
Šimon Tóth
Miroslav Ruda

PRACTICAL EXPERIENCES
WITH TORQUE META-SCHEDULING
IN THE CZECH NATIONAL GRID

Abstract The Czech National Grid Infrastructure went through a complex transition in

the last year. The production environment has been switched from a commercial

batch system PBSPro, which was replaced by an open source alternative Torque

batch system.

This paper concentrates on two aspects of this transition. First, we will present

our practical experience with Torque being used as a production ready batch

system. Our modified version of Torque, with all the necessary PBSPro ex-

clusive features re-implemented and further extended with new features like

cloud-like behaviour, was deployed across the entire production environment,

covering the entire Czech Republic for almost a full year.

In the second part, we will present our work on meta-scheduling. This in-

volves our work on distributed architecture and cloud-grid convergence. The

distributed architecture was designed to overcome the limitations of a central

server setup, which was originally used and presented stability and performance

issues. While this paper does not discuss the inclusion of cloud interfaces into

grids, it does present the dynamic infrastructure, which is a requirement for

sharing the grid infrastructure between a batch system and a cloud gateway.

We are also inviting everyone to try out our fork of the Torque batch system,

which is now publicly available.

Keywords torque, grid scheduling, virtualization, cloud

2012/06/18; 23:38 str. 1/13

Computer Science • 13 (2) 2012 http://dx.doi.org/10.7494/csci.2012.13.2.33

33



1. Introduction

The Czech National Grid Infrastructure is composed from a heterogeneous set of com-

putational and storage resources. These are mostly clusters that are spread across the

country, concentrated in several geographical sites (Figure 1). Currently, the Czech

National Grid Infrastructure includes approximately 3800 CPU cores with clusters

in four cities, in 9 total sites. The grid processes over 750 000 jobs per year, with

500 concurrently running jobs on average.

Figure 1. MetaCentrum sites

The entire system was originally governed by a single instance of a commercial

batch system – PBSPro 1. This solution was chosen to provide maximum interoper-

ability with both scientific software (where PBSPro is widely supported) and to allow

for the use of various middleware solutions (in the form of gateways into the grid).

By being a centralised solution it also provided high scheduling quality and natively

supported cross-cluster execution of jobs.

But due to the centralised nature of this solution, it was experiencing several

issues. Firstly, there were licensing issues, when connecting new sites into the grid.

PBSPro is licensed per CPU core, and each new cluster required new license nego-

tiations, which made the process very inflexible. Secondly, the system was suffering

from scalability issues and was very sensitive to hardware failures. Localised outages

were resulting in large parts of the grid not being available, affected users becoming

unable to submit new jobs into the system and servers unable to execute new jobs on

the affected part of the grid.

1http://www.pbspro.com

2012/06/18; 23:38 str. 2/13

34 Šimon Tóth, Miroslav Ruda



To overcome these limitations, we have chosen a replacement for the PBSPro

batch system, in the form of a custom solution based on the open source batch system

– Torque 2. By using an open source system, licensing issues were immediately solved

and by enhancing Torque with our implementation of distributed architecture we were

able to eliminate the centralised system limitations.

This of course required a reimplementation of all features that were PBSPro

exclusive and also our local extensions implemented into PBSPro. While work on

porting these features took almost a full year [11], at the end we were ready to switch

our production system from PBSPro to Torque. Initial evaluation of the production

ready implementation of Torque Batch System, its stability and performance, and an

overview of the features that were backported from PBSPro were presented at the

Cracow Grid Workshop 2010 [13].

Work on the Torque batch system culminated with a transition to this system in

the production environment. Now, with almost a full year of production use, we are

able to present our experiences with Torque and its evaluation as a production ready

batch system.

Apart from our experiences with Torque, we will also present our work on the

meta-scheduling architecture. This includes both our work on the distributed archi-

tecture that was designed to overcome the centralised server limitations and our work

with scheduling the dynamic infrastructure that was designed to deal with cloud-grid

convergence.

2. Torque batch system

Torque is a batch system. That means that it is responsible for managing the life

cycle of computation jobs. From job submission, through scheduling and execution,

monitoring to completion.

