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A new closed-form expression is presented for estimating the real-in-line transmission of ceramics consisting of non-absorbing 
phases in dependence of the inclusion or pore size. The classic approximations to the exact Mie solution of the scattering 
problem for spheres are recalled (Rayleigh, Fraunhofer, Rayleigh-Gans-Debye/RGD, van de Hulst), and it is recalled that 
the large-size variant of the RGD approximation is the basis of the Apetz-van-Bruggen approach. All approximations and 
our closed-form expression are compared mutually and vis-a-vis the exact Mie solution. A parametric study is performed for 
monochromatic light in the visible range (600 nm) for two model systems corresponding to composites of yttrium aluminum 
garnet (YAG, refractive index 1.832) with spherical alumina inclusions (refractive index 1.767), and to porous YAG ceramics 
with spherical pores (refractive index 1). It is shown that for the YAG-alumina composites to achieve maximum transmission 
with inclusion volume fractions of 1 % (and slab thickness 1 mm), inclusion sizes of up to 100 nm can be tolerated, while 
pore sizes of 100 nm will be completely detrimental for porosities as low as 0.1 %. While the van-de-Hulst approximation is 
excellent for small phase contrast and low concentration of inclusions, it fails for principal reasons for small inclusion or 
pore sizes. Our closed-form expression, while less precise in the aforementioned special case, is always the safer choice and 
performs better in most cases of practical interest, including high phase contrasts and high concentrations of inclusions or 
pores.

INTRODUCTION

	 Concomitantly with the development of transparent 
ceramics for optical windows and ceramic laser mate-
rials the question of their optical properties such as the 
transmittance of visible light and other electromag-
netic radiation has become extremely urgent. The litera- 
ture in this field has grown immensely during the 
last few years [1-10], but one of the most popular 
approaches in the last decade has been without doubt 
the approach proposed by Apetz and van Bruggen [1]. 
This approach has been used – in its original or more or 
less modified form – by many authors, although it seems 
that frequently the assumptions made in this approach 
are not fully realized. Therefore, in passing, we will 
comment upon the Apetz-van-Bruggen approach within 
a concise survey on scattering theory. However, it is 
not the aim of the present work to review the different 
attempts of modeling, simulation and experimental 
efforts in this field. On the contrary, in this paper we will 
recall some fundamental relations, give a few critical 
comments on currently used approaches and propose a 
new pragmatic solution to a question of utmost practical 

importance: what relation should be used in practice 
to roughly estimate the microstructural requirements 
for achieving transparency, i.e. maximum real-in-line 
transmittance, in two-phase ceramic composites and 
in porous ceramics, without making recourse to the 
exact Mie solution. Based on two well-known and very 
simple approximations (the Rayleigh and the Fraunhofer 
approximation), a simple closed-form expression will be 
proposed that approximates the exact Mie solution for 
the scattering of spheres. This closed-form expression, 
which will be tested in a parametric study, can be used in 
order to estimate the inclusion or pore size dependence 
of the real-in-line transmittance for different (sufficiently 
low) inclusion or pore volume fractions. It will be shown 
that our approach is in special cases slightly less precise 
than the almost forgotten – albeit extremely interesting 
and remarkable – van-de-Hulst approximation, but 
works reasonably well even in cases where the latter 
fails. Moreover, it will be shown that both the van-the-
Hulst approximation and our closed-form expression are 
of more general validity than the widely used Apetz-van-
Bruggen approach. 
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THEORETICAL

	 The transmission or transmittance of a material 
can be defined as the ratio of the intensity (irradiance) 
of transmitted light I to the intensity of incident light I0, 
multiplied by the theoretical limit of the transmission 
Tmax (which principally depends on the optical properties 
of the material, i.e. on an appropriate average of the 
complex refractive indices of all phases in the material, 
and the medium surrounding the macroscopic body), i.e.

