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Abstract. The drawdown solution has been widely used to
analyze pumping test data for the determination of aquifer
parameters when coupled with an optimization scheme. The
solution can also be used to predict the drawdown due to
pumping and design the dewatering system. The drawdown
solution for flow toward a finite-radius well with a skin zone
in a confined aquifer of infinite extent in radial direction had
been developed before. To our best knowledge, the draw-
down solution in confined aquifers of finite extent with a skin
zone so far has never before been presented in the ground-
water literature. This article presents a mathematical model
for describing the drawdown distribution due to a constant-
flux pumping from a finite-radius well with a skin zone in
confined aquifers of finite extent. The analytical solution of
the model is developed by applying the methods of Laplace
transforms, Bromwich contour integral, and residue theorem.
This solution can be used to investigate the effects of finite
boundary and conductivity ratio on the drawdown distribu-
tion. In addition, the inverse relationship between Laplace-
and time-domain variables is used to develop the large time
solution which can reduce to the Thiem solution if there is
no skin zone.

1 Introduction

The famous Theis solution (1935) was first introduced in the
groundwater literature to describe the transient drawdown
distribution induced by a constant pumping at a well of in-
finitesimal well radius in a homogeneous and isotropic con-
fined aquifer of infinite extent. The radius of a well is in

fact not zero in the real-world problems. It is well recog-
nized that the solution developed based on the assumption
of zero well radius can not give accurate drawdown predic-
tions near the wellbore. Van Everdingen and Hurst (1949)
developed the transient pressure solutions for the constant
flow in finite and infinite confined reservoirs with consider-
ing the effect of well radius but neglecting the skin effect.
Note that the term skin effect is used to reflect the increase or
decrease of hydraulic conductivity caused by drilling prac-
tices in a region near the well. With the introduction of func-
tions commonly occurring in groundwater flow problems,
Hantush (1964) gave an analytical solution and two approx-
imate solutions for a constant pumping in confined aquifers
with a finite well radius. Chen (1984) gave a short review on
the use of the remote finite boundary condition in the ground-
water literature. He proposed a modified Theis equation for
describing the drawdown distribution in a confined aquifer
of finite extent and gave a time criterion for the use of the
Theis equation to predict drawdown in a finite aquifer. Wang
and Yeh (2008) gave an extensive review on the relationship
between the transient solution and steady-state solution for
constant-flux and constant-head tests in aquifers of finite ex-
tent and infinite extent. They mentioned that the drawdown
solution of the finite aquifer, rather than the infinite aquifer,
can reduce to the Thiem solution when the time becomes
large enough.

A positive skin is referred to a zone near the well having
lower permeability than the original formation due to well
construction. On the other hand, a negative skin is a zone
has higher permeability than other part of aquifer forma-
tion. With considering a finite-thickness skin or patchy zone,
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Butler (1988) and Barker and Herbert (1988) developed
Laplace-domain solutions for the transient drawdown in-
duced by a constant pumping without considering the effect
of the well radius in confined aquifers. Novakowski (1989)
mentioned in a study that the thickness of the skin zone may
range from a few millimeters to several meters. He presented
a Laplace domain drawdown solution for a confined aquifer
under a constant pumping with considering the effects of skin
zone and wellbore storage. Butler and Liu (1993) presented a
Laplace-domain solution for drawdown due to a point-source
pumping in a uniform aquifer with an arbitrarily located disk
of anomalous properties. In addition, they also gave a large-
time solution based on the inverse relationship between the
Laplace variable and time variable. Yeh et al. (2003) pre-
sented an analytical drawdown solution for the pumping test
in an infinite confined aquifer by taking into account the ef-
fects of the well storage and the finite-thickness skin. They
mentioned that the effect of skin zone is negligible in short
and large periods of pumping time. Perina and Lee (2006)
developed a general well function in Laplace domain for con-
stant pumping in a confined, leaky, or unconfined aquifer
of infinite extent with a partially penetration well, finite-
thickness skin. Yet, they adopted an approach such as a finite
difference method to discretize the well screen for handling
non-uniform wellbore flux problems.

