Atmos. Meas. Tech., 7, 469–490, 2014 www.atmos-meas-tech.net/7/469/2014/ doi:10.5194/amt-7-469-2014 © Author(s) 2014. CC Attribution 3.0 License.





# **Results from the International Halocarbons in Air Comparison Experiment (IHALACE)**

B. D. Hall<sup>1</sup>, A. Engel<sup>2</sup>, J. Mühle<sup>3</sup>, J. W. Elkins<sup>1</sup>, F. Artuso<sup>4</sup>, E. Atlas<sup>5</sup>, M. Aydin<sup>6</sup>, D. Blake<sup>6</sup>, E.-G. Brunke<sup>7</sup>, S. Chiavarini<sup>4</sup>, P. J. Fraser<sup>8</sup>, J. Happell<sup>5</sup>, P. B. Krummel<sup>8</sup>, I. Levin<sup>9</sup>, M. Loewenstein<sup>10</sup>, M. Maione<sup>11</sup>, S. A. Montzka<sup>1</sup>, S. O'Doherty<sup>12</sup>, S. Reimann<sup>13</sup>, G. Rhoderick<sup>14</sup>, E. S. Saltzman<sup>6</sup>, H. E. Scheel<sup>\*,†</sup>, L. P. Steele<sup>8</sup>, M. K. Vollmer<sup>13</sup>, **R. F. Weiss<sup>3</sup>**, **D. Worthy**<sup>15</sup>, and **Y. Yokouchi**<sup>16</sup> <sup>1</sup>National Oceanic and Atmospheric Administration, Boulder, CO, USA <sup>2</sup>Goethe-University Frankfurt, Frankfurt, Germany <sup>3</sup>Scripps Institution of Oceanography, La Jolla, CA, USA <sup>4</sup>ENEA, Rome, Italy <sup>5</sup>University of Miami, Miami FL, USA <sup>6</sup>University of California, Irvine CA, USA <sup>7</sup>South African Weather Service, Stellenbosch, South Africa <sup>8</sup>Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Aspendale, Australia <sup>9</sup>University of Heidelberg, Heidelberg, Germany <sup>10</sup>NASA Ames Research Center, Moffett Field, CA, USA <sup>11</sup>University of Urbino, Urbino, Italy <sup>12</sup>University of Bristol, Bristol, UK <sup>13</sup>Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Air Pollution and Environmental Technology, Duebendorf, Switzerland <sup>14</sup>National Institute of Standards Technology, Gaithersberg, MD, USA <sup>15</sup>Environment Canada, Toronto, Canada <sup>16</sup>National Institute for Environmental Studies, Tsukuba, Japan <sup>\*</sup>formerly at: Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany <sup>†</sup>deceased

Correspondence to: B. D. Hall (bradley.hall@noaa.gov)

Received: 8 August 2013 – Published in Atmos. Meas. Tech. Discuss.: 30 August 2013 Revised: 28 November 2013 – Accepted: 19 December 2013 – Published: 10 February 2014

Abstract. The International Halocarbons in Air Comparison Experiment (IHALACE) was conducted to document relationships between calibration scales among various laboratories that measure atmospheric greenhouse and ozone depleting gases. This study included trace gases such as chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs), as well as nitrous oxide, methane, sulfur hexafluoride, very short-lived halocompounds, and carbonyl sulfide. Many of these gases are present in the unpolluted atmosphere at pmol $mol^{-1}$  (parts per trillion) or nmol $mol^{-1}$  (parts per billion) levels. Six stainless steel cylinders containing natural and modified

natural air samples were circulated among 19 laboratories. Results from this experiment reveal relatively good agreement (within a few percent) among commonly used calibration scales. Scale relationships for some gases, such as CFC-12 and CCl<sub>4</sub>, were found to be consistent with those derived from estimates of global mean mole fractions, while others, such as halon-1211 and CH<sub>3</sub>Br, revealed discrepancies. The transfer of calibration scales among laboratories was problematic in many cases, meaning that measurements tied to a particular scale may not, in fact, be compatible. Large scale transfer errors were observed for CH<sub>3</sub>CCl<sub>3</sub> (10–100 %) and CCl<sub>4</sub> (2–30 %), while much smaller scale transfer errors (< 1 %) were observed for halon-1211, HCFC-22, and HCFC-142b. These results reveal substantial improvements in calibration over previous comparisons. However, there is room for improvement in communication and coordination of calibration activities with respect to the measurement of halogenated and related trace gases.

# 1 Introduction

Halogenated trace gases, such as chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and chlorinated solvents, are involved in stratospheric ozone depletion (Montzka et al., 2011). Some of these, along with hydrofluorocarbons (HFCs), are strong greenhouse gases. In an effort to characterize global distributions and sources/sinks of these gases, several international research groups measure the atmospheric abundance of CFCs, HCFCs, HFCs, and halogenated solvents on a routine basis.

Collaborative efforts utilizing measurements from multiple groups have led to more robust estimates of the global distributions and emissions of N<sub>2</sub>O (Huang et al., 2008; Saikawa et al., 2013), CCl<sub>4</sub> (Xiao et al., 2010a), CH<sub>3</sub>Cl (Xiao et al., 2010b), HCFC-22 (Saikawa et al., 2012) and SF<sub>6</sub> (Rigby et al., 2010). Integrating results from different research groups to produce a consistent picture of the global or regional atmospheric distribution can be challenging. There are many factors that can lead to differences in the data records collected by different groups (e.g., sampling or analytical artifacts, calibration differences, site selection). Perhaps the most fundamental of these is the calibration scale upon which the measurements are based.

Nearly all measurements of ozone-depleting and greenhouse gases are made on a relative basis. That is, abundances are determined relative to reference standards measured in a similar manner. Most reference standards used for calibration consist of mixtures of trace gases stored in compressed gas cylinders with known mole fractions. Reference standards are typically designed to match the atmospheric composition in order to minimize interference or bias. The term "scale" is often used to define the reference standard(s) used over a particular range of mole fractions. Some laboratories develop and maintain scales internally, while others adopt existing scales. Throughout this paper we refer to laboratories that develop scales as a "scale origin". Scale adoption typically involves sending one or more reference standards to another laboratory for analysis. Issues important to both scale development and adoption include scale stability (are the reference standards or methods stable over time?) and scale propagation (can standards developed or evaluated using a particular instrument be reliably transferred to a different instrument or laboratory, and can the adopting laboratory maintain the adopted scale?).

The larger CO<sub>2</sub> measurement community, under the auspices of the World Meteorological Organization - Global Atmosphere Watch (WMO/GAW) program, has adopted a single reference scale for CO<sub>2</sub> measurements (WMO/GAW, 2009; Zhao et al., 1997). This ensures that all WMO/GAW CO<sub>2</sub> measurements are traceable to the same calibration scale. On-going efforts to compare laboratory CO<sub>2</sub> measurements and assess how well cooperating laboratories are linked to the WMO/GAW CO2 calibration scale are fundamental to the WMO/GAW program (WMO/GAW, 2009). Protocols for CH<sub>4</sub>, N<sub>2</sub>O, CO, SF<sub>6</sub>, and H<sub>2</sub> are also in place (WMO/GAW, 2011). Experiments have also been designed to assess calibration and analytical differences for select hydrocarbons (Apel et al., 1994; Plass-Dülmer et al., 2006; Apel et al., 2003). However, there have been few efforts to characterize differences between calibration scales and measurement programs for halogenated gases. Early comparison studies (Rasmussen, 1978; Fraser, 1979) found large differences in mole fractions of the most abundant ozone-depleting gases (CFC-11 (CCl<sub>3</sub>F), CFC-12 (CCl<sub>2</sub>F<sub>2</sub>), CH<sub>3</sub>CCl<sub>3</sub>, and CCl<sub>4</sub>). For example, standard deviations of 10–25% were found among independent laboratories for CFC-12 and CCl<sub>4</sub>. Prinn et al. (1998) reported differences less than 1% for CFC-12 and CH<sub>3</sub>Cl, 8–10% for CFC-11, and 20–35% for CH<sub>3</sub>CCl<sub>3</sub> and HCFC-142b (CH<sub>3</sub>CClF<sub>2</sub>). Aside from a study by Jones et al. (2011) that focused on very short-lived halocompounds, such as CH<sub>2</sub>Br<sub>2</sub> and CHBr<sub>3</sub>, much of the recent research in this area has been carried out on a bi-lateral or ad-hoc basis.

While the existence of independent calibration scales is important for verifying trends and estimating uncertainties, it is critically important to understand the relationships between independent scales. The International Halocarbon in Air Comparison Experiment (IHALACE) was conceived as a first step toward assessing the variability of calibration scales associated with the measurement of halogenated trace gases.

The goals of IHALACE were (1) to establish a calibration matrix that relates the calibration scales among different laboratories at a specific point in time, and (2) to enhance communication and cooperation among laboratories in order to improve data quality (e.g., through regular comparisons). We do not explore analytical or scale development uncertainties in depth. Typical scale uncertainties at ambient mole fractions are about 1–5% (95% confidence level). While it is possible that comparison results might agree within these uncertainties, small differences between measurement programs can be important for gases with small spatial or temporal gradients. It is important to understand even small differences between scales rather than to treat scales as equivalent based on agreement within uncertainties.

# **B. D. Hall et al.: Results from IHALACE**

#### 2 Methods

Six electro-polished stainless steel cylinders (Essex Cryogenics, St. Louis, MO), divided into two sets, were distributed among the participants (Table 1). These cylinders were selected because they have shown good stability for many halogenated gases at pmol mol<sup>-1</sup> (parts per trillion, ppt) level. Each group received three cylinders, two at ambient mole fraction and one a mixture of 80% ambient air and 20% ultra-pure zero air (Table 2). Mole fractions were not disclosed at the time of distribution. To the extent possible, groups that develop their own calibration scales received the same set of three samples (set 1), while those groups that adopt scales from other laboratories received set 2.

## 2.1 Air sample preparation

Cylinders were filled at the NOAA/GMD (Earth System Research Laboratory, Global Monitoring Division) air sampling facility at Niwot Ridge, Colorado. This facility (40.03° N, 105.55° W) is located at an altitude of 3022 m in a sub-alpine forest approximately 50 km northwest of Denver. Airflow to the site is predominately westerly, bringing clean continental background air to the site.

Cylinders (34-L empty volume) initially contained  $\sim$  100 hPa dry nitrogen upon receipt from the manufacturer. They were evacuated to 2 Pa and then filled with 6.2 MPa dry (dewpoint  $\sim -78$  °C) natural air via transfer from a pressurized cylinder (filled previously at Niwot Ridge). Approximately 0.65 mL HPLC grade water was added to each cylinder to humidify the air. Cylinders were conditioned with this humidified air for one month, then evacuated to 6 Pa and re-humidified by adding 0.65 mL HPLC-grade water and  $\sim$  0.3 MPa dry natural air as before. Dry synthetic zero-grade air was added to two cylinders to create mixtures with mole fractions  $\sim 20$  % below those of the ambient air samples. The zero-grade air (Linweld, Lincoln, NE) was scrubbed for residual contamination by passing it through molecular sieve 5Å and activated charcoal at -78°C. Final pressurization to 6.2 MPa was performed at Niwot Ridge using an oil-free, breathing-air compressor (model SA6, Rix Industries, Benicia, CA). Distilled de-ionized water was added to the air stream at the pump inlet to cool and cleanse the first stage of the compressor. Experience has shown that cooling the compressor heads by adding  $8-12 \text{ cc/min } \text{H}_2\text{O}$  and blowing air across aluminum cooling fins mounted to the compressor heads greatly reduces the levels of contaminants generated by the compressor. Moisture was removed using Rix moisture separators and by passing the air through a stainless steel tube containing 350 g magnesium perchlorate  $(Mg(ClO_4)_2)$ . By combining 0.65 mL H<sub>2</sub>O with ~ 2600 g dry air, the resulting water vapor mole fraction in each cylinder was  $\sim$  400 ppm. Cylinders were filled on 17 March 2004 and 8 July 2004 (Table 2). Because mole fractions of some gases vary seasonally, the full range of mole fractions among all six samples was greater than 20 % for some gases (CH<sub>3</sub>Br for example) (see Supplement).

#### 2.2 Analysis and data reporting

Each participant was instructed to analyze the air samples in a manner similar to other air samples from their measurement program. Most participants employ gas chromatography with electron-capture, mass-selective, or flame ionization detection. A dedicated pressure regulator was supplied with each cylinder (Veriflo 959TDR, Veriflo Division of Parker Hannifin, Richmond, CA) along with 1 m lengths of 1/16" stainless steel tubing. Participants were instructed to use the regulators provided unless their analysis method required a different procedure.

Each laboratory was instructed to forward the cylinders to the next laboratory according to a pre-determined schedule. Cylinders were initially distributed in September 2004. One set of cylinders was returned to Boulder for final analysis in 2006. The second set was returned a year later, taking an additional year to complete the circuit. Each cylinder was analyzed at NOAA at the beginning and end of the distribution period. At the end of the experiment, four of the six cylinders remained at high pressure ( $\sim 5$  MPa) while two were accidentally partially vented during the final weeks of the experiment. The final analysis at NOAA was performed while all cylinders still contained > 70 % of the initial air. These results represent the state of the art in halocarbon measurements around 2007.

Data were submitted to two referees and held until all analyses were complete. At that point, data were released to participants in anonymous form with laboratories identified by number. While IHALACE was operated as a "blind" comparison, one of the referees also acted as a participant. Although this is not generally considered protocol for a blind comparison, all participants were informed in advance and agreed with the protocol. The participant/referee submitted results to the other referee and to another participant (B. Hall). Furthermore, the participant/referee ensured that handling and analysis were performed by laboratory personnel not associated with the role of IHALACE referee.

It was requested that all data be properly identified with the corresponding calibration scale (see Supplement, Table S1). Data submitted on obsolete scales were converted to more recent scales according to known conversion factors (e.g., CH<sub>4</sub> on the CMDL-93 scale was converted to NOAA-04, Dlugokencky et al., 2005; CFC-12 on the NOAA-2001 scale was converted to NOAA-2008; HCFC-22 (CHCIF<sub>2</sub>) on the NOAA-92 scale was converted to NOAA-2006; CCl<sub>4</sub> on the NOAA-92 scale was converted to NOAA-2006; CCl<sub>4</sub> on the NOAA-2002 scale was converted to NOAA-2008; N<sub>2</sub>O on the NOAA-2000 scale was converted to NOAA-2008). In other cases, scale differences were small and do not significantly affect the results. For example, some data were submitted on SIO-98 scales even though SIO-05 for CFC-12

| Lab. # | Institution                                      | Acronym | P.I.           | Country        | Set  | Ref.    |
|--------|--------------------------------------------------|---------|----------------|----------------|------|---------|
| 1      | National Oceanic and Atmospheric Administration  | NOAA    | J. Elkins      | USA            | 1, 2 | f, m    |
| 2      | Scripps Institution of Oceanography              | SIO     | R. Weiss       | USA.           | 1    | l, n    |
| 3      | South African Weather Service                    | SAWS    | EG. Brunke     | South Africa   | 2    | d       |
| 4      | Italian National Agency for New Technologies,    | ENEA    | F. Artuso      | Italy          | 2    | а       |
|        | Energy and Sustainable Economic Development      |         |                |                |      |         |
| 5      | Environment Canada                               | EC      | D. Worthy      | Canada         | 2    | S       |
| 6      | University of Miami                              | UM-1    | J. Happell     | USA.           | 2    | h       |
| 7      | National Institute of Standards and Technology   | NIST    | G. Rhoderick   | USA            | 1    | 0       |
| 8      | Karlsruhe Institute of Technology                | KIT     | H. E. Scheel   | Germany        | 2    | r       |
| 9      | University of Bristol                            | UB      | S. O'Doherty   | United Kingdom | 1    | l, n, q |
| 10     | University of California Irvine                  | UCI-1   | E. S. Salzman  | USA            | 2    | b       |
| 11     | University of Urbino                             | UU      | M. Maione      | Italy          | 2    | k       |
| 12     | J. W. Goethe University of Frankfurt             | UF      | A. Engel       | Germany        | 2    | e       |
| 13     | University of Heidelberg                         | UH      | I. Levin       | Germany        | 2    | g, i    |
| 14     | Swiss Federal Laboratories for Materials Science | Empa    | S. Reimann     | Switzerland    | 2    | n, q    |
|        | and Technology                                   |         |                |                |      |         |
| 15     | University of Miami                              | UM-2    | E. Atlas       | USA            | 1    | р       |
| 16     | National Institute for Environmental Studies     | NIES    | Y. Yokouchi    | Japan          | 1    | t       |
| 17     | Commonwealth Scientific and Industrial Research  | CSIRO   | P. Fraser      | Australia      | 1    | l, n    |
|        | Organization; and Cape Grim Baseline Air         |         |                |                |      |         |
|        | Pollution Station                                |         |                |                |      |         |
| 18     | NASA Ames Research Center                        | NASA    | M. Loewenstein | USA            | 2    | j       |
| 19     | University of California, Irvine                 | UCI-2   | D. Blake       | USA            | 2    | с       |

Table 1. List of participants and sample set analyzed (three cylinders in each set).

<sup>a</sup> Artuso et al. (2010), <sup>b</sup> Saltzman et al. (2009), <sup>c</sup> Blake et al. (2003), <sup>d</sup> Brunke et al. (1990), <sup>e</sup> Engel et al. (1997), <sup>f</sup> Hall et al. (2007), <sup>g</sup> Hammer (2008), <sup>h</sup> Happell and Wallace (1997), <sup>i</sup> Levin et al. (2010), <sup>j</sup> Loewenstein et al. (2002), <sup>k</sup> Maione et al. (2004), <sup>l</sup> Miller et al. (2008), <sup>m</sup> Montzka et al. (1993), <sup>n</sup> Prinn et al. (2000), <sup>o</sup> Rhoderick and Dorko (2004), <sup>p</sup> Schauffler et al. (1999), <sup>q</sup> Simmonds et al. (1995), <sup>r</sup> WMO/GAW (2011), <sup>s</sup> Worthy et al. (2003), <sup>t</sup> Yokouchi et al. (2002).

was estimated from SIO results submitted on both scales by the same laboratory. The scale ratio for CFC-12 (SIO-05/SIO-98 = 0.9999 at ~ 545 ppt) is sufficiently close to 1.0 that results reported on the SIO-98 scale can be compared directly to those submitted on SIO-05. Likewise, conversion from N<sub>2</sub>O scale NOAA-2006 to NOAA-2006A is not necessary for comparative purposes. Finally, some laboratories reported data on more than one scale or from more than one analytical instrument. Some laboratories maintain multiple instruments, such as gas chromatographs with electron-capture detector (ECD) and mass-selective detector (MS). These results are presented in tables as non-integer laboratory numbers, and offset from the laboratory number in figures. See Table S1 for additional laboratory information.

# 3 Results and discussion

To examine the results, we focus first on laboratories that prepare their own scales. This provides an indication of how well atmospheric mole fractions are known on an absolute basis and avoids scale propagation issues. For each trace gas, we report the variation of results (one standard deviation) exclusively from laboratories that maintain independent scales (Table 5). While no calibration scale is known absolutely, good agreement among a number of scales would suggest that errors in determining the atmospheric mole fraction of a particular trace gas are likely small. Next we examine how well laboratories reporting on the same scales compare, since two laboratories using the same scale should agree to the level at which the scale can be propagated (typically twice the analytical uncertainty of laboratory of scale origin). Finally, we compare the results of select gases from this experiment (collected over a period of a few weeks at each laboratory) with those derived from estimates of global mean mole fractions (based on measurements made over the course of a year or more).

We have separated results by the season during which the cylinders were filled (late winter versus early summer) as seasonal mole fraction differences are expected for some gases. For most comparisons, we focus on the undiluted air samples since calibration and analysis procedures are likely to be optimized for ambient samples. We use the NOAA results as the basis for many of the comparisons because all six cylinders were analyzed at NOAA. Initial and final mole fractions determined by NOAA agreed within analytical uncertainties for all gases except CH<sub>2</sub>Br<sub>2</sub>. Hence, initial mole fractions assigned by NOAA were used for comparison, except for CH<sub>2</sub>Br<sub>2</sub> (adjusted for drift) and CFC-12 (described later). For gases not measured by NOAA, we assume no drift. This is a reasonable assumption given previous experience



**Fig. 1.** Results from undiluted samples for (**a**) CFC-11, (**b**) CFC-12, (**c**) CFC-113, (**d**) CFC-114, (mole fraction,  $pt = pmol mol^{-1}$ , parts per trillion) color-coded by calibration scale with scale identifiers shown along the top axis: open (closed) symbols correspond to cylinders filled in winter (summer); circles denote laboratories that develop scales and serve as a scale origin, diamonds denote laboratories that adopt existing scales. Errors bars are one standard deviation as reported. Results that appear offset from the integer laboratory numbers on the *x* axis indicate additional results submitted by the corresponding laboratory (different instruments, different calibration scales, etc.). For example, for CFC-11 laboratory 2 submitted data from two instruments on the same scale, while laboratory 6 submitted data on two different scales. Note that because some laboratories adopt scales from others, the scale identifier (top axis) and the laboratory (identified by number on the bottom axis) may differ (see Table 1). For example, in (**c**), laboratory 19 (UCI-2) reports CFC-113 on the UCI-2 scale, but in (**d**), reports CFC-114 on the NCAR-P scale.

with these cylinders under similar conditions. Differences between initial and final mole fractions (when available) can be seen in Figs. 1–6 and Tables 3 and 4 (columns 1a, 1b). Finally, we compare results for undiluted and diluted

samples. Results from both diluted and undiluted samples, taken together, may shed light on non-linearities associated with analysis or scale development, which could impact how data sets compare over the long term.

**Table 2.** Air samples distributed to labs.

| Cylinder No. | Set No. | Fill date  | Туре      |
|--------------|---------|------------|-----------|
| SX-3526      | 1       | March 2004 | diluted   |
| SX-3528      | 1       | March 2004 | undiluted |
| SX-3537      | 1       | July 2004  | undiluted |
| SX-3536      | 2       | July 2004  | diluted   |
| SX-3527      | 2       | March 2004 | undiluted |
| SX-3538      | 2       | July 2004  | undiluted |

The full complement of results is available as supplemental material (see Supplement). Average differences (%) compared to NOAA for select gases are shown in Tables 3 and 4.

#### 3.1 Chlorofluorocarbons (CFCs)

Both CFC-11 and CFC-12 have a long history of measurement and scale development over the years. For CFC-11, the standard deviation among six scales for the undiluted air samples was 1% (Table 5, Fig. 1a). There was some clustering, with three scales (developed by laboratories 1, 2, 7) at lower values and three scales (developed by laboratories 15, 16, 19)  $\sim$  4 ppt higher, but in general, the relative differences among scales are smaller than those reported previously (Prinn et al., 1998). The average difference between laboratories 1 (NOAA) and 7 (NIST) was 0.1%. This is similar, within reported uncertainties, to the average difference of 0.9% reported by Rhoderick and Dorko (2004).

Scale relationships among three laboratories (NOAA, SIO, and UCI-2) were compared to those derived from 2004 and 2007–2008 global tropospheric mean mole fraction estimates reported in Montzka et al. (2011) (Table 6). Although scale relationships derived as such can be influenced by other factors, such as sampling issues, or the number and locations of measurement sites, it is useful to examine the consistency of scale factors since the 2004 comparisons are based on the analysis of air collected around the same time as the IHA-LACE samples. For CFC-11, the SIO/NOAA ratio derived from this experiment (0.9942) is nearly the same as that derived from estimates of global means in 2004 based on their different sampling networks (0.9921). However, global mean estimates from both networks indicate that this ratio has not been constant (Montzka et al., 2011). The UCI-2/NOAA factor based on this work (1.0108) is 1 % larger than those based on global means in 2004 (0.9996) and 2007-2008 (0.9970).

Five CFC-12 calibration scales show a dispersion of 1 % (Fig. 1b, Table 5). The final NOAA analysis of IHA-LACE cylinders suggests that initial NOAA assignments were  $\sim 0.8$  ppt too low for unknown reasons (the average of the second NOAA analysis was 0.8 ppt higher than the first) and this was confirmed by analysis of additional standards at NOAA. All CFC-12 comparisons shown in Tables 3–6 are based on the final NOAA analysis.

CFC-12 scale factors derived from undiluted IHALACE cylinders for SIO/NOAA and UCI-2/NOAA are nearly identical to those derived from global mean mole fraction estimates (Table 6). Rhoderick and Dorko (2004) reported excellent agreement (< 1 ppt) between NOAA and NIST for CFC-12, but those results were based on an older NOAA CFC-12 scale (NOAA-2001), which is 7 ppt (1.3 %) lower than the NOAA-2008 scale. IHALACE results show the NIST-NOAA average difference (Table 3) to be -8.3 ppt (-1.5%) on current scales.

While the standard deviations of CFC-11 and CFC-12 results on independent scales are not large ( $\sim 1$  %), scale propagation could be improved. Some differences among laboratories reported to be on the same CFC-12 scale are nearly as large as differences among scales. Laboratories 3, 6, and 11 reported CFC-12 results that differ significantly from the laboratories that developed the scales (scale origin, shown as circles for each scale color in Figs. 1-6). This is an important finding also observed for other trace gases. Measurements that are supposedly comparable (traceable to the same scale) may not be compatible (see JCGM 200, 2008, 2007; WMO/GAW, 2011) due to scale propagation or sampling/measurement issues. This could impact the utility of combining data from different networks/sites even when the programs are linked to common scales. One likely reason is the lack of regular communication between laboratories regarding calibration scale changes. Equally important are efforts to verify that mole fractions of calibration standards are not changing over time. Efforts to ensure data quality and scale transfer are needed on a continuing basis to minimize potential bias. Examples of efforts to address these issues include routine comparison of standards or air samples, and co-located sampling, whereby measurements are taken by independent groups at the same site and time.

It is important to note that with regard to potential scale transfer errors, some groups within this study are more closely linked than others. For example, laboratories 2, 9, 14, and 17 are affiliated with the Advanced Global Atmospheric Gases Experiment (AGAGE) (Prinn et al., 2000). Standard preparation, scale propagation, and data processing are likely more centralized within this group than between other groups operating on common scales. Scale transfer errors between AGAGE-affiliated laboratories should be smaller than those between laboratories with little or no formal cooperative ties. The same would be expected from other measurement facilities operating within one agency. In general, transfer errors are indeed smaller for AGAGE-affiliated laboratories, but not in all cases.

