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Within a cell, the levels and activity of multiple pro- and anti-apoptotic molecules 

act in concert to regulate commitment to apoptosis. Whilst the balance between 

survival and death can be tipped by the effects of single molecules, cellular 

apoptosis control pathways very often incorporate key transcription factors that 

co-ordinately regulate the expression of multiple apoptosis control genes. C-

terminal binding proteins (CtBPs), which were originally identified through their 

binding to the Adenovirus E1A oncoprotein, have been described as such 

transcriptional regulators of the apoptosis program. Specifically, CtBPs function 

as transcriptional co-repressors, and have been demonstrated to promote cell 

survival by suppressing the expression of several pro-apoptotic genes. In this 

review we summarise the evidence supporting a key role for CtBP proteins in cell 

survival. We also describe the known mechanisms of transcriptional control by 

CtBPs, and review the multiplicity of intracellular signaling and transcriptional 

control pathways with which they are known to be involved. Finally we consider 

these findings in the context of additional known roles of CtBP molecules, and 

the potential implications that this combined knowledge may have for our 

comprehension of diseases of cell survival, notably cancer. 
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Discovery of CtBPs: cellular binding partners of transforming 
viral oncoproteins 
 

Isolation of the cellular binding partners of the viral transforming oncoproteins has, historically, 

proven to be a fruitful approach for the identification of key cellular regulators of proliferation 

and survival. E1A proteins of type 2/5 adenoviruses, in particular, associate with multiple 

cellular proteins in order to reprogram cellular growth, survival and differentiation pathways to 

facilitate viral gene expression and replication.1,2 E1A proteins are encoded by two exons; the 

first exon, which contains conserved regions that bind to the cellular proteins Rb and p300/CBP, 

is sufficient for E1A to co-operate with activated ras in baby rat kidney (BRK) cell co-

transformation assays.3,4 E1A truncation mutants lacking exon 2 are markedly more effective 

than wild type E1A in these assays, although intriguingly, the loss of these C-terminal sequences 

renders E1A unable to cooperate with Adenovirus E1B in transformation assays, or immortalize 

BRK cells in the absence of a co-operating oncogene.3,5-7  

 

The region in exon 2 that conferred these effects was subsequently mapped to a 14 amino acid 

sequence in the C-terminus of the protein. CtBPs were identified as the cellular proteins that 

interact with a PxDLS peptide consensus within this sequence.8-10 Further viral oncoproteins, 

EBNA3A and EBNA3C, also contain variants of this sequence and bind CtBPs, and EBNA3C 

requires CtBP-binding for co-transformation with mutant ras.11,12 Reports identifying the 

presence of a functional CtBP-binding consensus sequence in the Drosophila transcriptional 

repressors, Hairy, Knirps and Snail,13-15 were the first of many that have defined a normal 

cellular function of CtBPs as transcriptional co-repressors of DNA-binding transcription 

factors.16,17 
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CtBP structure and function 
 

Gene and protein structure 
 
In Drosophila there is a single dCtbp gene, whereas humans and mice have two CtBP-encoding 

genes, Ctbp1 and Ctbp2. In humans these map to chromosomes 4p16 and 10q26.13 respectively, 

the chromosomal location that was initially assigned.to CtBP210 having been one of a number of 

Ctbp pseudogenes. Transcripts from both Ctbp1 and Ctbp2 are widely expressed in both adult 

tissue, and during development.10,18-20 Ctbp1 is expressed in a greater number of tissues and often 

at greater levels than Ctbp2.18,20 Interestingly, Ctbp2 expression patterns differ between human 

and mouse.10 In retinal cells, use of an alternative, tissue-specific promoter in the first intron of 

the Ctbp2 gene leads to the production of mRNA encoding the synaptic ribbon protein RIBEYE, 

which consists of a large, unique N-terminal domain fused to all but the N-terminal 20 amino 

acids of CtBP2.21,22 Similarly, the protein originally identified as CtBP3/BARS in the rat,23 and 

which is also expressed in human cells,24 lacks the first 13 a.a. of CtBP1 and almost certainly 

represents an alternatively spliced transcript of the Ctbp1 gene. For the purposes of this review, 

functions so far ascribed solely to CtBP3/BARS will be considered as potential characteristics of 

all CtBP proteins, whilst the specialised role of RIBEYE will not be discussed further.  