The existing drawdown solutions for radial two-zone con-
fined aquifers of infinite extent under constant-flux pumping
were all developed in Laplace domain except the one given
by Yeh et al. (2003) which was a time domain solution. Yeh
et al.’s (2003) solution is in terms of an improper integral
integrating from zero to infinity and its integrand comprises
a singularity at the origin. In addition, the integrand is an
oscillatory function with many product terms of the Bessel
functions of the first and second kinds of zero and first or-
ders. The numerical calculation of their solution is therefore
time-consuming and very difficult to achieve accurate results.

The objective of this note is to develop an analytical so-
lution from a mathematical model similar to that of Yeh et
al. (2003), except that the aquifer is of horizontally finite ex-
tent. The solution of the model is also obtained by applying
the methods of Laplace transforms and Bromwich contour
integral. The integration of the contour integral in Yeh et
al. (2003) results in a single branch point with no singularity
at zero of the complex variable. Thus, a branch cut along the
negative real axis of the contour should be chosen and thus a
closed contour is produced. Such a procedure finally results
in a complicated solution presented in Yeh et al. (2003). On
the other hand, the integration of the contour integral arisen
from the Laplace domain solution in our model has a simple
pole at the origin and finite number of poles at other loca-
tions. The residue theorem is therefore adapted to obtain the
time domain results for the skin zone and formation zone.
These two results are in terms of a logarithmic function plus
a summation term, rather than an integral, with Bessel func-
tions of the first and second kinds of orders zero and first.

This newly derived solution is much easier to calculate than
that of Yeh et al. (2003) involving a singularity in the in-
tegral. In addition, a large-time solution in a simpler form
is also developed by employing the relationship of small
Laplace-domain variablep versus large time-domain vari-
able t , hereinafter referred to SPLT (Yeh and Wang, 2007),
to the Laplace-domain solution. This new large-time solution
is independent of time and can reduce to the Thiem equation
when the skin zone is absent.

This new time-domain solution can be applied to: (1) pre-
dict the spatial and/or temporal drawdown distributions in
both the skin and formation zones with known aquifer pa-
rameters such as the outer radius of the skin zone as well as
the transmissivity and storage coefficient for each of the skin
and aquifer zones, (2) determine the aquifer parameters if
coupled with an optimization algorithm in the pumping test
data analyses, (3) verify numerical codes in the prediction of
the drawdown distribution in two-zone aquifer systems, and
(4) perform the sensitivity analysis and assess the impacts of
parameter uncertainty on the predicted drawdown.

2 Mathematical model

2.1 Mathematical statement

The assumptions involved in the development of the mathe-
matical model are: (1) the confined aquifer is homogeneous,
isotropic, and of finite extent in radial direction, (2) the well
fully penetrates the aquifer and has a finite well radius, (3) a
skin zone is present around the pumping well shown in Fig. 1,
(4) the well discharge rate is maintained constant through out
the entire pumping test.

The governing equations describing the drawdown dis-
tribution s(r, t) in the skin zone and formation zone are,
respectively,

∂2 s1

∂r2
+

1

r

∂s1

∂r
=
S1

T1

∂s1

∂t
rw ≤ r < r1 (1)

∂2 s2

∂r2
+

1

r

∂s2

∂r
=
S2

T2

∂s2

∂t
r1 ≤ r < R (2)

where subscripts 1 and 2 denote the skin zone and formation
zone, respectively,r is the radial distance from the central
line of the pumping well,rw is the well radius,r1 is the outer
radius of the skin zone,R is the radius of influence defined
as a distance measured from the center of the well to a lo-
cation where the pumping drawdown is very close to zero,t

is the pumping time,S is the storage coefficient, andT is the
transmissivity.

Prior to pumping, there is no drawdown over the entire
aquifer. Thus, the initial conditions for both skin zone and
formation zone can be written as

s1 (r, 0) = s2 (r, 0) = 0. (3)
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Fig. 1.  Schematic diagram of the pumping test in a finite-extent confined aquifer. 

 

 
 

Fig. 1. Schematic diagram of the pumping test in a finite-extent confined aquifer.