CFC-113 (CCl<sub>2</sub>FCClF<sub>2</sub>) results are similar to those for CFC-11. The standard deviation of results from five scales is 1.7 ppt, or 2.1 %. Again, scale propagation is problematic in some cases (Fig. 1c). Laboratory 12 agrees with laboratory 1 (scale origin) very well, and laboratories 9 and 17 agree with laboratory 2 (scale origin), but laboratory 3 shows a large difference relative to laboratory 1. Scale conversion

| Table 3. | Average    | differences   | (%) be  | etween e  | each labora | atory ar  | nd laborato  | ry 1 ( | NOAA)     | for selecte | ed com     | pounds   | (average   | of both   | undiluted |
|----------|------------|---------------|---------|-----------|-------------|-----------|--------------|--------|-----------|-------------|------------|----------|------------|-----------|-----------|
| samples) | . Each res | sult is compa | ared to | the initi | al NOAA     | result, o | except for C | CFC-1  | 2 (final) | and CH2B    | $sr_2$ (av | erage of | initial an | d final). |           |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                          |                      | Labo                                                                                                                              | oratory Nu                                                                                                                                                                               | mber                                                                                                                                                                                |                        |                                                                                              |                                                                                                                                                            |         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NOAA              | 2<br>MD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.1<br>MS                                                                                                                                | 3                    | 4                                                                                                                                 | 5                                                                                                                                                                                        | 6                                                                                                                                                                                   | 6.1                    | 7                                                                                            | 8                                                                                                                                                          | 9<br>MD | 9.1<br>MS1                                                                                                                                                                                                                                      | 9.2<br>MS2                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |
| CFC-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 543               | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3                                                                                                                                      | 1.2                  |                                                                                                                                   |                                                                                                                                                                                          | 0.3                                                                                                                                                                                 | 1.6                    | -1.5                                                                                         |                                                                                                                                                            | 0.2     |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| CFC-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 253               | -0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.3                                                                                                                                     | 2.7                  |                                                                                                                                   |                                                                                                                                                                                          | -1.4                                                                                                                                                                                | 0.3                    | -0.1                                                                                         |                                                                                                                                                            | -0.8    |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| CFC-113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80                | -2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.1                                                                                                                                     | 14.3                 |                                                                                                                                   |                                                                                                                                                                                          | -5.2                                                                                                                                                                                | -6.3                   | 2.0                                                                                          |                                                                                                                                                            | -2.2    | 2.0                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| CH <sub>3</sub> CCl <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23                | -5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.6                                                                                                                                     | 184                  |                                                                                                                                   |                                                                                                                                                                                          | -13.0                                                                                                                                                                               | -11.0                  | 2.8                                                                                          |                                                                                                                                                            | -3.0    | -3.0                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| CCl <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95                | -2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -3.1                                                                                                                                     | 34                   |                                                                                                                                   |                                                                                                                                                                                          | -4.2                                                                                                                                                                                | -0.7                   | 2.2                                                                                          |                                                                                                                                                            | -2.4    | -3.9                                                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| UCEC 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                | -5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -4.3                                                                                                                                     |                      | 0.0                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                                                     |                        | -23.5                                                                                        |                                                                                                                                                            | -       | -/.0                                                                                                                                                                                                                                            | -3.6                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                           |
| HCFC-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/4               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.7                                                                                                                                     |                      | 0.0                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                                                     |                        |                                                                                              |                                                                                                                                                            |         | -0.6                                                                                                                                                                                                                                            | -1.1                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                           |
| HCFC-1410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2                                                                                                                                      |                      | 5.1                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                                                     |                        |                                                                                              |                                                                                                                                                            |         | 0.4                                                                                                                                                                                                                                             | 1.0                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                           |
| HEC-1342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33.1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8                                                                                                                                      |                      | -0.9                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                     |                        |                                                                                              |                                                                                                                                                            |         | 2.7                                                                                                                                                                                                                                             | 0.6                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                           |
| HFC-152a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -8.4                                                                                                                                     |                      | -0.9                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                     |                        |                                                                                              |                                                                                                                                                            |         | _11.4                                                                                                                                                                                                                                           | -8.5                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                           |
| CH <sub>2</sub> Cl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.4                                                                                                                                     |                      |                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                                     |                        |                                                                                              |                                                                                                                                                            |         | -6.6                                                                                                                                                                                                                                            | -0.5                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.6               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                          |                      |                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                                     |                        |                                                                                              |                                                                                                                                                            |         | -6.0                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| CH <sub>3</sub> Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 564               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.8                                                                                                                                     |                      |                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                                     |                        |                                                                                              |                                                                                                                                                            |         | -1.1                                                                                                                                                                                                                                            | -0.9                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                           |
| CH <sub>3</sub> Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.4               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.2                                                                                                                                     |                      |                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                                     |                        |                                                                                              |                                                                                                                                                            |         | 3.3                                                                                                                                                                                                                                             | -0.4                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                           |
| CH <sub>3</sub> I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.18              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                          |                      |                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                                     |                        |                                                                                              |                                                                                                                                                            |         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| CH <sub>2</sub> Br <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                          |                      |                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                                     |                        |                                                                                              |                                                                                                                                                            |         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| CHBr <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                          |                      |                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                                     |                        |                                                                                              |                                                                                                                                                            |         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| halon-1211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.4               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0                                                                                                                                      |                      |                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                                     |                        |                                                                                              |                                                                                                                                                            |         | 1.7                                                                                                                                                                                                                                             | 1.6                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                           |
| halon-1301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.9               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.8                                                                                                                                      |                      |                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                                     |                        |                                                                                              |                                                                                                                                                            |         | 4.4                                                                                                                                                                                                                                             | 6.1                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                           |
| halon-2402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                          |                      |                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                                     |                        |                                                                                              |                                                                                                                                                            |         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| CH <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1821              | -0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                          | 0.01                 |                                                                                                                                   | 0.05                                                                                                                                                                                     |                                                                                                                                                                                     |                        | 0.34                                                                                         |                                                                                                                                                            | 0.0     |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| N <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 318.3             | -0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                          | -0.34                |                                                                                                                                   | -0.01                                                                                                                                                                                    |                                                                                                                                                                                     |                        | 0.43                                                                                         | 0.02                                                                                                                                                       | -0.01   |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
| SF <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.1                                                                                                                                     |                      | 2.4                                                                                                                               | -0.7                                                                                                                                                                                     |                                                                                                                                                                                     |                        |                                                                                              |                                                                                                                                                            |         | -0.7                                                                                                                                                                                                                                            | -0.4                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                           |
| COS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 570               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                          |                      |                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                                     |                        |                                                                                              |                                                                                                                                                            |         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                          |                      |                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                                     |                        |                                                                                              |                                                                                                                                                            |         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                          |                      |                                                                                                                                   |                                                                                                                                                                                          | L                                                                                                                                                                                   | aboratory              | V Number                                                                                     |                                                                                                                                                            |         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12                                                                                                                                       | 13                   | 14                                                                                                                                | 15                                                                                                                                                                                       | L<br>16                                                                                                                                                                             | aboratory<br>17        | V Number<br>17.1<br>MD                                                                       | 17.2<br>MS                                                                                                                                                 | 18      | 19                                                                                                                                                                                                                                              | 1A                                                                                                                                                                                                                                                              | 1B                                                                                                                                                                                                                                                                                                                                                                        |
| CFC-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                | -4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                                                                                       | 13                   | 14                                                                                                                                | 15                                                                                                                                                                                       | L<br>16                                                                                                                                                                             | aboratory<br>17        | V Number<br>17.1<br>MD<br>0.2                                                                | 17.2<br>MS<br>0.3                                                                                                                                          | 18      | 19<br>-0.5                                                                                                                                                                                                                                      | 1A<br>0.0                                                                                                                                                                                                                                                       | 1B<br>0.0                                                                                                                                                                                                                                                                                                                                                                 |
| CFC-12<br>CFC-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                | 11<br>-4.6<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12<br>0.0<br>0.8                                                                                                                         | 13                   | 14<br>0.2<br>-0.6                                                                                                                 | 15<br>1.2<br>2.1                                                                                                                                                                         | L<br>16<br>0.7                                                                                                                                                                      | aboratory<br>17        | V Number<br>17.1<br>MD<br>0.2<br>-0.7                                                        | 17.2<br>MS<br>0.3<br>-0.4                                                                                                                                  | 18      | 19<br>-0.5<br>1.1                                                                                                                                                                                                                               | 1A<br>0.0<br>0.5                                                                                                                                                                                                                                                | 1B<br>0.0<br>0.1                                                                                                                                                                                                                                                                                                                                                          |
| CFC-12<br>CFC-11<br>CFC-113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                | 11<br>-4.6<br>0.0<br>-9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12<br>0.0<br>0.8<br>-0.2                                                                                                                 | 13                   | 14<br>0.2<br>-0.6<br>-4.1                                                                                                         | 15<br>1.2<br>2.1<br>1.2                                                                                                                                                                  | L<br>16<br>0.7                                                                                                                                                                      | aboratory<br>17        | V Number<br>17.1<br>MD<br>0.2<br>-0.7<br>-2.1                                                | 17.2<br>MS<br>0.3<br>-0.4<br>-2.1                                                                                                                          | 18      | 19<br>-0.5<br>1.1<br>-2.6                                                                                                                                                                                                                       | 1A<br>0.0<br>0.5<br>-0.4                                                                                                                                                                                                                                        | 1B<br>0.0<br>0.1<br>0.0                                                                                                                                                                                                                                                                                                                                                   |
| CFC-12<br>CFC-11<br>CFC-113<br>CH <sub>3</sub> CCl <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                | 11<br>-4.6<br>0.0<br>-9.0<br>-10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12<br>0.0<br>0.8<br>-0.2<br>-1.2                                                                                                         | 13                   | $ \begin{array}{r}     14 \\     0.2 \\     -0.6 \\     -4.1 \\     -11.7 \\ \end{array} $                                        | 15<br>1.2<br>2.1<br>1.2<br>-0.7                                                                                                                                                          | L<br>16<br>0.7<br>-2.5                                                                                                                                                              | aboratory<br>17        | V Number<br>17.1<br>MD<br>0.2<br>-0.7<br>-2.1<br>-1.9                                        | 17.2<br>MS<br>0.3<br>-0.4<br>-2.1<br>-2.3                                                                                                                  | 18      | $     \begin{array}{r}       -0.5 \\       1.1 \\       -2.6 \\       4.8     \end{array} $                                                                                                                                                     | 1A<br>0.0<br>0.5<br>-0.4<br>1.1                                                                                                                                                                                                                                 | 1B<br>0.0<br>0.1<br>0.0<br>-0.1                                                                                                                                                                                                                                                                                                                                           |
| CFC-12<br>CFC-11<br>CFC-113<br>CH <sub>3</sub> CCl <sub>3</sub><br>CCl <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                | -4.6<br>0.0<br>-9.0<br>-10.6<br>-11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12<br>0.0<br>0.8<br>-0.2<br>-1.2<br>-0.8                                                                                                 | 13                   | 14<br>0.2<br>-0.6<br>-4.1<br>-11.7<br>-5.5                                                                                        | 15<br>1.2<br>2.1<br>1.2<br>-0.7<br>-2.7                                                                                                                                                  | L<br>16<br>0.7<br>-2.5                                                                                                                                                              | aboratory<br>17        | V Number<br>17.1<br>MD<br>0.2<br>-0.7<br>-2.1<br>-1.9<br>-2.5                                | 17.2<br>MS<br>0.3<br>-0.4<br>-2.1<br>-2.3<br>-4.3                                                                                                          | 18      | $ \begin{array}{r}     -0.5 \\     1.1 \\     -2.6 \\     4.8 \\     -0.6 \end{array} $                                                                                                                                                         | 1A<br>0.0<br>0.5<br>-0.4<br>1.1<br>0.1                                                                                                                                                                                                                          | 1B<br>0.0<br>0.1<br>0.0<br>-0.1<br>0.1                                                                                                                                                                                                                                                                                                                                    |
