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Abstract: For the homogeneous Euler equation linearized around a non-slipping mean flow and 

boundary conditions corresponding to the mass-spring-damper impedance, smooth initial data 

perturbations with compact support are considered. The propagation of this type of initial data 

perturbations in a straight cylindrical lined duct is investigated. Such kind of investigations is missing 

in the existing literature. The mathematical tools are the Fourier transform with respect to the axial 

spatial variable and the Laplace transform with respect to the time variable. The functional 

framework and sufficient conditions are researched that the so problem be well-posed in the sense of 

Hadamard and the Briggs-Bers stability criteria can be applied.  
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1. INTRODUCTION 

Assume, as in [1], that an inviscid non-heat-conducting, compressible perfect gas flows 

inside an infinitely long, straight and cylindrical lined duct of radius R (Fig. 1.). 

 

Figure 1: Gas flow in a straight cylindrical lined duct. 

Let x , r  and   the axial, radial and circumferential coordinates, u , v  and w  the 

projections of the velocity vector on the coordinate axes x , r  and  , and  and p , the 

density and the pressure, respectively. The equations for conservation of mass, and radial, 

circumferential and axial components of momentum and energy are [1]: 
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Here: t  is time, 
v

p

c

c
  is the ratio of the specific heat capacities at constant pressure 

and constant volume, respectively. The pressure, the density and the absolute temperature T  

satisfy the equation of state of the perfect gas TRp  ' , vp ccR ' . 

The equations (1)–(5) are considered for: 0t ,   ,x ,  Rr ,0 , ]2,0[   . 

As concerns the mean flow, it is assumed that: 0),,,(0 trxv  , 0),,,(0 trxw   and 

0)(),,,( 00  rUtrxu  , 0const),,,( 00   trx , 0const),,,( 00  ptrxp  , 

is non-slipping 

0)(0 RU  (6) 

and )(0 rU  is continuously differentiable (once) and decreasing for ],0[ Rr  . 

The linearized Euler equations around the mean flow are: 
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The known function )(0 rU  and the system of five unknown functions ),,,( trx  , 

),,,( trxv  , ),,,( trxw  , ),,,( trxu  , ),,,( trxp   are real valued functions. The last five 

functions represent the evolution of the density, velocity and pressure, due to an 

instantaneous perturbation which occurs at a certain instant, say 0t . This means that 

before the perturbation occurs (i.e. 0t ) the unknown functions are equal to zero (so the 
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condition of “strict causality”, no output before input [2]. is respected) and the evolution of 

an instantaneous perturbation occurring at 0t , described by the  functions ),,(0  rx , 

),,(0 rxv , ),,(0 rxw , ),,(0 rxu , ),,(0 rxp , is given by  that solution of (7) – (11) which 

satisfies the condition: 

    ),,(,,,,)0,,,(,,,, 00000  rxpuwvrxpuwv   (12) 

and the boundary condition: 
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 for Rr   (13) 

where a , b , c  are positive real constants representing: a  - inertance, b  - resistance, a  - 

stiffness of the liner [3].  

Condition (13) translates the mass-spring-damper type interaction between the liner and 

the evolving perturbation [3]. 

The determination of the system of five functions ),,,( trx  , ),,,( trxv  , 

),,,( trxw  , ),,,( trxu  , ),,,( trxp  , which satisfies (7)-(13), is an initial – boundary 

value problem and the system of functions, which is found, represents a solution of the 

problem. The system of five functions describing the perturbation occurring at 0t  is 

usually called, initial data. In the case of a given class ID of initial data, if  for every initial 

data the problem (7)-(13) has a unique solution, which depends continuously on the initial 

data, then (by definition) the problem is well-posed in the sense of Hadamard [4]. The above 

requirements are reasonable to expect if the problem is to correspond to a well-set physical 

experiment. 

Existence and uniqueness is an affirmation of the scientific determinism and continuous 

dependence is an expression of the stability [5]. 

According to [6], the mean flow is stable (in the sense of Lyapunov) if the evolving 

perturbation ),,,( trx  , ),,,( trxv  , ),,,( trxw  , ),,,( trxu  , ),,,( trxp  is small for 

all time, provided it is small initially (i.e. ),,(0  rx , ),,(0 rxv , ),,(0 rxw , ),,(0 rxu , 

),,(0 rxp  is small). 

The precise meaning of “small” has to be defined by using a topology. In a topology 

generated by a norm [6], the mean flow is stable if for any   there exists   (depending 

on ) such that if the initial data satisfies: 

)0( , )0(v , )0(w , )0(u ,  )0(p , 

then the evolving perturbation satisfies 

)(t , )(tv , )(tw , )(tu ,  )(tp  

for all 0t . 