While Torque is an open-source software, it is being maintained by a commer-

cial company “Adaptive Computing Enterprises, Inc.”. As such, Torque is mostly

maintained to be used as a back-end for external schedulers (Moab3, Maui [7]).

One of the prerequisites of switching to Torque batch system was the re-

implementation of features that were either supported in PBSPro and missing in

Torque, or were our local extensions of PBSPro.

Both Torque and PBSPro have common code-base roots in OpenPBS [6]. This

allowed us to port the custom changes we implemented into PBSPro relatively easily.

The modified version of Torque batch system, as it is deployed in the production

environment, is currently maintained as a separate fork of the original project.

Since the switch to production, Torque had to be further enhanced with new

features to provide the desired quality of service and to satisfy user and administrative

requirements.

2http://www.clusterresources.com/products/torque-resource-manager.php
3http://www.adaptivecomputing.com/products/moab-hpc.php

2012/06/18; 23:38 str. 3/13

Practical experiences with Torque meta-scheduling in the Czech National Grid 35



We are using a custom developed scheduler that is based on the original FIFO

scheduler distributed with Torque, but which was since almost completely rewritten.

To further improve the quality of scheduling, we are also exploring more complicated

scheduling paradigms, like constrain based forward planning [2].

2.1. Kerberos

Unlike most other grid providers, which use certificates to manage user access to the

grid, the Czech NGI is a long term user of the Kerberos protocol [10]. This greatly

simplifies access to the grid for users because they no longer need to distribute their

keys across the clusters.

We still support even users without Kerberos, but this use case is discouraged

because Kerberos is also used to access network filesystems like NFS4 and AFS and

other machines. To facilitate access to these resources during the entire job life-

time, Torque maintains an active Kerberos ticket for each running job. Support for

non-Kerberos access is maintained mostly for external interfaces like Glite [8] and

Globus [5].

Access to the server is controlled using three ACLs, one for users without Ker-

beros, one for users with Kerberos, and one extra for submitting new jobs into the

system. The last ACL is present to allow read-only access to the server from multiple

realms (job submittion is currently allowed only with one Kerberos realm).

2.2. Resource semantics

Resource semantics represent an important part of a batch system. Computational

jobs request (at least partial) guarantees concerning available resources. A batch

system therefore has to do static allocations of resources, depending on the amounts

of resources requested by individual jobs and refuse the execution of jobs that would

breach the resource limits on computational nodes. This is, of course, coupled with

the enforcement of these limitations, during the job execution (both on OS level and

batch system level).

We are currently supporting multiple types of resources, the most common being

counted resources on nodes. The scheduler is planning jobs according to the following

resources on nodes: processors, memory, virtual memory, and GPU cards.

Another type of resource are dynamic resources. These represent the current

state of resources that either change values so fast that it would be infeasible to track

them directly, or can be affected from outside of the grid. Into this category fall

software licenses and scratch disk space.

Original Torque implementation did not support any resource semantics with the

exception of CPU counting. Resource semantics were left to be implemented in the

scheduler, which then became the authoritative part of the system.

Since we are supporting a distributed configuration with multiple schedulers, we

had to re-implement resource semantics in the server. Each server is responsible for

2012/06/18; 23:38 str. 4/13

36 Šimon Tóth, Miroslav Ruda



it’s own computational nodes and can therefore act as a guardian and block requests

that do not fit the current state of the clusters.

This is also important for performance reasons because it would be infeasible to

enquire the state of nodes by connecting to each of the nodes. This was the original

scheduler model in Torque. The server in the role of a guardian can provide all state

information required by the scheduler in one status request.

GPU and other physical cards. With the inclusion of GPU enabled clusters into

MetaCentrum, we had to cope with the issues of scheduling GPU and eventually

other physical cards/devices.

Resource semantics for GPU cards are similar to processor cores, but unlike

processor cores, we have to do strict system level enforcement of the GPU card as-

signments.

GPU cards (specifically NVIDIA) support multiple computing modes (thread

exclusive, process exclusive, and shared). Unfortunately, different applications require

different GPU modes to operate efficiently.

Setting all GPU cards into the process exclusive modes would prevent any two

jobs sharing a GPU card, but we cannot do that due to the mentioned efficiency

issues.