| CFC-12<br>CFC-11<br>CFC-113<br>CH <sub>3</sub> CCl <sub>3</sub><br>CCl <sub>4</sub><br>CHCl <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                | $ \begin{array}{r}     -4.6 \\     0.0 \\     -9.0 \\     -10.6 \\     -11.1 \\     -4.6 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12<br>0.0<br>0.8<br>-0.2<br>-1.2<br>-0.8<br>-3.3                                                                                         | 13                   | $ \begin{array}{r}     14 \\     0.2 \\     -0.6 \\     -4.1 \\     -11.7 \\     -5.5 \\     -6.2 \\ \end{array} $                | 15<br>1.2<br>2.1<br>1.2<br>-0.7<br>-2.7<br>7.9                                                                                                                                           | L<br>16<br>0.7<br>-2.5<br>-2.1                                                                                                                                                      | aboratory<br>17        | V Number<br>17.1<br>MD<br>0.2<br>-0.7<br>-2.1<br>-1.9<br>-2.5<br>-4.9                        | 17.2<br>MS<br>0.3<br>-0.4<br>-2.1<br>-2.3<br>-4.3<br>-3.5                                                                                                  | 18      | $ \begin{array}{r}     19 \\     -0.5 \\     1.1 \\     -2.6 \\     4.8 \\     -0.6 \\     10.5 \\ \end{array} $                                                                                                                                | 1A<br>0.0<br>0.5<br>-0.4<br>1.1<br>0.1<br>1.5                                                                                                                                                                                                                   | 1B<br>0.0<br>0.1<br>0.0<br>-0.1<br>0.1<br>-0.4                                                                                                                                                                                                                                                                                                                            |
| CFC-12<br>CFC-11<br>CFC-113<br>CH <sub>3</sub> CCl <sub>3</sub><br>CCl <sub>4</sub><br>CHCl <sub>3</sub><br>HCFC-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                | $ \begin{array}{r}     -4.6 \\     0.0 \\     -9.0 \\     -10.6 \\     -11.1 \\     -4.6 \\     -4.0 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{r}     12 \\     0.0 \\     0.8 \\     -0.2 \\     -1.2 \\     -0.8 \\     -3.3 \\     -1.1 \\ \end{array} $             | 13                   | $ \begin{array}{r}     14 \\     0.2 \\     -0.6 \\     -4.1 \\     -11.7 \\     -5.5 \\     -6.2 \\     0.0 \\ \end{array} $     | 15<br>1.2<br>2.1<br>1.2<br>-0.7<br>-2.7<br>7.9<br>0.3                                                                                                                                    | L<br>16<br>0.7<br>-2.5<br>-2.1<br>-3.8                                                                                                                                              | aboratory<br>17        | V Number<br>17.1<br>MD<br>0.2<br>-0.7<br>-2.1<br>-1.9<br>-2.5<br>-4.9                        | 17.2<br>MS<br>0.3<br>-0.4<br>-2.1<br>-2.3<br>-4.3<br>-3.5<br>-0.4                                                                                          | 18      | $ \begin{array}{r}     -0.5 \\     1.1 \\     -2.6 \\     4.8 \\     -0.6 \\     10.5 \\     -2.8 \\ \end{array} $                                                                                                                              | 1A<br>0.0<br>0.5<br>-0.4<br>1.1<br>0.1<br>1.5<br>-0.5                                                                                                                                                                                                           | 1B<br>0.0<br>0.1<br>0.0<br>-0.1<br>0.1<br>-0.4<br>-0.3                                                                                                                                                                                                                                                                                                                    |
| CFC-12<br>CFC-11<br>CFC-113<br>CH <sub>3</sub> CCl <sub>3</sub><br>CCl <sub>4</sub><br>CHCl <sub>3</sub><br>HCFC-22<br>HCFC-141b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                | $ \begin{array}{r}     -4.6 \\     0.0 \\     -9.0 \\     -10.6 \\     -11.1 \\     -4.6 \\     -4.0 \\     -3.9 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{r}     12 \\     0.0 \\     0.8 \\     -0.2 \\     -1.2 \\     -0.8 \\     -3.3 \\     -1.1 \\     -3.7 \\ \end{array} $ | 13                   | $\begin{array}{c} 0.2 \\ -0.6 \\ -4.1 \\ -11.7 \\ -5.5 \\ -6.2 \\ 0.0 \\ -0.3 \end{array}$                                        | 15<br>1.2<br>2.1<br>1.2<br>-0.7<br>-2.7<br>7.9<br>0.3<br>3.4                                                                                                                             | L<br>16<br>0.7<br>-2.5<br>-2.1<br>-3.8<br>1.2                                                                                                                                       | aboratory<br>17        | v Number<br>17.1<br>MD<br>0.2<br>-0.7<br>-2.1<br>-1.9<br>-2.5<br>-4.9                        | 17.2<br>MS<br>0.3<br>-0.4<br>-2.1<br>-2.3<br>-4.3<br>-3.5<br>-0.4<br>1.0                                                                                   | 18      | 19<br>-0.5<br>1.1<br>-2.6<br>4.8<br>-0.6<br>10.5<br>-2.8<br>-5.5                                                                                                                                                                                | 1A<br>0.0<br>0.5<br>-0.4<br>1.1<br>0.1<br>1.5<br>-0.5<br>0.2                                                                                                                                                                                                    | 1B<br>0.0<br>0.1<br>0.0<br>-0.1<br>0.1<br>-0.4<br>-0.3<br>0.6                                                                                                                                                                                                                                                                                                             |
| CFC-12<br>CFC-11<br>CFC-113<br>CH <sub>3</sub> CCl <sub>3</sub><br>CCl <sub>4</sub><br>CHCl <sub>3</sub><br>HCFC-22<br>HCFC-141b<br>HCFC-142b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                | $ \begin{array}{c} 11 \\ -4.6 \\ 0.0 \\ -9.0 \\ -10.6 \\ -11.1 \\ -4.6 \\ -4.0 \\ -3.9 \\ 0.2 \\ 1.5 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.$         | $ \begin{array}{r} 12\\ 0.0\\ 0.8\\ -0.2\\ -1.2\\ -0.8\\ -3.3\\ -1.1\\ -3.7\\ 0.5\\ \end{array} $                                        | 13                   | $\begin{array}{c} 14\\ 0.2\\ -0.6\\ -4.1\\ -11.7\\ -5.5\\ -6.2\\ 0.0\\ -0.3\\ 3.3\\ 3.3\end{array}$                               | 15<br>1.2<br>2.1<br>1.2<br>-0.7<br>-2.7<br>7.9<br>0.3<br>3.4<br>8.7                                                                                                                      | L<br>16<br>0.7<br>-2.5<br>-2.1<br>-3.8<br>1.2<br>2.4<br>2.4                                                                                                                         | aboratory<br>17        | v Number<br>17.1<br>MD<br>0.2<br>-0.7<br>-2.1<br>-1.9<br>-2.5<br>-4.9                        | 17.2<br>MS<br>0.3<br>-0.4<br>-2.1<br>-2.3<br>-4.3<br>-3.5<br>-0.4<br>1.0<br>3.6                                                                            | 18      | 19<br>-0.5<br>1.1<br>-2.6<br>4.8<br>-0.6<br>10.5<br>-2.8<br>-5.5<br>-2.5<br>-2.5                                                                                                                                                                | 1A<br>0.0<br>0.5<br>-0.4<br>1.1<br>0.1<br>1.5<br>-0.5<br>0.2<br>2.8                                                                                                                                                                                             | 1B<br>0.0<br>0.1<br>0.0<br>-0.1<br>0.1<br>-0.4<br>-0.3<br>0.6<br>-0.5                                                                                                                                                                                                                                                                                                     |
| CFC-12<br>CFC-11<br>CFC-113<br>CH <sub>3</sub> CCl <sub>3</sub><br>CCl <sub>4</sub><br>CHCl <sub>3</sub><br>HCFC-22<br>HCFC-141b<br>HCFC-142b<br>HFC-134a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                | $ \begin{array}{c} 11 \\ -4.6 \\ 0.0 \\ -9.0 \\ -10.6 \\ -11.1 \\ -4.6 \\ -4.0 \\ -3.9 \\ 0.2 \\ -4.6 \\ 12.5 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{r} 12\\ 0.0\\ 0.8\\ -0.2\\ -1.2\\ -0.8\\ -3.3\\ -1.1\\ -3.7\\ 0.5\\ -0.2\\ \end{array} $                                 | 13                   | $\begin{array}{c} 14\\ 0.2\\ -0.6\\ -4.1\\ -11.7\\ -5.5\\ -6.2\\ 0.0\\ -0.3\\ 3.3\\ 0.2\\ 7.7\end{array}$                         | $ \begin{array}{c} 15\\ 1.2\\ 2.1\\ 1.2\\ -0.7\\ -2.7\\ 7.9\\ 0.3\\ 3.4\\ 8.7\\ 8.0\\ \end{array} $                                                                                      | $ \begin{array}{c}     L \\     16 \\     0.7 \\     -2.5 \\     -2.1 \\     -3.8 \\     1.2 \\     2.4 \\     -0.2 \\     1.2 \\     2.4 \\     -0.2 \\     1.2 \\   \end{array} $ | aboratory<br>17        | v Number<br>17.1<br>MD<br>0.2<br>-0.7<br>-2.1<br>-1.9<br>-2.5<br>-4.9                        | 17.2<br>MS<br>0.3<br>-0.4<br>-2.1<br>-2.3<br>-4.3<br>-3.5<br>-0.4<br>1.0<br>3.6<br>1.0                                                                     | 18      | $ \begin{array}{c} -0.5 \\ 1.1 \\ -2.6 \\ 4.8 \\ -0.6 \\ 10.5 \\ -2.8 \\ -5.5 \\ -2.5 \\ -4.1 \\ \end{array} $                                                                                                                                  | $\begin{array}{c} 1A \\ 0.0 \\ 0.5 \\ -0.4 \\ 1.1 \\ 0.1 \\ 1.5 \\ -0.5 \\ 0.2 \\ 2.8 \\ 1.6 \\ 0.2 \end{array}$                                                                                                                                                | 1B<br>0.0<br>0.1<br>0.0<br>-0.1<br>0.1<br>-0.4<br>-0.3<br>0.6<br>-0.5<br>0.1                                                                                                                                                                                                                                                                                              |
| CFC-12<br>CFC-11<br>CFC-113<br>CH <sub>3</sub> CCl <sub>3</sub><br>CCl <sub>4</sub><br>CHCl <sub>3</sub><br>HCFC-22<br>HCFC-141b<br>HCFC-142b<br>HFC-134a<br>HFC-152a<br>CH_CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                | $ \begin{array}{c} 11 \\ -4.6 \\ 0.0 \\ -9.0 \\ -10.6 \\ -11.1 \\ -4.6 \\ -4.0 \\ -3.9 \\ 0.2 \\ -4.6 \\ -13.5 \\ 14.0 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{c} 12\\ 0.0\\ 0.8\\ -0.2\\ -1.2\\ -0.8\\ -3.3\\ -1.1\\ -3.7\\ 0.5\\ -0.2\\ 12.0\\ \end{array} $                          | 13                   | $\begin{array}{c} 14\\ 0.2\\ -0.6\\ -4.1\\ -11.7\\ -5.5\\ -6.2\\ 0.0\\ -0.3\\ 3.3\\ 0.2\\ -7.7\\ 10.5\end{array}$                 | 15<br>1.2<br>2.1<br>1.2<br>-0.7<br>-2.7<br>7.9<br>0.3<br>3.4<br>8.7<br>8.0<br>16.2                                                                                                       | $\begin{array}{c} L \\ 16 \\ 0.7 \\ -2.5 \\ -2.1 \\ -3.8 \\ 1.2 \\ 2.4 \\ -0.2 \\ -1.8 \end{array}$                                                                                 | aboratory<br>17        | v Number<br>17.1<br>MD<br>0.2<br>-0.7<br>-2.1<br>-1.9<br>-2.5<br>-4.9                        | 17.2<br>MS<br>0.3<br>-0.4<br>-2.1<br>-2.3<br>-4.3<br>-3.5<br>-0.4<br>1.0<br>3.6<br>1.0<br>-8.6<br>(0)                                                      | 18      | $ \begin{array}{c} -0.5 \\ 1.1 \\ -2.6 \\ 4.8 \\ -0.6 \\ 10.5 \\ -2.8 \\ -5.5 \\ -2.5 \\ -4.1 \\ 14.2 \\ \end{array} $                                                                                                                          | 1A<br>0.0<br>0.5<br>-0.4<br>1.1<br>0.1<br>1.5<br>-0.5<br>0.2<br>2.8<br>1.6<br>-0.8                                                                                                                                                                              | 1B<br>0.0<br>0.1<br>0.0<br>-0.1<br>0.1<br>-0.4<br>-0.3<br>0.6<br>-0.5<br>0.1<br>-0.5                                                                                                                                                                                                                                                                                      |
| CFC-12<br>CFC-11<br>CFC-113<br>CH <sub>3</sub> CCl <sub>3</sub><br>CCl <sub>4</sub><br>CHCl <sub>3</sub><br>HCFC-22<br>HCFC-141b<br>HCFC-142b<br>HFC-142b<br>HFC-134a<br>HFC-152a<br>CH <sub>2</sub> Cl <sub>2</sub><br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                | $ \begin{array}{c} 11 \\ -4.6 \\ 0.0 \\ -9.0 \\ -10.6 \\ -11.1 \\ -4.6 \\ -4.0 \\ -3.9 \\ 0.2 \\ -4.6 \\ -13.5 \\ -14.0 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12 0.0 0.8 -0.2 -1.2 -0.8 -3.3 -1.1 -3.7 0.5 -0.2 -13.0                                                                                  | 13                   | $\begin{array}{c} 14\\ 0.2\\ -0.6\\ -4.1\\ -11.7\\ -5.5\\ -6.2\\ 0.0\\ -0.3\\ 3.3\\ 0.2\\ -7.7\\ -10.5\\ 6.5\end{array}$          | $ \begin{array}{c} 15\\ 1.2\\ 2.1\\ 1.2\\ -0.7\\ -2.7\\ 7.9\\ 0.3\\ 3.4\\ 8.7\\ 8.0\\ -16.2\\ 1.2\\ \end{array} $                                                                        | $\begin{array}{c} L \\ 16 \\ 0.7 \\ -2.5 \\ -2.1 \\ -3.8 \\ 1.2 \\ 2.4 \\ -0.2 \\ -1.8 \end{array}$                                                                                 | aboratory<br>17        | v Number<br>17.1<br>MD<br>0.2<br>-0.7<br>-2.1<br>-1.9<br>-2.5<br>-4.9                        | 17.2<br>MS<br>0.3<br>-0.4<br>-2.1<br>-2.3<br>-4.3<br>-3.5<br>-0.4<br>1.0<br>3.6<br>1.0<br>-8.6<br>-6.9                                                     | 18      | $ \begin{array}{c} -0.5 \\ 1.1 \\ -2.6 \\ 4.8 \\ -0.6 \\ 10.5 \\ -2.8 \\ -5.5 \\ -2.5 \\ -4.1 \\ -14.2 \\ 28 \\ \end{array} $                                                                                                                   | $\begin{array}{c} 1A \\ 0.0 \\ 0.5 \\ -0.4 \\ 1.1 \\ 0.1 \\ 1.5 \\ -0.5 \\ 0.2 \\ 2.8 \\ 1.6 \\ -0.8 \\ 1.8 \\ 2.0 \end{array}$                                                                                                                                 | $ \begin{array}{c}     1B \\     0.0 \\     0.1 \\     0.0 \\     -0.1 \\     0.1 \\     -0.4 \\     -0.3 \\     0.6 \\     -0.5 \\     0.1 \\     -0.5 \\     -0.1 \\     2.8 \\ \end{array} $                                                                                                                                                                           |
| CFC-12<br>CFC-11<br>CFC-113<br>CH <sub>3</sub> CCl <sub>3</sub><br>CCl <sub>4</sub><br>CHCl <sub>3</sub><br>HCFC-22<br>HCFC-141b<br>HCFC-142b<br>HFC-142b<br>HFC-142b<br>HFC-152a<br>CH <sub>2</sub> Cl <sub>2</sub><br>C <sub>2</sub> Cl <sub>4</sub><br>CH <sub>2</sub> Cl <sub>2</sub><br>C <sub>2</sub> Cl <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                | $ \begin{array}{c} 11 \\ -4.6 \\ 0.0 \\ -9.0 \\ -10.6 \\ -11.1 \\ -4.6 \\ -4.0 \\ -3.9 \\ 0.2 \\ -4.6 \\ -13.5 \\ -14.0 \\ -1.1 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12 0.0 0.8 -0.2 -1.2 -0.8 -3.3 -1.1 -3.7 0.5 -0.2 -13.0                                                                                  | 13                   | $\begin{array}{c} 14\\ 0.2\\ -0.6\\ -4.1\\ -11.7\\ -5.5\\ -6.2\\ 0.0\\ -0.3\\ 3.3\\ 0.2\\ -7.7\\ -10.5\\ 6.5\end{array}$          | $ \begin{array}{c} 15\\ 1.2\\ 2.1\\ 1.2\\ -0.7\\ -2.7\\ 7.9\\ 0.3\\ 3.4\\ 8.7\\ 8.0\\ -16.2\\ -1.3\\ 2.6\\ \end{array} $                                                                 | L<br>16<br>0.7<br>-2.5<br>-2.1<br>-3.8<br>1.2<br>2.4<br>-0.2<br>-1.8<br>0.7                                                                                                         | aboratory<br>17        | v Number<br>17.1<br>MD<br>0.2<br>-0.7<br>-2.1<br>-1.9<br>-2.5<br>-4.9                        | $\begin{array}{c} 17.2 \\ MS \\ 0.3 \\ -0.4 \\ -2.1 \\ -2.3 \\ -4.3 \\ -3.5 \\ -0.4 \\ 1.0 \\ 3.6 \\ 1.0 \\ -8.6 \\ -6.9 \\ 5.3 \end{array}$               | 18      | $ \begin{array}{c} -0.5 \\ 1.1 \\ -2.6 \\ 4.8 \\ -0.6 \\ 10.5 \\ -2.8 \\ -5.5 \\ -2.5 \\ -4.1 \\ -14.2 \\ 28 \\ 2.2 \\ \end{array} $                                                                                                            | $\begin{array}{c} 0.0\\ 0.5\\ -0.4\\ 1.1\\ 0.1\\ 1.5\\ -0.5\\ 0.2\\ 2.8\\ 1.6\\ -0.8\\ 1.8\\ 2.9\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$                                                                                                                 | $\begin{array}{c} 1B \\ \hline 0.0 \\ 0.1 \\ 0.0 \\ -0.1 \\ 0.1 \\ -0.4 \\ -0.3 \\ 0.6 \\ -0.5 \\ 0.1 \\ -0.5 \\ -0.1 \\ 2.8 \end{array}$                                                                                                                                                                                                                                 |
| CFC-12<br>CFC-11<br>CFC-113<br>CH <sub>3</sub> CCl <sub>3</sub><br>CCl <sub>4</sub><br>CHCl <sub>3</sub><br>HCFC-22<br>HCFC-141b<br>HCFC-142b<br>HFC-142b<br>HFC-142b<br>HFC-152a<br>CH <sub>2</sub> Cl <sub>2</sub><br>C <sub>2</sub> Cl <sub>4</sub><br>CH <sub>2</sub> Cl <sub>2</sub><br>C <sub>2</sub> Cl <sub>4</sub><br>CH <sub>3</sub> Cl<br>CH <sub>2</sub> Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.7               | $ \begin{array}{r}     -4.6 \\     0.0 \\     -9.0 \\     -10.6 \\     -11.1 \\     -4.6 \\     -4.0 \\     -3.9 \\     0.2 \\     -4.6 \\     -13.5 \\     -14.0 \\     -1.1 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12 0.0 0.8 -0.2 -1.2 -0.8 -3.3 -1.1 -3.7 0.5 -0.2 -13.0                                                                                  | 13                   | $\begin{array}{c} 14\\ 0.2\\ -0.6\\ -4.1\\ -11.7\\ -5.5\\ -6.2\\ 0.0\\ -0.3\\ 3.3\\ 0.2\\ -7.7\\ -10.5\\ 6.5\\ 3.6\end{array}$    | $ \begin{array}{c} 15\\ 1.2\\ 2.1\\ 1.2\\ -0.7\\ -2.7\\ 7.9\\ 0.3\\ 3.4\\ 8.7\\ 8.0\\ -16.2\\ -1.3\\ -2.6\\ 15\\ \end{array} $                                                           | $ \begin{array}{r}     L \\     16 \\     0.7 \\     -2.5 \\     -2.1 \\     -3.8 \\     1.2 \\     2.4 \\     -0.2 \\     -1.8 \\     -0.7 \\     1.8 \\ \end{array} $             | aboratory<br>17        | v Number<br>17.1<br>MD<br>0.2<br>-0.7<br>-2.1<br>-1.9<br>-2.5<br>-4.9                        | 17.2<br>MS<br>0.3<br>-0.4<br>-2.1<br>-2.3<br>-4.3<br>-3.5<br>-0.4<br>1.0<br>3.6<br>1.0<br>-8.6<br>-6.9<br>5.3                                              | 18      | $ \begin{array}{r}     -0.5 \\     1.1 \\     -2.6 \\     4.8 \\     -0.6 \\     10.5 \\     -2.8 \\     -5.5 \\     -2.5 \\     -4.1 \\     -14.2 \\     28 \\     -2.2 \\     54 \\ \end{array} $                                             | $\begin{array}{c} 1A \\ \hline 0.0 \\ 0.5 \\ -0.4 \\ 1.1 \\ 0.1 \\ 1.5 \\ -0.5 \\ 0.2 \\ 2.8 \\ 1.6 \\ -0.8 \\ 1.8 \\ 2.9 \\ 0.9 \\ 0.1 \\ 1.1 \\ \end{array}$                                                                                                  | 1B           0.0           0.1           0.0           -0.1           0.1           -0.3           0.6           -0.5           0.1           -0.5           0.1           2.8                                                                                                                                                                                            |
| $\begin{array}{c} CFC-12\\ CFC-11\\ CFC-113\\ CH_3CCl_3\\ CCl_4\\ CHCl_3\\ HCFC-22\\ HCFC-141b\\ HCFC-142b\\ HFC-152a\\ CH_2Cl_2\\ C_2Cl_4\\ CH_3Cl\\ CH_3Br\\ CH_2I\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10<br>3.7<br>-3.1 | $ \begin{array}{c} 11 \\ -4.6 \\ 0.0 \\ -9.0 \\ -10.6 \\ -11.1 \\ -4.6 \\ -4.0 \\ 0.2 \\ -4.6 \\ -13.5 \\ -14.0 \\ -1.1 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{c} 12\\ 0.0\\ 0.8\\ -0.2\\ -1.2\\ -0.8\\ -3.3\\ -1.1\\ -3.7\\ 0.5\\ -0.2\\ -13.0\\ 0 \end{array} $                       | 13                   | $\begin{array}{c} 14\\ 0.2\\ -0.6\\ -4.1\\ -11.7\\ -5.5\\ -6.2\\ 0.0\\ -0.3\\ 3.3\\ 0.2\\ -7.7\\ -10.5\\ 6.5\\ 3.6\end{array}$    | $ \begin{array}{c} 15\\ 1.2\\ 2.1\\ 1.2\\ -0.7\\ -2.7\\ 7.9\\ 0.3\\ 3.4\\ 8.7\\ 8.0\\ -16.2\\ -1.3\\ -2.6\\ 1.5\\ 109\end{array} $                                                       | $\begin{array}{c} L \\ 16 \\ 0.7 \\ -2.5 \\ -2.1 \\ -3.8 \\ 1.2 \\ 2.4 \\ -0.2 \\ -1.8 \\ -0.7 \\ 1.8 \\ 13 \end{array}$                                                            | aboratory<br>17        | v Number<br>17.1<br>MD<br>0.2<br>-0.7<br>-2.1<br>-1.9<br>-2.5<br>-4.9                        | 17.2<br>MS<br>0.3<br>-0.4<br>-2.1<br>-2.3<br>-4.3<br>-3.5<br>-0.4<br>1.0<br>3.6<br>1.0<br>-8.6<br>-6.9<br>5.3<br>1.3                                       | 18      | $ \begin{array}{c} -0.5 \\ 1.1 \\ -2.6 \\ 4.8 \\ -0.6 \\ 10.5 \\ -2.8 \\ -5.5 \\ -2.5 \\ -4.1 \\ -14.2 \\ 28 \\ -2.2 \\ -5.4 \\ 19 \\ \end{array} $                                                                                             | $\begin{array}{c} 1A \\ 0.0 \\ 0.5 \\ -0.4 \\ 1.1 \\ 0.1 \\ 1.5 \\ -0.5 \\ 0.2 \\ 2.8 \\ 1.6 \\ -0.8 \\ 1.8 \\ 2.9 \\ 0.9 \\ 1.1 \\ 0.6 \end{array}$                                                                                                            | 1B           0.0           0.1           0.0           -0.1           0.1           -0.3           0.6           -0.5           0.1           -0.5           0.1           -0.5           -0.1           2.8           -0.1           2.6                                                                                                                                 |
| $\begin{array}{c} CFC-12\\ CFC-11\\ CFC-113\\ CH_3CCl_3\\ CCl_4\\ CHCl_3\\ HCFC-22\\ HCFC-141b\\ HCFC-142b\\ HFC-152a\\ CH_2Cl_2\\ C_2Cl_4\\ CH_3Cl\\ CH_3Br\\ CH_3I\\ CH_2Br_2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10<br>3.7<br>-3.1 | $ \begin{array}{c} 11 \\ -4.6 \\ 0.0 \\ -9.0 \\ -10.6 \\ -11.1 \\ -4.6 \\ -3.9 \\ 0.2 \\ -4.6 \\ -13.5 \\ -14.0 \\ -1.1 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{r} 12\\ 0.0\\ 0.8\\ -0.2\\ -1.2\\ -0.8\\ -3.3\\ -1.1\\ -3.7\\ 0.5\\ -0.2\\ -13.0\\ 0\\ 15\\ \end{array} $                | 13                   | $\begin{array}{c} 14\\ 0.2\\ -0.6\\ -4.1\\ -11.7\\ -5.5\\ -6.2\\ 0.0\\ -0.3\\ 3.3\\ 0.2\\ -7.7\\ -10.5\\ 6.5\\ 3.6\end{array}$    | $ \begin{array}{c} 15\\ 1.2\\ 2.1\\ 1.2\\ -0.7\\ -2.7\\ 7.9\\ 0.3\\ 3.4\\ 8.7\\ 8.0\\ -16.2\\ -1.3\\ -2.6\\ 1.5\\ 109\\ 17\\ \end{array} $                                               | $\begin{array}{c} L\\ 16\\ 0.7\\ -2.5\\ -2.1\\ -3.8\\ 1.2\\ 2.4\\ -0.2\\ -1.8\\ -0.7\\ 1.8\\ 13\\ \end{array}$                                                                      | aboratory<br>17        | 7 Number<br>17.1<br>MD<br>0.2<br>-0.7<br>-2.1<br>-1.9<br>-2.5<br>-4.9                        | $\begin{array}{c} 17.2 \\ MS \\ \hline 0.3 \\ -0.4 \\ -2.1 \\ -2.3 \\ -4.3 \\ -3.5 \\ -0.4 \\ 1.0 \\ 3.6 \\ 1.0 \\ -8.6 \\ -6.9 \\ 5.3 \\ 1.3 \end{array}$ | 18      | $ \begin{array}{r} -0.5\\ 1.1\\ -2.6\\ 4.8\\ -0.6\\ 10.5\\ -2.8\\ -5.5\\ -2.5\\ -4.1\\ -14.2\\ 28\\ -2.2\\ -5.4\\ 19\\ 18\end{array} $                                                                                                          | $\begin{array}{c} 1A \\ 0.0 \\ 0.5 \\ -0.4 \\ 1.1 \\ 0.1 \\ 1.5 \\ -0.5 \\ 0.2 \\ 2.8 \\ 1.6 \\ -0.8 \\ 1.8 \\ 2.9 \\ 0.9 \\ 1.1 \\ 0.6 \\ 21 \end{array}$                                                                                                      | 1B           0.0           0.1           0.0           -0.1           0.1           -0.3           0.6           -0.5           0.1           -0.5           0.1           -0.5           0.1           -0.5           0.1           -0.5           0.1           -0.5           0.1           -0.5           -0.1           2.8           -0.1           2.6           9 |
| $\begin{array}{c} CFC-12\\ CFC-11\\ CFC-113\\ CH_3CCl_3\\ CCl_4\\ CHCl_3\\ HCFC-22\\ HCFC-141b\\ HCFC-142b\\ HFC-152a\\ CH_2Cl_2\\ C_2Cl_4\\ CH_3Cl\\ CH_3Br\\ CH_3I\\ CH_2Br_2\\ CHBr_2\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10<br>3.7<br>-3.1 | $ \begin{array}{c} 11 \\ -4.6 \\ 0.0 \\ -9.0 \\ -10.6 \\ -11.1 \\ -4.6 \\ -3.9 \\ 0.2 \\ -4.6 \\ -13.5 \\ -14.0 \\ -1.1 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{c} 12\\ 0.0\\ 0.8\\ -0.2\\ -1.2\\ -0.8\\ -3.3\\ -1.1\\ -3.7\\ 0.5\\ -0.2\\ -13.0\\ 0\\ 15\\ 12\\ \end{array} $           | 13                   | $\begin{array}{c} 14\\ 0.2\\ -0.6\\ -4.1\\ -11.7\\ -5.5\\ -6.2\\ 0.0\\ -0.3\\ 3.3\\ 0.2\\ -7.7\\ -10.5\\ 6.5\\ 3.6\end{array}$    | $\begin{array}{c} 15\\ \hline 1.2\\ 2.1\\ 1.2\\ -0.7\\ -2.7\\ 7.9\\ 0.3\\ 3.4\\ 8.7\\ 8.0\\ -16.2\\ -1.3\\ -2.6\\ 1.5\\ 109\\ 17\\ 27\\ \end{array}$                                     | $\begin{array}{c} L\\ 16\\ 0.7\\ -2.5\\ -2.1\\ -3.8\\ 1.2\\ 2.4\\ -0.2\\ -1.8\\ 1.8\\ 13\\ \end{array}$                                                                             | aboratory<br>17        | v Number<br>17.1<br>MD<br>0.2<br>-0.7<br>-2.1<br>-1.9<br>-2.5<br>-4.9                        | 17.2<br>MS<br>0.3<br>-0.4<br>-2.1<br>-2.3<br>-4.3<br>-3.5<br>-0.4<br>1.0<br>-8.6<br>-6.9<br>5.3<br>1.3                                                     | 18      | $ \begin{array}{r} -0.5 \\ 1.1 \\ -2.6 \\ 4.8 \\ -0.6 \\ 10.5 \\ -2.8 \\ -5.5 \\ -2.5 \\ -4.1 \\ -14.2 \\ 28 \\ -2.2 \\ -5.4 \\ 19 \\ 18 \\ 10 \end{array} $                                                                                    | 1A           0.0           0.5           -0.4           1.1           0.1           1.5           -0.5           0.2           2.8           1.6           -0.8           1.8           2.9           0.9           1.1           0.6           21           -3 | $ \begin{array}{c}     1B \\     0.0 \\     0.1 \\     0.0 \\     -0.1 \\     0.1 \\     -0.3 \\     0.6 \\     -0.5 \\     0.1 \\     -0.5 \\     -0.1 \\     2.8 \\     -0.1 \\     2.6 \\     9 \\     14 \\ \end{array} $                                                                                                                                             |
| $\begin{array}{c} CFC-12\\ CFC-11\\ CFC-113\\ CH_3CCl_3\\ CCl_4\\ CHCl_3\\ HCFC-22\\ HCFC-141b\\ HCFC-142b\\ HFC-152a\\ CH_2Cl_2\\ C_2Cl_4\\ CH_3Cl\\ CH_3Br\\ CH_3Br\\ CH_2Br_2\\ CHBr_3\\ halon-1211\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10<br>3.7<br>-3.1 | $ \begin{array}{c} 11 \\ -4.6 \\ 0.0 \\ -9.0 \\ -10.6 \\ -11.1 \\ -4.6 \\ -3.9 \\ 0.2 \\ -4.6 \\ -13.5 \\ -14.0 \\ -1.1 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 12 \\ 0.0 \\ 0.8 \\ -0.2 \\ -1.2 \\ -0.8 \\ -3.3 \\ -1.1 \\ -3.7 \\ 0.5 \\ -0.2 \\ -13.0 \\ \end{array}$               | 13                   | $\begin{array}{c} 14\\ 0.2\\ -0.6\\ -4.1\\ -11.7\\ -5.5\\ -6.2\\ 0.0\\ -0.3\\ 3.3\\ 0.2\\ -7.7\\ -10.5\\ 6.5\\ 3.6\\ \end{array}$ | $\begin{array}{c} 15\\ 1.2\\ 2.1\\ 1.2\\ -0.7\\ -2.7\\ 7.9\\ 0.3\\ 3.4\\ 8.7\\ 8.0\\ -16.2\\ -1.3\\ -2.6\\ 1.5\\ 109\\ 17\\ 27\\ -2.8\end{array}$                                        | $\begin{array}{c} L\\ 16\\ 0.7\\ -2.5\\ -2.1\\ -3.8\\ 1.2\\ 2.4\\ -0.2\\ -1.8\\ 1.8\\ 13\\ \end{array}$                                                                             | aboratory<br>17        | v Number<br>17.1<br>MD<br>0.2<br>-0.7<br>-2.1<br>-1.9<br>-2.5<br>-4.9                        | 17.2<br>MS<br>0.3<br>-0.4<br>-2.1<br>-2.3<br>-4.3<br>-3.5<br>-0.4<br>1.0<br>3.6<br>1.0<br>-8.6<br>-6.9<br>5.3<br>1.3                                       | 18      | $ \begin{array}{c}     -0.5 \\     1.1 \\     -2.6 \\     4.8 \\     -0.6 \\     10.5 \\     -2.8 \\     -5.5 \\     -2.5 \\     -4.1 \\     -14.2 \\     28 \\     -2.2 \\     -5.4 \\     19 \\     18 \\     10 \\     -3.7 \\ \end{array} $ | $\begin{array}{c} 1A \\ \hline 0.0 \\ 0.5 \\ -0.4 \\ 1.1 \\ 0.1 \\ 1.5 \\ -0.5 \\ 0.2 \\ 2.8 \\ 1.6 \\ -0.8 \\ 1.8 \\ 2.9 \\ 0.9 \\ 1.1 \\ 0.6 \\ 21 \\ -3 \\ -0.1 \end{array}$                                                                                 | $ \begin{array}{c}     1B \\     0.0 \\     0.1 \\     0.0 \\     -0.1 \\     0.1 \\     -0.3 \\     0.6 \\     -0.5 \\     0.1 \\     -0.5 \\     -0.1 \\     2.8 \\     -0.1 \\     2.6 \\     9 \\     14 \\     0.1 \\   \end{array} $                                                                                                                                |
| $\begin{array}{c} CFC-12\\ CFC-11\\ CFC-113\\ CH_3CCl_3\\ CCl_4\\ CHCl_3\\ HCFC-22\\ HCFC-141b\\ HCFC-142b\\ HFC-152a\\ CH_2Cl_2\\ C_2Cl_4\\ CH_3Cl\\ CH_3Br\\ CH_2Br_2\\ CHBr_3\\ halon-1211\\ halon-1301\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10<br>3.7<br>-3.1 | $ \begin{array}{c} 11 \\ -4.6 \\ 0.0 \\ -9.0 \\ -10.6 \\ -11.1 \\ -4.6 \\ -3.9 \\ 0.2 \\ -4.6 \\ -13.5 \\ -14.0 \\ -1.1 \\ 0.9 \\ 0.4 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 12 \\ 0.0 \\ 0.8 \\ -0.2 \\ -1.2 \\ -0.8 \\ -3.3 \\ -1.1 \\ -3.7 \\ 0.5 \\ -0.2 \\ -13.0 \\ \end{array}$               | 13                   | $\begin{array}{c} 14\\ 0.2\\ -0.6\\ -4.1\\ -11.7\\ -5.5\\ -6.2\\ 0.0\\ -0.3\\ 3.3\\ 0.2\\ -7.7\\ -10.5\\ 6.5\\ 3.6\\ \end{array}$ | $\begin{array}{c} 15\\ 1.2\\ 2.1\\ 1.2\\ -0.7\\ -2.7\\ 7.9\\ 0.3\\ 3.4\\ 8.7\\ 8.0\\ -16.2\\ -1.3\\ -2.6\\ 1.5\\ 109\\ 17\\ 27\\ -2.8\\ -9.9\end{array}$                                 | $\begin{array}{c} L\\ 16\\ 0.7\\ -2.5\\ -2.1\\ -3.8\\ 1.2\\ 2.4\\ -0.2\\ -1.8\\ 13\\ \end{array}$                                                                                   | aboratory<br>17        | v Number<br>17.1<br>MD<br>0.2<br>-0.7<br>-2.1<br>-1.9<br>-2.5<br>-4.9                        | 17.2<br>MS<br>0.3<br>-0.4<br>-2.1<br>-2.3<br>-4.3<br>-3.5<br>-0.4<br>1.0<br>3.6<br>1.0<br>-8.6<br>-6.9<br>5.3<br>1.3<br>2.0<br>5.8                         | 18      | $\begin{array}{c} 19\\ \hline \\ -0.5\\ 1.1\\ -2.6\\ 4.8\\ -0.6\\ 10.5\\ -2.8\\ -5.5\\ -2.5\\ -4.1\\ \hline \\ -14.2\\ 28\\ -2.2\\ -5.4\\ 19\\ 18\\ 10\\ -3.7\\ \end{array}$                                                                    | $\begin{array}{c} 1A \\ \hline 0.0 \\ 0.5 \\ -0.4 \\ 1.1 \\ 0.1 \\ 1.5 \\ -0.5 \\ 0.2 \\ 2.8 \\ 1.6 \\ -0.8 \\ 1.8 \\ 2.9 \\ 0.9 \\ 1.1 \\ 0.6 \\ 21 \\ -3 \\ -0.1 \\ 0.2 \end{array}$                                                                          | $ \begin{array}{c}     1B \\     0.0 \\     0.1 \\     0.0 \\     -0.1 \\     0.1 \\     -0.3 \\     0.6 \\     -0.5 \\     0.1 \\     -0.5 \\     -0.1 \\     2.8 \\     -0.1 \\     2.6 \\     9 \\     14 \\     0.1 \\     1.9 \\ \end{array} $                                                                                                                       |
| $\begin{array}{c} CFC-12\\ CFC-11\\ CFC-113\\ CH_3CCl_3\\ CCl_4\\ CHCl_3\\ HCFC-22\\ HCFC-141b\\ HCFC-142b\\ HFC-152a\\ CH_2Cl_2\\ C_2Cl_4\\ CH_3Cl\\ CH_3Br\\ CH_2Br_2\\ CHBr_3\\ halon-1211\\ halon-1301\\ halon-2402\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10<br>3.7<br>-3.1 | $ \begin{array}{c} 11 \\ -4.6 \\ 0.0 \\ -9.0 \\ -10.6 \\ -11.1 \\ -4.6 \\ -3.9 \\ 0.2 \\ -4.6 \\ -13.5 \\ -14.0 \\ -1.1 \\ \end{array} $ $0.9 \\ 0.4 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 12\\ 0.0\\ 0.8\\ -0.2\\ -1.2\\ -0.8\\ -3.3\\ -1.1\\ -3.7\\ 0.5\\ -0.2\\ -13.0\\ \end{array}$                           | 13                   | $\begin{array}{c} 14\\ 0.2\\ -0.6\\ -4.1\\ -11.7\\ -5.5\\ -6.2\\ 0.0\\ -0.3\\ 3.3\\ 0.2\\ -7.7\\ -10.5\\ 6.5\\ 3.6\\ \end{array}$ | $\begin{array}{c} 15\\ \hline 1.2\\ 2.1\\ 1.2\\ -0.7\\ -2.7\\ 7.9\\ 0.3\\ 3.4\\ 8.7\\ 8.0\\ \hline -16.2\\ -1.3\\ -2.6\\ 1.5\\ 109\\ 17\\ 27\\ -2.8\\ -9.9\\ -10.0\\ \end{array}$        | $\begin{array}{c} L\\ 16\\ 0.7\\ -2.5\\ -2.1\\ -3.8\\ 1.2\\ 2.4\\ -0.2\\ -1.8\\ -0.7\\ 1.8\\ 13\\ \end{array}$                                                                      | aboratory<br>17        | v Number<br>17.1<br>MD<br>0.2<br>-0.7<br>-2.1<br>-1.9<br>-2.5<br>-4.9                        | 17.2<br>MS<br>0.3<br>-0.4<br>-2.1<br>-2.3<br>-4.3<br>-3.5<br>-0.4<br>1.0<br>3.6<br>1.0<br>-8.6<br>-6.9<br>5.3<br>1.3<br>2.0<br>5.8<br>93.6                 | 18      | $\begin{array}{c} -0.5\\ 1.1\\ -2.6\\ 4.8\\ -0.6\\ 10.5\\ -2.8\\ -5.5\\ -2.5\\ -4.1\\ -14.2\\ 28\\ -2.2\\ -5.4\\ 19\\ 18\\ 10\\ -3.7\\ -3.4\end{array}$                                                                                         | $\begin{array}{c} 1A \\ \hline 0.0 \\ 0.5 \\ -0.4 \\ 1.1 \\ 0.1 \\ 1.5 \\ -0.5 \\ 0.2 \\ 2.8 \\ 1.6 \\ -0.8 \\ 1.8 \\ 2.9 \\ 0.9 \\ 1.1 \\ 0.6 \\ 21 \\ -3 \\ -0.1 \\ 0.2 \\ 0.0 \\ \end{array}$                                                                | $\begin{array}{c} 1B \\ \hline 0.0 \\ 0.1 \\ 0.0 \\ -0.1 \\ 0.1 \\ -0.4 \\ -0.3 \\ 0.6 \\ -0.5 \\ 0.1 \\ -0.5 \\ 0.1 \\ -0.5 \\ -0.1 \\ 2.8 \\ \hline -0.1 \\ 2.6 \\ 9 \\ 14 \\ 0.1 \\ 1.9 \\ -0.4 \\ \end{array}$                                                                                                                                                        |
| $\begin{array}{c} CFC-12\\ CFC-11\\ CFC-113\\ CH_3CCl_3\\ CCl_4\\ CHCl_3\\ HCFC-22\\ HCFC-141b\\ HCFC-142b\\ HFC-152a\\ CH_2Cl_2\\ C_2Cl_4\\ CH_3Cl\\ CH_3Br\\ CH_2Br_2\\ CHBr_3\\ halon-1211\\ halon-1301\\ halon-2402\\ CH_4\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10<br>3.7<br>-3.1 | $ \begin{array}{c} 11 \\ -4.6 \\ 0.0 \\ -9.0 \\ -10.6 \\ -11.1 \\ -4.6 \\ -3.9 \\ 0.2 \\ -4.6 \\ -13.5 \\ -14.0 \\ -1.1 \\ \end{array} $ $0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.9 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 $ | $\begin{array}{c} 12\\ 0.0\\ 0.8\\ -0.2\\ -1.2\\ -0.8\\ -3.3\\ -1.1\\ -3.7\\ 0.5\\ -0.2\\ -13.0\\ \end{array}$                           | 0.04                 | $\begin{array}{c} 14\\ 0.2\\ -0.6\\ -4.1\\ -11.7\\ -5.5\\ -6.2\\ 0.0\\ -0.3\\ 3.3\\ 0.2\\ -7.7\\ -10.5\\ 6.5\\ 3.6\\ \end{array}$ | $\begin{array}{c} 15\\ \hline 1.2\\ 2.1\\ 1.2\\ -0.7\\ -2.7\\ 7.9\\ 0.3\\ 3.4\\ 8.7\\ 8.0\\ \hline -16.2\\ -1.3\\ -2.6\\ 1.5\\ 109\\ 17\\ 27\\ -2.8\\ -9.9\\ -10.0\\ -0.6\\ \end{array}$ | $\begin{array}{c} L\\ 16\\ 0.7\\ -2.5\\ -2.1\\ -3.8\\ 1.2\\ 2.4\\ -0.2\\ -1.8\\ -0.7\\ 1.8\\ 13\\ \end{array}$                                                                      | aboratory<br>17<br>0.0 | v Number<br>17.1<br>MD<br>0.2<br>-0.7<br>-2.1<br>-1.9<br>-2.5<br>-4.9<br>0.0                 | 17.2 MS $0.3 -0.4 -2.1 -2.3 -4.3 -3.5 -0.4 1.0 3.6 1.0 -8.6 -6.9 5.3 1.3$ $2.0 5.8 93.6$                                                                   | 0.03    | $\begin{array}{c} -0.5\\ 1.1\\ -2.6\\ 4.8\\ -0.6\\ 10.5\\ -2.8\\ -5.5\\ -2.5\\ -4.1\\ -14.2\\ 28\\ -2.2\\ -5.4\\ 19\\ 18\\ 10\\ -3.7\\ -3.4 \end{array}$                                                                                        | $\begin{array}{c} 1A \\ \hline 0.0 \\ 0.5 \\ -0.4 \\ 1.1 \\ 0.1 \\ 1.5 \\ -0.5 \\ 0.2 \\ 2.8 \\ 1.6 \\ -0.8 \\ 1.8 \\ 2.9 \\ 0.9 \\ 1.1 \\ 0.6 \\ 21 \\ -3 \\ -0.1 \\ 0.2 \\ 0.0 \\ -0.02 \end{array}$                                                          | $\begin{array}{c} 1B\\ \hline 0.0\\ 0.1\\ 0.0\\ -0.1\\ 0.1\\ -0.4\\ -0.3\\ 0.6\\ -0.5\\ 0.1\\ -0.5\\ -0.1\\ 2.8\\ \hline -0.1\\ 2.8\\ -0.1\\ 1.9\\ -0.4\\ -0.01\\ \end{array}$                                                                                                                                                                                            |
| $\begin{array}{c} CFC-12\\ CFC-11\\ CFC-113\\ CH_3CCl_3\\ CCl_4\\ CHCl_3\\ HCFC-22\\ HCFC-141b\\ HCFC-142b\\ HFC-152a\\ CH_2Cl_2\\ C_2Cl_4\\ CH_3Cl\\ CH_3Br\\ CH_3Br\\ CH_2Br_2\\ CHBr_3\\ halon-1211\\ halon-1201\\ halon-2402\\ CH_4\\ N_2O\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10<br>3.7<br>-3.1 | $ \begin{array}{c} 11 \\ -4.6 \\ 0.0 \\ -9.0 \\ -10.6 \\ -11.1 \\ -4.6 \\ -3.9 \\ 0.2 \\ -4.6 \\ -13.5 \\ -14.0 \\ -1.1 \\ \end{array} $ $ \begin{array}{c} 0.9 \\ 0.4 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 12\\ 0.0\\ 0.8\\ -0.2\\ -1.2\\ -0.8\\ -3.3\\ -1.1\\ -3.7\\ 0.5\\ -0.2\\ -13.0\\ \end{array}$                           | 0.04 0.23            | $\begin{array}{c} 14\\ 0.2\\ -0.6\\ -4.1\\ -11.7\\ -5.5\\ -6.2\\ 0.0\\ -0.3\\ 3.3\\ 0.2\\ -7.7\\ -10.5\\ 6.5\\ 3.6\\ \end{array}$ | $\begin{array}{c} 15\\ 1.2\\ 2.1\\ 1.2\\ -0.7\\ -2.7\\ 7.9\\ 0.3\\ 3.4\\ 8.7\\ 8.0\\ -16.2\\ -1.3\\ -2.6\\ 1.5\\ 109\\ 17\\ 27\\ -2.8\\ -9.9\\ -10.0\\ -0.6\\ -0.1\\ \end{array}$        | $\begin{array}{c} L\\ 16\\ 0.7\\ -2.5\\ -2.1\\ -3.8\\ 1.2\\ 2.4\\ -0.2\\ -1.8\\ -0.7\\ 1.8\\ 13\\ \end{array}$                                                                      | 0.0<br>0.23            | v Number<br>17.1<br>MD<br>0.2<br>-0.7<br>-2.1<br>-1.9<br>-2.5<br>-4.9<br>0.0<br>-0.04        | 17.2 MS $0.3 -0.4 -2.1 -2.3 -4.3 -3.5 -0.4 1.0 3.6 1.0 -8.6 -6.9 5.3 1.3$ $2.0 5.8 93.6$                                                                   | 0.03    | $\begin{array}{c} -0.5\\ 1.1\\ -2.6\\ 4.8\\ -0.6\\ 10.5\\ -2.8\\ -5.5\\ -2.5\\ -4.1\\ -14.2\\ 28\\ -2.2\\ -5.4\\ 19\\ 18\\ 10\\ -3.7\\ -3.4 \end{array}$                                                                                        | $\begin{array}{c} 1A \\ \hline 0.0 \\ 0.5 \\ -0.4 \\ 1.1 \\ 0.1 \\ 1.5 \\ -0.5 \\ 0.2 \\ 2.8 \\ 1.6 \\ -0.8 \\ 1.8 \\ 2.9 \\ 0.9 \\ 1.1 \\ 0.6 \\ 21 \\ -3 \\ -0.1 \\ 0.2 \\ 0.0 \\ -0.02 \\ 0.00 \end{array}$                                                  | $\begin{array}{c} 1B\\ \hline 0.0\\ 0.1\\ 0.0\\ -0.1\\ 0.1\\ -0.4\\ -0.3\\ 0.6\\ -0.5\\ 0.1\\ -0.5\\ -0.1\\ 2.8\\ \hline -0.1\\ 2.8\\ -0.1\\ 2.6\\ 9\\ 14\\ 0.1\\ 1.9\\ -0.4\\ -0.01\\ -0.01\\ \hline \end{array}$                                                                                                                                                        |
| $\begin{array}{c} CFC-12\\ CFC-11\\ CFC-113\\ CH_3CCl_3\\ CCl_4\\ CHCl_3\\ HCFC-22\\ HCFC-141b\\ HCFC-142b\\ HFC-152a\\ CH_2Cl_2\\ C_2Cl_4\\ CH_3Cl\\ CH_3Br\\ $ | 10<br>3.7<br>-3.1 | $ \begin{array}{c} 11 \\ -4.6 \\ 0.0 \\ -9.0 \\ -10.6 \\ -11.1 \\ -4.6 \\ -3.9 \\ 0.2 \\ -4.6 \\ -13.5 \\ -14.0 \\ -1.1 \\ 0.9 \\ 0.4 \\ -10.3 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 12\\ 0.0\\ 0.8\\ -0.2\\ -1.2\\ -0.8\\ -3.3\\ -1.1\\ -3.7\\ 0.5\\ -0.2\\ -13.0\\ \end{array}$                           | 0.04<br>0.23<br>-0.5 | $\begin{array}{c} 14\\ 0.2\\ -0.6\\ -4.1\\ -11.7\\ -5.5\\ -6.2\\ 0.0\\ -0.3\\ 3.3\\ 0.2\\ -7.7\\ -10.5\\ 6.5\\ 3.6\\ \end{array}$ | $\begin{array}{c} 15\\ 1.2\\ 2.1\\ 1.2\\ -0.7\\ -2.7\\ 7.9\\ 0.3\\ 3.4\\ 8.7\\ 8.0\\ -16.2\\ -1.3\\ -2.6\\ 1.5\\ 109\\ 17\\ -2.8\\ -9.9\\ -10.0\\ -0.6\\ -0.1\\ \end{array}$             | $\begin{array}{c} L\\ 16\\ 0.7\\ -2.5\\ -2.1\\ -3.8\\ 1.2\\ 2.4\\ -0.2\\ -1.8\\ 13\\ \end{array}$                                                                                   | 0.0<br>0.23            | v Number<br>17.1<br>MD<br>0.2<br>-0.7<br>-2.1<br>-1.9<br>-2.5<br>-4.9<br>0.0<br>-0.04<br>0.0 | 17.2<br>MS<br>0.3<br>-0.4<br>-2.1<br>-2.3<br>-4.3<br>-3.5<br>-0.4<br>1.0<br>3.6<br>1.0<br>-8.6<br>-6.9<br>5.3<br>1.3<br>2.0<br>5.8<br>93.6<br>-3.0         | 0.03    | $\begin{array}{c} -0.5\\ 1.1\\ -2.6\\ 4.8\\ -0.6\\ 10.5\\ -2.8\\ -5.5\\ -2.5\\ -4.1\\ -14.2\\ 28\\ -2.2\\ -5.4\\ 19\\ 18\\ 10\\ -3.7\\ -3.4 \end{array}$                                                                                        | $\begin{array}{c} 1A \\ \hline 0.0 \\ 0.5 \\ -0.4 \\ 1.1 \\ 0.1 \\ 1.5 \\ -0.5 \\ 0.2 \\ 2.8 \\ 1.6 \\ -0.8 \\ 1.8 \\ 2.9 \\ 0.9 \\ 1.1 \\ 0.6 \\ 21 \\ -3 \\ -0.1 \\ 0.2 \\ 0.0 \\ -0.02 \\ 0.00 \\ 0.3 \end{array}$                                           | $\begin{array}{c} 1B\\ \hline \\ 0.0\\ 0.1\\ 0.0\\ -0.1\\ 0.1\\ -0.4\\ -0.3\\ 0.6\\ -0.5\\ 0.1\\ -0.5\\ 0.1\\ -0.5\\ -0.1\\ 2.8\\ \hline \\ -0.1\\ 2.8\\ -0.1\\ 1.9\\ -0.4\\ -0.01\\ -0.01\\ -0.1\\ \end{array}$                                                                                                                                                          |