 

The proteins encoded by Ctbp1 and Ctbp2 share 78% amino acid identity and 83% similarity.10 

They appear to function interchangeably, although evidence is emerging from analysis of mouse 

models and various post-translational modifications that their activity is differentially 

regulated.19,25 CtBPs are characterized by a significant degree of homology between their central 

domain and NAD+-dependent dehydrogenase enzymes (Figure 1). However, whilst CtBPs 

possess weak in vitro dehydrogenase activity, the significance of this remains unclear.26,27 This 
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domain does however have an important role as a dimerization site, allowing the formation of 

homo- and hetero-dimers between CtBP1 and CtBP2.20,26,28 Critically, dimerization is stimulated 

by the occupation of a dinucleotide-binding site within the domain,26,27,29 the preferred ligand of 

which being NADH, which binds to the site with >100 fold higher affinity than NAD+.30,31  

 

The three-dimensional structure of CtBPs comprises a single globular domain formed by its N- 

and C-terminal regions, linked to the core dimerization domain through two flexible hinges.26,28 

Within this globular domain, the CtBP N-terminus contains a PxDLS peptide binding cleft, and 

the C-terminus has been proposed to play a regulatory role.28,32 Notably, the conformational 

changes induced upon NADH binding are propagated to the N-terminus, and promote binding to 

E1A and other PxDLS containing proteins.26,28 Importantly, a CtBP dimer has the potential to 

form the core of a complex containing two PxDLS-containing proteins. 

 

CtBP functions in the nucleus and cytoplasm 
 
Two distinct functions have been assigned to CtBP proteins – a nuclear role in the regulation of 

transcription, and a distinct function, thus far only directly ascribed to the CtBP3/BARS isoform, 

in regulating Golgi membrane maintenance. The role in transcription was first indicated by 

studies on E1A that showed when exon 1 of E1A is fused to a sequence-specific DNA-binding 

domain it activated transcription, and this activation is inhibited by the presence, in cis, of the 

CtBP-binding region of exon 2.33 Subsequent fusion of CtBP itself to a DNA-binding domain 

provided direct evidence that CtBPs repress transcription.15,34,35 A large number of DNA-binding 

transcriptional repressors have now been shown to recruit CtBPs, the majority, but not all,36 

containing a consensus PxDLS sequence16,17,37. The best characterized of these are the Snail, 
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Slug, and ZEB/δEF1 factors, which together recruit CtBPs to repress the expression of epithelial-

specific genes in mesenchymal cells.13,18,38-42 These, and other CtBP-recruiting factors with 

potential roles in the control of apoptosis, are discussed in more detail in subsequent sections. 

 

CtBPs employ a number of mechanisms to regulate gene transcription, as summarized in Figure 

2. The most extensively characterized mechanism whereby it acts as a transcriptional co-

repressor is by the recruitment of a co-repressor complex, which includes class I histone 

deacetylases (HDACs) and histone methyltransferases (HMTs), and resulting in the co-ordinated 

modification of chromatin into a repressed state.43 CtBPs can also recruit class II HDACs,44 as 

well as repress transcription without HDAC involvement.35,45 An additional mechanism whereby 

CtBPs appear to act as a co-repressor is by promoting the recruitment of Polycomb proteins to 

DNA.20,46 These repress transcription through several mechanisms, including by compacting 

chromatin.47 Finally, recent research has also determined that CtBPs interact with histone 

acetyltransferase (HAT) co-activators such as p300, CBP and pCAF and prevents their 

interaction with chromatin.48  

 

Independently of its role in regulating transcription, CtBP (in the form of CtBP3/BARS) was 

cloned as a protein involved in the disassembly of the Golgi complex.23 CtBP3/BARS is able to 

induce the breakdown of tubular Golgi networks.49 It is responsible for driving the fission of 

Golgi membranes during mitosis and also plays a role in endocytic and exocytic pathways.50-52 

The distinct nuclear and cytoplasmic functions of CtBPs may be defined by the conformational 

shift induced by occupation of the dinucleotide binding site, with NADH driving CtBPs towards 

a nuclear function, and acyl-CoA, which also binds CtBPs, promoting the monomeric, 
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cytoplasmic form.28,52 Ultimately, it will require the use of specific CtBP mutants to dissect the 

relative contributions of these distinct functions of CtBPs in cell proliferation and survival. 