Therefore, instead of setting the cards into process exclusive mode, we are using

UNIX file ownership to dedicate GPU cards to job owners, for the duration of the job

execution. This way, jobs can choose the appropriate GPU mode, without interfering

with other users jobs.

Over-subscribing of resources. While we generally do not support the over-subscrib-

ing of resources, we still want to cover one specific use case of resource over-

subscribing; administrative and monitoring jobs are required to run on nodes even

when all resources are already assigned to standard jobs.

For this specific class of jobs we have implemented a new feature called admin

slots. Admin slots are configurable on a per-node basis and will add one special CPU

slot for jobs submitted through a specially marked admin queue. Such jobs ignore all

resource limitations and only consider the availability of the admin slot.

2.3. Limiting node access

Policies for accessing nodes can be configured using two paradigms. The first one is in-

formation about user accounts on nodes and clusters (job cannot run on nodes/cluster

when users have no account there). The second, and currently preferred way of en-

forcing access policies are limitations of queues. This limitation can be enforced on

both sides. Queues can be configured to access only a subset of nodes and nodes be

exclusively assigned to a specific queue.

For preemption support in the virtualized infrastructure, we also support a con-

figuration option to disallow these machines to participate in a multi-node job.

2012/06/18; 23:38 str. 5/13

Practical experiences with Torque meta-scheduling in the Czech National Grid 37



2.4. Extensions to node specification

To satisfy a user requirements for avoiding specific parts of the grid, we have imple-

mented support for negative requests. Properties prefixed with “ˆ” will be matched

to nodes that do not have that property. For example, to avoid a specific clus-

ter of machines, users can specify a negative request in the following form: -l

nodes=1:^cl skirit.

For an alternative format of specifying the required resources, we support exclu-

sive node requests. These requests always match the entire node and allow the user

to specify the properties of the requested node, instead of required resources. For

example, instead of requesting a machine with 4 CPU (-l nodes=1:ppn=4), the user

would request a node with quadcore property (-l nodes=1:quadcore#excl).

2.5. Torque evaluation

With almost a full year of production use of our modified Torque version, we are

now capable providing an evaluation of Torque usability as a production ready batch

system.

Our stable environment processed cca. 500 000 jobs during the evaluation period

with a satisfactory uptime. Most system outages were caused by external events, such

as DNS, Kerberos, NFS, or physical network/hardware outages.

Node outages were quite common, but Torque batch system is very tolerant

towards node outages, therefore even prolonged downtimes did not affect the system

and in some cases (software outages) Torque was even able to recover the jobs from

affected nodes.

Of course the system also has some issues. We had to continuously work on stabil-

ising and bug-fixing the system. Torque contains a lot of race conditions, which usually

are not triggered in non-modified installations, but our extensions implemented into

Torque caused these race conditions to manifest. Incorrect memory manipulation is

also quite common (both memory leaks and out of bounds access).

Another issue with Torque adoption into a stable environment is the upstream

policy towards stable branches. Even branches marked as fixes-only are still accepting

new features, and so the overall stability of the system is very problematic to rely on.

Some of these issues can be avoided by using our fork of the Torque batch system.

This fork contains the current stable version used in our production environment. The

source code is accessible through a git repository on http://github.com/CESNET/

torque.

3. Distributed architecture

A distributed architecture was designed to overcome the limitations of the central

server setup, a detailed analysis was presented in the technical report [11] and the

evaluation of the implementation integrated into Torque was presented at the Cracow

Grid Workshop 2010 [13].

2012/06/18; 23:38 str. 6/13

38 Šimon Tóth, Miroslav Ruda



In this paper we will therefore only present a short overview of the distributed

architecture with an update on the current state of design and implementation.

The proposed architecture (Figure 2) divides the grid into a set of semi-

independent sites, each with its own scheduler and server and each maintaining its

set of computational nodes.

When a situation is encountered, which cannot be resolved locally, the schedulers

cooperate to achieve the global goal. These situations range from simple local server

saturation to cross-server job execution.

Server 1 Server 2

Server 3

Scheduler 1 Scheduler 2

Scheduler 3
Local server communication

P2P scheduler communication

Site 1 Site 2

Site 3

Figure 2. The distributed architecture with 3 sites

While this target architecture is designed to scale well for hundreds (up to thou-

sands) sites, it does present big design and implementation challenges which have not

been yet resolved.