In addition, the drawdown atR is also zero. The flux across
the well is pumped at a constant rateQ. Thus, the outer and
inner boundary conditions can be expressed, respectively, as

s2 (R, t) = 0 (4)

ds1
dr

∣∣
r=rw =

−Q

2 π rw T1
. (5)

The continuity requirements for the drawdown and flux at
the interface between the skin zone and formation zone are,
respectively,

s1 (r1, t) = s2 (r1, t) (6)

T1
∂s1 (r1, t)

∂r
= T2

∂s2 (r1,t)

∂r
. (7)

2.2 Laplace-domain solution

The solutions of Eqs. (1) and (2) subject to Eqs. (3)–(7) can
be easily found using the method of Laplace transforms. The
results are

s1 =
−Q

4 π T2

[
1

p

2 T2

rw T1 q1

81 I0 (q1 r) − 82 K0 (q1 r)

81 I1 (q1 rw) + 82 K1 (q1 rw)

]
(8)

s2 =
−Q

4 π T2

{
1

p

2 T2

rw T1 q1

81 I0 (q1 r1) − 82 K0 (q1 r1)

[81 I1 (q1 rw) + 82 K1 (q1 rw)]

1

ϕ

}
(9)

with following lumped variables for compactness of the
solutions

81 = φ

√
S2 T2

S1 T1
K0 (q1 r1) K0 (q2 r1) − K1 (q1 r1) K0 (q2 r1) (10)

82 = φ

√
S2 T2

S1 T1
I0 (q1 r1) K0 (q2 r1) + I1 (q1 r1) K0 (q2 r1) (11)

φ =
I0 (q2 R) K1 (q2 r1) + I1 (q2 r1) K0 (q2 R)

I0 (q2 R) K0 (q2 r1) − I0 (q2 r1) K0 (q2 R)
(12)

ϕ =
I0 (q2 R) K0 (q2 r) − I0 (q2 r) K0 (q2 R)

I0 (q2 R) K0 (q2 r1) − I0 (q2 r1) K0 (q2 R)
(13)

where p is the Laplace variable,q1 =
√
pS1/T1, q2 =

√
pS2/T2, I0 andK0 are the modified Bessel functions of

the first and second kinds of order zero, respectively, andI1
andK1 are the modified Bessel functions of the first and sec-
ond kinds of order first, respectively.

The variablesφ andϕ can reduce toK1(q2 r1)/K0(q2 r1)

andK0(q2r)/K0(q2 r1), respectively, whenR approaches in-
finity. Equations (8) and (9) are then equivalent to the solu-
tions presented in Yeh et al. (2003, p.750) as

s1 =
Q

4 π T2

[
1

p

2 T2

rw T1 q1

ψ2 K0 (q1 r) + ψ1 I0 (q1 r)

ψ2 K1 (q1 rw) − ψ1 I1 (q1 rw)

]
(14)

s2 =
Q

4 π T2

[
1

p

2 T2

rw T1 q1

(ψ2 K0 (q1 r1) + ψ1 I0 (q1 r1))

(ψ2 K1 (q1 rw) − ψ1 I1 (q1 rw))

K0 (q2 r)

K0 (q2 r1)

]
(15)

with following lumped variables

ψ1 = K1 (q1 r1) K0 (q2 r1) −

√
S2 T2

S1 T1
K0 (q1 r1) K1 (q2 r1) (16)

ψ2 = I1 (q1 r1) K0 (q2 r1) +

√
S2 T2

S1 T1
I0 (q1 r1) K1 (q2 r1). (17)

2.3 Time-domain solution

The transient drawdown solution in time domain can be ob-
tained by applying the Bromwich contour integral (Carslaw
and Jaeger, 1959, p.332) to the Laplace domain solution. De-
tailed development is shown in Appendix A and the results

www.hydrol-earth-syst-sci.net/16/441/2012/ Hydrol. Earth Syst. Sci., 16, 441–449, 2012



444 C.-T. Wang et al.: Transient drawdown solution for a constant pumping test

for the drawdown solutions in skin zone and formation zone
are, respectively,

s1 =
Q

2 π T1

{
ln
r1

r
+
T1

T2
ln
R

r1
−
π

rw

∞∑
n=1

exp

(
−
T1

S1
α2
n t

)

×
αn (J1 (αn rw) Y0 (αn r) − Y1 (αn rw) J0 (αn r))

