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A deterministic width function model
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Abstract.
Use of a deterministic fractal-multifractal (FM) geometric

method to model width functions of natural river networks,
as derived distributions of simple multifractal measures via
fractal interpolating functions, is reported. It is first demon-
strated that the FM procedure may be used to simulate natural
width functions, preserving their most relevant features like
their overall shape and texture and their observed power-law
scaling on their power spectra. It is then shown, via two nat-
ural river networks (Racoon and Brushy creeks in the United
States), that the FM approach may also be used to closely
approximate existing width functions.

1 Introduction

The width function,w(r), defined such thatw(r)dr is the
area of a basin whose flow distance to the outlet is between
r andr + dr, is an important geomorphological qualifier of
a river network. As such a function captures the essential
features of the basin’s response as implied by the instanta-
neous unit hydrograph (Rodriguez-Iturbe and Rinaldo, 1997;
Gupta and Waymire, 1998), its proper modeling has become
increasingly relevant.

Recently, a variety of sophisticated stochastic models for
the width function have been introduced (Marani et al., 1994;
Veneziano et al., 2000). While the work of Marani et
al. (1994) relied on fractional Brownian motion and on ran-
dom multiplicative cascades in order to capture, respectively,
the power spectra and the multifractal characteristics of nat-
ural width functions; Veneziano et al. (2000) introduced an
iterated random pulse (IRP) model that, while accounting ex-
plicitly for the self-similarity of natural river networks, prop-
erly captures their non-negativity, non-stationarity, and the
power-law decay of their spectral density function.

The purpose of this article is to illustrate by means of few
examples that a deterministic fractal-multifractal (FM) rep-
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resentation (Puente, 1992, 1994), successfully employed to
model data sets corresponding to a host of geophysical pro-
cesses, such as rainfall (Puente and Obregón, 1996; Obreǵon
et al., 2002a, b), turbulence (Puente and Obregón, 1999), and
groundwater contamination transport (Puente et al., 2001a,
b), may also be used to represent the overall structure of the
width function of natural catchments.

2 The Fractal-Multifractal approach

Figure 1 illustrates the construction of a derived distribu-
tion via the FM approach (Puente, 1992, 1994). As is seen,
such a set nameddy is found transforming a (determinis-
tic) binomial multifractal measure,dx, (bottom left), via
a (deterministic) fractal interpolating functionf . The set
dy is obtained considering all relevant events inx corre-
sponding to a levely and adding their contributions, i.e.
dy(B) = dx{x : f (x) ∈ B}, for all Borel subsetsB ony.

For a given set of N + 1 points in the plane
{(x0, y0), (x1, y1), . . . , (xN , yN ); x0 < x1 < . . . < xN },
measuresdx anddy may be calculated iterating a suitable
set ofN contractile affine mappings (according to an appro-
priate set ofN weightspn that dictate the intermittencies of
dx) and counting over a desired number of bins (the resolu-
tion of the records to be fitted) overx andy (Puente, 1994).
Such mappings have the specific form

wn

(
x

y

)
=

(
an 0
cn dn

) (
x

y

)
+

(
en

fn

)
, (1)

wherean, cn, en, andfn are related to the interpolating points
and the free scaling parametersdn, 0 ≤ |dn| < 1, via the
conditions
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Figure 1:

Fig. 1. The fractal-multifractal framework in two dimensions. A
multifractal measuredx is transformed via a fractal interpolating
functionf into a derived measuredy.

for n = 1, 2, . . . , N , and yield a fractal interpolating func-
tion whose graph’s dimensionDf is: (a) 1, if

∑
|dn| ≤ 1,

and (b)≥ 1, from
∑

|dn|a
Df −1
n = 1, if

∑
|dn| > 1 (Barns-

ley, 1988).

A vast class of deterministic derived measuresdy may
be obtained by varying the parameters off and dx, i.e.
(xn, yn), dn andpn, and by allowing projections to be found
at directions other thany, i.e. at anglesθ different from 0 de-
grees. At the end, the FM methodology results in a large
universe of “data sets”, that, depending on the fractal di-
mensionDf , include a wide variety of multifractal records,
even having “chaotic” or “stochastic” properties, and Gaus-
sian distributions, in the limit whenDf tends to two (Puente,
2004). The geometric approach may easily be tailored to
generate sets of arbitrary resolutions (e.g. Obregón et al.,
2002b) which turn out to have the desirable feature of be-
ing neither self-similar nor self-affine (as seen in Fig. 1), as
found in many practical applications.

