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SUMMARY: The mass-distribution model proposed by Kuzmin and Veltmann
(1973) is revisited. It is subdivided into two models which have a common case.
Only one of them is subject of the present study. The study is focussed on the
relation between the density ratio (the central one to that corresponding to the
core radius) and the total-mass fraction within the core radius. The latter one is an
increasing function of the former one, but it cannot exceed one quarter, which takes
place when the density ratio tends to infinity. Therefore, the model is extended by
representing the density as a sum of two components. The extension results into
possibility of having a correspondence between the infinite density ratio and 100%
total-mass fraction. The number of parameters in the extended model exceeds that
of the original model. Due to this, in the extended model, the correspondence
between the density ratio and total-mass fraction is no longer one-to-one; several
values of the total-mass fraction can correspond to the same value for the density
ratio. In this way, the extended model could explain the contingency of having
two, or more, groups of real stellar systems (subsystems) in the diagram total-mass
fraction versus density ratio.
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1. INTRODUCTION

The steady state and spherical symmetry are
often assumed as the first approximation for a num-
ber of stellar systems. A number of models, i.e. par-
ticular cases, satisfying these conditions have been
proposed. Among them is the isochrone model. His-
torically, the isochrone model played an important
role in studying various stellar systems. This is
largely due to a property of its (see below), indi-
cated for the first time by M. Hénon. More details
about this property can be found, e.g. in Binney
and Tremaine (1987, p. 109). Besides, the isochrone
potential was assumed by Eggen et al. (1962) in
their well-known study concerning the evolution of
the Milky Way.

There exists a generalisation of the isochrone
model (Kuzmin and Veltmann 1973, pp. 305-306)
usually referred to as the generalised isochrone model
(GIM). GIM has two parameters with the dimension
of length. Therefore, there are two extremal cases
corresponding to the smallest possible values of the
parameters - zero. One of them had been known be-
fore Kuzmin and Veltmann published their paper. It
is known as Schuster’s or Plummer’s mass distribu-
tion and it is an exception, because in the periph-
ery the exponent of the power law followed by the
density decrease is equal to 5. Otherwise, for GIM
this exponent equals to 4. The other extremal case
was rediscovered by Hernquist (1990). It is a special
case of a family proposed independently by Dehnen
(1993) and by Tremaine et al. (1994). It is known to
yield a very simple expression for the potential which
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has been used many times by the authors of models
describing the mass distributions in the Milky Way
and similar stellar systems, mainly to describe the
bulge contribution (e.g. Law and Majewski 2010).

In the present paper, GIM is replaced with
two models for which the classical isochrone model
appears as the common case and each of them con-
tains only one of the two extremal cases (clearly, not
the same).

The present author has already studied one of
the two submodels to find a particular case which is
very similar to the mass distribution obtainable from
the Schuster (or Plummer) density law after chang-
ing the exponent (Ninković 2001).

The present paper is devoted to the other sub-
model of GIM. The reason is its property that the
increase of the total-mass fraction within the core ra-
dius is due to steepening of the density profile within
the core. The submodel is extended in a way to en-
able: i) that the total-mass fraction tends to unity
when the density ratio - central density to that at
the core radius - tends to infinity; ii) that, due to
a larger number of parameters, the relation between
the total-mass fraction within the core and the den-
sity ratio (central to that at the core radius) is no
longer unique.

The paper is organised in the following way.
In Section 2, entitled Theoretical Base, the problem
is posed in more detail. The results of the present
study are in given in Section 3, entitled Procedure
and Results. The results are discussed in Section
4, entitled Discussion. Finally, the basic conclusions
are the subject of Section 5, entitled Conclusion.

2. THEORETICAL BASE

In the case of GIM the formula for potential
is more simple than that describing the density. Its
form is:

Π(r) =
GM

r1 +
√

r2
2 + r2

. (1)

Here, G is the universal gravitational constant, M
is the total mass, r1 and r2 are the two scales. For
the classical isochrone model they are equal. In the
generalisation, it is allowed that these two quantities
differ. The two extremal cases arise when either of
them is equal to zero: r1 = 0, the Schuster (Plum-
mer) mass distribution, r2 = 0, the limiting case
(Kuzmin and Veltmann 1973), rediscovered by Hern-
quist (1990). Eq. (1) is written here in the same way
as in an earlier paper of the present author (Ninković
1998, p. 19). The only difference is in the designa-
tions of the scales. This way of writing it, as a more
clear one, is preferred to that used by the proposers
(Kuzmin and Veltmann 1973, p. 301, Eq. (5.1) and
p. 304, Eq. (5.18)).