ς2
n

[
B2
n + (ζ (Bn Cn + An Dn) + ζ An Bn/αn)/r1 + ζ 2 An

]
− α2

n

}
(18)

and

s2 =
Q

2 π T2

{
ln
R

r
−
π

rw

∞∑
n=1

exp

(
−
T1

S1
α2
n t

)

αn(J1 (αnrw)Y0(αnr1)−Y1(αnr1)J0(αnrw))×(Y0(ξαnR)J0(ξ αnr)−Y0(ξαnr)J0(ξ αnR))[
ς2
n Bn

[
B2
n+ζ (BnCn+AnDn)/r1+ζAnBn/αn+ζ 2A2

n

]
−α2

n

] }
(19)

with following lumped variables

ςn =
−αn J1 (αn rw)

−ζ An J0 (αn r) − Bn J1 (αn r)
(20)

An = [J1 (ξ αn r1) Y0 (ξ αn R) − J0 (ξ αn R) Y1 (ξ αn r1)] (21)

Bn = J0 (ξ αn R) Y0 (ξ αn r1) − J0 (ξ αn r1) Y0 (ξ αn R) (22)

Cn = −ξ R [J1 (ξ αn r1) Y1 (ξ αn R) − J1 (ξ αn R)

Y1 (ξ αn r1)] − ξ r1 Bn −
An

αn
(23)

Dn = ξ R [J1 (ξ αn R) Y0 (ξ αn r1) − J0 (ξ αn r1)

Y1 (ξ αn R)] − ξ r1 An (24)

whereJ0 andY0 are the Bessel functions of the first and sec-
ond kinds of order zero, respectively,J1 andY1 are the Bessel
functions of the first and second kinds of order first, respec-
tively, ξ =

√
T1S2/T2S1, ζ =

√
S2T2/S1T1, and±αn are the

roots of

[α J1 (ξ α r1) Y0 (ξ α R) − α J0 (ξ α R) Y1 (ξ α r1)]

× ζ [Y1 (α rw) J0 (α r1) − Y0 (α r1) J1 (α rw)]

+ [J0 (ξ α r1) Y0 (ξ α R) − J0 ( ξ α R) Y0 (ξ α r1)]

× [α Y1 (α r1) J1 (α rw) − α J1 (α r1) Y1 (α rw)] = 0. (25)

When the skin zone is absence, Eq. (19) can reduce to

s =
Q

2 π T

{
ln
R

r
−
π

rw

∞∑
n=1

exp

(
−
T

S
α2
n t

)

×
(J1 (αn rw) Y0 (αn r) − Y1 (αn rw) J0 (αn r))

αn
[
J 2

1 (αn rw) − J 2
0 (αn R)

]
/J 2

0 (αnR)

}
(26)

whereαn become the root ofJ1(αrw)Y0(αR)−Y1 (αrw)

J0(αR)= 0. Note that Eq. (26) is exactly the same as the
equation presented in Wang and Yeh (2008, Eq. 11). Ad-
ditionally, the steady-state solution can be obtained from
Eqs. (18) and (19) when time approaches infinity.

2.4 Large-time solution

The drawdown solution for two-zone confined aquifers of
finite-extent at large times can be obtained by applying the
SPLT technique and L’Hospital rule to Eqs. (8) and (9).
Some limits of the Bessel functions with small arguments
are given asI0(x)∼ 1, I1(x)∼ x/2, K0(x)∼ −ln(x), and
K1(x)∼ 1/x whenx approaches zero (Abramowitz and Ste-
gun, 1979, p.375). For smallp, the Laplace-domain draw-
down solutions for skin zone and formation zone can then be
obtained, respectively, as

s1 (r, p) =
Q

2 π T1 p

(
ln
r1

r
+
T1

T2
ln
R

r1

)
(27)

s2 (r, p) =
Q

2 π T2 p
ln
R

r
. (28)

Furthermore, the drawdown solutions at large-times can
then be obtained by taking the inverse Laplace transform to
Eqs. (27) and (28) as

s1 (r, t) =
Q

2 π T1

(
ln
r1

r
+
T1

T2
ln
R

r1

)
(29)

s2 (r, t) =
Q

2 π T2
ln
R

r
. (30)

In fact, Eqs. (29) and (30) can also be obtained by applying
the Tauberian theorm (Sneddon, 1972) to Eqs. (8) and (9).
This result indicates that the drawdown solution can reach
steady state in confined aquifers of finite extent as declared
in Wang and Yeh (2008). In addition, both Eqs. (29) and (30)
can reduce to the Thiem solution if there is no skin zone,
i.e. r1 = rw andT1 =T2.