.                            (1)

	 However, a real-in-line transmission (RIT) is mea-
sured only when the detector angle is small enough (0.5° 
or smaller [1, 7]). The theoretical limit of the real-in-line 
transmission (RIT) Tmax of a non-absorbing material in 
vacuum or air, i.e. the complement of the total reflection 
loss Rtotal, is given by

,                   (2)

where n is the refractive index. This relation is a con-
sequence of the Fresnel reflectance for normal incidence 
and specular reflection [1, 11, 12], which for one 
reflection (on one surface) is  

,                             (3)

and for multiple reflection (total reflection loss) [1, 7]

.                           (4)
 
	 Another, completely equivalent, formulation of 
the theoretical limit of the RIT can be deduced as a 
special case of the averaged (over interference bands) 
transmittance through a slab of thickness h [11]

,        (5)

where αabs is the absorption coefficient

,                             (6)

and κ the absorption index [12], i.e. the imaginary part 
of the complex refractive index. For small absorption 
coefficients the series expansions of the exponentials can 
be cut off before the first-order terms and thus reduce to 
unity, and the resulting equation is 

.                          (7)

	 This relation, Equation 7, is completely equivalent 
to Equation 2 above. A very rough (and unnecessary) 
approximation of this relation is Tmax ≈ (1 − R)2, proposed 
e.g. in [12], and the corresponding approximation for 
absorbing media in [11]. Needless to say, that these 
rough approximations have to be avoided.

	 During transmission, the intensity (irradiance) of 
light is attenuated not only by reflection (at the surfaces 
of the macroscopic sample) but also by attenuation 
(extinction) of the “primary beam“ inside the material. 
In a strictly homogeneous medium attenuation or ex-
tinction inside the material is exclusively due to ab-
sorption [11]. However, in heterogeneous materials the 
intensity (irradiance) is attenuated also by scattering 
at the heterogeneities, e.g. the inclusion or pores. That 
means, light is irradiated in directions different from 
that of the primary beam and thus lost for the RIT. The 
irradiance entering the material is attenuated according 
to the Lambert-Beer relation

I = I0 exp(-αexth) ,                           (8)

as the incident beam traverses the slab of material with 
heterogeneities, e.g. inclusions or pores. The attenuation 
or extinction coefficient is 

αext = NCext = NCabs + NCsca ,             (9)

where N is the number of inclusions or pores per unit 
volume and Cext, Cabs and Csca their extinction, absorption 
and scattering cross sections, respectively. This result 
can be generalized to a mixture of different particles 
[11]. However, underlying the exponential attenuation 
of irradiance in particulate media is the requirement 
that αexth << 1, or at least NCscah << 1 (i.e. negligibly 
small scattering contribution to the total attenuation, 
see the theory of heat transfer). Strictly speaking, only 
in this case multiple scattering can be ignored [11]. It 
is common practice, however, to use this exponential 
relation beyond its strict range of validity.
	 The volume fraction ϕ of inclusions or pores is 
related to the number of inclusions or pores per unit 
volume N via the relation

ϕ = N ∙ Vi  ,                                (10)

where Vi is the volume of a single inclusion or pore. For 
example, for spherical inclusions or pores one has 

,                     (11)

(where r is the radius and d the diameter of the sphere), 
so that for non-absorbing inclusions or pores, where 
the extinction is only due to scattering, one obtains 
the attenuation coefficient (= extinction coefficient = 
scattering coefficient)

.                      (12)

Now from Equation 9 above it is clear that the absorption 
and scattering cross sections are additive, i.e. [11]

Cext = Cabs + Csca  .                       (13)

	 The fact that the extinction depends only on the 
scattering amplitude in the forward direction, whereas it 
is at the same time the combined effect of absorption in 
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the particle and scattering by the particle in all directions, 
is a special form of the so-called “optical theorem“ [13]. 
In a similar way, the dimensionless efficiency factors, 
also called “efficiencies“, defined as