The two (sub)models mentioned above would
be: r1 ≤ r2 and vice versa. Each of the two extremal
cases belongs to only one of these models, the corre-
spondence is obvious.

On the basis of Eq. (1) the corresponding for-
mulae for the cumulative mass (Mr) and density (ρ)

will be:

Mr = M r3

(r1 +
√

r2
2 + r2)2

√
r2
2 + r2

. (2)

ρ =
M
4π

3r1r
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2 + 3r2
2

√
r2
2 + r2

(r1 +
√

r2
2 + r2)3(r2

2 + r2)3/2
. (3)

Using these formulae one can easily obtain, if
r1 = r2, that then within r1, about 12% of the total
mass is contained and that the ratio of the density
at the centre to that at r1 is about 3.23. If the case
r1 ≥ r2 is examined, then as the ratio r1/r2 increases,
both the total-mass fraction within the larger scale
(r1) and the ratio of the densities corresponding to
r = 0 and r = r1 will also increase. In the extremal
case r2 = 0, the total-mass fraction attains exactly
1/4, but the density ratio becomes infinite because
the central density tends to infinity. In the other
case, where r2 ≥ r1, also with increasing ratio r2/r1

both the total-mass fraction and the density ratio
(this time within and at exactly r = r2, because it
is more important) increase, but neither attains infi-
nite values. In particular, for r1 = 0 the total-mass
fraction within r2 is about 35% and the density at
the centre is about 5.66 times that at r = r2. These
properties can be more clearly seen in Fig. 2. Since it
is clear that in the extremal cases r1 and r2 must act
as the core radii, it can be seen that for the model
r1 ≤ r2 the density within the core (r = r2) is al-
most constant, whereas, nevertheless, the total-mass
fraction within it increases rather sharply, even more
sharply than in the alternative case. Therefore, one
could conclude that in the case r1 ≥ r2, the increase
of the total-mass fraction within the core is due to
the steepening of the density profile within the core,
whereas the case r1 ≤ r2 is characterised by a severe
density decrease beyond the core. It is easily seen
from Eq. (3) that the density derivative (dρ

dr ) equals
zero at the centre. Though this may be interpreted
as a core with constant density, based on what was
already said above, it is clear that for r1 ≥ r2 the
density within the core is far from constant. The
following example, in which r2/r1 = 0.5, yields that
the density at r1 is 9.87 times smaller than at the
centre, whereas, at 2r1, it is 6.6 times smaller than
at r1.

In the reverse case, r2/r1 = 2, the density at
r = r2 is 3.91 times smaller than at the centre and
at r = 2r2 it is 6.41 times smaller than at r = r2.

Two dimensionless quantities characterising
the model: the total-mass fraction within the core
radius and the density ratio - central density divided
by that at the core radius - may be related. For both
there are limits. Since the density is expected to be a
decreasing function of the distance from the centre,
the lower limit for the density ratio is 1. On the other
hand, it can be arbitrarily large; as a consequence the
upper limit is infinity. The total-mass fraction must
be between 0 and 1. More precisely, the intervals of
possible values for the density ratio and total-mass
fraction are (1,∞) and (0, 1), respectively.
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The model r1 ≥ r2 viewed in the light of this
relation results into the following. The lower lim-
its, corresponding to r1 = r2, for the mass fraction
within r1 and density ratio ρ(0)/ρ(r1) (0.121 and
3.23, respectively) agree fairly well with the inter-
vals of possible values. As the ratio r2/r1 decreases,
both dimensionless quantities increase. When the
ratio r2/r1 tends to zero, the density ratio tends to
infinity, in accordance with the interval of possible
values, but the total-mass fraction within r1 attains
the value of 1/4 only. The plot of the total-mass
fraction versus density ratio would have a horizontal
asymptote at this value. This property can be seen
in Fig. 2. Besides, since both quantities depend on
the same quantity i.e. the ratio r2/r1 (r2/r1 ≤ 1),
there exists only one particular relation between the
total-mass fraction within the core and the density
ratio. In other words, to every value of the density
ratio only one value of the total-mass fraction corre-
sponds.

In the diagram of the total-mass fraction
within the core radius versus density ratio, a real
stellar system (subsystem) would be represented as
a single point. There is no reason why many such
points would follow a strictly established trend. In
other words, one may expect several values of the
total-mass fraction to correspond to the same value
of the density ratio. We could have two, or more,
groups of stellar systems where each of them would
follow a different kind of dependence of the total-
mass fraction within the core radius versus density
ratio.