2.5 Dimensionless solution

Dimensionless variables are introduced as follows:κ =
T2/T1, γ =S2/S1, τ =T2t/S2r

2
w, ρ = r/rw, ρ1 = r1/rw, ρR =

R/rw, andsD = s(4πT2)/(4πT2)/Q whereκ represents con-
ductivity ratio,γ represents the ratio of storage coefficient,ρ

represents dimensionless distance,ρ1 represents dimension-
less skin thickness,ρR represents dimensionless distance of
the outer boundary, andsD represents the transient distribu-
tion of dimensionless drawdown. The drawdown solutions in
Eqs. (18) and (19) then becomes

s1D = 2 κ

{
ln
ρ1

ρ
+

1

κ
ln
ρR

ρ1
− π

∞∑
n=1

exp
(
−
γ

κ
β2
n τ
)

×
βn (J1 (βn) Y0 (βn ρ) − Y1 (βn) J0 (βn ρ))

ς2
Dn

[
b2
n + (ζ (bn cn + an dn) + ζ an bn/βn)/ρ1 + ζ 2 a2

n

]
− β2

n

}
(31)

s2D = 2 κ

{
ln
ρR

ρ
− π

∞∑
n=1

exp
(
−
γ

κ
β2
n τ
)

βn (J1 (βn) Y0(βn ρ1) − Y1 (βn ρ1) J0 (βn))× (Y0 (ξ βn ρR) J0 (ξ βn ρ) − Y0 (ξ βn ρ) J0 (ξ βn ρR))[
ς2
Dn

[
b2
n + (ζ (bn cn + an dn) + ζ an bn/βn)/ρ1 + ζ 2 a2

n

]
− β2

n

] }
(32)

Hydrol. Earth Syst. Sci., 16, 441–449, 2012 www.hydrol-earth-syst-sci.net/16/441/2012/



C.-T. Wang et al.: Transient drawdown solution for a constant pumping test 445

whereβn = rwαn are the roots of

[β J1 (ξ β ρ1) Y0 (ξ β ρR) − β J0 (ξ β ρR) Y1 (ξ β ρ1)]

× ζ [Y1 (β) J0 (β ρ1) − Y0 (β ρ1) J1 (β)]

+ [J0 (ξ β ρ1) Y0 (ξ β ρR) − J0 (ξ β ρR) Y0 (ξ β ρ1)]

× [β Y1 (β ρ1) J1 (β) − β J1 (β ρ1) Y1 (β)] = 0 (33)

and

ςDn =
−βn J1 (βn)

−ζ an J0 (βn ρ1) − bn J1 (βn ρ1)
(34)

an = J1 (ξ βn ρ1) Y0 (ξ βn ρR) − J0 (ξ βn ρR) Y1 (ξ βn ρ1) (35)

bn = J0 (ξ βn ρR) Y0 (ξ βn ρ1) − J0 (ξ βn ρ1) Y0 (ξ β n ρR) (36)

cn = −ξ ρR [J1 (ξ βn ρ1) Y1 (ξ βn ρR) − J1 (ξ βn ρR)

Y1 (ξ βn ρ1)] − ξ ρ1 bn −
an

βn
(37)

dn = ξ ρR [J1 (ξ βn ρR) Y0 (ξ βn ρ1) − J0 (ξ βn ρ1)

Y1 (ξ βn ρR)] − ξ ρ1 an. (38)

The numerical calculations for Eqs. (31) and (32) are
achieved by finding the roots of Eq. (33) first using New-
ton’s method and then adding the summation term forn up
to 100. Generally, the results have accuracy to the fifth deci-
mal place.