NOAA result: Mole fractions in ppt (except N<sub>2</sub>O and CH<sub>4</sub>, ppb). CFC-12, CFC-11, CFC-113, CH<sub>3</sub>CCl<sub>3</sub>, CCl<sub>4</sub>, halon-1211, N<sub>2</sub>O, and SF<sub>6</sub> based on ECD analysis. All others based on MS analysis. MD: multidetector (ECD or FID); MS: mass selective detector.

1A, 1B: % difference between final and initial NOAA results for sets 1 and 2, respectively.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                               |                  |                       |                                                                                                                                                                                      |                                                                                                                                                                                                                 | L                                                                                                                                                           | aboratory        | Number                                                                                |                                                                                                                                                   |       |                                                                                                                                                                                                                            |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NOAA              | 2                                                                                                                                                                                                                                                                                             | 2.1              | 3                     | 4                                                                                                                                                                                    | 5                                                                                                                                                                                                               | 6                                                                                                                                                           | 6.1              | 7                                                                                     | 8                                                                                                                                                 | 9     | 9.1                                                                                                                                                                                                                        | 9.2                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | MD                                                                                                                                                                                                                                                                                            | MS               |                       |                                                                                                                                                                                      |                                                                                                                                                                                                                 |                                                                                                                                                             |                  |                                                                                       |                                                                                                                                                   | MD    | MS1                                                                                                                                                                                                                        | MS2                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                    |
| CFC-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 439               | 2.4                                                                                                                                                                                                                                                                                           | 0.9              | 2.9                   |                                                                                                                                                                                      |                                                                                                                                                                                                                 | 0.4                                                                                                                                                         | 2.0              | -1.7                                                                                  |                                                                                                                                                   | 1.7   |                                                                                                                                                                                                                            |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                    |
| CFC-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 204               | -0.1                                                                                                                                                                                                                                                                                          | 0.4              | 4.4                   |                                                                                                                                                                                      |                                                                                                                                                                                                                 | -0.5                                                                                                                                                        | 1.2              | 1.7                                                                                   |                                                                                                                                                   | 0.4   |                                                                                                                                                                                                                            |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                    |
| CFC-113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64                |                                                                                                                                                                                                                                                                                               | -0.3             | 20.2                  |                                                                                                                                                                                      |                                                                                                                                                                                                                 | -4.0                                                                                                                                                        | -5.1             | 4.0                                                                                   |                                                                                                                                                   | 0.3   |                                                                                                                                                                                                                            |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                    |
| CH <sub>3</sub> CCl <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18                | -4.7                                                                                                                                                                                                                                                                                          | -3.5             | 70.2                  |                                                                                                                                                                                      |                                                                                                                                                                                                                 | -20.1                                                                                                                                                       | -18.3            | 8.1                                                                                   |                                                                                                                                                   | -4.3  | -2.9                                                                                                                                                                                                                       |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                    |
| CCl <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76                |                                                                                                                                                                                                                                                                                               | -3.6             | 34.4                  |                                                                                                                                                                                      |                                                                                                                                                                                                                 | -4.1                                                                                                                                                        | -0.5             | 2.8                                                                                   |                                                                                                                                                   | -2.5  | -3.3                                                                                                                                                                                                                       |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                    |
| CHCl <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.6               | -3.7                                                                                                                                                                                                                                                                                          | -3.0             |                       |                                                                                                                                                                                      |                                                                                                                                                                                                                 |                                                                                                                                                             |                  | -1.6                                                                                  |                                                                                                                                                   | -13.2 | -5.7                                                                                                                                                                                                                       | -2.6                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                    |
| HCFC-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 141               |                                                                                                                                                                                                                                                                                               | 0.1              |                       | 0.5                                                                                                                                                                                  |                                                                                                                                                                                                                 |                                                                                                                                                             |                  |                                                                                       |                                                                                                                                                   |       | 0.0                                                                                                                                                                                                                        | -0.1                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                    |
| HCFC-141b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.0              |                                                                                                                                                                                                                                                                                               | 0.5              |                       | 5.2                                                                                                                                                                                  |                                                                                                                                                                                                                 |                                                                                                                                                             |                  |                                                                                       |                                                                                                                                                   |       | -2.0                                                                                                                                                                                                                       | 0.1                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                    |
| HCFC-142b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.5              |                                                                                                                                                                                                                                                                                               | 1.7              |                       | 1.8                                                                                                                                                                                  |                                                                                                                                                                                                                 |                                                                                                                                                             |                  |                                                                                       |                                                                                                                                                   |       | 0.9                                                                                                                                                                                                                        | 2.0                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                    |
| HFC-134a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27                |                                                                                                                                                                                                                                                                                               | 0.3              |                       | 2.4                                                                                                                                                                                  |                                                                                                                                                                                                                 |                                                                                                                                                             |                  |                                                                                       |                                                                                                                                                   |       | 1.4                                                                                                                                                                                                                        | 0.6                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                    |
| HFC-152a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27                |                                                                                                                                                                                                                                                                                               | -5.8             |                       |                                                                                                                                                                                      |                                                                                                                                                                                                                 |                                                                                                                                                             |                  |                                                                                       |                                                                                                                                                   |       | -9.4                                                                                                                                                                                                                       | -5.0                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                    |
| $CH_2Cl_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26                |                                                                                                                                                                                                                                                                                               |                  |                       |                                                                                                                                                                                      |                                                                                                                                                                                                                 |                                                                                                                                                             |                  |                                                                                       |                                                                                                                                                   |       | -10.5                                                                                                                                                                                                                      |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                    |
| $C_2Cl_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.8               |                                                                                                                                                                                                                                                                                               | 1.2              |                       |                                                                                                                                                                                      |                                                                                                                                                                                                                 |                                                                                                                                                             |                  |                                                                                       |                                                                                                                                                   |       | 1.1                                                                                                                                                                                                                        | 5.4                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                    |
| CH <sub>3</sub> CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 450               |                                                                                                                                                                                                                                                                                               | -1.2             |                       |                                                                                                                                                                                      |                                                                                                                                                                                                                 |                                                                                                                                                             |                  |                                                                                       |                                                                                                                                                   |       | -1.1                                                                                                                                                                                                                       | -0.4                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                    |
| СНЗВГ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /.8               |                                                                                                                                                                                                                                                                                               | -1.1             |                       |                                                                                                                                                                                      |                                                                                                                                                                                                                 |                                                                                                                                                             |                  |                                                                                       |                                                                                                                                                   |       | 5.0                                                                                                                                                                                                                        | 0.7                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                    |
| CH <sub>3</sub> I<br>CH <sub>2</sub> Br <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.14              |                                                                                                                                                                                                                                                                                               |                  |                       |                                                                                                                                                                                      |                                                                                                                                                                                                                 |                                                                                                                                                             |                  |                                                                                       |                                                                                                                                                   |       |                                                                                                                                                                                                                            |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                    |
| CHBra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0               |                                                                                                                                                                                                                                                                                               |                  |                       |                                                                                                                                                                                      |                                                                                                                                                                                                                 |                                                                                                                                                             |                  |                                                                                       |                                                                                                                                                   |       |                                                                                                                                                                                                                            |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                    |
| halon-1211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 141               |                                                                                                                                                                                                                                                                                               | 17               |                       |                                                                                                                                                                                      |                                                                                                                                                                                                                 |                                                                                                                                                             |                  |                                                                                       |                                                                                                                                                   |       | 2.0                                                                                                                                                                                                                        | 2.0                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                    |
| halon-1301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.3               |                                                                                                                                                                                                                                                                                               | 7.8              |                       |                                                                                                                                                                                      |                                                                                                                                                                                                                 |                                                                                                                                                             |                  |                                                                                       |                                                                                                                                                   |       | 7.8                                                                                                                                                                                                                        | 10.0                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                    |
| halon-2402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4               |                                                                                                                                                                                                                                                                                               | 7.0              |                       |                                                                                                                                                                                      |                                                                                                                                                                                                                 |                                                                                                                                                             |                  |                                                                                       |                                                                                                                                                   |       | 7.0                                                                                                                                                                                                                        | 10.0                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                    |
| CH <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1480              | 0.0                                                                                                                                                                                                                                                                                           |                  | -0.45                 |                                                                                                                                                                                      | 0.04                                                                                                                                                                                                            |                                                                                                                                                             |                  | 0.33                                                                                  |                                                                                                                                                   | 0.0   |                                                                                                                                                                                                                            |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                    |
| N <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 259.2             | -1.77                                                                                                                                                                                                                                                                                         |                  | -0.96                 |                                                                                                                                                                                      | 0.18                                                                                                                                                                                                            |                                                                                                                                                             |                  | -0.14                                                                                 | 0.08                                                                                                                                              | -0.08 |                                                                                                                                                                                                                            |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                    |
| $SF_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.5               |                                                                                                                                                                                                                                                                                               | -0.4             |                       | 5.6                                                                                                                                                                                  | 0.2                                                                                                                                                                                                             |                                                                                                                                                             |                  |                                                                                       |                                                                                                                                                   |       | -3.8                                                                                                                                                                                                                       | -0.7                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                    |
| COS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 451               |                                                                                                                                                                                                                                                                                               |                  |                       |                                                                                                                                                                                      |                                                                                                                                                                                                                 |                                                                                                                                                             |                  |                                                                                       |                                                                                                                                                   |       |                                                                                                                                                                                                                            |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                               |                  |                       |                                                                                                                                                                                      |                                                                                                                                                                                                                 |                                                                                                                                                             |                  |                                                                                       |                                                                                                                                                   |       |                                                                                                                                                                                                                            |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                               |                  |                       |                                                                                                                                                                                      |                                                                                                                                                                                                                 | I                                                                                                                                                           | aboratory        | Number                                                                                |                                                                                                                                                   |       |                                                                                                                                                                                                                            |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                | 11                                                                                                                                                                                                                                                                                            | 12               | 13                    | 14                                                                                                                                                                                   | 15                                                                                                                                                                                                              | 16                                                                                                                                                          | aboratory.<br>17 | Number                                                                                | 17.2                                                                                                                                              | 18    | 19                                                                                                                                                                                                                         | 14                                                                                                                                                                                                                    | <br>1B                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                | 11                                                                                                                                                                                                                                                                                            | 12               | 13                    | 14                                                                                                                                                                                   | 15                                                                                                                                                                                                              | L<br>16                                                                                                                                                     | aboratory.<br>17 | Number<br>17.1<br>MD                                                                  | 17.2<br>MS                                                                                                                                        | 18    | 19                                                                                                                                                                                                                         | 1A                                                                                                                                                                                                                    | 1B                                                                                                                                                                                                                                                                                 |
| CEC 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                | 11                                                                                                                                                                                                                                                                                            | 12               | 13                    | 14                                                                                                                                                                                   | 15                                                                                                                                                                                                              | L<br>16                                                                                                                                                     | aboratory.<br>17 | V Number<br>17.1<br>MD                                                                | 17.2<br>MS                                                                                                                                        | 18    | 19                                                                                                                                                                                                                         | 1A                                                                                                                                                                                                                    | 1B                                                                                                                                                                                                                                                                                 |