Therefore, it is desirable to extend the model
r1 ≥ r2 (Eqs. (1)-(3)). The extended model should
make it possible to i) push the horizontal asymptote
towards unity, which is in accordance with the in-
tervals of possible values; ii) avoid existence of only
one particular relation between the density ratio and
total-mass fraction.

3. PROCEDURE AND RESULTS

A system (subsystem) in which the mass dis-
tribution obeys the model r1 ≥ r2 (Eqs. (1)-(3)) is
replaced by a two-component system. The compo-
nents will be referred to as the inner one and outer
one. They have a common centre. The steady state
and spherical symmetry are valid for both. The only
difference is in the mass distribution. The outer
component follows the isochrone potential, more pre-
cisely Eqs. (1) to (3) with r1 = r2. The volume oc-
cupied by its mass is infinite. The inner component
occupies a finite volume, inside a sphere. Its radius
may be equal to the core radius of the outer com-
ponent, r1 (for the outer component r1 and r2 are
equal).

Let the core radius r1 for the outer component
be the core radius for the system as a whole. Clearly,
the total-mass fraction within it, ϕ, is then given by
the following expression

ϕ =
κ′ + ν

κ + 1
. (4)

Here κ is the total-mass ratio (inner-to-outer) for
the two components, κ′ is the mass of the inner
component, for which the unit is the total mass of
the outer component, contained within r1, obviously
there must be κ′ ≤ κ, and, finally, ν is the mass of
the outer component, also with the total mass of this
component as the unit, contained within r1. Since
the isochrone model (r1 = r2) is assumed for the
outer component, the quantity ν becomes constant.
Using Eq. (2) one easily obtains ν=0.121. The ex-
tremal case ϕ tends to 1, according to Eq. (4), is
achieved when κ′ approaches κ and then both tend
to infinity.

Now the mass distribution for the inner com-
ponent can be given in more detail. Its role is to
contribute to the enlarging of the ratio - central den-
sity to that at the core radius (r1), but provided
that this enlarging is followed by the corresponding
enlarging of ϕ, the fraction of the total mass of the
system within the core. Quantitatively the signifi-
cance of the inner component is expressed through
the ratio κ. The initial values (κ =0), as already said,
are ρ(0)/ρ(r1) =3.23 and ϕ =0.121. One should find
such a mass distribution for which when κ tends to
infinity the density ratio also becomes infinite and
ϕ tends to 1 (Eq. (4)). In other words, in the case
of the inner component the central density and the
total mass become infinite simultaneously.

Such requirements can be satisfied by using
the mass distribution with density given by the fol-
lowing expression:

ρ = M0

[
1

(r2
i + r2)3/2

− 1
(r2

i + r2
e)3/2

]
. (5)

This distribution should be used within a finite ra-
dius, which has been already assumed for the inner
component. The scale ri compared to r1 can be ar-
bitrarily small. In the limiting case, it tends to zero
and then both, the central density ρ(0) and the total
mass of the inner component, become infinite. The
outer radius of the inner component, here denoted by
re, as said earlier, should be ≥ r1. The constant neg-
ative term containing re is added here to avoid the
density discontinuity at the outer radius of the inner
component. The distance to the system centre, at
which the density described in this way attains zero,
is the outer radius of the inner component. All rel-
evant details concerning this mass distribution (cu-
mulative mass, etc) can be found in Ninković (1998).

Thus, the mass distribution within the inner
component is described by three parameters: the
constant M0 having the dimension of mass and can
be replaced by the total mass, the scale ri and the
outer radius re. If added the total mass of the outer
component and the radius r1, this would yield five
parameters for the system as a whole. However, all
these parameters are not completely independent;
the outer radius of the inner component cannot be
smaller than r1, whereas ri is required to be smaller
than r1.

The role of the inner component is twofold.
Firstly, to enlarge the ratio of the central density to
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that at r1. In Fig. 1 two curves are presented. One
of them corresponds to the case without the inner
component. It can be seen from this figure how the
presence of the inner component can arbitrarily en-
large the density ratio. Secondly, due to the inner
component, the total-mass fraction within r1 can at-
tain various values tending to unity as the highest
possible value. The total number of parameters, five,
regardless to the limitations mentioned in the pre-
ceding paragraph, offers the possibility of obtaining
at least two values for the total-mass fraction which
correspond to the same value for the argument, den-
sity ratio, as presented in Fig. 2. Any curve of this
kind has the same horizontal asymptote because the
extremal values correspond to each other; when the
density ratio tends to infinity, then the total-mass
fraction tends to unity. For the purpose of compar-
ison, the third curve given in Fig. 2 corresponds to
the model defined by Eqs. (1)-(3), the case r2 ≤ r1.
As said earlier, in that case there exists only one
particular relation between the total-mass fraction
and the density ratio, determined by the ratio r2/r1

for which the horizontal asymptote is at the value of
0.25.
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Fig. 1. Thin curve: the density dependence
on distance for the case of Eq. (3), r2 = r1, no
inner component; thick curve: with inner compo-
nent. Units are M/(4πr3