3 Advantages and applications of the present solution

3.1 Advantages over the existing solutions

The analytical solution developed herein has the following
two advantages over Yeh et al.’s (2003) solution. First, the
present solutions can give the same predicted drawdowns as
Yeh et al.’s (2003) solution if the outer boundary distance in
the present solution is very large. In other words, the solu-
tions presented by Yeh et al. (2003) can be considered as a
special case of the present solution. Second, the transient
drawdown solution given by Yeh et al. (2003) is in terms of
an improper integral with the range from zero to infinity. In
addition, their solution is rather difficult to accurately cal-
culate because of the singularity occurring at the origin. In
contrast, the present solution is composed of infinite series
and can be easily calculated with accuracy to fifth decimal.

3.2 Potential applications

An aquifer system with the presence of skin zone can be char-
acterized by five parameters, i.e. the outer radius of the skin
zone and the transmissivity and storage coefficient for each
of the skin and aquifer zones. If those parameters are known,
the present solution can be used to predict the spatial or tem-
poral drawdown distributions in both the skin and formation
zones and explore the physical insight of the constant-flux
test in two-zone aquifer systems. On the other hand, those
five parameters can be determined via the data analyses if
their values are not unknown. The determination of unknown
parameters is in fact a subject of inverse problems. The type-
curve approach is commonly used for the determination of
aquifer parameters. However, it is almost impossible to de-
velop type-curves for the parameter estimation because the
unknowns of a two-zone aquifer are too many. An alterna-
tive way to determine those five unknown parameters is to
use the present solution in conjunction with the algorithm
of extended Kalman filter (e.g. Leng and Yeh, 2003; Yeh
and Huang, 2005) or a heuristic optimization approach such
as genetic algorithm or simulated annealing (e.g. Yeh et al.,
2007, 2009). It is of interest to note that Yeh et al. (2009)
developed a numerical approach composed of the drawdown
solution developed by Yeh et al. (2003) and the algorithm
of simulated annealing. This approach was used to analyze
84 hypothetical drawdown data sets which included 14 dif-
ferent scenarios and each scenario contained 6 cases. The
analyzed results demonstrated that their approach could give
reasonably good estimations to the thickness of the skin zone
and four aquifer parameters at the same time.

The present solution can also be used to verify recently
developed numerical codes for predicting the drawdown dis-
tribution in two-zone aquifer systems. Generally, the sen-
sitivity analysis (Liou and Yeh, 1997) can be performed to
assess the impacts of parameter uncertainty on the predicted
drawdown. If the predicted drawdown is very sensitive to a
specific parameter, a small change in that parameter will re-
sult in a large change in the predicted drawdown. On the con-
trary, the change in a less sensitive parameter has little influ-
ence on the predicted result, reflecting a fact that a less sen-
sitive parameter is difficult to be accurately estimated. With
the present solution, one can easily perform the sensitivity
analysis for two-zone confined aquifer systems to assess the
overall responsiveness and sensitivity to targeted parameters
(e.g. Huang and Yeh, 2007).

4 Results and discussion

Yeh et al. (2003) had investigated the effects of the pa-
rameters including the skin type, skin thickness and well
radius on the drawdown distribution for two-zone aquifer
systems. This study therefore concentrates on the effects
of finite boundary and conductivity ratio on the drawdown
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Fig. 2. The predicted drawdown curves atρ = 1 (wellbore) for infinite aquifers denoted by the solid line and for finite aquifers having the
outer boundary distances of 20, 30, and 50 represented by the dashed lines with the symbols of circle, diamond, and square, respectively, for
ρ1 = 3,γ = 1 andκ = 0.1, 1 and 10.

distribution. Figures 2 and 3 depict the dimensionless pre-
dicted drawdowns atρ = 1 (at wellbore) and 10 (i.e. in the
formation zone), respectively, whenρ1 = 3 for κ = 0.1, 1,
and 10 andρR = 20, 30, and 50. Note thatκ less than one
denotes for the case of a negative skin and greater than one
for the case of a positive skin. Figure 2 shows the compari-
son of the wellbore drawdown in the aquifer of finite-extent
to that in the one of infinite extent. Both drawdown curves
match very well beforeτ <100. However, the curves grad-
ually deviate from one another afterτ >100, indicating that
the solution of finite aquifers is no longer suitable to approx-
imate the solution of infinite aquifer at large times because of
the effect of the finite outer boundary on the drawdown dis-
tribution. Moreover, the drawdown solution of finite aquifers
tends to be stabilized when the time becomes very large. On
the other hand, the wellbore drawdown in infinite aquifers
continuously increases with dimensionless time. Figure 2
also demonstrates the effect of skin property on the wellbore
drawdown distribution. The aquifer with a positive skin has
larger wellbore drawdowns than the one with a negative skin
at the same pumping rate. Figure 3 presents the drawdown