,                         ,                         ,     (14)

where G is the geometric cross section, i.e. the particle 
cross-sectional area projected onto a plane perpendicu-
lar to the incident beam (e.g. G = πr2 = πd2/4 for spheres), 
are additive. Efficiencies are dimensionless cross sec-
tions, which can be larger (or smaller) than expected on 
the basis of geometrical optics: particles can scatter and 
absorb more light than is geometrically incident on them 
(according to geometrical optics incident rays are either 
absorbed or deflected by reflection and refraction) [11]. 
In terms of efficiencies the attenuation coefficient for a 
material with nonabsorbing spherical inclusions or pores 
of one size attains its simplest form:

.                       (15)
 
	 Inserting this expression into the Lambert-Beer 
relation and combining the latter with the expression for 
the theoretical limit of the RIT according to Equation 1, 
the transmission (transmittance) of a material with 
spherical inclusions or pores can be calculated, as soon 
as the efficiency factor for a single inclusion is known. 
This factor depends on the size of the inclusion or pore 
(here assumed to be of spherical shape) in relation to the 
wavelength of light, its optical properties (i.e. in general 
the complex refractive index, but here assumed to be real, 
because the inclusions are assumed to be nonabsorbing) 
and the refractive index of the surrounding medium 
(usually assumed to be real), i.e. the matrix around the 
inclusion or pore (usually assumed to be nonabsorbing). 
Additionally, of course, the grain size dependence of 
the matrix can be taken into account via the Apetz-van-
Bruggen approach [1].
	 The most convenient dimensionless size parameter 
commonly used is 

,               (16)

where λ0 is the wavelength of the light in vacuum (or air 
or another gas) while λ is the wavelength in the material 
(solid or another condensed matter, e.g. liquid). Also a 
dimensionless relative refractive index is defined as 

,                             (17)

where ni is the refractive index of the inclusion or pore 
(here assumed to be real, but generally complex if 
absorbing) and n the refractive index (usually assumed 
to be real) of the matrix (nonabsorbing). 
	 When the size of the inclusions or pores is much 
smaller than the wavelength of light (in the surrounding 

matrix), i.e. x << 1, the efficiency factor is given by the 
expression for Rayleigh scattering [14],

.                  (18)

(in the case of complex m the brackets should be replaced 
by vertical lines indicating real values, and – in addition 
to scattering efficiencies – absorption efficiencies must 
be considered as well). It should be recalled that the 
dimensionless ratio m (relative refractive index) can 
be smaller than 1, e.g. in the case of pores, while the 
“dimensionless cross section“ Qsca should of course 
always be a positive quantity. Two extreme cases of 
this relation are thinkable: for very large m (e.g. water 
droplets in air at very large wavelengths, where m 
approaches a value of 9) the efficiency factor approaches 
the value

,                           (19)

whereas for m close to 1 the asymptotic value is [14]

.                    (20)
  
	 Another very simple case occurs when the inclu-
sions or pores are very large, i.e. x >> 1. In this case 
(Fraunhofer diffraction) we have more or less complete 
forward scattering and the efficiency factor approaches 
a constant value (in the limit of geometric ray optics) 
which is 

Qsca = 2  .                               (21)

	 The fact that the asymptotic value of Qsca for very 
large x is 2, and not 1, is called the extinction paradox. 
A plausible explanation of this paradox is given in [14]. 
For inclusion or pore sizes in the order of the wavelength 
d ≈ λ, Mie theory should be used [11, 14]. However, 
even for the simplest shapes, viz. spheres, the exact Mie 
solution cannot be written down in a few passages and 
its application requires numerical solution algorithms. 
Fortunately, these algorithms and user-friendly progams 
for Mie calculations are available today, e.g. in the 
form of interactive web applications [15]. Therefore, 
all approximate solutions may readily be tested vis-
en-vis the exact Mie solution. Note that the Rayleigh 
and Fraunhofer approximations (and of course also the 
geometric ray optics) do not pose any restrictions on the 
refractive indices. Both should approach the exact Mie 
solution for very small and large inclusions or pores, 
respectively, but are expected to deviate from the Mie 
solution for inclusion or pore sizes in the vicinity of the 
wavelength. However, when the relative refractive index 
is close to 1, i.e. |m – 1| << 1 and the phase shift is small 
as well 2x ∙ |m – 1| << 1 [14], recourse can be made to 
another approximation, the so-called Rayleigh-Gans-
Debye (RGD) approximation, which may be a good 
approximation for inclusion or pore sizes too large for the 
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Rayleigh approximation. Within the RGD approximation 
the scattering efficiency can be written as