It so happens that the setdy in Fig. 1 (and many others)
has a similar shape and texture as found in width functions
of natural river networks and such observation motivates us-
ing the FM approach to represent natural width functions.
In what follows, it is shown how the FM approach may in-
deed be employed to simulate general width functions and to
model specific width functions as observed in nature.

Figure 2:

Fig. 2. Examples of (normalized) width functions, c1 to c4 are gen-
erated via the FM procedure, while c5 and c6 correspond to Racoon
and Brushy creeks.

3 Simulated and natural width functions

As explained in Veneziano et al. (2000), natural width
functions possess three important characteristics: (a) non-
negativity, (b) non-stationarity, and (c) power-law decay of
the spectral density function,S(f ) ∼ f −β , with values of
β typically ranging between 1.6 and 2.0. To illustrate such
features, Fig. 2 includes six such plausible graphs (normal-
ized so that their areas equal one unit), cases c1 to c6, made
of 1 721 data points for c1 to c5 and 1 719 points for c6, and
Fig. 3 shows their corresponding power spectra.

As seen in Fig. 2, all such graphs are indeed non-negative,
they possess similar high-frequency textures, and they are
also non-stationary as they begin and end at zero. As shown
in Fig. 3, the power spectra of these sets have similar decay
and their exponentsβ are bounded by the value of 2.0, as
shown by the straight lines on all graphs.

It happens that while the first four sets in Fig. 2 were ob-
tained via the aforementioned deterministic FM methodol-
ogy and are given by fractal interpolating functions whose
graphs have dimensions of, in order, 1.42, 1.48, 1.52 and
1.62 (see Table 1), the last two (c5 and c6) correspond to
two natural catchments: Racoon creek of 384 km2 located in
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Figure 3:

Fig. 3. Power spectra of the width functions shown in Fig. 2.

Table 1. FM parameters for simulated width functions c1 to c4 as
shown in Fig. 2. Values not presented below are set as follows:
x0 = 0, y0 = 0, andx2 = 1.

“Basin” Coordinates Angleθ

x1 x3 y1 y2 y3

c1 0.700 1.800 0.800 0.0
c2 0.700 1.500 1.800 0.800 0.000 8.0
c3 0.600 2.000 1.000 0.0
c4 0.600 2.000 1.300 12.0

“Basin ” Scalings Intermittencies

d1 d2 d3 p1 p2 p3

c1 0.600 -0.800 0.500 0.500
c2 0.540 -0.730 -0.500 0.440 0.330 0.230
c3 -0.800 -0.630 0.510 0.490
c4 -0.890 -0.630 0.470 0.530

Table 2. FM parameters for approximated width functions of
Racoon and Brushy creeks as depicted in Fig. 4. Values not pre-
sented below are set as follows:x0 = 0, y0 = 0, andx2 = 1

Basin Coordinates Angleθ

x1 y1 y2

Racoon 0.607 2.015 1.095 -0.67
Brushy 0.550 2.494 2.077 9.90

Basin Scalings Intermittencies

d1 d2 p1 p2

Racoon -0.881 -0.615 0.530 0.470
Brushy -0.917 -0.653 0.492 0.508

Pennsylvania and Brushy creek of 322 km2 situated in Al-
abama, both extending for about 50 km from their respective
outlets (Veneziano et al., 2000). These results show that the
FM approach provides, by varying its key parameters, great
many outcomes that may be considered suitable represen-
tations (simulations) of natural width functions, simulations
which, by varying smoothly with respect to their parameters,
provide an opportunity to represent natural width functions,
at any given resolution, in their entirety.

In what follows, it shall be shown how the FM approach
may be used to find suitable approximations of natural width
functions, considering the aforementioned creeks.

4 FM approximations to Racoon and Brushy creeks

This section presents the results obtained while solving the
inherent inverse problem to approximate the width functions
for the Racoon and Brushy creeks.