The mathematical treatment of the problem (11)-(13) requires fixing a class ID of initial 

data and a space S for the solutions. 

Since the tools, we intend to use, are the Fourier transform with respect to the variable x 

and the Laplace transform with respect to the variable t  ([7], [8]) of the system of five 

functions representing a solution, we choose for S the space of the set of the systems of five, 

continuously differentiable functions, defined for 0t , t, x -real, r  in  R,0 ,   in  2,0 , 

which are rapidly decreasing with respect to the variable x , for every r  and   fixed, 
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possesses Laplace transform with respect to t  and verifies the periodicity condition 

   ),0,,(,,,, trxpuwv   ),2,,(,,,, trxpuwv   . The topology in S is that given by 

the norm: 
 

),,,(max)(

]2,0[
,0,1

trxptp
RrRx
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


 and so on. 

The class ID is the set of the systems of five, infinitely differentiable 

functions ),,(0  rx , ),,(0 rxv , ),,(0 rxw , ),,(0 rxu , ),,(0 rxp  having compact 

support in the set    ,x , ),0[ Rr  , ]2,0[   , which verifies the periodicity 

condition    )0,,(,,,,' 00000 rxpuwv   )2,,(,,,,' 00000  rxpuwv   and the norm in ID is 

similar to that in S. 

Since equations (8)-(11) can be decoupled, in the following, instead of (7)-(13) the 

initial- boundary value problem (8)-(13) will be considered. More precisely, we consider the 

following initial-boundary value problem: 
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where: 

- in (14)-(17), 0t ,   ,x ,  Rr ,0 , ]2,0[    and )(0 rU  is a continuously 

differentiable real valued function defined for ],0[ Rr  , it is positive, decreasing and equal 

to zero for Rr  , its derivative is zero for 0r  

- in (18) ),,(0 rxv , ),,(0 rxw , ),,(0 rxu , ),,(0 rxp  are infinitely differentiable real 

valued functions defined for   ,x , ],0[ Rr  , ]2,0[   with compact support in 

  ,x , ),0[ Rr  , ]2,0[    and satisfy the periodicity condition 

   )0,,(,,, 0000 rxpuwv   )2,,(,,, 0000 rxpuwv  . 

A solution of the problem (14)-(19) is a system of four continuously differentiable real 

valued functions ),,,( trxv  , ),,,( trxw  , ),,,( trxu  , ),,,( trxp   defined for 0t , 

  ,x , ],0[ Rr  , ]2,0[   , which satisfies (14)-(17), (18), (19), the periodicity 

condition    ),0,,(,,, trxpuwv   ),2,,(,,, trxpuwv  , are rapidly decreasing with 

respect to the spatial variable x  [7] and possesses Laplace transform with respect to t . 
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2. CONDITIONS ASSURING THAT THE SOUND ATTENUATION 

PROBLEM IN CYLINDRICAL LINED DUCT IS WELL-POSED IN SENSE 

OF HADAMARD AND THE BRIGGS-BERS STABILITY METHOD  

CAN BE APPLIED 

Statement 1. (necessary condition for the existence of solution). If for every initial data from 

ID the problem (14)-(19) has a solution ),,,( trxv  , ),,,( trxw  , ),,,( trxu  , ),,,( trxp   

in S, for which the Laplace transform tL  commutes with its Fourier transform xF ,, i.e. 

       tx,r,utx,r,uωα,r,u '
xt

'
tx ,FL,LF,     and so on, then for every initial data 

there exists a real number   (depending upon the initial data) such that for every complex 

number   with  Im  and every real number   the Fourier coefficients of the 

expansions with respect to   imexp  ( m  integer) [9],  satisfy: 
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where mf  is given by 
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 - is the Fx transform variable; iz  and z -is the tL  transform variable; 




i

c
baiZ )(  is the liner impedance. 

In the half plane  Im   the complex valued function mf , given by (25), is an 

analytic function with respect to   and it is rapidly decreasing with respect to   [7]. 

Moreover, for Rr   the function mf  is equal to zero. 

Comments: 

1. Statement 1. can be proved by calculus. 
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2. Taking   210 Im,Im,0max   , where 21,    are the roots of the equation 

  0Z , for every real number   and every m  –integer, the right hand side of the 

equation (20) is an analytic function in the half plane 0Im    and for an arbitrary 

solution of the problem (20), (21) there exists a complex number K such that the solution is 

equal to the solution of (20), corresponding to the initial data KRpm )(  

, K
Z

i
R

dr

dpm

)(
)( 0



 
 . 