 

CtBP functional knockouts reveal key roles for CtBPs in 
differentiation, cell cycle progression and the suppression of 
apoptosis 
 

Before considering the multiplicity of signaling pathways and transcription control networks that 

CtBPs are involved in, it is useful to review the effects of experimentally abrogating CtBP 

expression or function on the phenotype of the organism or the individual cell. Homozygous 

inactivation of the dCtbp gene in Drosophila is lethal, with embryos displaying severe defects in 

segmentation, consistent with a role for dCtBP in the function of Hairy, Knirps and Snail 

transcriptional repressors.13-15 In Xenopus embryos, injection of mRNA encoding an xCtBP 

fusion protein designed to activate, rather than repress, transcription, resulted in similarly 

dramatic defects such as loss of head and/or eyes and a shortened anterior-posterior axis.53 In 

murine development, homozygous deletion of Ctbp1 results in mice which develop normally, but 

are smaller than heterozygotes.19 Ctbp2-/-embryos exhibited multiple defects, including axial 

truncations and abnormal heart and brain development, and embryonic lethality occurred due to 

defects in extra-embryonic vascularization. Crosses between Ctbp1+/- and Ctbp2+/- revealed 

further developmental defects, with Ctbp1-/-/Ctbp2-/- embryos showing the most severe 

phenotype.  

 

Murine embryonic fibroblasts (MEFs) from Ctbp1-/-/Ctbp2-/- embryos have been established, and 

immortalised with SV40 large T antigen. They have defects in CtBP-sensitive gene transcription, 
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but normal Golgi apparatus.19 They are, however, hypersensitive to apoptosis in response to 

diverse stimuli including loss of cell-cell contact (anoikis), genotoxic chemotherapeutics, 

staurosporine, and Fas ligand.54 Validated micro-array analysis showed two classes of genes to 

be constitutively up-regulated in these Ctbp null cells, and suppressed, by CtBP1 re-expression: 

those encoding epithelial-specific proteins including E-cadherin and several keratins, and pro-

apoptotic proteins including PERP, PTEN, insulin-like growth factor binding proteins, Bax, 

Noxa and Id-1.54 Together with separate evidence that siRNA-mediated CtBP ‘knockdown’ in 

human tumor cell lines is sufficient to induce apoptosis in the absence of any additional stress,55 

these data confirm previous indirect evidence from studies on E1A,39 that CtBPs function as 

global repressors of the pro-apoptotic program.  

 

The above studies attributed the effects of CtBP ablation on cellular phenotype to the 

transcriptional function of CtBPs. Interestingly, another group has independently knocked down 

CtBP expression in rat cell lines. Rather than apoptosis, they observed G2 arrest, which they 

demonstrated to be consistent with the disruption of Golgi architecture.50,52 Further clarification 

is undoubtedly warranted. 

 

CtBP regulates multiple transcription factor networks with 
roles in tumorigenesis and survival 
 

Whilst the precise mechanisms that link CtBPs to the suppression of pro-apoptotic gene 

expression programs remain essentially undefined, molecular studies have identified physical 

and functional involvement of CtBPs with numerous cellular transcription factors. Some of these 
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interactions that are likely to have particular relevance to cell survival pathways and 

tumorigenesis are reviewed in the following sections and summarized in Figure 3. 