Based on previous experience with other data sets
(Obreǵon et al., 2002a, b), an objective function account-
ing for the cumulative distributions of the records and their
derivatives was minimized, performing the search via a ge-
netic algorithm (Duan et al., 1992). Specifically, an objec-
tive function1 was used adding: (a) the sum of square dif-
ferences between cumulative distributions of real (normal-
ized) width functions and FM sets (

∑
12); and (b) the sum

of square differences between cumulative distributions of
normalized absolute one-lag derivatives of real (normalized)
width functions and FM sets (

∑
12

d ).
While Table 2 includes the obtained parameters from the

optimization exercise for both catchments, Fig. 4 summa-
rizes pictorially their results, as it contains: (a) the normal-
ized width functions (so that their areas are equal to one unit);
(b) their cumulative distributions; and (c) their power spectra.
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Figure 4:

Fig. 4. Actual and FM fitted width
functions, cumulative distributions, and
power spectra for Racoon and Brushy
creeks. For the actual sets, the width
function and the power spectra are
shown in white, whereas the cumulative
distribution is highlighted in gray. The
horizontal and vertical scales for the
three graphs corresponding to Racoon
creek are: [1, 1721], [0, 0.0014]; [0, 1],
[0, 1]; and [0.01, 1.0], [0.001, 10.0] as
in c5 in Fig. 3. Those scales for Brushy
creek are: [1, 1719], [0, 0.0019]; [0, 1],
[0, 1]; and [0.01, 1.0], [0.001, 10.0], as
in case c6 in Fig. 3.

As may be inferred, the FM representations for the Racoon
and Brushy creek catchments are based on binomial multi-
fractal measures and on fractal interpolating functions pass-
ing by three points (leading to seven free parameters, see
Table 2, forx0, y0 and x2 were kept fixed), whose graphs
have dimensions of 1.60 and 1.66, respectively. These results
stem from very faithful descriptions of the records’ cumula-
tive distributions and of their derivatives (not shown), as im-
plied by very low values of the attributes

∑
12,

∑
12

d , and
hence1 (all less than 1), that started, as the search began, at
values greater than 20. The closeness of such fits may also be
appreciated in the close agreement in the quantitiesL1 and
L2 (real values in parenthesis), that give the lengths of cu-
mulative distributions of the records and of their derivatives,
when calculated from (0, 0) to (1, 1), such that the records’
domain is set to one unit.

As may be seen in Fig. 4, the obtained FM width func-
tions capture the overall trends present in the actual func-
tions, including good approximations of the peaks, and pos-
sess similar textures that translate into good agreement of the
power-law decay in the power spectra for both catchments.
Notice that this happens despite small deviations from the
scaling lines at high frequencies, as the FM approximations
shown, that do not optimize the desired scaling law, turned
out to produce smoother width functions compared to the ac-
tual sets.

As typical width functions share similar features to the
ones included here (see for example Rodriguez-Iturbe and
Rinaldo, 1997), the results in Fig. 4 further illustrate that the
FM approach may be used to model them, using fractal in-
terpolating functions whose graphs have fractal dimensions
ranging between 1.4 and 1.7. As specific fits of other width
functions may certainly be obtained in a similar fashion, it
is envisioned that a “physical” meaning may be assigned
to their FM geometric parameters (or groups of them) in
terms of actual characteristics of the underlying watersheds,

as it has been found in other applications (e.g. Puente et al.,
2001a, b). Such an exercise may ultimately lead to a regional
parameterization of a host of width functions.

5 Conclusions

This article has shown that the FM methodology may be
employed to obtain suitable approximations of width func-
tions of natural catchments as derived distributions of sim-
ple multifractal measures via fractal interpolating functions,
in a rather parsimonious way. As such, it has been shown
that such a deterministic procedure may be used to not only
simulate sets that properly preserve all essential features, as
captured by stochastic models (Veneziano et al., 2000), but
also fit specific width function sets, which random models,
due to their specific random structure, cannot easily do.

The FM approach, while providing parsimonious descrip-
tions of whole width functions leading to vast compression
ratios (1721 to 7 or about 246 to 1 in the examples consid-
ered), represents a new approach for understanding the com-
plexities of natural width functions such that their inherent
geometries are fully captured and at any given resolution.
Due to its scope, the FM method cannot be safely compared
with other existing (stochastic) procedures that by definition
are able to simulate plausible realizations of width functions
(even if with fewer parameters than a wholistic FM repre-
sentation may have). In a sense, the FM methodology, by
representing specific width functions, just parameterizes re-
alizations as given by stochastic representations.

Given that space-filling Peano river basins yield simple
multifractal width functions that correspond to the parent
measure of the FM procedure (Marani et al., 1991), it is envi-
sioned that further analysis of other width functions using the
FM approach may provide, via the parameters of the inherent
fractal interpolating functions, a plausible physical interpre-
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tation of the geometric parameters and a subsequent regional
classification of river networks.
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