distributions atρ = 10 forρ1 =3 andκ = 0.1, 1, and 10. It re-
veals that the drawdown in an aquifer with a negative skin
is larger than that in the one with a positive skin. In other
words, the effect of skin property on the drawdown distribu-
tion in the formation zone is opposed to that at the wellbore.
The difference in drawdown distribution between aquifers
with κ = 1 and 10 atρ = 1 shown in Fig. 2 is significantly
larger than those withκ = 0.1 and 1 atρ = 1 (Fig. 2) and those
with κ = 1 and 10 atρ = 10 shown in Fig. 3, indicating that
the drawdown is sensitive to contrast in transmissivity for
positive skin cases.

5 Conclusions

A mathematical model has been developed to describe the
drawdown distribution for a pumping test performed in a
two-zone confined aquifer of finite extent. The Laplace-
domain solution of the model is obtained by applying the
method of Laplace transforms. The analytical solution in
time domain is then developed by the Bromwich contour
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Fig. 3. The predicted drawdown curves atρ = 10 (in formation zone) for infinite aquifers denoted by the solid line and for finite aquifers
having the outer boundary distances of 20, 30, and 50 represented by the dashed lines with the symbols of circle, diamond, and square,
respectively, forρ1 = 3,γ = 1 andκ = 0.1, 1 and 10.

integral method. The drawdown distribution predicted from
the analytical solution shows that the dimensionless draw-
down distribution in a finite aquifer is significantly different
from that in an infinite one at large pumping times. In other
word, the present solution is applicable to infinite aquifers
only under the condition that the time is not very large. In
addition, the two-zone aquifer system is rather sensitive to
the pumping in positive skin cases.

A large-time drawdown solution is also developed in this
article based on the inverse relationship of Laplace- and time-
domain variables. This large-time solution is exactly the
same as the steady-state solution, indicating that the draw-
down predicted by the present large-time solution of finite
two-zone aquifers can reach steady-state at large times. In
addition, the large-time solution has been shown to reduce to
the Thiem solution if neglecting the presence of skin zone.

Appendix A

Derivation of Eqs. (18) and (19)

The drawdown solution in time domain, denoted ass(t), ob-
tained by applying the Bromwich integral method (Carslaw
and Jaeger, 1959) to the Laplace domain solutions(p) is ex-
pressed as

s(t) = L−1
{s(p)} =

1

2 π i

r+i∞∫
r−i∞

ept s(p) dp (A1)

wherei is an imaginary unit andre is a real constant which is
so large that all of the real parts of the poles are smaller than
it. The graph of the Bromwich integral contains a close con-
tour with a semicircle and a straight line parallel to the imag-
inary axis. According to Jordan’s Lemma, the integration for
the semicircle tends to be zero when it radius approaches in-
finity. Based on the residue theorem, Eq. (A1) can be written
as

s(t) =

∞∑
n=1

Res
{
ept s(p); gn

}
(A2)
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wherepn are the poles in the complex plane. There are infi-
nite singularities ins(p) and obviously one pole atp = 0.