As an intermediate solution a simplified version of this architecture was also pre-

sented. In this case, each scheduler maintains the full world state by communicating

with each server, a performance analysis was presented on the CGW’10 [13] which led

to the conclusion that this solution will scale satisfactory for at least tenths of sites.

The newest modification to the architecture is a new atomic move-and-run oper-

ation that reduced the amount of job movement in the system, limiting the maximum

distance from the original server to one hop.

2012/06/18; 23:38 str. 7/13

Practical experiences with Torque meta-scheduling in the Czech National Grid 39



Current and future work is concentrated on bringing the intermediate architec-

ture into the production environment. This a requirement for connecting the first site

that is using a separate Torque instance, CERIT Scientific Cloud4.

4. Dynamic Infrastructure

Cloud services are slowly gaining popularity even in the area of high performance

computing. Although MetaCentrum is a purely non-commercial provider, we still

have to compete with the services provided by commercial cloud providers to maintain

our users.

From a grid provider viewpoint, the challenge of satisfying users in the advent of

cloud computing are the following:

• software environment flexibility,

• easy integration with existing user workflows,

• support for third party computational systems,

• user requests satisfied promptly,

• without the need for additional negotiations.

While it is possible to satisfy user requests in the first three areas, this almost

always requires the intervention of grid administrators and non-trivial negotiations

between resource providers and users.

The only possibility to provide all the mentioned features in a prompt manner is

to extend the infrastructure itself, so that it can support these requests without the

need for manual intervention.

In this section, we will discuss our work at the dynamic infrastructure [9], and

its support implemented into the Torque batch system.

4.1. Virtualized infrastructure

The initial implementation of virtualized infrastructure was originally introduced to

provide preemption support on the machine level [3]. This feature was required to

utilise resources connected into MetaCentrum.

Some resource providers are willing to share their computational resources, but

require immediate access to these resources when requested. From a scheduling algo-

rithm point, this is an impossible situation. Since new jobs can arrive at any point in

time, there can never be any other running jobs utilising these resources.

By adding virtualization into the infrastructure we solve this issue using machine

level preemption. Each physical node is split into three parts. The original physical

node and two virtual nodes, each representing the entire node. One of the virtual

machines is configured as low priority and one as high priority. Jobs can arrive into

both of these machines, but when one of the machines has claimed the nodes resources,

only the high priority jobs can preempt and reclaim node resources (see Fig. 3).

4http://www.cerit-sc.cz

2012/06/18; 23:38 str. 8/13

40 Šimon Tóth, Miroslav Ruda



H 0 H 1

V 0-1

V 0-2 V 1-1

V 1-2

preempted
job

high priority
job

debian 5
job

Figure 3. A state snapshot of two host machines, one configured for preemption, one config-

ured for two OS versions

Using the same infrastructure we can provide support for two different OS ver-

sions on a single machine. In this case both machines can accept all jobs, but still

only one virtual machine can claim the resources of the host at a time (see Fig. 3).

In this way we can directly satisfy both users that require stable software and users

that require fresh versions.

4.2. Virtual clusters

The virtualized infrastructure does allow for two operating systems available on a sin-

gle machine. Although that is enough to provide two versions of a single operating

system, it is not flexible enough to cover the entire user base.

Users requiring custom images require quick deployment and a unified initial state

from which these images are executed. To cover this use case, we have implemented

support for virtual clusters [12] on top of our virtualized infrastructure.

The machine configuration remains the same. Each host is still supporting two

virtual machines, each of which represents the entire host. The new element is that

one of these machines starts in an offline state, in which it can be reinstalled and

booted up.

Provided software images are selected from a set of pre-registered images. Reg-

istering a new image into the system still requires the assistance of grid admins.

We are currently supporting two types of software images: Torque enabled soft-

ware images, which after boot-up connect back to the Torque server and allow job

submittion into the virtual cluster and custom images, that usually connect back to

the users infrastructure.

