
g_ m +k[K+ gl] 1( Tom) (14) directions as indicated in Fig. 1). In the case of the joint
a=k k[K+ 31Tk, (15)  space controllerp = 2, we haveD = 15 with datapoints
@ _ ce ..
where °¢ 2 RT is the observedd-th output di- t =[tqu O G e qﬁI_’ whereqm anddy;
mension,k = [K( ' D):uk( ' Lk = k(' ), denote the position and velocity of jointat time stegt. The
m=m('),m =m('),K=K( ': '),and 2 is an recorded trajectories were ltered and sub-sampled to 200

additional hyperparameter modeling noise in the observatioRQINtS €ach, yielding a dataset with= 800 datapoints for

(which acts as a regularization term). We concatenate e ch controller. Additionally, the joint space trajectories were

predictions into one single multivariate Gaussian with meafi'9ned using Dynamic Time Warping, in order to capture
and covariance matrix given by the consistent shaking patterns in all demonstrations. Finally,

GMMs were tted to the dataset of each controller, with
= 1111 Do o =diag( 2;:::; %o): (16) K =7 andK =15 states, respectively, chosen empirically.

o



Fig. 4: Dataset of demonstrated contact forces alondines) and estimated
GMM states (blue ellipses).

Fig. 7: Generated torque commands for joint 6 during one reproduction of
the task. Red and blue curves show the torques generated by each individual
controller, with corresponding variance, obtained from the probabilistic
controller formulation in Section IV. The optimal torque, used by the robot,

is depicted in black.

as the optimal torque, are shown in Fig. 7. The latter

Fig. 5: Dataset from joings of the 7-DoF manipulator as a function of time is obtained from the former two using (6), as described
(lines). Red ellipses are the GMM states which model the joint probabilityn Section V. We focus our analysis on joirgs, the
distribution between joint angles and time. one which performs the shake. For each sub-task, we

. o _ used diagonal control gain matrices, chosen empirically

Figures 4 and 5 show the force and joint space datapoinisased on the desired tracking precision. In particular, we
together with the correspondlng GMM states,lfh_r (for_ce usedK F =diag(4;2; 2), KqP=diag(50;80; 20;70; 20; 10; 6)
along the end-effectox;-axis) and jointgs. For illustration 4K D = diag(14;17:8; 16,8:6;4). The linear operators
purposes, the GMM states are depicted as ellipses WiyA @ - p@ g'fA(z)'b(z)g were constructed according to
a width of one standard deviation. The negative sign i . ' Q) - e P 1) _ s P
the force measurements indicates that the applied for%eec'[Ion IV-B asA¢” = JiKg and t()zt) _h‘]‘fF FDti’
is in opposite direction to the positive;-axis, which is for the contact force controller, and” = K, K g
expected due to the closing of the shaker occurring alonégn
that direction. From these plots we conclude that both the
collected contact forces and joint angles have periods of higi®ntroller. Notice the sign change in the force operators,
and low variability. The periods of low variability mark the compared to those in Section IV-B. This is due to the encoded

regions where each sub-task should be predominant. In tfigces having an opposite sign to the desired direction of
case ofFy, this happens at the beginning, where the forcend-effector movement. Figure 7 shows that the commanded
is zero, and betweeBs and 10s, where the contact force is torque closely matches the torque from each of the individual
applied to close the shaker. On the other hand, the consistégntrollers, in the corresponding regions of low variance
rhythmic patterns aftet = 15s in Fig. 5, mark the shaking (note that the weight of each controller is inversely pro-
sub-task. Notably, in both cases, the GMM encoding is abRortional to the variance, as per Eq. (13)). This is evident
to capture this consistency, in the form of narrow Gaussian# the beginning of the task, where the torques generated
Figure 6 shows the retrieved control references using GMRY the force controller strongly in uence the torques sent to
given the time input. Here, the contours around thick linethe robot, and front = 15s, where the shaking torques are
correspond to the predicted variance at each input point. favored. This results in a reproduction where the complete
both cases, GMM/GMR allows for a proper encoding and®@sk is properly executed by, rst, applying the desired
retrieval of both mean control reference and variance.  contact force and, second, performing the shaking movement.