| CFC-12<br>CFC-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                | -3.4                                                                                                                                                                                                                                                                                          | 12<br>0.4<br>2.6 | 13                    | 0.2                                                                                                                                                                                  | 15<br>1.2<br>0.8                                                                                                                                                                                                | L<br>16                                                                                                                                                     | aboratory.<br>17 | <sup>7</sup> Number<br>17.1<br>MD<br>1.0<br>-0.3                                      | 17.2<br>MS<br>1.1                                                                                                                                 | 18    | 19<br>0.6<br>1.7                                                                                                                                                                                                           | 1A<br>0.0<br>0.4                                                                                                                                                                                                      | 1B<br>0.0<br>0.3                                                                                                                                                                                                                                                                   |
| CFC-12<br>CFC-11<br>CFC-113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                | -3.4<br>0.7<br>-10.1                                                                                                                                                                                                                                                                          | 12<br>0.4<br>2.6 | 13                    | 14<br>0.2<br>0.0<br>-2.4                                                                                                                                                             | 15<br>1.2<br>0.8<br>1.1                                                                                                                                                                                         | L<br>16<br>1.8                                                                                                                                              | aboratory.<br>17 | v Number<br>17.1<br>MD<br>1.0<br>-0.3<br>-0.1                                         | 17.2<br>MS<br>1.1<br>0.4<br>-0.2                                                                                                                  | 18    | 19<br>0.6<br>1.7<br>0.2                                                                                                                                                                                                    | 1A<br>0.0<br>0.4<br>-1.4                                                                                                                                                                                              | 1B<br>0.0<br>0.3<br>0.0                                                                                                                                                                                                                                                            |
| CFC-12<br>CFC-11<br>CFC-113<br>CH2CCl2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                | -3.4<br>0.7<br>-10.1<br>-13.7                                                                                                                                                                                                                                                                 | 12<br>0.4<br>2.6 | 13                    | 14<br>0.2<br>0.0<br>-2.4<br>-13.2                                                                                                                                                    | 15<br>1.2<br>0.8<br>1.1<br>-2.6                                                                                                                                                                                 | L<br>16<br>1.8<br>-3.1                                                                                                                                      | aboratory<br>17  | v Number<br>17.1<br>MD<br>1.0<br>-0.3<br>-0.1<br>-3.1                                 | 17.2<br>MS<br>1.1<br>0.4<br>-0.2<br>-3.8                                                                                                          | 18    | 19<br>0.6<br>1.7<br>0.2<br>3.6                                                                                                                                                                                             | 1A<br>0.0<br>0.4<br>-1.4<br>0.7                                                                                                                                                                                       | 1B<br>0.0<br>0.3<br>0.0<br>-14                                                                                                                                                                                                                                                     |
| CFC-12<br>CFC-11<br>CFC-113<br>CH <sub>3</sub> CCl <sub>3</sub><br>CCl <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                | $ \begin{array}{r}     -3.4 \\     0.7 \\     -10.1 \\     -13.7 \\     -10.8 \\ \end{array} $                                                                                                                                                                                                | 12<br>0.4<br>2.6 | 13                    | $ \begin{array}{r}     14 \\     0.2 \\     0.0 \\     -2.4 \\     -13.2 \\     -8.7 \\ \end{array} $                                                                                | 15     1.2     0.8     1.1     -2.6     -3.9                                                                                                                                                                    | L<br>16<br>1.8<br>-3.1                                                                                                                                      | aboratory<br>17  | v Number<br>17.1<br>MD<br>1.0<br>-0.3<br>-0.1<br>-3.1<br>-2.4                         | 17.2<br>MS<br>1.1<br>0.4<br>-0.2<br>-3.8<br>-3.8                                                                                                  | 18    | 19<br>0.6<br>1.7<br>0.2<br>3.6<br>-1.3                                                                                                                                                                                     | 1A<br>0.0<br>0.4<br>-1.4<br>0.7<br>0.4                                                                                                                                                                                | 1B<br>0.0<br>0.3<br>0.0<br>-1.4<br>0.0                                                                                                                                                                                                                                             |
| CFC-12<br>CFC-11<br>CFC-113<br>CH <sub>3</sub> CCl <sub>3</sub><br>CCl <sub>4</sub><br>CHCl <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                | -3.4<br>0.7<br>-10.1<br>-13.7<br>-10.8<br>-0.3                                                                                                                                                                                                                                                | 12<br>0.4<br>2.6 | 13                    | $ \begin{array}{r}     14 \\     0.2 \\     0.0 \\     -2.4 \\     -13.2 \\     -8.7 \\     -4.7 \\ \end{array} $                                                                    | 15<br>1.2<br>0.8<br>1.1<br>-2.6<br>-3.9<br>8.0                                                                                                                                                                  | L<br>16<br>1.8<br>-3.1<br>1.2                                                                                                                               | aboratory<br>17  | V Number<br>17.1<br>MD<br>1.0<br>-0.3<br>-0.1<br>-3.1<br>-2.4<br>-2.7                 | 17.2<br>MS<br>1.1<br>0.4<br>-0.2<br>-3.8<br>-3.8<br>-1.6                                                                                          | 18    | 19<br>0.6<br>1.7<br>0.2<br>3.6<br>-1.3<br>13.5                                                                                                                                                                             | 1A<br>0.0<br>0.4<br>-1.4<br>0.7<br>0.4<br>6.1                                                                                                                                                                         | 1B<br>0.0<br>0.3<br>0.0<br>-1.4<br>0.0<br>1.6                                                                                                                                                                                                                                      |
| CFC-12<br>CFC-11<br>CFC-113<br>CH <sub>3</sub> CCl <sub>3</sub><br>CCl <sub>4</sub><br>CHCl <sub>3</sub><br>HCFC-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                | $ \begin{array}{r}     -3.4 \\     0.7 \\     -10.1 \\     -13.7 \\     -10.8 \\     -0.3 \\     -3.7 \\ \end{array} $                                                                                                                                                                        | 12<br>0.4<br>2.6 | 13                    | $ \begin{array}{r}     14 \\     0.2 \\     0.0 \\     -2.4 \\     -13.2 \\     -8.7 \\     -4.7 \\     -0.6 \\ \end{array} $                                                        | 15<br>1.2<br>0.8<br>1.1<br>-2.6<br>-3.9<br>8.0<br>0.3                                                                                                                                                           | L<br>16<br>1.8<br>-3.1<br>1.2<br>-2.4                                                                                                                       | aboratory<br>17  | v Number<br>17.1<br>MD<br>1.0<br>-0.3<br>-0.1<br>-3.1<br>-2.4<br>-2.7                 | 17.2<br>MS<br>1.1<br>0.4<br>-0.2<br>-3.8<br>-3.8<br>-1.6<br>0.1                                                                                   | 18    | 19<br>0.6<br>1.7<br>0.2<br>3.6<br>-1.3<br>13.5<br>-2.2                                                                                                                                                                     | 1A<br>0.0<br>0.4<br>-1.4<br>0.7<br>0.4<br>6.1<br>0.0                                                                                                                                                                  | 1B<br>0.0<br>0.3<br>0.0<br>-1.4<br>0.0<br>1.6<br>-0.7                                                                                                                                                                                                                              |
| CFC-12<br>CFC-11<br>CFC-113<br>CH <sub>3</sub> CCl <sub>3</sub><br>CCl <sub>4</sub><br>CHCl <sub>3</sub><br>HCFC-22<br>HCFC-141b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                | $ \begin{array}{r} -3.4 \\ 0.7 \\ -10.1 \\ -13.7 \\ -10.8 \\ -0.3 \\ -3.7 \\ -5.8 \end{array} $                                                                                                                                                                                               | 12<br>0.4<br>2.6 | 13                    | $ \begin{array}{r}     14 \\     0.2 \\     0.0 \\     -2.4 \\     -13.2 \\     -8.7 \\     -4.7 \\     -0.6 \\     -0.5 \\ \end{array} $                                            | $     \begin{array}{r}       1.2 \\       0.8 \\       1.1 \\       -2.6 \\       -3.9 \\       8.0 \\       0.3 \\       0.9 \\     \end{array} $                                                              | L<br>16<br>1.8<br>-3.1<br>1.2<br>-2.4<br>1.6                                                                                                                | aboratory<br>17  | V Number<br>17.1<br>MD<br>1.0<br>-0.3<br>-0.1<br>-3.1<br>-2.4<br>-2.7                 | 17.2<br>MS<br>1.1<br>0.4<br>-0.2<br>-3.8<br>-3.8<br>-1.6<br>0.1<br>0.0                                                                            | 18    | $ \begin{array}{r}     19 \\     0.6 \\     1.7 \\     0.2 \\     3.6 \\     -1.3 \\     13.5 \\     -2.2 \\     -5.1 \\ \end{array} $                                                                                     | 1A<br>0.0<br>0.4<br>-1.4<br>0.7<br>0.4<br>6.1<br>0.0<br>-0.1                                                                                                                                                          | 1B<br>0.0<br>0.3<br>0.0<br>-1.4<br>0.0<br>1.6<br>-0.7<br>0.7                                                                                                                                                                                                                       |
| CFC-12<br>CFC-11<br>CFC-113<br>CH <sub>3</sub> CCl <sub>3</sub><br>CCl <sub>4</sub><br>CHCl <sub>3</sub><br>HCFC-22<br>HCFC-141b<br>HCFC-142b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                | $ \begin{array}{r} -3.4\\ 0.7\\ -10.1\\ -13.7\\ -10.8\\ -0.3\\ -3.7\\ -5.8\\ -0.2\end{array} $                                                                                                                                                                                                | 12<br>0.4<br>2.6 | 13                    | $\begin{array}{r} 14 \\ 0.2 \\ 0.0 \\ -2.4 \\ -13.2 \\ -8.7 \\ -4.7 \\ -0.6 \\ -0.5 \\ 4.0 \end{array}$                                                                              | $ \begin{array}{c} 15\\ 1.2\\ 0.8\\ 1.1\\ -2.6\\ -3.9\\ 8.0\\ 0.3\\ 0.9\\ 6.2\\ \end{array} $                                                                                                                   | L<br>16<br>1.8<br>-3.1<br>1.2<br>-2.4<br>1.6<br>2.2                                                                                                         | aboratory<br>17  | v Number<br>17.1<br>MD<br>1.0<br>-0.3<br>-0.1<br>-3.1<br>-2.4<br>-2.7                 | 17.2<br>MS<br>1.1<br>0.4<br>-0.2<br>-3.8<br>-3.8<br>-1.6<br>0.1<br>0.0<br>1.9                                                                     | 18    | 19<br>0.6<br>1.7<br>0.2<br>3.6<br>-1.3<br>13.5<br>-2.2<br>-5.1<br>-2.4                                                                                                                                                     | 1A<br>0.0<br>0.4<br>-1.4<br>0.7<br>0.4<br>6.1<br>0.0<br>-0.1<br>1.0                                                                                                                                                   | 1B<br>0.0<br>0.3<br>0.0<br>-1.4<br>0.0<br>1.6<br>-0.7<br>0.7<br>0.4                                                                                                                                                                                                                |
| CFC-12<br>CFC-11<br>CFC-113<br>CH <sub>3</sub> CCl <sub>3</sub><br>CCl <sub>4</sub><br>CHCl <sub>3</sub><br>HCFC-22<br>HCFC-141b<br>HCFC-142b<br>HFC-142a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                | $ \begin{array}{r} -3.4\\ 0.7\\ -10.1\\ -13.7\\ -10.8\\ -0.3\\ -3.7\\ -5.8\\ -0.2\\ -3.9\end{array} $                                                                                                                                                                                         | 12<br>0.4<br>2.6 | 13                    | $\begin{array}{c} 14\\ 0.2\\ 0.0\\ -2.4\\ -13.2\\ -8.7\\ -4.7\\ -0.6\\ -0.5\\ 4.0\\ -0.2\end{array}$                                                                                 | $ \begin{array}{c} 15\\ 1.2\\ 0.8\\ 1.1\\ -2.6\\ -3.9\\ 8.0\\ 0.3\\ 0.9\\ 6.2\\ 4.3\\ \end{array} $                                                                                                             | L<br>16<br>1.8<br>-3.1<br>1.2<br>-2.4<br>1.6<br>2.2<br>-0.8                                                                                                 | aboratory<br>17  | v Number<br>17.1<br>MD<br>1.0<br>-0.3<br>-0.1<br>-3.1<br>-2.4<br>-2.7                 | 17.2<br>MS<br>1.1<br>0.4<br>-0.2<br>-3.8<br>-3.8<br>-1.6<br>0.1<br>0.0<br>1.9<br>0.5                                                              | 18    | $ \begin{array}{r}     19 \\     0.6 \\     1.7 \\     0.2 \\     3.6 \\     -1.3 \\     13.5 \\     -2.2 \\     -5.1 \\     -2.4 \\     -2.5 \\ \end{array} $                                                             | 1A<br>0.0<br>0.4<br>-1.4<br>0.7<br>0.4<br>6.1<br>0.0<br>-0.1<br>1.0<br>0.8                                                                                                                                            | 1B<br>0.0<br>0.3<br>0.0<br>-1.4<br>0.0<br>1.6<br>-0.7<br>0.7<br>0.7<br>0.4<br>0.7                                                                                                                                                                                                  |
| CFC-12<br>CFC-11<br>CFC-113<br>CH <sub>3</sub> CCl <sub>3</sub><br>CCl <sub>4</sub><br>CHCl <sub>3</sub><br>HCFC-22<br>HCFC-141b<br>HCFC-142b<br>HFC-142b<br>HFC-134a<br>HFC-152a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                | $ \begin{array}{r} -3.4\\ 0.7\\ -10.1\\ -13.7\\ -10.8\\ -0.3\\ -3.7\\ -5.8\\ -0.2\\ -3.9\\ -14.4 \end{array} $                                                                                                                                                                                | 12<br>0.4<br>2.6 | 13                    | $\begin{array}{c} 14\\ 0.2\\ 0.0\\ -2.4\\ -13.2\\ -8.7\\ -4.7\\ -0.6\\ -0.5\\ 4.0\\ -0.2\\ -10.3\end{array}$                                                                         | $ \begin{array}{c} 15\\ 1.2\\ 0.8\\ 1.1\\ -2.6\\ -3.9\\ 8.0\\ 0.3\\ 0.9\\ 6.2\\ 4.3\\ \end{array} $                                                                                                             | L<br>16<br>1.8<br>-3.1<br>1.2<br>-2.4<br>1.6<br>2.2<br>-0.8<br>4.7                                                                                          | aboratory<br>17  | v Number<br>17.1<br>MD<br>1.0<br>-0.3<br>-0.1<br>-3.1<br>-2.4<br>-2.7                 | 17.2 MS $1.1 0.4 -0.2 -3.8 -3.8 -1.6 0.1 0.0 1.9 0.5 -6.3$                                                                                        | 18    | $ \begin{array}{r}     19 \\     0.6 \\     1.7 \\     0.2 \\     3.6 \\     -1.3 \\     13.5 \\     -2.2 \\     -5.1 \\     -2.4 \\     -2.5 \\ \end{array} $                                                             | 1A<br>0.0<br>0.4<br>-1.4<br>0.7<br>0.4<br>6.1<br>0.0<br>-0.1<br>1.0<br>0.8<br>4.4                                                                                                                                     | 1B<br>0.0<br>0.3<br>0.0<br>-1.4<br>0.0<br>1.6<br>-0.7<br>0.7<br>0.4<br>0.7<br>0.6                                                                                                                                                                                                  |
| CFC-12<br>CFC-11<br>CFC-113<br>CH <sub>3</sub> CCl <sub>3</sub><br>CCl <sub>4</sub><br>CHCl <sub>3</sub><br>HCFC-22<br>HCFC-141b<br>HCFC-142b<br>HFC-142b<br>HFC-134a<br>HFC-152a<br>CH <sub>2</sub> Cl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                | $\begin{array}{c} -3.4\\ 0.7\\ -10.1\\ -13.7\\ -10.8\\ -0.3\\ -3.7\\ -5.8\\ -0.2\\ -3.9\\ -14.4\\ -11.5\end{array}$                                                                                                                                                                           | 12<br>0.4<br>2.6 | 13                    | $\begin{array}{c} 14\\ 0.2\\ 0.0\\ -2.4\\ -13.2\\ -8.7\\ -4.7\\ -0.6\\ -0.5\\ 4.0\\ -0.2\\ -10.3\\ -10.4\end{array}$                                                                 | 15<br>1.2<br>0.8<br>1.1<br>-2.6<br>-3.9<br>8.0<br>0.3<br>0.9<br>6.2<br>4.3<br>-15.5                                                                                                                             | $ \begin{array}{c}     1 \\     16 \\     \hline     1.8 \\     -3.1 \\     1.2 \\     -2.4 \\     1.6 \\     2.2 \\     -0.8 \\     4.7 \\   \end{array} $ | aboratory<br>17  | v Number<br>17.1<br>MD<br>1.0<br>-0.3<br>-0.1<br>-3.1<br>-2.4<br>-2.7                 | 17.2 MS $1.1 0.4 -0.2 -3.8 -3.8 -1.6 0.1 0.0 1.9 0.5 -6.3 -6.7$                                                                                   | 18    | 19<br>0.6<br>1.7<br>0.2<br>3.6<br>-1.3<br>13.5<br>-2.2<br>-5.1<br>-2.4<br>-2.5<br>-14.2                                                                                                                                    | $ \begin{array}{c}     1A \\     0.0 \\     0.4 \\     -1.4 \\     0.7 \\     0.4 \\     6.1 \\     0.0 \\     -0.1 \\     1.0 \\     0.8 \\     4.4 \\     2.1 \\ \end{array} $                                      | 1B<br>0.0<br>0.3<br>0.0<br>-1.4<br>0.0<br>1.6<br>-0.7<br>0.7<br>0.4<br>0.7<br>0.6<br>1.3                                                                                                                                                                                           |
| $\begin{array}{c} CFC-12\\ CFC-11\\ CFC-113\\ CH_3CCl_3\\ CCl_4\\ CHCl_3\\ HCFC-22\\ HCFC-141b\\ HCFC-142b\\ HFC-142b\\ HFC-134a\\ HFC-152a\\ CH_2Cl_2\\ C_2Cl_4 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                | $ \begin{array}{r} -3.4\\ 0.7\\ -10.1\\ -13.7\\ -10.8\\ -0.3\\ -3.7\\ -5.8\\ -0.2\\ -3.9\\ -14.4\\ -11.5\end{array} $                                                                                                                                                                         | 12<br>0.4<br>2.6 | 13                    | $\begin{array}{c} 14\\ 0.2\\ 0.0\\ -2.4\\ -13.2\\ -8.7\\ -4.7\\ -0.6\\ -0.5\\ 4.0\\ -0.2\\ -10.3\\ -10.4\\ 3.3\end{array}$                                                           | $ \begin{array}{c} 15\\ 1.2\\ 0.8\\ 1.1\\ -2.6\\ -3.9\\ 8.0\\ 0.3\\ 0.9\\ 6.2\\ 4.3\\ -15.5\\ -0.6\\ \end{array} $                                                                                              | L<br>16<br>1.8<br>-3.1<br>1.2<br>-2.4<br>1.6<br>2.2<br>-0.8<br>4.7<br>-6.3                                                                                  | aboratory<br>17  | v Number<br>17.1<br>MD<br>1.0<br>-0.3<br>-0.1<br>-3.1<br>-2.4<br>-2.7                 | 17.2 MS $1.1 0.4 -0.2 -3.8 -3.8 -1.6 0.1 0.0 1.9 0.5 -6.3 -6.7 6.5$                                                                               | 18    | $ \begin{array}{r}     19 \\     0.6 \\     1.7 \\     0.2 \\     3.6 \\     -1.3 \\     13.5 \\     -2.2 \\     -5.1 \\     -2.4 \\     -2.5 \\     -14.2 \\     36.1 \\ \end{array} $                                    | $\begin{array}{c} 1A \\ \hline 0.0 \\ 0.4 \\ -1.4 \\ 0.7 \\ 0.4 \\ 6.1 \\ 0.0 \\ -0.1 \\ 1.0 \\ 0.8 \\ 4.4 \\ 2.1 \\ 2.8 \end{array}$                                                                                 | 1B<br>0.0<br>0.3<br>0.0<br>-1.4<br>0.0<br>1.6<br>-0.7<br>0.7<br>0.4<br>0.7<br>0.6<br>1.3<br>3.3                                                                                                                                                                                    |
| $\begin{array}{c} CFC-12\\ CFC-11\\ CFC-113\\ CH_3CCl_3\\ CCl_4\\ CHCl_3\\ HCFC-22\\ HCFC-141b\\ HCFC-142b\\ HFC-142b\\ HFC-134a\\ HFC-152a\\ CH_2Cl_2\\ C_2Cl_4\\ CH_3Cl\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                | $\begin{array}{c} -3.4\\ 0.7\\ -10.1\\ -13.7\\ -10.8\\ -0.3\\ -3.7\\ -5.8\\ -0.2\\ -3.9\\ -14.4\\ -11.5\\ -4.5\end{array}$                                                                                                                                                                    | 12<br>0.4<br>2.6 | 13                    | $\begin{array}{c} 14\\ 0.2\\ 0.0\\ -2.4\\ -13.2\\ -8.7\\ -4.7\\ -0.6\\ -0.5\\ 4.0\\ -0.2\\ -10.3\\ -10.4\\ 3.3\\ 12.2\end{array}$                                                    | $ \begin{array}{c} 15\\ 1.2\\ 0.8\\ 1.1\\ -2.6\\ -3.9\\ 8.0\\ 0.3\\ 0.9\\ 6.2\\ 4.3\\ -15.5\\ -0.6\\ -2.7\\ \end{array} $                                                                                       | $\begin{array}{c} 1 \\ 16 \\ \hline \\ 1.8 \\ -3.1 \\ 1.2 \\ -2.4 \\ 1.6 \\ 2.2 \\ -0.8 \\ 4.7 \\ -6.3 \\ -1.0 \end{array}$                                 | aboratory<br>17  | v Number<br>17.1<br>MD<br>1.0<br>-0.3<br>-0.1<br>-3.1<br>-2.4<br>-2.7                 | 17.2 MS $1.1 0.4 -0.2 -3.8 -3.8 -1.6 0.1 0.0 1.9 0.5 -6.3 -6.7 6.5$                                                                               | 18    | $ \begin{array}{c}     19 \\     \hline     0.6 \\     1.7 \\     0.2 \\     3.6 \\     -1.3 \\     13.5 \\     -2.2 \\     -5.1 \\     -2.4 \\     -2.5 \\     -14.2 \\     36.1 \\     -3.3 \\ \end{array} $             | $\begin{array}{c} 1A \\ \hline 0.0 \\ 0.4 \\ -1.4 \\ 0.7 \\ 0.4 \\ 6.1 \\ 0.0 \\ -0.1 \\ 1.0 \\ 0.8 \\ 4.4 \\ 2.1 \\ 2.8 \\ -0.1 \end{array}$                                                                         | 1B<br>0.0<br>0.3<br>0.0<br>-1.4<br>0.0<br>1.6<br>-0.7<br>0.7<br>0.4<br>0.7<br>0.6<br>1.3<br>3.3<br>0.3                                                                                                                                                                             |
| $\begin{array}{c} CFC-12\\ CFC-11\\ CFC-113\\ CH_3CCl_3\\ CCl_4\\ CHCl_3\\ HCFC-22\\ HCFC-141b\\ HCFC-142b\\ HFC-142b\\ HFC-134a\\ HFC-152a\\ CH_2Cl_2\\ C_2Cl_4\\ CH_3Cl\\ CH_3Br\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10<br>3.1<br>-3.5 | $\begin{array}{c} -3.4\\ 0.7\\ -10.1\\ -13.7\\ -10.8\\ -0.3\\ -3.7\\ -5.8\\ -0.2\\ -3.9\\ -14.4\\ -11.5\\ -4.5\\ 9.4\end{array}$                                                                                                                                                              | 12<br>0.4<br>2.6 | 13                    | $\begin{array}{c} 14\\ 0.2\\ 0.0\\ -2.4\\ -13.2\\ -8.7\\ -4.7\\ -0.6\\ -0.5\\ 4.0\\ -0.2\\ -10.3\\ -10.4\\ 3.3\\ 12.2\\ 1.7\end{array}$                                              | $ \begin{array}{c} 15\\ 1.2\\ 0.8\\ 1.1\\ -2.6\\ -3.9\\ 8.0\\ 0.3\\ 0.9\\ 6.2\\ 4.3\\ -15.5\\ -0.6\\ -2.7\\ 0.4\\ \end{array} $                                                                                 | $\begin{array}{c} 1 \\ 16 \\ \hline \\ 1.8 \\ -3.1 \\ 1.2 \\ -2.4 \\ 1.6 \\ 2.2 \\ -0.8 \\ 4.7 \\ -6.3 \\ -1.0 \\ -2.1 \end{array}$                         | aboratory<br>17  | v Number<br>17.1<br>MD<br>1.0<br>-0.3<br>-0.1<br>-3.1<br>-2.4<br>-2.7                 | 17.2 MS $1.1 0.4 -0.2 -3.8 -3.8 -1.6 0.1 0.0 1.9 0.5 -6.3 -6.7 6.5 1.0$                                                                           | 18    | $ \begin{array}{c}     19 \\     \hline     0.6 \\     1.7 \\     0.2 \\     3.6 \\     -1.3 \\     13.5 \\     -2.2 \\     -5.1 \\     -2.4 \\     -2.5 \\     -14.2 \\     36.1 \\     -3.3 \\     -9.9 \\ \end{array} $ | $\begin{array}{c} 1A \\ \hline 0.0 \\ 0.4 \\ -1.4 \\ 0.7 \\ 0.4 \\ 6.1 \\ 0.0 \\ -0.1 \\ 1.0 \\ 0.8 \\ 4.4 \\ 2.1 \\ 2.8 \\ -0.1 \\ -1.1 \end{array}$                                                                 | 1B<br>0.0<br>0.3<br>0.0<br>-1.4<br>0.0<br>1.6<br>-0.7<br>0.7<br>0.4<br>0.7<br>0.6<br>1.3<br>3.3<br>0.3<br>-0.2                                                                                                                                                                     |
| $\begin{array}{c} CFC-12\\ CFC-11\\ CFC-113\\ CH_3CCl_3\\ CCl_4\\ CHCl_3\\ HCFC-22\\ HCFC-141b\\ HCFC-142b\\ HFC-142b\\ HFC-134a\\ HFC-152a\\ CH_2Cl_2\\ C_2Cl_4\\ CH_3Cl\\ CH_3Br\\ CH_3I\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10<br>3.1<br>-3.5 | $ \begin{array}{r} -3.4\\ 0.7\\ -10.1\\ -13.7\\ -10.8\\ -0.3\\ -3.7\\ -5.8\\ -0.2\\ -3.9\\ -14.4\\ -11.5\\ -4.5\\ 9.4 \end{array} $                                                                                                                                                           | 12<br>0.4<br>2.6 | 13                    | $\begin{array}{c} 14\\ 0.2\\ 0.0\\ -2.4\\ -13.2\\ -8.7\\ -4.7\\ -0.6\\ -0.5\\ 4.0\\ -0.2\\ -10.3\\ -10.4\\ 3.3\\ 12.2\\ 1.7\end{array}$                                              | $\begin{array}{c} 15\\ \hline 1.2\\ 0.8\\ 1.1\\ -2.6\\ -3.9\\ 8.0\\ 0.3\\ 0.9\\ 6.2\\ 4.3\\ \hline -15.5\\ -0.6\\ -2.7\\ 0.4\\ 93\\ \end{array}$                                                                | L<br>16<br>1.8<br>-3.1<br>1.2<br>-2.4<br>1.6<br>2.2<br>-0.8<br>4.7<br>-6.3<br>-1.0<br>-2.1<br>33                                                            | aboratory.<br>17 | v Number<br>17.1<br>MD<br>1.0<br>-0.3<br>-0.1<br>-3.1<br>-2.4<br>-2.7                 | 17.2 MS $1.1 0.4 -0.2 -3.8 -3.8 -1.6 0.1 0.0 1.9 0.5 -6.3 -6.7 6.5 1.0$                                                                           | 18    | $\begin{array}{c} 19\\ \hline 0.6\\ 1.7\\ 0.2\\ 3.6\\ -1.3\\ 13.5\\ -2.2\\ -5.1\\ -2.4\\ -2.5\\ \hline -14.2\\ 36.1\\ -3.3\\ -9.9\\ 26\end{array}$                                                                         | $\begin{array}{c} 1A \\ \hline 0.0 \\ 0.4 \\ -1.4 \\ 0.7 \\ 0.4 \\ 6.1 \\ 0.0 \\ -0.1 \\ 1.0 \\ 0.8 \\ 4.4 \\ 2.1 \\ 2.8 \\ -0.1 \\ -1.1 \\ 13 \end{array}$                                                           | 1B<br>0.0<br>0.3<br>0.0<br>-1.4<br>0.0<br>1.6<br>-0.7<br>0.7<br>0.4<br>0.7<br>0.6<br>1.3<br>3.3<br>0.3<br>-0.2<br>0                                                                                                                                                                |
| $\begin{array}{c} CFC-12\\ CFC-11\\ CFC-113\\ CH_3CCl_3\\ CCl_4\\ CHCl_3\\ HCFC-22\\ HCFC-141b\\ HCFC-142b\\ HFC-142b\\ HFC-152a\\ CH_2Cl_2\\ C_2Cl_4\\ CH_3Cl\\ CH_3Br\\ CH_3I\\ CH_2Br_2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10<br>3.1<br>-3.5 | $ \begin{array}{r} -3.4\\ 0.7\\ -10.1\\ -13.7\\ -10.8\\ -0.3\\ -3.7\\ -5.8\\ -0.2\\ -3.9\\ -14.4\\ -11.5\\ -4.5\\ 9.4 \end{array} $                                                                                                                                                           | 12<br>0.4<br>2.6 | 13                    | $\begin{array}{c} 14\\ 0.2\\ 0.0\\ -2.4\\ -13.2\\ -8.7\\ -4.7\\ -0.6\\ -0.5\\ 4.0\\ -0.2\\ -10.3\\ -10.4\\ 3.3\\ 12.2\\ 1.7\end{array}$                                              | $\begin{array}{c} 15\\ \hline 1.2\\ 0.8\\ 1.1\\ -2.6\\ -3.9\\ 8.0\\ 0.3\\ 0.9\\ 6.2\\ 4.3\\ \hline -15.5\\ -0.6\\ -2.7\\ 0.4\\ 93\\ 21\\ \end{array}$                                                           | $\begin{array}{c} 1 \\ 16 \\ \hline \\ 1.8 \\ -3.1 \\ 1.2 \\ -2.4 \\ 1.6 \\ 2.2 \\ -0.8 \\ 4.7 \\ -6.3 \\ -1.0 \\ -2.1 \\ 33 \end{array}$                   | aboratory<br>17  | v Number<br>17.1<br>MD<br>1.0<br>-0.3<br>-0.1<br>-3.1<br>-2.4<br>-2.7                 | 17.2 MS $1.1 0.4 -0.2 -3.8 -3.8 -1.6 0.1 0.0 1.9 0.5 -6.3 -6.7 6.5 1.0$                                                                           | 18    | $\begin{array}{c} 19\\ \hline 0.6\\ 1.7\\ 0.2\\ 3.6\\ -1.3\\ 13.5\\ -2.2\\ -5.1\\ -2.4\\ -2.5\\ \hline -14.2\\ 36.1\\ -3.3\\ -9.9\\ 26\\ 34 \end{array}$                                                                   | $\begin{array}{c} 1A \\ \hline 0.0 \\ 0.4 \\ -1.4 \\ 0.7 \\ 0.4 \\ 6.1 \\ 0.0 \\ -0.1 \\ 1.0 \\ 0.8 \\ 4.4 \\ 2.1 \\ 2.8 \\ -0.1 \\ -1.1 \\ 13 \\ 21 \end{array}$                                                     | 1B<br>0.0<br>0.3<br>0.0<br>-1.4<br>0.0<br>1.6<br>-0.7<br>0.7<br>0.4<br>0.7<br>0.6<br>1.3<br>3.3<br>0.3<br>-0.2<br>0<br>24                                                                                                                                                          |
| $\begin{array}{c} CFC-12\\ CFC-11\\ CFC-113\\ CH_3CCl_3\\ CCl_4\\ CHCl_3\\ HCFC-22\\ HCFC-141b\\ HCFC-142b\\ HFC-134a\\ HFC-152a\\ CH_2Cl_2\\ C_2Cl_4\\ CH_3Cl\\ CH_3Br\\ CH_3I\\ CH_2Br_2\\ CHBr_3\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10<br>3.1<br>-3.5 | $ \begin{array}{r} 11 \\ -3.4 \\ 0.7 \\ -10.1 \\ -13.7 \\ -10.8 \\ -0.3 \\ -3.7 \\ -5.8 \\ -0.2 \\ -3.9 \\ -14.4 \\ -11.5 \\ -4.5 \\ 9.4 \\ \end{array} $                                                                                                                                     | 12<br>0.4<br>2.6 | 13                    | $\begin{array}{c} 14\\ 0.2\\ 0.0\\ -2.4\\ -13.2\\ -8.7\\ -4.7\\ -0.6\\ -0.5\\ 4.0\\ -0.2\\ -10.3\\ -10.4\\ 3.3\\ 12.2\\ 1.7\end{array}$                                              | $\begin{array}{c} 15\\ \hline 1.2\\ 0.8\\ 1.1\\ -2.6\\ -3.9\\ 8.0\\ 0.3\\ 0.9\\ 6.2\\ 4.3\\ \hline -15.5\\ -0.6\\ -2.7\\ 0.4\\ 93\\ 21\\ 36\end{array}$                                                         | L<br>16<br>1.8<br>-3.1<br>1.2<br>-2.4<br>1.6<br>2.2<br>-0.8<br>4.7<br>-6.3<br>-1.0<br>-2.1<br>33                                                            | aboratory<br>17  | v Number<br>17.1<br>MD<br>1.0<br>-0.3<br>-0.1<br>-3.1<br>-2.4<br>-2.7                 | 17.2 MS $1.1 0.4 -0.2 -3.8 -3.8 -1.6 0.1 0.0 1.9 0.5 -6.3 -6.7 6.5 1.0$                                                                           | 18    | $\begin{array}{c} 19\\ \hline 0.6\\ 1.7\\ 0.2\\ 3.6\\ -1.3\\ 13.5\\ -2.2\\ -5.1\\ -2.4\\ -2.5\\ \hline -14.2\\ 36.1\\ -3.3\\ -9.9\\ 26\\ 34\\ 26\\ \end{array}$                                                            | $\begin{array}{c} 1A \\ \hline 0.0 \\ 0.4 \\ -1.4 \\ 0.7 \\ 0.4 \\ 6.1 \\ 0.0 \\ -0.1 \\ 1.0 \\ 0.8 \\ 4.4 \\ 2.1 \\ 2.8 \\ -0.1 \\ -1.1 \\ 13 \\ 21 \\ 2 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2$                    | $ \begin{array}{c}     1B \\     \hline     0.0 \\     0.3 \\     0.0 \\     -1.4 \\     0.0 \\     1.6 \\     -0.7 \\     0.7 \\     0.4 \\     0.7 \\     0.6 \\     1.3 \\     3.3 \\     0.3 \\     -0.2 \\     0 \\     24 \\     0 \\   \end{array} $                        |
| $\begin{array}{c} CFC-12\\ CFC-11\\ CFC-113\\ CH_3CCl_3\\ CCl_4\\ CHCl_3\\ HCFC-22\\ HCFC-141b\\ HCFC-142b\\ HFC-142b\\ HFC-152a\\ CH_2Cl_2\\ C_2Cl_4\\ CH_3Cl\\ CH_3Br\\ CH_3Br\\ CH_3I\\ CH_2Br_2\\ CHBr_3\\ halon-1211\\ halon-1211\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10<br>3.1<br>-3.5 | $ \begin{array}{r}     -3.4 \\     0.7 \\     -10.1 \\     -13.7 \\     -10.8 \\     -0.3 \\     -3.7 \\     -5.8 \\     -0.2 \\     -3.9 \\     -14.4 \\     -11.5 \\     -4.5 \\     9.4 \\ \end{array} $                                                                                   | 12<br>0.4<br>2.6 | 13                    | $\begin{array}{c} 14\\ 0.2\\ 0.0\\ -2.4\\ -13.2\\ -8.7\\ -4.7\\ -0.6\\ -0.5\\ 4.0\\ -0.2\\ -10.3\\ -10.4\\ 3.3\\ 12.2\\ 1.7\\ \end{array}$                                           | $\begin{array}{c} 15\\ \hline 1.2\\ 0.8\\ 1.1\\ -2.6\\ -3.9\\ 8.0\\ 0.3\\ 0.9\\ 6.2\\ 4.3\\ \hline -15.5\\ -0.6\\ -2.7\\ 0.4\\ 93\\ 21\\ 36\\ -2.5\\ \end{array}$                                               | L<br>16<br>1.8<br>-3.1<br>1.2<br>-2.4<br>1.6<br>2.2<br>-0.8<br>4.7<br>-6.3<br>-1.0<br>-2.1<br>33                                                            | aboratory<br>17  | v Number<br>17.1<br>MD<br>1.0<br>-0.3<br>-0.1<br>-3.1<br>-2.4<br>-2.7                 | 17.2<br>MS<br>1.1<br>0.4<br>-0.2<br>-3.8<br>-3.8<br>-1.6<br>0.1<br>0.0<br>1.9<br>0.5<br>-6.3<br>-6.7<br>6.5<br>1.0                                | 18    | $\begin{array}{c} 19\\ \hline 0.6\\ 1.7\\ 0.2\\ 3.6\\ -1.3\\ 13.5\\ -2.2\\ -5.1\\ -2.4\\ -2.5\\ \hline -14.2\\ 36.1\\ -3.3\\ -9.9\\ 26\\ 34\\ 26\\ -4.2\\ \end{array}$                                                     | $\begin{array}{c} 1A \\ \hline 0.0 \\ 0.4 \\ -1.4 \\ 0.7 \\ 0.4 \\ 6.1 \\ 0.0 \\ -0.1 \\ 1.0 \\ 0.8 \\ 4.4 \\ 2.1 \\ 2.8 \\ -0.1 \\ -1.1 \\ 13 \\ 21 \\ 2 \\ -0.3 \\ -0.3 \\ \end{array}$                             | $ \begin{array}{c}     1B \\     \hline     0.0 \\     0.3 \\     0.0 \\     -1.4 \\     0.0 \\     1.6 \\     -0.7 \\     0.7 \\     0.4 \\     0.7 \\     0.6 \\     1.3 \\     3.3 \\     0.3 \\     -0.2 \\     0 \\     24 \\     0 \\     -0.6 \\     2.6 \\   \end{array} $ |
| $\begin{array}{c} CFC-12\\ CFC-11\\ CFC-113\\ CH_3CCl_3\\ CCl_4\\ CHCl_3\\ HCFC-22\\ HCFC-141b\\ HCFC-142b\\ HFC-134a\\ HFC-152a\\ CH_2Cl_2\\ C_2Cl_4\\ CH_3Cl\\ CH_3Br\\ CH_3Br\\ CH_3I\\ CH_2Br_2\\ CHBr_3\\ halon-1211\\ halon-1301\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10<br>3.1<br>-3.5 | $ \begin{array}{r}     11 \\     -3.4 \\     0.7 \\     -10.1 \\     -13.7 \\     -10.8 \\     -0.3 \\     -3.7 \\     -5.8 \\     -0.2 \\     -3.9 \\     -14.4 \\     -11.5 \\     -4.5 \\     9.4 \\ \end{array} $                                                                         | 12<br>0.4<br>2.6 | 13                    | $\begin{array}{c} 14\\ 0.2\\ 0.0\\ -2.4\\ -13.2\\ -8.7\\ -4.7\\ -0.6\\ -0.5\\ 4.0\\ -0.2\\ -10.3\\ -10.4\\ 3.3\\ 12.2\\ 1.7\\ \end{array}$                                           | $\begin{array}{c} 15\\ \hline 1.2\\ 0.8\\ 1.1\\ -2.6\\ -3.9\\ 8.0\\ 0.3\\ 0.9\\ 6.2\\ 4.3\\ \hline -15.5\\ -0.6\\ -2.7\\ 0.4\\ 93\\ 21\\ 36\\ -2.5\\ -4.8\\ \hline \end{array}$                                 | L<br>16<br>1.8<br>-3.1<br>1.2<br>-2.4<br>1.6<br>2.2<br>-0.8<br>4.7<br>-6.3<br>-1.0<br>-2.1<br>33                                                            | aboratory<br>17  | v Number<br>17.1<br>MD<br>1.0<br>-0.3<br>-0.1<br>-3.1<br>-2.4<br>-2.7                 | 17.2 MS $1.1 0.4 -0.2 -3.8 -3.8 -1.6 0.1 0.0 1.9 0.5 -6.3 -6.7 6.5 1.0 2.2 10.0 0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1$                               | 18    | $ \begin{array}{c} 19\\ 0.6\\ 1.7\\ 0.2\\ 3.6\\ -1.3\\ 13.5\\ -2.2\\ -5.1\\ -2.4\\ -2.5\\ -14.2\\ 36.1\\ -3.3\\ -9.9\\ 26\\ 34\\ 26\\ -4.2\\ \end{array} $                                                                 | $\begin{array}{c} 1A \\ \hline 0.0 \\ 0.4 \\ -1.4 \\ 0.7 \\ 0.4 \\ 6.1 \\ 0.0 \\ -0.1 \\ 1.0 \\ 0.8 \\ 4.4 \\ 2.1 \\ 2.8 \\ -0.1 \\ -1.1 \\ 13 \\ 21 \\ 2 \\ -0.3 \\ 5.2 \\ 5.2 \end{array}$                          | $\begin{array}{c} 1B \\ \hline 0.0 \\ 0.3 \\ 0.0 \\ -1.4 \\ 0.0 \\ 1.6 \\ -0.7 \\ 0.7 \\ 0.4 \\ 0.7 \\ 0.6 \\ 1.3 \\ 3.3 \\ 0.3 \\ -0.2 \\ 0 \\ 24 \\ 0 \\ -0.6 \\ 3.0 \\ 1.5 \\ \end{array}$                                                                                      |
| $\begin{array}{c} CFC-12\\ CFC-11\\ CFC-113\\ CH_3CCl_3\\ CCl_4\\ CHCl_3\\ HCFC-22\\ HCFC-141b\\ HCFC-142b\\ HFC-134a\\ HFC-152a\\ CH_2Cl_2\\ C_2Cl_4\\ CH_3Cl\\ CH_3Br\\ CH_3Br\\ CH_3I\\ CH_2Br_2\\ CHBr_3\\ halon-1211\\ halon-1301\\ halon-2402\\ CH2\\ CH2Br_2\\ CH2Br_2\\ CHBr_3\\ CH2Br_3\\ CH2Br_$ | 10<br>3.1<br>-3.5 | $ \begin{array}{r}     11 \\     -3.4 \\     0.7 \\     -10.1 \\     -13.7 \\     -10.8 \\     -0.3 \\     -3.7 \\     -5.8 \\     -0.2 \\     -3.9 \\     -14.4 \\     -11.5 \\     -4.5 \\     9.4 \\ \end{array} $ $1.6 \\     2.1 \\ $                                                    | 12<br>0.4<br>2.6 | 13                    | $\begin{array}{c} 14\\ 0.2\\ 0.0\\ -2.4\\ -13.2\\ -8.7\\ -4.7\\ -0.6\\ -0.5\\ 4.0\\ -0.2\\ -10.3\\ -10.4\\ 3.3\\ 12.2\\ 1.7\\ 0.9\\ 2.1\\ 130.2\\ 0.9\\ 2.1\end{array}$              | $\begin{array}{c} 15\\ \hline 1.2\\ 0.8\\ 1.1\\ -2.6\\ -3.9\\ 8.0\\ 0.3\\ 0.9\\ 6.2\\ 4.3\\ \hline -15.5\\ -0.6\\ -2.7\\ 0.4\\ 93\\ 21\\ 36\\ -2.5\\ -4.8\\ -7.5\\ -4.8\\ -7.5\\ 0.4\\ \end{array}$             | L<br>16<br>1.8<br>-3.1<br>1.2<br>-2.4<br>1.6<br>2.2<br>-0.8<br>4.7<br>-6.3<br>-1.0<br>-2.1<br>33                                                            | aboratory<br>17  | v Number<br>17.1<br>MD<br>1.0<br>-0.3<br>-0.1<br>-3.1<br>-2.4<br>-2.7                 | 17.2 MS $1.1 0.4 -0.2 -3.8 -3.8 -1.6 0.1 0.0 1.9 0.5 -6.3 -6.7 6.5 1.0 2.2 10.0 96.5$                                                             | 18    | $\begin{array}{c} 19\\ \hline 0.6\\ 1.7\\ 0.2\\ 3.6\\ -1.3\\ 13.5\\ -2.2\\ -5.1\\ -2.4\\ -2.5\\ \hline -14.2\\ 36.1\\ -3.3\\ -9.9\\ 26\\ 34\\ 26\\ -4.2\\ -1.5\\ \end{array}$                                              | $\begin{array}{c} 1A \\ \hline 0.0 \\ 0.4 \\ -1.4 \\ 0.7 \\ 0.4 \\ 6.1 \\ 0.0 \\ -0.1 \\ 1.0 \\ 0.8 \\ 4.4 \\ 2.1 \\ 2.8 \\ -0.1 \\ -1.1 \\ 13 \\ 21 \\ 2 \\ -0.3 \\ 5.2 \\ -2.5 \\ 2.5 \end{array}$                  | $\begin{array}{c} 1B \\ \hline 0.0 \\ 0.3 \\ 0.0 \\ -1.4 \\ 0.0 \\ 1.6 \\ -0.7 \\ 0.7 \\ 0.4 \\ 0.7 \\ 0.6 \\ 1.3 \\ 3.3 \\ 0.3 \\ -0.2 \\ 0 \\ 24 \\ 0 \\ -0.6 \\ 3.0 \\ 6.3 \\ 0.12 \\ \end{array}$                                                                              |
| $\begin{array}{c} CFC-12\\ CFC-11\\ CFC-113\\ CH_3CCl_3\\ CCl_4\\ CHCl_3\\ HCFC-22\\ HCFC-141b\\ HCFC-142b\\ HFC-142b\\ HFC-152a\\ CH_2Cl_2\\ C_2Cl_4\\ CH_3Cl\\ CH_3Br\\ CH_3Br\\ CH_3I\\ CH_2Br_2\\ CHBr_3\\ halon-1211\\ halon-1301\\ halon-2402\\ CH_4\\ N_1O\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10<br>3.1<br>-3.5 | $ \begin{array}{r}     -3.4 \\     0.7 \\     -10.1 \\     -13.7 \\     -10.8 \\     -0.3 \\     -3.7 \\     -5.8 \\     -0.2 \\     -3.9 \\     -14.4 \\     -11.5 \\     -4.5 \\     9.4 \\ \end{array} $ 1.6 2.1                                                                           | 12               | 0.20                  | $\begin{array}{c} 14\\ 0.2\\ 0.0\\ -2.4\\ -13.2\\ -8.7\\ -4.7\\ -0.6\\ -0.5\\ 4.0\\ -0.2\\ -10.3\\ -10.4\\ 3.3\\ 12.2\\ 1.7\\ 0.9\\ 2.1\\ 130.2\\ -0.09\\ 1.16\end{array}$           | $\begin{array}{c} 15\\ \hline 1.2\\ 0.8\\ 1.1\\ -2.6\\ -3.9\\ 8.0\\ 0.3\\ 0.9\\ 6.2\\ 4.3\\ \hline -15.5\\ -0.6\\ -2.7\\ 0.4\\ 93\\ 21\\ 36\\ -2.5\\ -4.8\\ -7.5\\ -0.4\\ 8\\ -7.5\\ -0.4\\ 0.22\\ \end{array}$ | L<br>16<br>1.8<br>-3.1<br>1.2<br>-2.4<br>1.6<br>2.2<br>-0.8<br>4.7<br>-6.3<br>-1.0<br>-2.1<br>33                                                            | 0.1<br>0.1       | √ Number<br>17.1<br>MD<br>1.0<br>-0.3<br>-0.1<br>-3.1<br>-2.4<br>-2.7<br>-0.1<br>0.50 | 17.2 MS $1.1 0.4 -0.2 -3.8 -3.8 -1.6 0.1 0.0 1.9 0.5 -6.3 -6.7 6.5 1.0 2.2 10.0 96.5$                                                             | 0.24  | $\begin{array}{c} 19\\ \hline 0.6\\ 1.7\\ 0.2\\ 3.6\\ -1.3\\ 13.5\\ -2.2\\ -5.1\\ -2.4\\ -2.5\\ \hline -14.2\\ 36.1\\ -3.3\\ -9.9\\ 26\\ 34\\ 26\\ -4.2\\ -1.5\\ \end{array}$                                              | $\begin{array}{c} 1A \\ \hline 0.0 \\ 0.4 \\ -1.4 \\ 0.7 \\ 0.4 \\ 6.1 \\ 0.0 \\ -0.1 \\ 1.0 \\ 0.8 \\ 4.4 \\ 2.1 \\ 2.8 \\ -0.1 \\ -1.1 \\ 13 \\ 21 \\ 2 \\ -0.3 \\ 5.2 \\ -2.5 \\ 0.11 \\ 0.00 \\ \end{array}$      | $\begin{array}{c} 1B \\ \hline 0.0 \\ 0.3 \\ 0.0 \\ -1.4 \\ 0.0 \\ 1.6 \\ -0.7 \\ 0.7 \\ 0.4 \\ 0.7 \\ 0.6 \\ 1.3 \\ 3.3 \\ 0.3 \\ -0.2 \\ 0 \\ 24 \\ 0 \\ -0.6 \\ 3.0 \\ 6.3 \\ 0.12 \\ 0 \\ 18 \end{array}$                                                                      |
| $\begin{array}{c} CFC-12\\ CFC-11\\ CFC-113\\ CH_3CCl_3\\ CCl_4\\ CHCl_3\\ HCFC-22\\ HCFC-141b\\ HCFC-142b\\ HFC-134a\\ HFC-152a\\ CH_2Cl_2\\ C_2Cl_4\\ CH_3Cl\\ CH_3Br\\ CH_3Br\\ CH_3I\\ CH_2Br_2\\ CHBr_3\\ halon-1211\\ halon-1301\\ halon-2402\\ CH_4\\ N_2O\\ ST\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.1<br>-3.5       | $ \begin{array}{c} 11\\ -3.4\\ 0.7\\ -10.1\\ -13.7\\ -10.8\\ -0.3\\ -3.7\\ -5.8\\ -0.2\\ -3.9\\ -14.4\\ -11.5\\ -4.5\\ 9.4\\ 1.6\\ 2.1\\ 10.2 \end{array} $                                                                                                                                   | 12<br>0.4<br>2.6 | 0.20                  | $\begin{array}{c} 14\\ 0.2\\ 0.0\\ -2.4\\ -13.2\\ -8.7\\ -4.7\\ -0.6\\ -0.5\\ 4.0\\ -0.2\\ -10.3\\ -10.4\\ 3.3\\ 12.2\\ 1.7\\ 0.9\\ 2.1\\ 130.2\\ -0.09\\ 1.16\\ 2.4\\ \end{array}$  | $\begin{array}{c} 15\\ \hline 1.2\\ 0.8\\ 1.1\\ -2.6\\ -3.9\\ 8.0\\ 0.3\\ 0.9\\ 6.2\\ 4.3\\ \hline -15.5\\ -0.6\\ -2.7\\ 0.4\\ 93\\ 21\\ 36\\ -2.5\\ -4.8\\ -7.5\\ -0.4\\ -0.02\\ \end{array}$                  | L<br>16<br>1.8<br>-3.1<br>1.2<br>-2.4<br>1.6<br>2.2<br>-0.8<br>4.7<br>-6.3<br>-1.0<br>-2.1<br>33                                                            | 0.1<br>-0.58     | -0.1<br>-0.59                                                                         | 17.2<br>MS<br>1.1<br>0.4<br>-0.2<br>-3.8<br>-3.8<br>-1.6<br>0.1<br>0.0<br>1.9<br>0.5<br>-6.3<br>-6.7<br>6.5<br>1.0<br>2.2<br>10.0<br>96.5         | 0.24  | $\begin{array}{c} 19\\ \hline 0.6\\ 1.7\\ 0.2\\ 3.6\\ -1.3\\ 13.5\\ -2.2\\ -5.1\\ -2.4\\ -2.5\\ \hline -14.2\\ 36.1\\ -3.3\\ -9.9\\ 26\\ 34\\ 26\\ -4.2\\ -1.5\\ \end{array}$                                              | $\begin{array}{c} 1A \\ 0.0 \\ 0.4 \\ -1.4 \\ 0.7 \\ 0.4 \\ 6.1 \\ 0.0 \\ -0.1 \\ 1.0 \\ 0.8 \\ 4.4 \\ 2.1 \\ 2.8 \\ -0.1 \\ -1.1 \\ 13 \\ 21 \\ 2 \\ -0.3 \\ 5.2 \\ -2.5 \\ 0.11 \\ -0.03 \\ 0.4 \\ \end{array}$     | $\begin{array}{c} 1B\\ \hline \\ 0.0\\ 0.3\\ 0.0\\ -1.4\\ 0.0\\ 1.6\\ -0.7\\ 0.6\\ 1.3\\ 3.3\\ 0.3\\ -0.2\\ 0\\ 24\\ 0\\ -0.6\\ 3.0\\ 6.3\\ 0.12\\ -0.18\\ 1.1\\ \end{array}$                                                                                                      |
| $\begin{array}{c} CFC-12\\ CFC-11\\ CFC-113\\ CH_3CCl_3\\ CCl_4\\ CHCl_3\\ HCFC-22\\ HCFC-141b\\ HCFC-142b\\ HFC-142b\\ HFC-152a\\ CH_2Cl_2\\ C_2Cl_4\\ CH_3Cl\\ CH_3Br\\ CH_3I\\ CH_2Br_2\\ CHBr_3\\ halon-1211\\ halon-1301\\ halon-2402\\ CH_4\\ N_2O\\ SF_6\\ COS\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.1<br>-3.5       | $ \begin{array}{r}     11 \\     -3.4 \\     0.7 \\     -10.1 \\     -13.7 \\     -10.8 \\     -0.3 \\     -3.7 \\     -5.8 \\     -0.2 \\     -3.9 \\     -14.4 \\     -11.5 \\     -4.5 \\     9.4 \\   \end{array} $ $ \begin{array}{r}     1.6 \\     2.1 \\     -10.2 \\   \end{array} $ | 12<br>0.4<br>2.6 | 0.20<br>-1.11<br>-0.2 | $\begin{array}{c} 14\\ 0.2\\ 0.0\\ -2.4\\ -13.2\\ -8.7\\ -4.7\\ -0.6\\ -0.5\\ 4.0\\ -0.2\\ -10.3\\ -10.4\\ 3.3\\ 12.2\\ 1.7\\ 0.9\\ 2.1\\ 130.2\\ -0.09\\ 1.16\\ -2.4\\ \end{array}$ | $\begin{array}{c} 15\\ \hline 1.2\\ 0.8\\ 1.1\\ -2.6\\ -3.9\\ 8.0\\ 0.3\\ 0.9\\ 6.2\\ 4.3\\ \hline -15.5\\ -0.6\\ -2.7\\ 0.4\\ 93\\ 21\\ 36\\ -2.5\\ -4.8\\ -7.5\\ -0.4\\ -0.02\\ -4.5\\ \end{array}$           | L<br>16<br>1.8<br>-3.1<br>1.2<br>-2.4<br>1.6<br>2.2<br>-0.8<br>4.7<br>-6.3<br>-1.0<br>-2.1<br>33                                                            | 0.1<br>-0.58     | -0.1<br>-0.2<br>-0.2                                                                  | 17.2<br>MS<br>1.1<br>0.4<br>-0.2<br>-3.8<br>-3.8<br>-1.6<br>0.1<br>0.0<br>1.9<br>0.5<br>-6.3<br>-6.7<br>6.5<br>1.0<br>2.2<br>10.0<br>96.5<br>-1.4 | 0.24  | $ \begin{array}{c} 19\\ 0.6\\ 1.7\\ 0.2\\ 3.6\\ -1.3\\ 13.5\\ -2.2\\ -5.1\\ -2.4\\ -2.5\\ -14.2\\ 36.1\\ -3.3\\ -9.9\\ 26\\ 34\\ 26\\ -4.2\\ -1.5\\ \end{array} $                                                          | $\begin{array}{c} 1A \\ 0.0 \\ 0.4 \\ -1.4 \\ 0.7 \\ 0.4 \\ 6.1 \\ 0.0 \\ -0.1 \\ 1.0 \\ 0.8 \\ 4.4 \\ 2.1 \\ 2.8 \\ -0.1 \\ -1.1 \\ 13 \\ 21 \\ 2 \\ -0.3 \\ 5.2 \\ -2.5 \\ 0.11 \\ -0.09 \\ 0.4 \\ -11 \end{array}$ | $\begin{array}{c} 1B \\ \hline 0.0 \\ 0.3 \\ 0.0 \\ -1.4 \\ 0.0 \\ 1.6 \\ -0.7 \\ 0.7 \\ 0.4 \\ 0.7 \\ 0.6 \\ 1.3 \\ 3.3 \\ 0.3 \\ -0.2 \\ 0 \\ 24 \\ 0 \\ -0.6 \\ 3.0 \\ 6.3 \\ 0.12 \\ -0.18 \\ 1.1 \\ 0.7 \end{array}$                                                          |