 

Repression of the epithelial phenotype 

Negative regulation of the expression of epithelial-specific genes, and particularly those 

encoding E-cadherin, desmoglein-2, plakoglobin and various keratins, is perhaps the most well-

characterized function of CtBP proteins. E-cadherin is a calcium-dependent membrane protein 

required for the formation of adherens junctions, which are essential for cell adhesion and 

intercellular interactions56. It interacts with the actin cytoskeleton via catenins to mediate cellular 

integrity, polarity and morphogenesis.41,57,58 Loss of E-cadherin expression in epithelial cells is 

associated with an event referred to as epithelial-mesenchymal transformation (EMT). EMT is a 

major mechanism of vertebrate embryological tissue remodeling, which involves a switch in 

expression of epithelial- to mesenchymal cell specific genes, resulting in a characteristic motile, 

migratory mesenchymal phenotype.59 EMT and loss of E-cadherin expression is also associated 

with disease progression, increased malignancy and poor prognosis in many epithelial tumors, 

including those of the colon, stomach, lung, bladder, oesophagus, prostate and breast.60-66 Along 

with increased invasive properties, one of the key outcomes of EMT is a marked reduction in a 

cell’s susceptibility to pro-apototic stimuli such as loss of cell-cell contact, growth factor 

withdrawal, and TNF-α.39,67 

 

Activation of transcription from the E-cadherin promoter is driven by ubiquitously expressed, 

and constitutively active transcription factors. Its lack of expression in cells of mesenchymal 

origin is due primarily to the interaction of Snail, Slug and ZEB/δEF1 transcriptional repressors 
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to E-box elements within their promoters.41,68 These repressors all contain PxDLS motifs which 

are required, at least in part, for their repressor activity.15,18,42,69 Their expression and activity is 

regulated throughout development, and is important during carcinogenesis. Snail expression, for 

example, is predictive of poor prognosis in breast and hepatocellular carcinoma.70-73 CtBPs can 

associate with the E-cadherin promoter in cells with a non-epithelial phenotype,43 and down-

regulation of CtBP activity, either by the C-terminus of E1A, or Ctbp gene disruption, results in 

changes in histone modifications at the E-cadherin promoter, and de-repression of E-cadherin 

transcription.39,43,54 Interestingly, the protein pinin/DRS, which is known to promote the 

epithelial phenotype, binds CtBPs and relieves its repression of the E-cadherin promoter.74 

 

One model that has been proposed, but not yet experimentally tested, is that the repression of 

pro-apoptotic genes by CtBPs may be an indirect consequence of EMT. Another factor to 

consider is the recruitment of CtBPs by Snail, Slug or ZEB/δEF1 to the promoters of other 

genes, such as BRCA2.42 It will be of interest to establish whether CtBPs directly associate with 

the promoters of pro-apoptotic genes, as well as determining the effects of inhibiting CtBP 

expression in epithelial cells where these repressors are not expressed. 

 

Wnt signaling 
 
Some of the developemental defects observed following loss of CtBP function are suggestive of 

defects in the Wnt signaling pathway.53 Binding of Wnt to its cell surface receptors results in the 

accumulation of free cytoplasmic β-catenin followed by its translocation to the nucleus, where it 

acts as a co-activator for TCF family transcription factors.75 Constitutive activation of this 

pathway occurs in multiple human cancers, notably colorectal carcinoma where it is associated 
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with suppression of apoptosis.76 In Xenopus, xCtBP was found to bind, and act as a co-repressor 

for xTCF-3, which functions as a transcriptional repressor in the absence of Wnt pathway 

activation.53 In mammalian cells, CtBPs do not interact with TCFs, but rather bind the product of 

the Adenomatous polyposis coli (APC) gene.77 This results in CtBP-mediated suppression of Wnt 

signaling by sequestering complexes of APC and β-catenin away from TCF transcription factors. 

In this context, therefore, CtBPs actually appear to play a role in promoting apoptosis and tumor 

suppression. 

 

Transforming Growth Factor- β (TGF-β) signaling pathways 

A common chromosomal translocation of a number of myeloid malignancies, including acute 

myeloid leukaemia, chronic myelogenous leukemia and myelodysplastic syndromes, results in 

the production of a fusion protein with AML1 and Evi-1, driven by the AML1 promoter.78 Under 

normal conditions, Evi-1 is barely detectable in bone marrow and peripheral blood; however 

over-expression of AML1/Evi-1 is associated with transformation of haematopoietic stem cells. 