The first type of images is mostly used to provide a dedicated virtual clusters for

a user or a group, but in this case the software image has to be Linux based. The

2012/06/18; 23:38 str. 9/13

Practical experiences with Torque meta-scheduling in the Czech National Grid 41



second type of images is mostly used to provide a scalable computational architecture

for users with special requirements. In this case, there are no requirements on the

software image and we are currently supporting a group with a MS Windows based

image.

For users that want network separation, or want the virtual cluster to connect

back into their network infrastructure, we provide the possibility to create VLANs

(both L2 VLAN and VPN) [4] and connect the constructed virtual cluster into these

VLANs.

4.3. On-demand virtual clusters

Using virtual clusters, we are able to provide a wide range of Linux based software

images. Unfortunately, for users that just want a specific software image that will con-

nect back into the Torque server, and do not require any kind of network separation,

virtual clusters are too complicated to use.

For this specific use we are able to provide a simplified version of virtual clusters.

We can deduce the requested image directly from the jobs properties and can build

the virtual cluster on the background, without involving the user.

The scheduler is capable of deciding whether a machine has to be rebooted with

new software image, or should remain as is. Leaving these decisions to the scheduler

we can also provide the balancing of installed software images. For example we can

require that Debian 5 will be installed on at least 30% of the machines, while Scientific

Linux will be installed on no more then 15%.

4.4. Light virtualization

All the previously mentioned examples rely on heavy duty virtualization technology

like XEN to be installed on the host machine. Unfortunately, such technology is not

optimal for all types of machines. For example, machines with GPU cards or SMP

machines cannot be effectively virtualized using heavy duty virtualization technologies

(XEN [1], KVM5).

The virtualization of physical cards like infiniband or GPU cards is a common

problem across all virtualization technologies. Although modern CPUs support virtu-

alization technologies (Vt-d, AMD-Vi) that allow the host system to pass a physical

card into a Guest system, software support for this feature is still lacking production

grade quality, especially in the area of GPU cards.

The solution to this problem that we are exploring is based on the LXC tech-

nology. A novel Linux based virtualization technology that is using system level

encapsulation instead of hardware level virtualization.

5http://www.linux-kvm.org/page/Main_Page

2012/06/18; 23:38 str. 10/13

42 Šimon Tóth, Miroslav Ruda



LXC6 provides an alternative to classical virtualization methods. Unlike XEN,

KVM and other heavy weight virtualization technologies, LXC is not based on hard-

ware virtualization, but instead on process separation provided by CGROUPs7.

While not providing the hardware level separation, LXC is still providing full

encapsulation at the system level. This has the advantage of extremely low overhead,

therefore allowing for the concurrent execution of thousands of virtual machines on

a single desktop grade machine. Due to system level encapsulation, it also provides

a trivial solution for physical devices passing from host to guest.

5. Future work

Throughout this paper, we have already mentioned several areas that will be advanced

in the near future. Distributed architecture will be moved into a stable environment,

with the first organisation being connected into the Czech NGI in this matter. Our

work with cloud-grid convergence will continue, with on-demand cluster creation en-

tering the stable environment and also with the introduction of virtualization to

machines, where it was previously impossible (using technologies like LXC).

Our work on the virtualized infrastructure does not end with the currently pro-

vided features. We are also already working on new features that will remove the

remaining limitations of our infrastructure. One of the limitations of our infrastruc-

ture is the base design that splits each physical machine into three parts, without

the possibility to allocate only a subset of resources for one of the virtual machines.

To move away from this limitation, we are reworking our infrastructure into a more

dynamic setup, where virtual machines can be both pre-configured statically, but can

also be constructed on-demand from resource pools. This will allow us (in the ex-

treme) to provide a fully encapsulated environment for each job, while the users will

have the ability to specify the desired software image for this job, along the standard

resource requests.

Another area that requires immediate attention is the detection of jobs that either

cannot be run, or will be waiting in a queue for a significant amount of time (for

example, due to low priority). This problem, while challenging on its own, becomes

very complicated in a distributed environment.

6. Conclusion

In this paper we have presented our experiences with Torque batch system. With

almost a full year of production use, we can now safely state that Torque is a very

solid alternative to commercial systems (like PBSPro). While we had to put significant

effort into modifying Torque to fully suit the needs of the Czech NGI, less demanding

sites, can usually use Torque without any modifications.