**Table 4.** Same as Table 3 but for diluted samples.

NOAA result: Mole fractions in ppt (except N<sub>2</sub>O and CH<sub>4</sub>, ppb). CFC-12, CFC-11, CFC-113, CH<sub>3</sub>CCl<sub>3</sub>, CCl<sub>4</sub>, halon-1211, N<sub>2</sub>O, and SF<sub>6</sub> based on ECD analysis. 1A, 1B: % difference between final and initial NOAA results for sets 1 and 2, respectively. All others based on MS analysis. MD: multidetector (ECD or FID) MS: mass selective detector

**Table 5.** Analysis statistics for undiluted samples based on results from laboratories that develop calibration scales. Results from laboratories that adopt scales are not included here because we do not want to introduce potential scale transfer errors. Gases with large differences between winter (W) and summer (S) fillings were treated separately. All mole fractions are pmol  $mol^{-1}$  (ppt) unless indicated.

| Trace Gas                            | Mean   | Std Dev | Std Dev (%) | # Scales |
|--------------------------------------|--------|---------|-------------|----------|
| CFC-11                               | 254.7  | 2.6     | 1.0         | 6        |
| CFC-12                               | 542.6  | 5.5     | 1.0         | 5        |
| CFC-113                              | 80.1   | 1.7     | 2.1         | 5        |
| CFC-114                              | 16.6   | 0.1     | 0.7         | 4        |
| CFC-115                              | 8.2    | 0.3     | 4.1         | 3        |
| CCl <sub>4</sub>                     | 94.4   | 1.8     | 1.9         | 5        |
| halon-1211                           | 4.36   | 0.10    | 2.2         | 4        |
| halon-1301                           | 2.90   | 0.21    | 7.3         | 3        |
| halon-2402                           | 0.48   | 0.04    | 7.4         | 2        |
| $CH_4$ (W) (ppb)                     | 1836.9 | 3.5     | 0.19        | 3        |
| $CH_4$ (S) (ppb)                     | 1808.8 | 4.3     | 0.24        | 3        |
| $N_2O(W)$ (ppb)                      | 318.90 | 0.87    | 0.27        | 3        |
| $N_2O(S)$ (ppb)                      | 318.57 | 0.72    | 0.23        | 3        |
| CH <sub>3</sub> CCl <sub>3</sub> (W) | 23.4   | 0.8     | 3.4         | 6        |
| CH <sub>3</sub> CCl <sub>3</sub> (S) | 22.1   | 1.0     | 4.7         | 6        |
| HCFC-22 (W)                          | 169.3  | 2.9     | 1.7         | 4        |
| HCFC-22 (S)                          | 174.3  | 3.7     | 2.1         | 4        |
| HCFC-141b (W)                        | 18.7   | 0.3     | 1.8         | 4        |
| HCFC-141b (S)                        | 18.9   | 0.2     | 1.0         | 4        |
| HCFC-142b (W)                        | 15.7   | 0.6     | 3.7         | 4        |
| HCFC-142b (S)                        | 17.0   | 0.6     | 3.4         | 4        |
| HFC-134a (W)                         | 32.1   | 1.6     | 4.9         | 4        |
| HFC-134a (S)                         | 35.4   | 1.0     | 2.7         | 4        |
| HFC-152a (W)                         | 4.48   | 0.26    | 5.9         | 3        |
| HFC-152a (S)                         | 5.49   | 0.26    | 4.8         | 3        |
| $SF_6$ (W)                           | 5.50   | 0.02    | 0.4         | 3        |
| $SF_6(S)$                            | 5.56   | 0.01    | 0.2         | 3        |
| $CH_3Br(W)$                          | 8.82   | 0.20    | 2.2         | 5        |
| $CH_3Br(S)$                          | 10.05  | 0.16    | 1.6         | 5        |
| $CHCl_3$ (W)                         | 14.2   | 2.2     | 15.3        | 5        |
| $CHCl_3$ (S)                         | 9.0    | 0.4     | 4.3         | 5        |
| $CH_2Cl_2$ (W)                       | 32.7   | 2.9     | 8.7         | 3        |
| $CH_2Cl_2(S)$                        | 26.8   | 2.4     | 9.0         | 3        |
| $C_2Cl_4$ (W)                        | 4.2    | 0.2     | 4.7         | 3        |
| $C_2Cl_4$ (S)                        | 2.7    | 0.1     | 3.6         | 3        |
| $CH_3Cl(W)$                          | 567.2  | 14.2    | 2.5         | 5        |
| CH <sub>3</sub> Cl (S)               | 559.5  | 12.0    | 2.2         | 5        |

factors derived from undiluted samples are consistent with those derived from global mean mole fraction estimates in 2004 (Table 6). The SIO/NOAA ratio is 0.972 compared with 0.975 from 2004 global mean estimates while the UCI-2/NOAA ratio is 0.974 compared to 0.978 based on global mean estimates. There are small differences between results from the same laboratory using different instruments. About half of the 1 % CFC-113 difference observed between ECD and MS results for laboratory 1 is due to reference standards (ECD and MS results are not based on the same standards). When the same reference standards are used, the difference is ~ 0.5 %. Laboratory 2 reported a similar difference (~ 0.6 %) between ECD and MS results. ECD results from both laboratories 1 and 2 are likely affected by an interfering compound (co-elution). However, there is no difference between ECD and MS results for laboratory 17. While these differences are small, they suggest that CFC-113 results may be influenced by co-elution, matrix effects, or analytical nonlinearities. Instrument-specific differences of similar magnitude are also evident for CFC-11 and CFC-12 (Fig. 1a and b).