It follows that for the Fourier coefficient mp , which satisfies (20), (21), there exists a 

complex number K0 (depending upon  ,, m ) such that the Fourier coefficient mp  

coincides with the solution of (20), corresponding to the initial 

data
0)( KRpm  , 0

0

)(
)( K

Z

i
R

dr

dpm



 
 .  

The complex number 0K  is unique, because to different initial data corresponds a 

different solution of the equation (20). If 0KK   , then the solution mp  of (20), which 

corresponds to the initial data (and coincides with the Fourier coefficient), has finite limit at 

zero and the functions mmm wvu ,, , given by (22), (23), (24), are well defined on  R,0 . 

Beside this, the convergence of the Fourier series, which coefficients are 
mp , 

mmm wvu ,, , as well  the existence of the inverse Fourier and Laplace transforms of the sums 

of these series are ensured. 

3. The ideea is, to build up the solution ),,,( trxv  , ),,,( trxw  , ),,,( trxu  , 

),,,( trxp   of (14)-(19), solving  the boundary value problem (20), (21). From the above 

comment it follows that it would be necessary to ensure the existence of a real number 

0   having the following properties: 

 i). for every real number , every m  –integer and every complex number   with 

 Im  there exists a unique complex value for K  (depending on  ,. m ), for which 

the solution of the equation (20), corresponding to the initial 

data KRpm )( , K
Z
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R

dr
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)( 0
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 
  has a finite limit at zero. 

 ii). the functions mmm wvu ,, , given by (22), (23), (24), are well defined on  R,0  

 iii). the Fourier series, which coefficients are
mp , mmm wvu ,,  converge and the inverse 

Fourier and Laplace transforms of the sums of these series exist.  

4. If there exists a real number 0   having the property i), then  the unique solution 

of the homogeneous problem: 
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








 m

mm q
r

m

c

U

dr

dq

dr

dU

Urdr

qd







 (26) 

      0,,,,0   R
dr

dq
ZRqi m

m  (27) 

is equal to zero. 
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5. In [9] the existence of non- zero solutions of a problem similar to (26), (27) and the 

behavior of these solutions for r  tending to zero are analyzed. 

It is found numerically, in case of a mean flow, constant in the central part of the duct, 

that for every   there exist  ,, m  with  Im  such that for (26), (27) non-zero 

solution, having finite limit for r  tending to zero, exists. 

So, the fact that zero is the unique solution of (26), (27) having finite limit at zero has to 

be ensured by hypothesis.  

Statement 2. If there exists  21 Im,Im,0max    having the following properties: 

 i). for every real number , every m  –integer and every complex number   with 

 Im  there exists a unique complex value for K  (depending on  ,, m ) for which the 

solution of the equation (20), corresponding to the initial 

data KRpm )( , K
Z

i
R

dr

dpm

)(
)( 0



 
  has a finite limit at zero  

 ii). the functions mmm wvu ,, , given by (22), (23), (24), are well defined on  R,0  

iii). the Fourier series, which coefficients are 
mp , mmm wvu ,, , converges and the 

inverse Fourier and Laplace transforms of the sums of these series exist, then for every initial 

data from ID the problem (14)-(19) has a unique solution in S, the problem is well- posed in 

the sense of Hadamard and the Briggs-Bers method can be applied. 

Comments: 
1. The proof of the above sentence is not difficult. For the Brigss-Bers method, in a 

similar case, see for example [10].  

2. The above statement contains requirements which are not present in the papers 

concerning the subject [11]. In general, in the published papers the requirement is the 

existence of   21 Im,Im,0max    having the property that for every real number , 

every m –integer and every complex number   with  Im , the unique solution of (26), 

(27) is equal to zero. This condition is a necessary one, but it is not sufficient. 

3. The comments appearing after the first statement show that the requirements 

appearing in the second statement (sufficient conditions) are also justified. 

3. CONCLUSION 

If the set of the initial data contains systems of four infinitely differentiable  functions, which 

are periodic in , with compact support in   ,x , ),0[ Rr  , ]2,0[    and the set 

of solutions is the set of the systems of four, continuously differentiable functions, defined 

for 0t , t, x -real, r  in  R,0 ,   in  2,0 , which are rapidly decreasing with respect to 

the variable x , possesses Laplace transform with respect to t  and verifies the periodicity 

condition with respect to  , then the sound attenuation problem is well- posed in the sense 

of Hadamard and the Brigss-Bers method can be applied. 
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