The torque commands that were generated by €agh | oaring painting skills from separate demonstrations
controller during one reproduction of the task, as well

h i
d b® = Kgq Kg % | for the con guration space

In a second experiment we aim at showing that our
framework is compatible with probabilistic techniques other
than GMM. Here, we consider the scenario where a robot
assists a user to perform a painting task. We divide the
complete task into two sub-tasks: 1) a handover, where the
user gives the paint roller to the robot (Fig.leé3t), and
2) painting, where, in a different region of the workspace,
the robot helps the user paint a wooden board by applying
painting strokes (Fig. 8ight). We employ an operational
space controller (4) for the handover and a con guration
space controller (2) for the painting.

Teaching controllers separately implies a trajectory mod-
eling technique that yields high variances when far from
Fig. 6: GMR performed on the mixture models depicted in Figs. 4 and ®2ach controller training region, thus we exploit GPR. The
with solid lines representing the retrieved pro les and the semi-transparenf_dimensional position of the user right hand is, in this

contours depicting the prediction varianceop: Retrieved contact force . . .
prole F1. Bottom: Predicted reference fag. case, used as an input to GPR, as opposed to time. Training



Fig. 8: Two persons demonstrate the painting task to the rdleft The
robot is shown how to receive the paint rollRight: One person drives the
robot to demonstrate the painting strokes, while the other holds the board.

datapoints have the form® =[x} xR] for the handover

sub-task and §2) = [x{' q,] for the painting sub-task.

Here,x xR 2 R® are the human and robot hand positions

at timet and g, 2 R’ is the joint space con guration

of the manipulator. The reference trajectories of each sub-

task are thus 3- and 7-dimensional, respectively. In this

experiment we consider zero velocity references for botFig. 9: Reproduction of the painting taskop: The user works on a wooden

— — ; _board, while the robot keeps a safe posture (left). The paint roller is handed
controllers,x_d 0, Gy 0, and thus we used '}”ear opera over to the robot (right)Bottom: The robot applies painting strokes, as the

tOI’SAEl) =J7M (K 5, bgl) = M. K 5 K )I<3 Xt and user's right hand moves up and down with the board.

; X3

h i
AP = KT andb®?= K? KD gl‘ . Moreover, we
set K P =diag(75;75,75), K? = diag(17:5;17:5; 17:5)
and K¢ = diag(90;25060,50,5;5;1:2), K7 =

diag(2; 4; 1; 0:5; 0:1; 0:1; 0:05). One demonstration was col-
lected for each sub-task, as shown in Fig. 8, in different

regions of the workspace. Here, variance is a measure 'gg. 10: Torques frr]f’f; éhe 2“: iﬁli“thduungh thz painting tfshk and their
.. . . . .yariance. The rst shaded area Ig |g ts the handover part of the movement,
prediction uncertainty, unlike the previous task where i here the optimal torques match those computed by the end-effector

encoded variability, thus one demonstration is suf cient. FOposition controller. The second shaded area highlights the task torques
each output, we used a Gaussian Process with grdlat during two painting strokes.