Results for CFC-114 (CClF<sub>2</sub>CClF<sub>2</sub>) and CFC-115 (CClF<sub>2</sub>CF<sub>3</sub>) were reported by eight and six laboratories, respectively. The variability reported for CFC-114 (Fig. 1d) was only 0.7 % among four scales, while that for CFC-115 was 4.1 % among three scales (figure not shown). Scale propagation errors were < 1 % for some AGAGE-affiliated laboratories. However, scale propagation errors for CFC-114 and CFC-115 cannot be fully addressed because cylinders in set 2 were not analyzed by SIO (scale origin). Furthermore, some of the CFC-114 differences could result from chromatographic co-elution of CFC-114 and CFC-114a (CCl<sub>2</sub>FCF<sub>3</sub>) since most laboratories measure the sum of CFC-114 and CFC-114a, and relative amounts of CFC-114 and CFC-114a in laboratory standards may differ from those in IHALACE samples.

# 3.2 Chlorinated solvents: CCl<sub>4</sub>, CH<sub>3</sub>CCl<sub>3</sub>, CHCl<sub>3</sub>, CH<sub>2</sub>Cl<sub>2</sub>, and C<sub>2</sub>Cl<sub>4</sub>

Carbon tetrachloride (CCl<sub>4</sub>) was reported by 12 laboratories on five independent scales (Fig. 2a). The standard deviation of results among five scales was 1.8 ppt (1.9%). The difference between the NOAA scale (laboratory 1) and the SIO-05 scale (laboratory 2, ECD results) was 2.7%. This is comparable to both the 2.6% difference reported by Xiao et al. (2010a) based on co-located sampling results, and the 2.6% difference based on 2007–2008 global means (Table 6).

There remains a discrepancy between bottom-up inventories and top-down measurement-based estimates of global CCl<sub>4</sub> emissions (UNEP, 2007; Montzka et al., 2011). From the IHALACE study, the largest difference between scales (laboratory 2 versus laboratory 7) is 4.8 ppt, or 5 % of the average northern hemispheric mole fraction in 2004. If we assume that this represents the full range of calibration uncertainty, then top-down estimates of CCl<sub>4</sub> emissions could be subject to 5 % uncertainty due to calibration alone. This relatively small uncertainty is not enough to explain the discrepancy between top-down and bottom-up emissions estimates.

Comparison results for  $CH_3CCl_3$  from 12 laboratories on six calibration scales are shown in Fig. 2b. Results on six scales show a variation of 0.8 ppt (3.4%) for winter samples, and 1.0 ppt (4.7%) for summer samples. The fact that all scales agree within a few ppt is remarkable considering that it has been difficult to obtain samples of pure  $CH_3CCl_3$ in the past. A prior calibration scale developed by NOAA in

| <b>Table 6.</b> Scale factors (relative to NOAA) derived from tropospheric global mean mole fractions reported in Table 1.1 of Montzka et |
|-------------------------------------------------------------------------------------------------------------------------------------------|
| al. (2011) for 2004 and 2007-2008, and from undiluted IHALACE samples (mean and standard deviation) for representative laboratories.      |
| Factors derived from AGAGE and UCI (University of California Irvine) global mean estimates can be compared with IHALACE factors           |
| from SIO and UCI-2, respectively. Unless otherwise specified, ratios were derived relative to NOAA ECD results.                           |

|                                  |                         | global mean | global mean | this work       |
|----------------------------------|-------------------------|-------------|-------------|-----------------|
|                                  |                         | 2004        | 2007-2008   |                 |
| CFC-11                           | AGAGE, SIO <sup>a</sup> | 0.9921      | 0.9939      | 0.9942 (0.0009) |
|                                  | UCI, UCI-2              | 0.9996      | 0.9970      | 1.0108 (0.0007) |
| CFC-12                           | AGAGE, SIO <sup>a</sup> | 1.0028      | 1.0034      | 1.0022 (0.0002) |
|                                  | UCI, UCI-2              | 0.9952      | 0.9949      | 0.9948 (0.0020) |
| CFC-113                          | AGAGE, SIO <sup>a</sup> | 0.9753      | 0.9777      | 0.9724 (0.0017) |
|                                  | UCI, UCI-2              | 0.9778      | 0.9874      | 0.9737 (0.0001) |
|                                  | NOAA <sup>c</sup>       | 0.9753      | 0.9854      | 0.9827 (0.0025) |
| CH <sub>3</sub> CCl <sub>3</sub> | AGAGE, SIO <sup>a</sup> | 0.967       | 0.950       | 0.946 (0.009)   |
|                                  | UCI, UCI-2              | 1.062       | 1.023       | 1.048 (0.008)   |
|                                  | NOAA <sup>c</sup>       | 0.978       | 0.962       | 0.982 (0.004)   |
| CCl <sub>4</sub>                 | AGAGE, SIO <sup>a</sup> | 0.969       | 0.974       | 0.973 (0.001)   |
|                                  | UCI, UCI-2              | 0.994       | 1.005       | 0.995 (0.001)   |
| HCFC-22*                         | AGAGE, SIO <sup>b</sup> | 1.003       | 1.000       | 0.993 (0.002)   |
|                                  | UCI, UCI-2              | 0.982       | 0.983       | 0.972 (0.013)   |
| HCFC-141b*                       | AGAGE, SIO <sup>b</sup> | 1.017       | 1.011       | 1.012 (0.001)   |
|                                  | UCI, UCI-2              | -           | 0.976       | 0.945 (0.016)   |
| HCFC-142b*                       | AGAGE, SIO <sup>b</sup> | 1.041       | 1.028       | 1.037 (0.004)   |
|                                  | UCI, UCI-2              | -           | 0.978       | 0.975 (0.010)   |
| halon-1211                       | AGAGE, SIO <sup>b</sup> | 1.014       | 1.012       | 1.021 (0.007)   |
|                                  | UCI, UCI-2              | _           | 0.999       | 0.963 (0.008)   |
|                                  | NOAA <sup>c</sup>       | 0.963       | 0.958       | 0.974 (0.008)   |
| halon-1301*                      | AGAGE, SIO <sup>b</sup> | 1.041       | 1.027       | 1.058 (0.005)   |
| CH <sub>3</sub> Br*              | AGAGE, SIO <sup>b</sup> | 1.038       | 1.020       | 0.998 (0.003)   |

\* Ratios derived relative to NOAA MS results. <sup>a</sup> AGAGE, SIO MD. <sup>b</sup> AGAGE, SIO MS. <sup>c</sup> NOAA MS.

the late 1990s was based on a  $CH_3CCl_3$  reagent that contained as much as 7 % impurities.

Like CFC-113, instruments can give different results for  $CCl_4$  and  $CH_3CCl_3$  even when the same standards are used to define the scale. Laboratories 1, 2, 9, and 17 all reported  $CH_3CCl_3$  results from both ECD and MS instruments.  $CH_3CCl_3$  differences, generally less than 0.5 ppt (2–3%), are evident in each case. Laboratories 2, 9, and 17 reported both ECD and MS results for  $CCl_4$  on the SIO-05 scale and are aware of a systematic problem in their MS method, probably due to the chromatographic column. These results imply that one needs to be careful when using data collected by different instruments. Small analytical differences can lead to discrepancies even within the same measurement program, and differences need to be assessed on an instrument-by-instrument basis.

Despite relatively small scale differences among independent scales, there are some substantial scale propagation issues for both CH<sub>3</sub>CCl<sub>3</sub> and CCl<sub>4</sub>. While some laboratories were able to reproduce results on existing scales, others were not. CCl<sub>4</sub> results reported by laboratory 3 were  $\sim$  30 ppt (34 %) larger than laboratory 1, from which the scale is derived (outlier in Fig. 2a). This could be caused by a downward drift of CCl<sub>4</sub> in one or more standards used by laboratory 3 since CCl<sub>4</sub>, at ppt levels, can decrease with time in some types of cylinders. Laboratory 3 also reported mole fractions of CH<sub>3</sub>CCl<sub>3</sub> that were 70% and 184% larger than those of laboratory 1 (see Table 3). Here, downward drift of CH<sub>3</sub>CCl<sub>3</sub> in standards used by laboratory 3 would also lead to higher reported mole fractions, but would not explain the large difference in mole fractions reported by laboratory 3 for the two undiluted samples (see Supplement).

Results for CHCl<sub>3</sub> are shown in Fig. 2c. The dispersion of five scales was 4.5 % and 15.5 % from summer and winter samples, respectively. The large standard deviation for the winter samples reflects a low mole fraction reported by laboratory 7. Excluding laboratory 7, results on four scales show a variability of  $\sim 5$  % for both summer and winter samples. Differences due to scale transfer and analytical methods are on the order of 3 %, except for the MD (ECD) measurements from laboratory 9, which are 10 % lower than laboratory 2 (scale origin).



Fig. 2. Same as Fig. 1 for trace gases (a) CCl<sub>4</sub>, (b) CH<sub>3</sub>CCl<sub>3</sub>, (c) CHCl<sub>3</sub>, (d) CH<sub>2</sub>Cl<sub>2</sub>.

CH<sub>2</sub>Cl<sub>2</sub> was measured by eight laboratories on three scales (Fig. 2d). The standard deviation of results on three scales was  $\sim 9$  %. Scale transfer errors are of similar magnitude, with all laboratories agreeing with the laboratory of scale origin within 10 %.

 $C_2Cl_4$  (figure not shown) showed better agreement than  $CH_2Cl_2$ , with a variation of < 5 % among three scales, and scale transfer differences less than 7 % in all cases except for laboratory 19, which showed differences of 30–35 % relative to laboratory 15 (scale origin) (see Supplement).

# 3.3 HCFCs and HFCs

The measurement histories of HCFCs and HFCs (1st and 2nd generation replacement for CFCs) are not as extensive as those of CFCs. Therefore, one might expect that development of measurement scales for HCFCs and HFCs is less advanced. Scale variations range from 1–2% for HCFC-22 and HCFC-141b (four scales) to 4% for HCFC-142b (four scales), and 3–6% for HFC-152a and HFC-134a (three scales) (Figs. 3 and 4a). While the relative scale differences are larger than those for CFC-11 and -12, the fact that HCFC

479

and HFCs require more advanced measurement techniques compared to CFCs, yet still show relatively good agreement among scales, is encouraging. It is likely that efforts to develop and improve CFC calibration scales through the years have translated into improved scales for HCFCs and HFCs.

The dispersion of HCFC-22 results on four scales was 1.7% for winter samples and 2.1% for summer samples. Scales developed by laboratories 1, 2, and 15 agree within 1%, while the scale developed by laboratory 16 is 4% lower. Scale transfer was excellent for some laboratories, with three of the AGAGE-affiliated laboratories demonstrating agreement within 0.5% of the SIO scale, and laboratory 4 only 0.1% different from the NOAA scale. Both SIO/NOAA and UCI-2/NOAA ratios are comparable to those based on global mean estimates.

Results for HCFC-141b and -142b are similar to those of HCFC-22. Agreement among four independent scales was 1-2% for HCFC-141b and  $\sim 3\%$  for HCFC-142b. Transfer of SIO and NOAA scales to other laboratories was excellent (<1%) for HCFC-142b in most cases, but an average difference of 10% was observed between laboratories 15 and 19. Results for HCFC-141b were similar, except that scale transfer differences were larger ( $\sim 3\%$ ) for both SIO and NOAA scales, and about the same (9%) between laboratories 15 and 19. Observed SIO/NOAA ratios for HCFC-141b (1.012) and HCFC-142b (1.037) are similar to those derived from global mean estimates (Table 6).

Four scales for HFC-134a vary by 2.7 and 4.9% for summer and winter samples, respectively (Fig. 3d). Three scales (SIO, NOAA, NIES) are close to each other, and vary by only 0.5%. Scale transfer is very good (<1%) among AGAGE laboratories (2, 9, 14, 17) and among those linked to the NOAA-04 scale (1, 4, 12). Laboratories 15 and 19 show an 11% discrepancy.

It is encouraging that nearly all laboratories detected a mole fraction difference between cylinders filled in winter and summer. In most cases the seasonal differences were similar among all labs, except for HCFC-141b (Fig. 3b). For HCFC-141b laboratories 1, 2, 4, and 17 observed a 1.0–1.5 % difference between summer and winter samples, while laboratories 14 and 16 observed smaller differences, and laboratories 11 and 19 observed differences with opposite sign.

#### 3.4 Halons

Halon results were reported on up to four independent scales with several other laboratories reporting on adopted scales. Halon-1211 was measured by nine laboratories (Fig. 4b). The standard deviation of halon-1211 results on four scales was 2.2 %. In contrast to many other trace gases measured in this experiment, scale transfer is excellent (<1 % in most cases). Only one result, from laboratory 11 (cylinder SX-3538), shows a scale transfer discrepancy greater than 1 %, and this difference is within the uncertainty reported by laboratory 11. This is impressive considering that the mole fractions of

halon-1211 in the undiluted samples were only 4.4 ppt. Scale factors derived based on global mean estimates (Table 6) are consistent with IHALACE results for SIO, but show a 4% discrepancy for UCI-2.

The dispersion of results reported for halon-1301 (Fig. 4c) was larger than that for halon-1211 (7 % versus 2.2 %). Scale transfer differences were similar in magnitude to the reported uncertainties. Note that SX-3537 was not analyzed for halon-1301 at NOAA. A NOAA value was estimated from SX-3538 (filled at the same time) using the summer/winter ratio from cylinders SX-3527 and SX-3538. This estimate does not affect the above conclusions because the mole fractions of all undiluted samples were similar for this gas.

Halon-2402 mole fractions, reported on two scales, agree within 0.05 ppt (10%) (Fig. 4d). While SX-3537 was not analyzed by NOAA, no attempt was made to estimate halon-2402 in this cylinder because both undiluted cylinders contained similar mole fractions according to results from laboratories 15, 17, and 19. Two laboratories (14 and 17) reported halon-2402 results based on provisional scales. Provisional scales are those adopted using indirect methods, such as the analysis of a subsample of a compressed gas standard, or by making measurements at a common location. These halon-2402 results differ from the scale origin (laboratory 1) by up to a factor of two. Results from laboratories 15 and 19, which are on the NCAR/UM scale, agree within 0.03 ppt (6.5%).

#### 3.5 Methyl Bromide and Methyl Chloride

Results for CH<sub>3</sub>Br from different laboratories differ by only a few percent. The standard deviations among five laboratories with independent scales were 2.2 % and 1.6 % for winter and summer samples, respectively (Table 5). Results on the UB-98 scale are not considered independent because the scale was adopted, not developed, by laboratory 11. Differences between summer and winter samples were detected by all laboratories (Fig. 5a). Scale transfer differences range from < 2% (laboratories 12 and 17) to  $\sim 10\%$  (laboratory 19). The 7% instrument-specific differences for laboratory 9 are related to a drifting calibration standard, which has led to the first set of results being overestimated. The seasonal difference in CH<sub>3</sub>Br mole fractions allows scales to be compared over a broad range. The five independent scales represented are, for the most part, linearly related to each other (Fig. 7). The SIO/NOAA ratio (0.998) is 4 % lower than that based on 2004 global mean estimates (1.038) (Table 6). This discrepancy may reflect errors in the global mean estimates rather than actual scale differences and does not appear to be caused by analytical non-linearities.

CH<sub>3</sub>Cl results are similar to those of CH<sub>3</sub>Br, with relatively small differences among five independent scales (standard deviation  $\sim 2.5$  %) (Fig. 5b). The large apparent scale difference between SIO-05 and UB-98 (compare laboratories 2 and 11) is complicated by the similarly large scale propagation error between laboratories 2 and 11 for the SIO-05



Fig. 3. Same as Fig. 1 for trace gases (a) HCFC-22, (b) HCFC-141b, (c) HCFC-142b, (d) HFC-134a.

scale. NOAA results indicate that undiluted cylinders from sets 1 and 2 had similar mole fractions, which is inconsistent with results from laboratory 11. Other laboratory comparisons (P. K. Salameh, personal communication, 2010) indicate that the UB-98 scale is 1.5 % higher than SIO-05, which then implies that the laboratory 11 results are  $\sim 25$  ppt too low. The difference between the NOAA scale and the SIO-05 scale (laboratories 1 and 2) is 0.8 %, similar to the difference of 1.01 % used by Xiao et al. (2010b) based on co-located sampling.

#### 3.6 Very short-lived halocompounds

Few laboratories reported results for very short-lived halocompounds, such as CHBr<sub>3</sub>, CH<sub>2</sub>Br<sub>2</sub>, and CH<sub>3</sub>I. However, recent interest in these gases (Read et al., 2008; Carpenter et al., 2009; Jones et al., 2011) warrants their inclusion. For CH<sub>2</sub>Br<sub>2</sub> and CHBr<sub>3</sub>, only laboratories 1 and 15 provided results on independent scales, and laboratory 12 provided results on scales obtained from laboratory 1. There does not appear to have been a significant change in the mole fractions of CHBr<sub>3</sub> and CH<sub>3</sub>I in the IHALACE cylinders during



Fig. 4. Same as Fig. 1 for trace gases (a) HFC-152a, (b) halon-1211, (c) halon-1301, (d) halon-2402.

the experiment. An upward drift of 10-20 % over three years is suggested for CH<sub>2</sub>Br<sub>2</sub>.

For CH<sub>2</sub>Br<sub>2</sub>, differences between scales (laboratories 1 and 15) averaged 16% (0.12 ppt) (Fig. 5d) after adjusting for possible drift in CH<sub>2</sub>Br<sub>2</sub>. Scale transfer differences were 15% between laboratories 1 and 12, but only 5% between laboratories 15 and 19. Jones et al. (2011) reported scale differences of 20-70% and relatively small transfer differences (less than 3%).

For CHBr<sub>3</sub>, the difference between laboratories 1 and 15 was 30 % while the difference between laboratories 1 and 12 (same scale) was 6 % (Fig. 6a). Jones et al. (2011) reported scale differences as high as 70 % and scale transfer differences of ~ 15 %.

For CH<sub>3</sub>I, results from most laboratories agreed within 20%, with the exception of laboratory 15, which was a factor of 2 higher than the rest. Jones et al. (2011) also reported factor of 2 differences for CH<sub>3</sub>I.



Fig. 5. Same as Fig. 1 for trace gases (a) CH<sub>3</sub>Br, (b) CH<sub>3</sub>Cl, (c) CH<sub>3</sub>I, (d) CH<sub>2</sub>Br<sub>2</sub>.

Overall, the comparison of CH<sub>2</sub>Br<sub>2</sub>, CHBr<sub>3</sub>, and CH<sub>3</sub>I scales is promising considering that these gases are typically more difficult to measure compared to CFCs and HCFCs, and mole fractions in the IHALACE cylinders were less than 1 ppt. Comparisons carried out at higher mole fractions (2–5 ppt) might make quantifying scale differences easier for these gases.

# 3.7 Nitrous Oxide, SF<sub>6</sub>, Methane, and Carbonyl Sulfide

The long atmospheric lifetime and small spatial gradients of nitrous oxide  $(N_2O)$  mean that compatibility requirements

are high. For multiple data sets to be optimally useful in inverse modeling, data should be compatible to within 0.1 ppb (WMO/GAW, 2009). This level of compatibility is often not met using ECD-based methods (WMO/GAW, 2011). However, progress has been made in recent years and studies involving multiple data sets have been performed (Hirsch et al., 2006; Huang et al., 2008; Nevison et al., 2011; Saikawa et al., 2013).

Nitrous oxide results varied by 0.72-0.87 ppb (0.23-0.27%) among three scales (Fig. 6b). The average difference between NOAA and SIO (undiluted samples) was



Fig. 6. Same as Fig. 1 for trace gases (a) CHBr<sub>3</sub>, (b)  $N_2O$ , (c) SF<sub>6</sub>, (d) CH<sub>4</sub> ( $N_2O$  and CH<sub>4</sub> in nmol mol<sup>-1</sup> = ppb).

0.08 ppb, which is comparable to differences reported by Hall et al. (2007) and Huang at al. (2008). The relative difference between laboratory 17 (CSIRO) and laboratory 2 (SIO) was  $0.02 \pm 0.03$  %, which differs slightly from the 0.17 % reported by Huang et al. (2008). There also appears to be good agreement between these scales and the NIST scale, except that the best agreement is shown by laboratory 15 (UM-2, adopted scale) and not laboratory 7 (NIST, scale origin). The difference between NIST and NOAA based on undiluted samples is 1.37 ppb, or 0.4 %. This is larger and of opposite sign compared to that reported by Hall et al. (2007) (-0.2%), but is within the uncertainties reported by NIST. A new scale has recently been developed by NIST, and a subsequent NIST-NOAA comparison has shown much better agreement (Kelley et al., 2013). Among laboratories on the same scale, compatibility is excellent for some (1, 5, 8; 2, 9, 17) and not so good for others (1, 3; 2, 13). We note that laboratory 13 recently adopted the NOAA-2006 N<sub>2</sub>O scale, and that compatibility is much improved. The average difference between laboratories 1 and 8 (KIT) is < 0.1 ppb for undiluted samples. This is an important result because of the roles served by these laboratories within the WMO/GAW



**Fig. 7.** Results from both diluted and undiluted samples for  $CH_3Br$  for five laboratories plotted against NOAA results. Five  $CH_3Br$  scales show a near-linear relationship over the range of mole fractions sampled.

program (NOAA as the Central Calibration Laboratory for N<sub>2</sub>O, and KIT as the World Calibration Center). It is essential that these laboratories remain closely linked. Finally, summer/winter differences between the two undiluted cylinders ( $\sim -0.2$  ppb) were detected by most laboratories (1, 2, 3, 5, 8, 9, 13, 15, 17) and overestimated by some (laboratories 7, 12, 14). While the results are encouraging overall, there is room for improvement in inter-laboratory compatibility.

 $SF_6$  was reported on four scales (Fig. 6c). Three of these are in excellent agreement. Ratios of commonly used scales relative to the NOAA-2006 scale are 0.9954 (University of Heidelberg) and 0.9991 (SIO) based on undiluted samples. The SIO/NOAA ratio is close to the mean scale factor of  $0.998 \pm 0.005$  reported by Rigby et al. (2010) based on colocated sampling at five stations. While the three primary scales in use by the atmospheric science community show good agreement, scale transfer issues exist. Relatively large differences between laboratories 1 and 4 (NOAA scale) and laboratories 2, 11, and 14 (SIO scale) are apparent. However, it is encouraging that the precision reported by some laboratories is excellent. The average difference between summer and winter samples measured by laboratory 1 was 0.03 ppt. This difference, as measured by laboratories 2, 5, 6, 9, 13, and 14 was 0.03, 0.02, 0.06, 0.03, and 0.02 ppt, respectively. Thus, some laboratories are capable of resolving very small mole fraction differences.

Twelve laboratories reported CH<sub>4</sub> mole fractions on three scales (Fig. 6d). Scale differences are small (< 0.3 %). The relationship between the NOAA04 scale and the Tohoku University scale, 1.0003 as derived by Dlugokencky et al. (2005), is confirmed here. The average ratio of four laboratories on the Tohoku University scale relative to the NOAA results is  $1.0003 \pm 0.0002$ . Both the NOAA04 and Tohoku University scales appear to have been propagated to within 2 ppb, which

is the WMO/GAW compatibility goal for measurements on the same scale (WMO/GAW, 2009). All laboratories also detected a 24–28 ppb summer/winter difference to within a few ppb. The only disagreement is between laboratories 7 and 15, which reported data on the NIST scale. The average result from laboratory 7 is 0.3 % higher than laboratory 1, which agrees with previous comparisons between NIST and NOAA (Dlugokencky et al., 2005). Thus, the laboratory 15 results are likely too low.

Carbonyl sulfide (COS) data were not part of the original data submission and are not shown. However, scale comparison information is of interest, particularly since measurements of COS may be useful as a tracer of photosynthesis (Montzka et al., 2007; Campbell et al., 2008). The standard deviation of COS data from four independent scales (winter samples) was 25 ppt (3.9%). Two scales (1, 10) showed higher COS amounts, while two scales (15, 19) tended to be lower. All laboratories detected a large difference between summer and winter samples, consistent with the seasonal drawdown of COS over the continental US in summer (Montzka et al., 2007) (Supplement). The average difference between winter and summer values was 169 ppt (laboratories 1, 10, 19). This large seasonal difference, combined with results from the diluted sample, allows linear relationships among COS scales to be estimated. Here we compare to the NOAA scale as: Y = aX + b, where X is NOAA and Y is another scale: [Laboratory Number, a, b], (10, 1.064, -33), (15, 0.928, 17), (19, 0.985, -35). For example, the relationship between laboratory 10 and NOAA is  $Y_{10} = 1.064 \cdot \text{NOAA} - 33 \text{ ppt.}$ 

## 3.8 Linearity issues

The atmospheric mole fractions of most of the trace gases studied in this experiment have not been constant over time. CFC mole fractions increased rapidly in the 1980s and have been declining slowly over the last decade, and mole fractions of HCFCs continue to increase (Montzka et al., 2009; O'Doherty et al., 2004). Thus, a scale comparison based on air samples at one point in time may not be valid for other time periods. Furthermore, the analysis method, particularly an ECD, may exhibit a non-linear response, whereby calibration using reference standards over a particular range of mole fractions might lead to errors outside that range. We address this briefly by comparing results for diluted and undiluted samples. We focus on gases for which sampling issues and precision are less likely to influence the results. To simplify the analysis, we define a linearity factor (LF) as:

$$LF = \frac{(X_i/X_1)_{diluted}}{(X_i/X_1)_{undiluted}},$$
(1)

where  $X_i$  is the result from laboratory *i*, and  $X_1$  is the NOAA result, for diluted and undiluted samples. This factor provides an indication of whether or not a constant scale factor might be applied over a 20–30 % mole fraction range. An LF of 1.0



**Fig. 8.** Linearity factors relative to NOAA for select gases. A linearity factor of 1.0 corresponds to scale factors that are the same for both diluted and undiluted samples (NOAA results used for comparison are 1.0 by default and are not shown). Filled symbols denote laboratories that develop calibration scales, while open symbols denote those that adopt existing scales (see Table S1 for scale definitions). Note that symbol colors do not indicate common scales, as was the case in Figs. 1–6. Data have been shifted on the *x* axis for clarity. Error bars are 1 s.d. Linearity factors are relative to NOAA ECD results in panels (**a**), (**b**), and (**d**), and to NOAA MS results in panel (**c**).

results when scales differ by a constant factor at both ambient and sub-ambient mole fractions.