1), M total mass of the
outer component, for density, M/(4π) for mass, r1

for distance; values of inner-component parameters:
M0 = 0.0078, ri = 0.11, re = 1.

4. DISCUSSION

The relation between the density ratio (cen-
tral to that at the core radius) and the total-mass
fraction within the core is meaningful to be consid-
ered only if the density dependence on r is defined
within an infinite radius. If the outer radius is finite,
then the ratio ro/rc (where ro is the outer radius)
affects the fraction of the total mass within the core
radius (rc).

Density dependences valid for an infinite vol-
ume in the very outer parts can be usually approx-
imated by means of simple laws, say a power law
or exponential law, where in the case of a power

law the exponent modulus must exceed the value of
three. In this way, the improper integral yielding the
total mass will not result in an infinite value. The
value of four for the exponent modulus, as sufficiently
suitable, has charaterised many density dependences
which are applied in infinite volume. As said above,
this is exactly the case with the outer component in
the model analysed in Section 3.
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Fig. 2. Solid curve: the relation between the density
ratio (χ is its Briggs or decimal logarithm) and total-
mass fraction (ϕ) for the case of Eq. (3), r2 ≤ r1;
dashed curve: the same, but for the reverse case,
r1 ≤ r2; two sets of points describe the same relation,
but they correspond to two arbitrary special cases of
the model extension. The horizontal asymptotes are
at ϕ=0.25, for the solid curve, and at ϕ=1, which
pertains to any of the two sets of points.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3

ϕ

γ

Fig. 3. The dependence of the total-mass fraction
on exponent γ according to Eq. (6).

The total-mass fraction within the core radius
can increase also under conditions of almost constant
density within the core, as shown by the example dis-
cussed in Section 2 (the GIM model, version r2 ≥ r1).
The increase of the total-mass fraction within the
core, as studied here, is due to the steepenning of
the density profile within the core, quantitatively ex-
pressed through the ratio of the central density to
that at the core radius.
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A mass distribution where the density pro-
file within the core is sufficiently steep is known as
a cuspy one. Models (set of formulae) developed
for the purpose of describing such distributions are
known to exist (for the references see below). The
extremal case of the model given by Eq. (1), r2=0,
as already said above (Section 1), belongs to a fam-
ily of models dealing with a cuspy mass distribution.
The property that in the periphery the density de-
creases following approximately the power law with
exponent equal to 4 is valid for this family in general.

The usual way to express the cusp phe-
nomenon is to assume that near the centre the den-
sity decreases following a power law. The conse-
quence is that the central density becomes infinite
(exception when the exponent equals zero) and there-
fore, the ratio of the central density to that at the
core radius cannot be used as a steepness measure
for the density profile within the core. Instead, one
uses the exponent (more precisely, its modulus) of
the power law applied near the centre.

In the case of the family of models (Dehnen
1993, Tremaine et al. 1994), the expression yielding
the total-mass fraction within the core is very simple:

ϕ =
(

1
2

)3−γ

, (6)

where γ is the exponent modulus for the central part;
it satisfies the condition 0 ≤ γ < 3. The higher its
value, the steeper is the density profile within the
core. As easily seen, (Eq. (6) and Fig. 3), the total-
mass fraction within the core becomes higher with
increasing γ. Such a conclusion agrees well with the
idea developed here, the steeper the density profile
within the core, the higher is the total-mass frac-
tion within the core. In other words the increase
of the total-mass fraction within the core is due to
the steepness of the density profile within the core,
rather than to a faster density decrease in the enve-
lope, beyond the core.

However, there is a difference. In the case of
Eq. (6), the total-mass fraction of the envelope tends
to zero when γ approaches 3. In the model consid-
ered here the density at any distance from the centre
is represented as a sum of the contributions of two
components. Though referred to as the inner and
outer ones, these components should not be regarded
as subsystems because they have no clear physical
meaning. Their presence is vindicated by the cir-
cumstance that the unlimited increase of the mass of
the inner component leads to both: the density ratio
tends to infinity and the total-mass fraction within
the core tends to be maximal (100%). Then the to-
tal mass of the outer component, which affects the
envelope, does not itself tend to zero, it merely be-
comes arbitrarily small when compared to the total
mass of the inner component. The role of the inner
component is simply to explain the phenomenon of
cuspy profiles.