kernel with =3=2(see e.g., Chapter 4 in [15]), as it yieldeddemonstration data (top, left). One can see that the robot
smooth predictions, a convenient feature for our setup whefgmains in the pre-selected neutral pose. As the user hands
the person may move in an unpredictable manner. Hypege paint roller to the robot, the end-effector moves to grasp
parameters were optimized by minimizing the negative log (top, right). Finally, the user grasps the board and moves
marginal likelihood of the observations [15]. Moreover, wgg a spacious region to perform the painting_ As his right
exploit the process meam (x) to de ne a prior on the hand moves up and down, the robot applies painting strokes
robot's behavior, in particular to have the robot keep @ the opposite direction. The robot is therefore capable of
safe posture outside of the region where demonstratiofgentifying which controller should be active at any moment,
are provided. We de ne this neutral pose manually as By exploiting the information contained in the data.
joint space con guratiomnq =[0 0 0 1:1  0:2 0 0] but Figure 10 provides a quantitative analysis of the perfor-
it could alternatively be demonstrated. Each elenmefit...,  mance of our method in this scenario, by showing the torques
m3 de nes the mean of each of the 7 joint space GPs. Thgwvolved in one reproduction. We focus the analysis on the
means of the task space GRs;,, also constant, are given second joint of the robot (see Fig. 9, bottom left) since it
by the end-effector position yielded oy . is highly important for this task. Even though we did not
After hyperparameter estimation, we exploit GPR prediceonsider a time-driven regression, we plot torques against
tions to fuse the torques from each controller and reprodutiene, in order to have a clear and continuous view of how
the complete task. Notice that, during movement synthehe task evolved. The plot in Fig. 10 shows a clear separa-
sis, the system will observe different input data than thaton between different moments of the task. Time intervals
used for training, as the user may move in regions whef@ 7:5s, 15 27:5s, 37.5 40s, correspond to regions of
demonstrations were not provided. One expects the robihte workspace where no training data was provided and,
to stay in the pre-de ned safe posture in those regions arttus, the variance of both controllers is high and roughly
execute the demonstrated sub-tasks where they were showonstant, as predictions are simultaneously uncertain. The
Moreover, this should occur with smooth transitions betweeimterval 7:5 15s ( rst highlighted region) corresponds to the
torque commands when tasks change. Figure 9 shows ogecution of the handover sub-task. Notice the decrease in
reproduction of the complete task. The user starts by linghe variance of the torques for this task (green envelope) and
a wooden board, in a region of the workspace with ndow these torques are matched by the optimal torque. Finally,



(2]

[3]
[4]
Fig. 11: Close up view of the handover and painting torquef: Optimal
torque (black) and operational space controller torque (greRiht:
Optimal and joint space controller torques (black and red). 5]

the second highlighted time frant7:5 37:5s coincides
with the execution of the painting task. Here one can segg)
a decrease in the variance of the joint space controller (red
envelope), which is closely matched by the optimal torque, inm
particular during the two strokes (two oscillations aro30d
and 35s). All other joints yielded equivalent observations.
For visualization purposes, in Fig. 11 we zoom in on
the torques that are used for each sub-task. In the leftmost
plot we see that the torques that are generated by the ta$¥
space controller (green line) are closely matched by the
optimal torque. Here, positive torques lower the end-effectgyq;
to a below posture for the handover (until 7:5s),
while negative torques raise it to an above posture after
the handovert(> 12s). We observe an analogous result infq
the rightmost plot, where the joint space controller torques
coincide. Here, positive torques apply vertical strokes froreﬂz]
top to bottom, and negative torques move the paint roller
back to the initial con guration.

(8]

VIlI. CONCLUSIONS ANDFUTURE WORK
[13]

We presented a novel probabilistic framework for fus-
ing torque controllers based on human demonstrations. It
improves on previous work by considering force-based,
Cartesian position and joint space constraints as well ag
by being compatible with different probabilistic trajectory
modeling techniques. The experimental validation showed
that the approach allows robots to successfully reprodugg
manipulation tasks that require the ful Iment of different
types of constraints, which are enforced by controllers acting®!
on different spaces. The results presented here open up
several future research challenges. One, connected to Sectioh
V, concerns the formulation of a probabilistic technique
that can simultaneously encode and synthesize uncertaifpy
and variability in the observed data. Works like [21] are
a potential rst step in this direction. Another promising!®
research direction pertains to the design of the individugg,
controllers. While in this paper we xed the control gains,
works like [10], [13], [22] estimate them from demonstra- 21
tions by formulating the tracking problem as a LQR, whici{
could allow us to alleviate the need for gain design and
enhance safety in our framework. Finally, by exploiting th
null space of the robot as in [23], we can possibly improv
the extrapolation capabilities of the approach.

22]

[23]
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