6http://lxc.sourceforge.net/
7http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

2012/06/18; 23:38 str. 11/13

Practical experiences with Torque meta-scheduling in the Czech National Grid 43



Acknowledgements

Access to the MetaCentrum computing facilities provided under the programme

“Projects of Large Infrastructure for Research, Development, and Innovations”

LM2010005 funded by the Ministry of Education, Youth, and Sports of the Czech

Republic is highly appreciated.

The work presented in this paper was conducted under the programme “Projects of

Large Infrastructure for Research, Development, and Innovations” LM2010005 funded

by the Ministry of Education, Youth, and Sports of the Czech Republic.

References

[1] Barham P., Dragovic B., Fraser K., Hand S., Harris T., Ho A., Neugebar R.,

Pratt I., Warfield A.: Xen and the Art of Virtualization. [in:] ACM Symposium

on Operating Systems Principles (SOSP), 2003.

[2] Chlumský V., Klusáček D., Ruda M.: The Extension of Torque Scheduler Allow-

ing the Use of Planing and Optimization Algorithms in Grids.

[3] Denemark J., Ruda M.: Magrathea – Scheduling Virtual Grids with Preemption.

[in:] Cracow’08 Grid Workshop, 2009.

[4] et al. D. A.: VirtCloud: Virtualising Network for Grid Environments – First

Experiences. [in:] AINA, 2009.

[5] Foster I.: Globus Toolkit Version 4: Software for Service-Oriented Systems. [in:]

IFIP International Conference on Network and Parallel Computing, pp. 2–13,

2006.

[6] Henderson R., Tweten D.: Portable Batch System: External reference Specifica-

tion. NASA, Ames Research Center, 1996.

[7] Jackson D., Snell Q., Clement M.: Core Algorithms of the Maui Scheduler. [in:]

Proceedings of 7th Workshop on Job Scheduling Strategies for Parallel Processing,

2001.

[8] Laure E., Hemmer F., Prelz F., Beco S., Fisher S., Livny M., Guy L., Barroso M.,

Buncic P., Kunszt P., Di Meglio A., Aimar A., Edlund A., Groep D., Pacini F.,

Sgaravatto M., Mulmo O.: Middleware for the next generation Grid infrastruc-

ture. [in:] Computing in High Energy Physics and Nuclear Physics (CHEP 2004),

2004.

[9] Matyska L., Ruda M., Tóth Š.: Peer-to-peer Cooperative Scheduling Architecture

for National Grid Infrastructure. [in:] Data Driven e-Science, pp. 105–118, 2011.

[10] Neuman C., Yu T., Hartman S., Raeburn K.: The Kerberos Network Authen-

tication Service (V5). RFC 4120 (Proposed Standard), July 2005. Updated by

RFCs 4537, 5021, 5896, 6111, 6112, 6113.

[11] Ruda M., Tóth Š.: Transition to Inter-Cluster Scheduling Architecture in Meta-

Centrum. Technical Report 21, Cesnet, 2009.

2012/06/18; 23:38 str. 12/13

44 Šimon Tóth, Miroslav Ruda



[12] Ruda M., Šustr Z., Sitera J., Antoš D., Hejtmánek L., Holub P., Mulač M.: Vir-

tual Clusters as a New Service of MetaCentrum, the Czech NGI. [in:] Cracow’09

Grid Workshop, 2010.

[13] Tóth Š., Ruda M., Matyska L.: Towards Peer-to-Peer Scheduling Architecture for

the Czech National Grid. [in:] Bubak M., Tura la M., Wiatr K., editors, Cracow’10

Grid Workshop, pp. 92–101. ACC CYFRONET AGH, Kraków, 2011.

Affiliations

Šimon Tóth
CESNET z.s.p.o., Zikova 4, 160 00 Praha 6, Czech Republic, simon@cesnet.cz

Miroslav Ruda
CESNET z.s.p.o., Zikova 4, 160 00 Praha 6, Czech Republic, ruda@ics.muni.cz

Received: 9.12.2011

Revised: 01.02.2012

Accepted: 23.04.2012

2012/06/18; 23:38 str. 13/13

Practical experiences with Torque meta-scheduling in the Czech National Grid 45