Evi-1 is a transcriptional repressor, and a negative regulator of (TGF-ß) signaling. Evi-1 acts on 

TGF-ß-mediated regulation of cellular proliferation and differentiation by repressing the TGF-β 

activated transcription factor, Smad3. Effective inhibition of TGF-β signaling and promotion of 

cellular transformation by both AML1/Evi-1 and Evi-1, is dependent upon their recruitment of 

CtBPs, through a PxDLS motif.78-82 

 

TGF-β has a complex role in regulating apoptotic pathways, and can activate either pro- or anti-

apoptotic pathways, depending on cell type.83 Whilst the interaction with Evi-1 is consistent with 

an anti-apoptotic role for CtBPs,84 CtBPs also interact with several other key components of 
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TGF-β signaling pathways that may also control cell survival. TGIF interacts with a TGF-β 

activated Smad complex to repress Smad-mediated transcription, this repression involves the 

recruitment of CtBPs by a PxDLS motif in TGIF.85 The importance of the TGIF-CtBP 

interaction in human development is demonstrated by an inherited point mutation in the PxDLS 

motif in TGIF, which results in defects in craniofacial development.85 CtBPs also interact with 

the inhibitory Smad, Smad6, which contributes to the repression of Id-1 gene transcription.86 Id-1 

is up-regulated in Ctbp1-/-Ctbp2-/- MEFs,54 and can either induce or suppress apoptosis, 

depending on the cellular context.87,88 CtBPs are also recruited to Smads indirectly through 

ZEB/δEF1 proteins, particularly ZEB-2, repressing TGB-β induced transcription.89 

 

Growth factor receptor, and nuclear hormone receptor signaling 

Ets protein family members are key transcriptional activating factors that transmit signals from 

growth factor-induced ras-signaling pathways to changes in gene expression, for example 

through their binding to the serum response element (SRE) on the c-fos promoter. Net is a 

somewhat atypical Ets family member in that, under certain conditions, it can also function as a 

transcriptional repressor. Criqui-Filipe et al 32 demonstrated that Net contains a CtBP binding 

site, and in the absence of serum growth factors it recruits CtBPs to actively repress transcription 

from  SRE-dependent promoters. 

 

Ligand-activated nuclear hormone receptors play a key role in regulating cell proliferation, 

differentiation, and survival in diverse tissue types. Typically, ligand binding to its receptor 

results in the recruitment of transcriptional co-activators to induce target gene expression. 

RIP140 is unusual in this respect, as it is recruited to most activated nuclear hormone receptors, 
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but acts as a transcriptional repressor. It appears to be essential for suppressing nuclear hormone 

receptor-induced transcription in certain tissues, to allow key processes such as ovulation and 

adipogenesis.90 Recruitment of CtBPs by RIP140, which is regulated by acetylation of a lysine 

residue adjacent to the PxDLS sequence on RIP140,36 plays an important role in the repressor 

activity of RIP140.36,91 

 

C-terminal binding protein interacting protein (CtIP) 

CtIP was originally identified as a PxDLS-containing binding partner for CtBP.92 It is a large, 

125 kDa nuclear protein that plays a complex role in transcriptional repression, cell cycle control 

and DNA damage responses. CtIP acts as a molecular bridge to recruit CtBPs to at least two 

known transcriptional repressors: the G1 checkpoint regulator, Rb,45 and the haemo-lymphoid 

factor, Ikaros.93 In both cases, the CtBP-CtIP complex is thought to co-operate with these factors 

to co-repress target gene transcription. Mice with heterozygous inactivation of the Ctip gene 

show increased incidence of multiple tumor types, particularly large lymphomas. This is 

consistent with a tumor suppressor role for the protein, although the wild-type Ctip allele is not 

lost in the cancers.94 However, homozygous Ctip gene inactivation results in lethality very early 

in mouse embryogenesis, with cells arresting prior to S phase, and also showing elevated levels 

of cell death. Experiments on cell lines showed this G1 arrest to be Rb-dependent, and associated 

with elevated levels of the cyclin dependent kinase inhibitor, p21WAF1.94  

 