Finally, the family of models (Dehnen 1993,
Tremaine et al. 1994) does not also yield several pos-
sible trends which describe the increase of the total-
mass fraction within the core. The steepenning of

the density profile within the core, as well as the in-
crease of the total-mass fraction as its consequence,
is quantitatively expressed through the value of the
parameter γ. Eq. (6) which relates γ to the total-
mass fraction, yields only one value for the function
for every argument value.

The family to which Eq. (6) belongs does, cer-
tainly, not exhaust the possibilities concerning the
models with cusps. There are other models (e.g. Os-
sipkov Jiang 2007, also Raspopova et al. 2012 and
the references therein). In most cases these density
formulae appear as a special case of another formula
(Zhao 1997 - Eq. (2)) which is sufficiently general.
In particular, the density formula of Dehnen (1993)
and Tremaine et al. (1994) is obtained by substi-
tuting α=1 and β =4 for Zhao’s parameters. The
property of tending to zero for the total-mass frac-
tion of the envelope when γ approaches 3 remains.

Among the models mentioned above only in
the one presented here, the extremal cases occur si-
multaneously: the steepest density profile within the
core, represented as infinite ratio of the central den-
sity to that at the core radius, and the maximal total-
mass fraction of the core (100%).

5. CONCLUSION

Within the framework of the generalised
isochrone model proposed by Kuzmin and Veltmann
(1973) two branches are indicated here. One of them
is further treated because of its useful property that
the increase of ratio of the central density to that
at the core radius is followed by the corresponding
increase of the total-mass fraction within the core.
In this way the cusp phenomenon is viewed more
naturally, as a strong increase of the central density
compared to that at the core radius.

Unfortunately, in this model the total-mass
fraction within the core cannot exceed the value of
1/4 occuring when the density ratio tends to infin-
ity. For this reason this model is here extended. Af-
ter the extension, which provides the density to be
calculated by adding two functions, the total-mass
fraction within the core attains its maximal possi-
ble value of 100% when the density ratio tends to
infinity.

Besides, the branch of the generalised
isochrone model extended here yields a one-to-one
correspondence of the total-mass fraction within the
core to the density ratio because both quantities de-
pend on the same parameter. It cannot be excluded
that real stellar systems (subsystems) follow the rela-
tion between the total-mass fraction within the core
and the density ratio, but only qualitatively, quan-
titatively they follow a few of them. The model ex-
tension proposed here is characterised by a larger
number of parameters than the special case of the
generalised isochrone model and, as a consequence,it
offers the possibility of several particular relations
between the total-mass fraction within the core and
the density ratio - that at the centre to that corre-
sponding to the core radius.

27



S. NINKOVIĆ
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Originalni nauqni rad

Prouqava se model raspodele mase koji
su predlo�ili Kuzmin i Veltman (1973).
Ukazuje se na dve ǌegove varijante koje imaju
presek. Samo jedna od ǌih je predmet
prouqavaǌa. Naglasak se stavǉa na relaciju
izme�u odnosa gustina (gustina u sredixtu
prema gustini koja odgovara polupreqniku
sredixǌeg dela) i udela ukupne mase unutar
sredixǌeg dela. Druga veliqina je rastu�a
funkcija prve, ali ona ne mo�e da bude ve�a
od jedne qetvrtine, a to se doga�a kada odnos
gustina te�i beskonaqnosti. Stoga je model
proxiren tako xto se gustina predstavǉa
kao zbir dve komponente. Posle proxireǌa

dobija se da kada vrednost odnosa gustina
te�i beskonaqno, udeo ukupne mase te�i 100%.
Broj parametara proxirenog modela ve�i je
od istog za originalni model. Zahvaǉuju�i
ovom korespondencija izme�u odnosa gustine
i udela ukupne mase nije vixe obostrano jed-
noznaqna; vixe vrednosti udela ukupne mase
mo�e da odgovara istoj vrednosti odnosa
gustina. Na ovaj naqin proxirenim mode-
lom bi mogla da se objasni mogu�nost posto-
jaǌa dve, ili vixe, grupa stvarnih zvezdanih
sistema (podsistema) na grafiku udeo ukupne
mase u funkciji od odnosa gustina.
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