Introducing the following two variables

1 = q1 [81 I1 (q1 rw) + 82 K1 (q1 rw)] (A3)

9 = [81 I0 (q1 r) − 82 K0 (q1 r)] . (A4)

Equation (8) can then be expressed as

s1 =
−Q

4 π T2

2 T2

rw T1

[
1

p

9 (p)

1 (p)

]
. (A5)

Let 1= 0, the rootsαn in p =pn = (−T1α
2
n)/S1 can

then be determined form Eq. (A3). Substitutingp =pn =
(−T1α

2
n)/S1 into Eq. (A3) yields Eq. (25). From the follow-

ing formula (Kreyszig, 1999), the residue of the pole atp = 0
is

Res
{
ept s(p); 0

}
=

lim

p→0
s(p) ept (p − 0). (A6)

Substituting Eq. (A5) into Eq. (A6) and applying L’Hopital’s
rule results in

Res
{
ept s(p); 0

}
=

Q

2 π T1

[
ln
r1

r
+
T1

T2
ln
R

r1

]
. (A7)

The other residues at the simple polep =pn =−T1α
2
n/S1

are expressed as

Res
{
ept s(p); pn

}
=

lim

p→pn
s(p) ept (p − pn). (A8)

Applying L’Hopital’s rule to Eq. (A8), the denominator term
inside the brackets of Eq. (A5) becomes[
p

d1

dp

]
p=−T1α

2
n/S1

=

[
1

2
q

d1

dq

]
q1=iαn,q2=iκαn

=
1

2
q1

{
q1

[
8

′

1 I1 (q1 rw) + 8
′

2 K1 (q1 rw)
]

+ rw q1 [81 I0 (q1 rw) − 82 K0 (q1 rw)]} (A9)

where the variables81 and 82 are defined in Eqs. (10)
and (11), respectively, and8

′

1 and8
′

2 are the first differ-
entiations of81 and82, respectively.

To simplify Eq. (A8), a variableςn is assumed based on
Eq. (A3) and1= 0:

ςn =
q1 I1 (q1 rw) K0 (ξ q1 r1)

−82 [I0 (ξ q1 R) K0 (ξ q1 r1) − I0 (ξ q1 r1) K0 (ξ q1R)]

=
q1 K1 (q1 rw) K0 (ξ q1 r1)

81 [I0 (ξ q1 R) K0(ξ q1 r1) − I0(ξ q1 r1) K0 (ξ q1 R)]
. (A10)

Two recurrence formulas (Carslaw and Jaeger, 1959, p.490)
are adopted to eliminate the imaginary unit in Eq. (8) as
follows:

Kv

(
z e±

1
2πi
)

= ±
1

2
π i e±

1
2vπi [−Jv (z) ± i Yv (z)] (A11)

and

Iv

(
ze±

1
2πi
)

= e±
1
2vπi Jv (z). (A12)

Substituting Eqs. (A11) and (A12) into Eq. (A10) yields

−αn J1 (αn rw)

−ζ An J0 (αn r1) − Bn J1 (αn r1)

=
αn Y1 (αn rw)

ζ An Y0 (αn r1) + Bn Y1 (αn r1)
= ςn. (A13)

The result of substituting Eq. (A13) into Eq. (A9) is[
p

d1

dp

]
p=−T1α

2
n/S1

=

[
1

2
q

d1

dq

]
q1=iαn,q2=iκαn

=
1

2 ςn

{
ς2
n

[
B2
n + (ζ (Bn Cn + An Dn)

+ ζ An Bn/αn)/r1 + ζ 2 A2
n

]
− α2

n

}
(A14)

where the constants appeared on the right-hand side of
Eq. (A14) are defined in Eqs. (20)–(24). Similarly, the nu-
merator of Eq. (A5) can also be obtained as

9 =
π αn

2 ςn
[J1 (αn rw) Y0 (αn r) − Y1 (αn rw) J0 (αn r)] . (A15)

The residues at the polesp =pn =−T1α
2
n/S1 are

Res
{
ept s(p); pn

}
=

−Q

2 π rw T1

∞∑
n=1

exp

(
−α2

n t T1

S1

)

αn (J1 (αn rw) Y0 (αn r) − Y1 (αn rw) J0 (αn r))

ξ2
n

[
(ζ An)

2
+ B2

n + ζ ((Bn Cn + An Dn) + An Bn/αn)/r1
]

− αn
. (A16)

Therefore, Eq. (A2) can be expressed as

h(t) =
(
Res

{
ept s(p); 0

}
+ Res

{
ept s(p); pn

})
. (A17)

Finally, the solution for the drawdown distribution in the
skin zone can be obtained as Eq. (18). The solution for the
drawdown distribution in the formation zone can also be ob-
tained in a similar way as Eq. (19).
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