Potentially some of these effects of CtIP loss may be accounted for by its interaction with the 

BRCT domains of the BRCA1 protein.95,96 BRCA1 is a well characterized tumor-suppressor 

protein that plays a central role in DNA damage response.97,98 It has been reported that BRCA1 
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recruits the CtIP-CtBP complex to repress transcription of BRCA1 target genes such as gadd45 

and WAF-1, and that this association is disrupted following DNA damage,99,100 although some of 

these findings have subsequently been disputed.101,102 BRCA1–CtIP complex formation is 

critical for the DNA damage-induced G2/M checkpoint, though the role of CtBPs in this is 

undetermined.103 

 

Regulation of p53-dependent pro-apoptotic genes 

P53 is a stress-activated transcription factor that plays a central role in the regulation of cell 

proliferation, and the induction of apoptosis.104 Many of the genes up-regulated in Ctbp1-/-Ctbp2-

/- MEFs are known transcriptional targets of the pro-apoptotic transcription factor p53, however 

CtBPs could repress their transcription independently of p53 function.54 It seems likely that one 

consequence of repression of a distinct subset of p53-target genes by CtBPs would be to either 

dampen, or otherwise modify the cellular response to p53 activation. 

 

CtBPs also directly suppress p53-dependent transcription through its interaction with the Hdm2 

oncoprotein.105 Hdm2 is the major cellular regulator of p53 protein function, inhibiting the 

interaction of p53 with transcriptional co-activators, and driving its export from the cytoplasm 

and degradation by the proteosome.106 Hdm2 also recruits CtBPs to p53, repressing p53-

dependent promoters such as bax.105 This provides an additional mechanism whereby CtBPs 

suppress apoptosis in cells that retain a functional p53 stress-response pathway. 
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Regulation of CtBP function by stress and survival signaling 
pathways 
 
In addition to interacting with the known components of signaling pathways described above, it 

is becoming clear that the activity of CtBPs themselves are regulated by post-translational 

modification and protein-protein interactions in response to a range of intracellular signals. In 

some cases, the associated changes in CtBP activity have a direct effect on cell survival.  

 

Before the Ctbp genes were even cloned, their protein products were known to be 

phosphorylated in a cell-cycle dependent manner,8 however the enzymes responsible, and the 

effect on CtBP function has yet to be clarified. Phosphorylation of CtBP does, however, play a 

key role in the induction of apoptosis in response to UV-irradiation activated stress-signaling. 

High doses of UV activate homoedomain interacting protein kinase 2 (HIPK2), an enzyme which 

has a known role in pro-apoptotic signaling through its phosphorylation and activation of p53.107-

109 HIPK2 phosphorylates CtBP1 at serine 422 (the site is conserved in CtBP2), which results in 

the targeting of CtBP1 for ubiquitin-dependent degradation by the proteosome.55,110 The 

subsequent decrease in CtBP protein levels is sufficient to trigger apoptosis in p53 null cells, and 

either siRNA ‘knockdown’ of HIPK2, or over-expression of a serine 422 mutant of CtBP1 

incapable of being phosphorylated, inhibits UV-induced apoptosis. 

 

CtBPs are also regulated at the level of their subcellular distribution, with nuclear localization 

being required for transcriptional repressor activity. In most cell types examined, CtBP1 and 

CtBP2 are predominantly detectable in the nucleus. To some extent, this nuclear localization is a 

consequence of recruitment by PxDLS-containing transcription factors such as Net.32 CtBP1 is 

also regulated at this level through two mutually exclusive modifications. SUMOylation at lysine 
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428 following interaction with the SUMO E3 ligases Pc2, PIAS1, or PIASxβ promotes nuclear 

localization of CtBP1, whereas interactions of its C-terminal PDZ domain with neuronal nitric 

oxide synthase (nNOS), and potentially other proteins, promotes cytoplasmic 

localization.25,111,112 It is not yet clear whether CtBP2 localization and activity is similarly 

regulated, as the critical SUMOylation consensus site is not conserved, even though CtBP2 is 