Linearity factors for CFC-113, CFC-12, and CFC-11 are shown in Fig. 8a. For CFC-113, linearity factors from four laboratories that prepare primary standards are close to the same value (1.02) and one laboratory (15) shows a ratio close to 1.00. Because a number of laboratories show similar results compared to the NOAA ECD-based CFC-113, it seems that the NOAA ECD-based CFC-113 scale may be subject to a co-elution or perhaps the non-linear response of the NOAA ECD was not fully characterized. CFC-12 ECD results from NOAA and SIO differ by only 1 ppt at 535 ppt, but differ by 10 ppt at 448 ppt (LF =  $1.0218 \pm 0.0032$ , 1 s.d.). This suggests that long-term records based on NOAA and SIO measurements might diverge at lower mole fractions. While these are relatively small differences on a percentage basis, they are larger than the typical analytical precision. SIO MS results are more consistent with NOAA ECD results over a 20 % mole fraction range (LF =  $1.0058 \pm 0.0030$ ). Similarly, mole fractiondependent differences were also small for laboratories 7, 15, and 19 compared to NOAA ECD results. We can use the LF results to estimate potential errors introduced by the use of fixed scale factors to adjust calibration scales over a 20% mole fraction range. For example, LFs derived for CFC-11 are within 1% of 1.0 for most laboratories, but the difference between laboratories 7 and 15 is nearly 3%. Thus, if CFC-11 results on the NIST scale were adjusted to the NCAR/UM scale using a fixed scale factor based on undiluted samples from this experiment, errors up to 3% could result in mole fractions 20% lower than that upon which the fixed factor was derived. In contrast, results from laboratories 2 and 19 would likely be subject to much less uncertainty when adjusted by fixed scale factors over this range, since LFs from these laboratories are nearly identical.

Linearity factors for  $CH_3CCl_3$  are close to 1.0 for most laboratories (Fig. 8b). However, LFs for several laboratories are less than 1.0, with an average of 0.986 for laboratories 9, 11, 14, 15, 16, 17, 19. This is likely due to the choice of reference values (NOAA ECD) used to calculate LFs. If NOAA MS results are used as reference values instead, LF factors increase by an average of 1.2 %. The same group of laboratories would then show an average LF of 0.999. This suggests a non-linearity or co-elution that affects the NOAA ECD data. Linearity of  $CH_3CCl_3$  response could be important when interpreting historical  $CH_3CCl_3$  data because of the rapid decline in  $CH_3CCl_3$  mole fraction that has occurred over the last two decades.

Linearity factors for CCl<sub>4</sub> (Fig. 8b) show little variation among laboratories that prepare primary standards (1, 2, 7, 15, 19), with most LFs within 1 % of 1.00. This suggests that non-linear effects are not a major factor contributing to the observed 5 % scale differences discussed earlier.

Only small mole-fraction-dependent scale differences were observed for HCFC-141b, HCFC-22 (Fig. 8c), and HCFC-142b (not shown). Therefore application of a constant scale factor for these gases is unlikely to result in large errors over a limited mole fraction range. Linearity factors for HCFC-22 are nearly all within 1% of 1.00, and many are not different from 1.00 given reported uncertainties. The LF factors for HCFC-141b range from 0.98 to 1.02, but in most cases differences between undiluted and undiluted samples are about the same as the analytical precision. HFC-134a also shows good linearity in this comparison with most LFs within 1 s.d. of 1.0. Better scale transfers and linearity factors close to 1.0 for HCFCs may be partly due to the fact that MS instruments are more commonly used to measure HCFCs, and their response tends to be more linear than that of an ECD.

Nitrous oxide, which is typically measured using ECDs, showed discrepancies in scale relationship and scale transfer in some cases (Fig. 6b). While the NOAA-NIST (1,7) difference is consistent for both diluted and undiluted samples, the NOAA-SIO (1, 2) difference increases substantially at the lower mole fractions, and this difference is not consistent among other laboratories linked to the SIO-98 scale (2, 9, 13, 14, 17). Laboratories 9 and 17 show LFs close to 1.0

on the SIO-98  $N_2O$  scale, but laboratory 2 (scale origin) does not (Fig. 8d). This discrepancy could be due to the fact that the SIO-98  $N_2O$  scale was developed over a limited mole fraction range, and the diluted samples measured here are outside the range of the SIO-98 scale.

For halon-1211, scale transfer was excellent for both diluted and undiluted samples (Fig. 8d), with linearity factors remarkably consistent near 1.0. Similarly, most LFs for SF<sub>6</sub> are not significantly different from 1.0. This is important because SF<sub>6</sub> mole fractions are increasing at ~ 0.25 ppt yr<sup>-1</sup> (Levin et al., 2010; Rigby et al., 2010) and any comparison among laboratories will soon be obsolete unless linearity can be demonstrated. The same is true for other gases with rapidly changing mole fractions, such as HFC-134a.

Linearity factors shown here are based on a limited data set, and do not include time-dependent sampling issues that might influence real-world data. Long-term data records from similar locations should always be considered when applying scale factor adjustments across changes in mole fraction and time. Furthermore, agencies responsible for collecting the original data should be consulted whenever the application of scale factors is considered.

#### 4 Summary

A comparison of numerous halogenated and other trace gases was carried out among 19 laboratories. These results reveal substantial improvements in calibration over previous comparisons (Rasmussen, 1978; Fraser, 1979; Prinn et al., 1998). However, scale differences for many compounds are large compared to atmospheric surface gradients, and merging data on independent scales without regard for scale differences is not advised. Furthermore, differences due to scale propagation were found to be as large or larger than differences between independent scales in many cases.

Scale differences ranged from 2% for CFC-11 and CFC-12 to a factor of two for CH<sub>3</sub>I. Depending on how data from different measurement networks are used, even differences on the order of 2% could be important. Relatively large discrepancies among calibration scales were identified for CHCl<sub>3</sub>, CH<sub>2</sub>Cl<sub>2</sub>, CH<sub>3</sub>I, and CHBr<sub>3</sub>, with standard deviations of results on independent scales of 15 %, 9 %, 12 %, and 13%, respectively. These gases could be important sources of halogen to the upper troposphere and lower stratosphere and calibration scale differences could influence estimates of their abundance in these regions. The standard deviation of CCl<sub>4</sub> results on five scales was 1.9%, and the largest difference between any two scales was 5 %. Thus, uncertainties in top-down CCl<sub>4</sub> emissions estimates solely due to calibration uncertainties are likely less than 5%. Scale differences for CH<sub>4</sub>, N<sub>2</sub>O, and SF<sub>6</sub> reported previously were confirmed.

Scale propagation errors were relatively small for some gases (< 1 % for halon-1211, < 1 % for HFC-134a, < 0.05 % for CH<sub>4</sub>) and larger for others (10 % for CFC-113, factor of

2 for CH<sub>3</sub>CCl<sub>3</sub>) and varied among laboratories. Scale propagation errors are considered large when they are larger than twice the typical analytical precision. In general, laboratories associated with the AGAGE network showed smaller scale transfer differences than others, but not in all cases. Differences between measurement methods (ECD versus MS) are apparent, suggesting that co-elution or matrix effects may be important for some gases.

As a result of this experiment, cooperation among laboratories making similar measurements has improved. These results, available to participants since 2008, have stimulated the exchange of calibrated air samples and data in efforts to understand some of the observed differences on a bi-lateral or multi-lateral basis. While these results provide a framework for relating calibration scales and measurement results among measurement programs, they should not be the sole basis upon which such relationships are derived. A one-time assessment of measurement differences is not sufficient to fully characterize all aspects of the measurement of these and other trace gases.

# Supplementary material related to this article is available online at http://www.atmos-meas-tech.net/7/ 469/2014/amt-7-469-2014-supplement.zip.

Acknowledgements. Funding for this experiment was provided by NASA (Upper Atmospheric Research Program, Mike Kurylo), NOAA (Atmospheric Chemistry, Carbon Cycle, and Climate program (AC4)), and the WMO. Len Barrie and Oksana Tarasova (WMO/GAW) provided administrative support. Adrian Tuck (formerly with NOAA) served as a data referee. The late Laurie Porter is thanked for performing all of the IHALACE analyses at Cape Grim on the AGAGE instruments and for the initial data analysis. The Australian Bureau of Meteorology is thanked for its long-term funding and management of the Cape Grim Baseline Air Pollution station, and CSIRO is thanked for its long-term support of the Global Atmospheric Sampling LABoratory (GASLAB). We also thank Carolina Siso (NOAA) for performing the analysis.

Edited by: F. Keppler

#### References

- Apel, E. C., Calvert, J. G., and Fehsenfeld, F. C.: The Nonmethane Hydrocarbon Intercomparison Experiment (NOMHICE): Tasks 1 and 2, J. Geophys. Res., 99, 16651–16664, 1994.
- Apel, E. C., Calvert, J. G., Gilpin, T. M., Fehsenfeld, F., and Lonneman, W. A.: Nonmethane Hydrocarbon Intercomparison Experiment (NOMHICE): Task 4, ambient air, J. Geophys. Res., 108, 4300, doi:10.1029/2002JD002936, 2003.
- Artuso, F., Chamard, P., Chiavarini, S., di Sarra, A., Meloni, D., Piacentino, S., and Sferlazzo, D. M.: Tropospheric halocarbons and nitrous oxide monitored at a remote site in the Mediterranean, Atmos. Environ., 44, 4944–4953, 2010.
- Blake, N. J., Blake, D. R., Simpson, I. J., Meinardi, S., Swanson, A. L., Lopez, J. P., Katzenstein, A. S., Barletta, B., Shirai, T.,

Atlas, E., Sachse, G., Avery, M., Vay, S., Fuelberg, H. E., Kiley, C. M., Kita, K., and Rowland, F. S.: NMHCs and halocarbons in Asian continental outflow during the Transport and Chemical Evolution over the Pacific (TRACE-P) Field Campaign: Comparison With PEM-West B, J. Geophys. Res., 108, 8806–8830, doi:10.1029/2002JD003367, 2003.

- Brunke, E.-G., Scheel, H. E., and Seiler, W.: Trends of tropospheric CO, N<sub>2</sub>O and CH<sub>4</sub> as observed at Cape Point, South Africa, Atmos. Environ., 24A, 585–595, 1990.
- Campbell, J. E., Carmichael, G. R., Chai, T., Mena-Carrasco, M., Tang, Y., Blake, D. R., Blake, N. J., Vay, S. A., Collatz, G. J., Baker, I., Berry, J. A., Montzka, S. A., Sweeney, C., Schnoor, J. L., and Stanier, C. O.: Photosynthetic Control of Atmospheric Carbonyl Sulfide During the Growing Season, Science, 322, 1085–1088, 2008.
- Carpenter, L. J., Jones, C. E., Dunk, R. M., Hornsby, K. E., and Woeltjen, J.: Air-sea fluxes of biogenic bromine from the tropical and North Atlantic Ocean, Atmos. Chem. Phys., 9, 1805–1816, doi:10.5194/acp-9-1805-2009, 2009.
- Dlugokencky, E. J., Myers, R. C., Lang, P. M., Masarie, K. A., Crotwell, A. M., Thoning, K. W., Hall, B. D., Elkins, J. W., and Steele, L. P.: Conversion of NOAA atmospheric dry air CH<sub>4</sub> mole fractions to a gravimetrically prepared standard scale, J. Geophys. Res., 110, D18306, doi:10.1029/2005JD006035, 2005.
- Engel, A., Schmidt, U., and Stachnik, R. A.: Partitioning between chlorine reservoir species deduced from observations in the Arctic winter stratosphere, J. Atmos. Chem., 27, 107–126, 1997.
- Fraser, P. J.: Baseline atmospheric halocarbon measurements: An interlaboratory calibration comparison, WMO Report Bo. 549, Special Environmental Report No. 14, Geneva, Switzerland, 1979.
- Hall, B. D., Dutton, G. S., and Elkins, J. W.: The NOAA nitrous oxide standard scale for atmospheric observations, J. Geophys. Res., 112, D09305, doi:10.1029/2006JD007954, 2007.
- Hammer, S.: "Quantification of the regional H<sub>2</sub> sources and sinks inferred from atmospheric trace gas variability", Ph.D. thesis, University of Heidelberg, 2008.
- Happell J. D. and Wallace, D. W. R.: Gravimetric preparation of gas phase standards containing volatile halogenated compounds for oceanographic applications, Deep Sea Res., 44, 1725–1738, 1997.
- Hirsch, A. I., Michalak, A. M., Bruhwiler, L. M., Peters, W., Dlugokencky, E. J., and Tans, P. P.: Inverse modeling estimates of the global nitrous oxide surface flux from 1998–2001, Global Biogeochem. Cy., 20, GB1s008, doi:10.1029/2004GB002443, 2006.
- Huang, J., Golombek, A., Prinn, R., Weiss, R., Fraser, P., Simmonds, P., Dlugokencky, E. J., Hall, B., Elkins, J., Steele, P., Langenfelds, R., Krummel, P., Dutton, G., and Porter, L.: Estimation of regional emissions of nitrous oxide from 1997 to 2005 using multi-network measurements, a chemical transport model, and an inverse method, J. Geophys. Res., 113, D17313, doi:10.1029/2007JD009381, 2008.
- JCGM 200: International vocabulary of metrology Basic and general concepts and associated terms (VIM 3), ISO/IEC Guide 99, 2007, International Organization for Standardization (ISO)/International Electrotechnical Commission (IEC), Geneva, Switzerland, 2008.
- Jones, C. E., Andrews, S. J., Carpenter, L. J., Hogan, C., Hopkins, F. E., Laube, J. C., Robinson, A. D., Spain, T. G., Archer, S. D.,

#### **B. D. Hall et al.: Results from IHALACE**

Harris, N. R. P., Nightingale, P. D., O'Doherty, S. J., Oram, D. E., Pyle, J. A., Butler, J. H., and Hall, B. D.: Results from the first national UK inter-laboratory calibration for very short-lived halocarbons, Atmos. Meas. Tech., 4, 865–874, doi:10.5194/amt-4-865-2011, 2011.

- Kelley, M. E., Rhoderick, R. C., and Guenther, F. R.:Development and verification of air balance gas primary standards for the measurement of nitrous oxide at atmospheric levels, Anal. Chem., in preparation, 2013.
- Levin, I., Naegler, T., Heinz, R., Osusko, D., Cuevas, E., Engel, A., Ilmberger, J., Langenfelds, R. L., Neininger, B., Rohden, C. v., Steele, L. P., Weller, R., Worthy, D. E., and Zimov, S. A.: The global SF6 source inferred from long-term high precision atmospheric measurements and its comparison with emission inventories, Atmos. Chem. Phys., 10, 2655–2662, doi:10.5194/acp-10-2655-2010, 2010.
- Loewenstein, M., Jost, H., Grose, J., Eilers, J., Lynch, D., Jensen, S., and Marmie, J.: Argus: A new instrument for the measurement of the stratospheric dynamical tracers, N<sub>2</sub>O and CH<sub>4</sub>, Spectrochim. Acta, Part A, 58, 2329–2345, 2002.
- Maione, M., Arduini, J., Mangani, G., and Geniali, A.: Evaluation of an automatic sampling gas chromatographic-mass spectrometric instrument for continuous monitoring of trace anthropogenic gases, Int. J. Environ. Anal. Chem., 84, 241–253, doi:10.1080/03067310310001626740, 2004.
- Miller, B. R., Weiss, R. F., Salameh, P. K., Tanhua, T., Greally, B. R., Mühle, J., and Simmonds, P. G.: Medusa: A sample premole fraction and GC/MS system for in situ measurements of atmospheric trace halocarbons, hydrocarbons, and sulfur compounds, Anal. Chem., 1536–1545, doi:10.1021/ac702084k, 2008.
- Montzka, S. A., Myers, R. C., Butler, J. H., Elkins, J. W., and Cummings, S. O.: Global tropospheric distribution and calibration scale of HCFC-22, Geophys. Res. Lett., 20, 703–706, 1993.
- Montzka, S. A., Calvert, P., Hall, B. D., Elkins, J. W., Conway, T. J., Tans, P. P., and Sweeney, C.: On the global distribution, seasonality, and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO<sub>2</sub>, J. Geophys. Res., 112, D09302, doi:10.1029/2006JD007665, 2007.
- Montzka, S. A., Hall, B. D., and Elkins, J. W.: Accelerated increases in observed hydrochlorofluorocarbons since 2004 in the global atmosphere, Geophys. Res. Lett., 36, L03804, doi:10.1029/2008GL036475, 2009.
- Montzka, S. A., Reimann, S. (Coordinating Lead Authors), Engel,
  A., Krüer, K., O'Doherty, S. J., Sturges, W. T., Blake, D., Dorf,
  M., Fraser, P., Froidevaux, L., Jucks, K., Kreher, K., Kurylo, M.
  J., Melloouki, A., Miller, J., Nielsen, O.-J., Orkin, V. L., Prinn, R.
  G., Rhew, R., Santee, M. L., Stohl, A., and Verdonik, D.: OzoneDepleting Substances (ODSs) and Related Chemicals, Chapter
  1, in Scientific Assessment of Ozone Depletion: 2010, Global
  Ozone Research and Monitoring Project-Report No. 52, World
  Meteorological Organization, Geneva, Switzerland, 2011.
- Nevison, C. D., Dlugokencky, E., Dutton, G., Elkins, J. W., Fraser, P., Hall, B., Krummel, P. B., Langenfelds, R. L., O'Doherty, S., Prinn, R. G., Steele, L. P., and Weiss, R. F.: Exploring causes of interannual variability in the seasonal cycles of tropospheric nitrous oxide, Atmos. Chem. Phys., 11, 3713–3730, doi:10.5194/acp-11-3713-2011, 2011.
- O'Doherty, S., Cunnold, D. M., Manning, A., Miller, B. R., Wang, R. H. J., Krummel, P. B., Fraser, P. J., Simmonds, P. G., McCul-

loch, A., Weiss, R. F., Salameh, P., Porter, L. W., Prinn, R. G., Huang, J., Sturrock, G., Ryall, D., Derwent, R. G., and Montzka, S. A.: Rapid growth of hydrofluorocarbon 134a and hydrochlorofluorocarbons 141b, 142b, and 22 from Advanced Global Atmospheric Gases Experiment (AGAGE) observations at Cape Grim, Tasmania, and Mace Head, Ireland, J. Geophys. Res., 109, D06310, doi:10.1029/2003JD004277, 2004.

- Plass-Dülmer, C., Schmidbauer, N., Slemr, J., Slemr, F., and D'Souza, H.: European hydrocarbon intercomparison experiment AMOHA part 4: Canister sampling of ambient air, J. Geophys. Res, 111, D04306, doi:10.1029/2005JD006351, 2006.
- Prinn, R. G., Zander, R. (Coordinating Lead Authors), Cunnold, D. M., Elkins, J. W., Engel, A., Fraser, P. J., Gunson, M. R., Ko, M. K. W., Mahieu, E., Midgley, P. M., Russell, J. M., Volk, C. M., and Weiss, R. F.: Long-Lived Ozone-Related Compounds, Chapter 1, in: Scientific Assessment of Ozone Depletion: 1998, Global Ozone Research and Monitoring Project-Report No. 44, World Meteorological Organization, Geneva, Switzerland, 1998.
- Prinn, R. G., Weiss, R. F., Fraser, P. J., Simmonds, P. G., Cunnold, D. M., Alyea, F. N., O'Doherty, S., Salameh, P., Miller, B. R., Huang, J., Wang, R. H. J., Hartley, D. E., Harth, C., Steele, L. P., Sturrock, G., Midgley, P. M., and McCulloch, A.: A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE, J. Geophys. Res., 105, 17751– 17792, 2000.
- Rasmussen, R. A.: Interlaboratory comparison of fluorocarbons measurements, Atmos. Environ., 12, 2505–2508, 1978.
- Read, K. A., Mahajan, A. S., Carpenter, L. J., Evans, M. J., Faria, B. V. E., Heard, D. E., Hopkins, J. R., Lee, J. D., Moller, S. J., Lewis, A. C., Mendes, L., McQuaid, J. B., Oetjen, H., Saiz-Lopez, A., Pilling, M. J., and Plane, J. M. C.: Extensive halogen mediated ozone destruction over the tropical Atlantic Ocean, Nature, 453, 7199, 1232–1235, doi:10.1038/nature07035, 2008.
- Rhoderick, G. C. and Dorko, W. D.: Standards development of global warming gas species: Methane, nitrous oxide, trichlorofluoromethane, and dichlorodifluoromethane, Environ. Sci. Tech., 38, 2685–2692, 2004.
- Rigby, M., Mühle, J., Miller, B. R., Prinn, R. G., Krummel, P. B., Steele, L. P., Fraser, P. J., Salameh, P. K., Harth, C. M., Weiss, R. F., Greally, B. R., O'Doherty, S., Simmonds, P. G., Vollmer, M. K., Reimann, S., Kim, J., Kim, K.-R., Wang, H. J., Olivier, J. G. J., Dlugokencky, E. J., Dutton, G. S., Hall, B. D., and Elkins, J. W.: History of atmospheric SF<sub>6</sub> from 1973 to 2008, Atmos. Chem. Phys., 10, 10305–10320, doi:10.5194/acp-10-10305-2010, 2010.
- Saikawa, E., Rigby, M., Prinn, R. G., Montzka, S. A., Miller, B. R., Kuijpers, L. J. M., Fraser, P. J. B., Vollmer, M. K., Saito, T., Yokouchi, Y., Harth, C. M., Mühle, J., Weiss, R. F., Salameh, P. K., Kim, J., Li, S., Park, S., Kim, K.-R., Young, D., O'Doherty, S., Simmonds, P. G., McCulloch, A., Krummel, P. B., Steele, L. P., Lunder, C., Hermansen, O., Maione, M., Arduini, J., Yao, B., Zhou, L. X., Wang, H. J., Elkins, J. W., and Hall, B.: Global and regional emissions estimates for HCFC-22, Atmos. Chem. Phys. Discuss., 12, 18243–18285, doi:10.5194/acpd-12-18243-2012, 2012.
- Saikawa, E., Prinn, R. G., Dlugokencky, E., Ishijima, K., Dutton, G. S., Hall, B. D., Langenfelds, R., Tohjima, Y., Machida, T., Manizza, M., Rigby, M., O'Doherty, S., Patra, P. K., Harth, C. M., Weiss, R. F., Krummel, P. B., van der Schoot, M., Fraser,

P. B., Steele, L. P., Aoki, S., Nakazawa, T., and Elkins, J. W.: Global and regional emissions estimates for  $N_2O$ , Atmos. Chem. Phys. Discuss., 13, 19471–19525, doi:10.5194/acpd-13-19471-2013, 2013.

- Saltzman, E. S., Aydin, M., Williams, M. B., Verhulst, K. R., and Gun, B.: Methyl Chloride in a deep ice core from Siple Dome, Antarctica, Geophys. Res. Lett., 36, L03822, doi:10.1029/2008GL036266, 2009.
- Schauffler, S. M., Atlas, E. L., Blake, D. R., Flocke, F., Lueb, R. A., Lee-Taylor, J. M., Stroud, V., and Travnicek, W.: Distributions of brominated organic compounds in the troposphere and lower stratosphere, J. Geophys. Res., 104, 21513–21536, 1999.
- Simmonds, P. G., O'Doherty, S., Nickless, G., Sturrock, G. A., Swaby, R., Knight, P., Ricketts, J., Woffendin, G., and Smith, R.: Automated gas chromatograph mass spectrometer for routine atmospheric field measurements of the CFC replacement compounds, the hydrofluorocarbons and hydrochlorofluorocarbons, Anal. Chem., 67, 717–723, 1995.
- UNEP: UNEP 2006 Assessment Report of the Technology and Economic Assessment Panel, SMI Distribution Service Ltd., Stevenage, Hertfordshire, UK, 2007.
- WMO/GAW Report No. 186: 14th WMO/IAEA Meeting of Experts on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques, WMO/TD-No. 1487, edited by: Laurila, T., Geneva, Switzerland, 2009.
- WMO/GAW Report No. 194: 15th WMO/IAEA Meeting of Experts on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques, WMO/TD-No. 1553, edited by: Brand, W. A., Geneva, Switzerland, 2011.

- Worthy, D. E. J., Platt, A., Kessler, R., Ernst, M., and Racki, S.: The greenhouse gases measurement program, measurement procedures and data quality, in: Canadian Baseline Program; Summary of Progress to 2002, chap. 4, Meteorol. Service of Canada., Environment Canada, Downsview, Ont., Canada, 97–120, 2003.
- Xiao, X., Prinn, R. G., Fraser, P. J., Weiss, R. F., Simmonds, P. G., O'Doherty, S., Miller, B. R., Salameh, P. K., Harth, C. M., Krummel, P. B., Golombek, A., Porter, L. W., Butler, J. H., Elkins, J. W., Dutton, G. S., Hall, B. D., Steele, L. P., Wang, R. H. J., and Cunnold, D. M.: Atmospheric three-dimensional inverse modeling of regional industrial emissions and global oceanic uptake of carbon tetrachloride, Atmos. Chem. Phys., 10, 10421–10434, doi:10.5194/acp-10-10421-2010, 2010a.
- Xiao, X., Prinn, R. G., Fraser, P. J., Simmonds, P. G., Weiss, R. F., O'Doherty, S., Miller, B. R., Salameh, P. K., Harth, C. M., Krummel, P. B., Porter, L. W., Mühle, J., Greally, B. R., Cunnold, D., Wang, R., Montzka, S. A., Elkins, J. W., Dutton, G. S., Thompson, T. M., Butler, J. H., Hall, B. D., Reimann, S., Vollmer, M. K., Stordal, F., Lunder, C., Maione, M., Arduini, J., and Yokouchi, Y.: Optimal estimation of the surface fluxes of methyl chloride using a 3-D global chemical transport model, Atmos. Chem. Phys., 10, 5515-5533, doi:10.5194/acp-10-5515-2010, 2010b.
- Yokouchi, Y., Toom-Sauntry, D., Yazawa, K., Inagaki, T., and Tamaru, T.: Recent decline of methyl bromide in the troposphere, Atmos. Environ., 36, 4985–4989, 2002.
- Zhao, C., Tans, P. P., and Thoning, K. W.: A high precision manometric system for absolute calibrations of CO<sub>2</sub> in dry air, J. Geophys. Res., 102, 5885–5894, 1997.