also SUMOylated by Pc2.112 Regulation of these interactions in response to cellular signaling has 

yet to be established. Signaling pathways downstream of growth factor tyrosine kinase receptors 

do, however, regulate CtBP subcellular localization. The kinase Pak1, which is activated by 

multiple growth factors including Heregulin and epidermal growth factor, phosphorylates CtBP1 

at serine 158. This results in a transient exclusion of CtBP1 from the nucleus following growth 

factor stimulation.113 This serine is conserved in CtBP2, but it is not yet known whether CtBP2 is 

similarly regulated. This effect is intriguing, given that these factors are associated with cell 

survival, rather than the induction of apoptosis, and suggest that transient exclusion of CtBPs 

from the nucleus may be required for certain responses to growth factor stimulation, and does 

not, in itself, induce apoptosis. 

 

Probably the most interesting mechanism of regulation of CtBPs is the conformational change 

induced by occupancy of the dinucleotide binding site. NADH binding to CtBPs promotes both 

its dimerization and interaction with PxDLS-containing transcriptional repressors, and 

consequently promotes its ability to repress transcription from a set of target promoters.29,31,44 

Conversely, the NADH unbound form preferentially binds to Hdm2, which represses p53-

dependent transcription,105 and also to p300/CBP, with potentially broad ranging effects on 

p300-dependent gene transcription.48 Levels of intracellular NADH show dramatic changes at 
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birth, in response to ethanol, cellular hypoxia, and in metabolic disease such as diabetes. 

Potentially, CtBPs may regulate broad-ranging changes in gene expression patterns in response 

to these alterations in cellular metabolism. 

 

Future perspectives 

CtBPs are clearly involved in numerous transcriptional regulatory programs and intracellular 

signaling pathways that regulate cell proliferation, differentiation and survival. Given that loss of 

CtBP expression induces either apoptosis or G2 arrest, one might predict that cellular levels of 

CtBPs might be elevated in diseases of dysregulated proliferation and survival, such as cancer. 

However the pleiotrophic nature of CtBPs activities may complicate its role in carcinogenesis. 

Indeed, in one of the few published studies of CtBP protein expression in human primary 

cancers, CtBP1 levels were markedly reduced in malignant melanomas, compared to primary 

melanocytes.114 This was found to be consistent with a role for CtBPs in suppressing the 

expression of MIA, a protein associated with malignant progression in this tumor type,114,115 and 

highlights the need for further studies into CtBP expression patterns in other tumor types. 

 

In contrast, microarray analysis of follicular thyroid carcinomas found a mean 3.6 fold increase 

in Ctbp2 mRNA levels in a defined subset of these tumors.116 Unfortunately, the commercial 

qPCR assay used to validate these findings recognises the unique exon 1 found in the ribeye 

transcript, and therefore the role of CtBP2 in these tumors remains to be confirmed. CtBPs are, 

however, ubiquitously expressed, and are detectable in the majority of cancer cell lines that have 

been examined. The finding that cells derived from Ctbp1-/-Ctbp2-/- embryos proliferate 

normally, whereas siRNA-mediated knockdown of CtBPs in cancer cell lines can induce 

Page 17 of 34 17



Bergman & Blaydes         CtBP proteins 

apoptosis, could have a number of explanations, one of which is that some of genetic changes 

associated with cellular transformation render cells more dependent on the suppression of pro-

apoptotic genes by CtBPs. This would be entirely consistent with the original observations that 

full length E1A is required for cellular immortalization, whereas exon 2, which functions at least 

in part by preventing the interaction of CtBPs with cellular PxDLS containing transcription 

factors,117 suppresses transformation in the presence of mutant ras.  

 

In summary, CtBPs are clearly key regulators of both gene transcription and organelle assembly. 

They have been implicated in the context of a striking number of transcriptional regulatory 

networks, and intracellular signaling pathways. They play an essential pro-survival role in 

tumour-derived cells, though, intriguingly the mechanism basis of this critical function remains 

to be clarified. Further studies will undoubtedly shed light on these multifaceted molecules.  
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