(22)

	 In this formula the numerical value 0.577… is the 
Euler constant and Ci(…) denotes the so-called cosine 
integral, see [14], where numerical values of Qsca 
are tabulated in dependence of the dimensional size 
parameter x. For x << 1 the special case of Rayleigh 
scattering is regained (see Equation 20 above),  

,                   (23)

while in the limiting case x >> 1 the scattering efficiency 
in the RGD approximation is [14]

Qsca = 2x2 (m – 1)2                       (24)

	 It has to be recalled that in all correct applications of 
the RGD approximation the condition 

Qsca << 1                                (25)

must be fulfilled, because of the requirement of small 
phase shifts [14], see above. This imposes severe 
practical restrictions to the usefulness of the RGD 
approximation for large inclusions or pores (if the 
refractive index difference is too high) and explains why 
the RGD approximation cannot be extended into the 
Fraunhofer region and the region of geometric ray optics, 
where Qsca approaches a value of 2. The special case of 
the RGD approximation for large sizes (Equation 24) 
has been proposed as the basis for calculating the grain 
size dependence of scattering and transmission in single-
phase polycrystalline ceramics (alumina) [1]. However, 
this calculation according to the Apetz-van-Bruggen 
approach can only be used when the refractive index 
difference (in this case the birefringence) is extremely 
small. In fact, Apetz and van Bruggen used this approach 
in combination with a very specific (and of course 
completely virtual) type of effective medium model: 
they modeled the grain size dependence of transmission 
by considering the single-phase polycrystalline alumina 
as if it were a matrix-inclusion-type composite (what 
it is not) with a refractive index difference of Δn = 
= 0.005, i.e. for which the matrix has an index of 1.760 
and the inclusions an index of 1.765. The idea behind 
this is that the refractive index difference of this (purely 
hypothetical) “composite“ should be something like an 
“orientationally averaged“ birefringence of the crys- 
tallites, which is Δn = (2/3)Δnmax, where Δnmax is the 
birefringence, i.e. the refractive index difference between 
the refractive index of the ordinary ray (1.760) and that 
of the extraordinary ray (1.768). When the shape of the 

inclusions is assumed to be spherical (for which there is 
no justification in this case of course) and the volume 
fraction of spherical inclusions is assumed to be 0.5 
(for which there is also no justification in this case) then 
we obtain the Apetz-van-Bruggen model. When all these 
assumptions are accepted, we obtain for 600 nm light a 
range of validity of the Apetz-van-Bruggen model in the 
size range (diameter range) of approximately 1 - 25 µm 
(when the theoretical requirements x >> 1 and Qsca << 1
are to be fulfilled by a safety factor of ten, i.e. by an 
order of magnitude) or 0.2 - 50 µm (when the theoretical 
requirements x >> 1 and Qsca << 1 are to be fulfilled 
only by a safety factor of two). It has to be emphasized, 
however, that alumina (corundum) is a crystal with a 
rather small birefringence. As soon as the birefringence 
is higher, e.g. in zirconia at least 0.023 [8] the situation 
is much more critical (and it has to be noted that much 
higher birefringence values are reported for zirconia 
in the literature as well [8]). The range of validity of 
the Apetz-van-Bruggen model (i.e. the “large sphere 
variant“ of the RGD approximation) is approximately 
0.9 - 5 µm or 0.2 - 8 µm for safety factors of ten and two, 
respectively. In the case of two-phase composites with 
alumina inclusions (1.767) in a YAG matrix (1.832), with 
50 vol. % of either phase, the validity of the Apetz-van-
Bruggen model would be restricted to the very narrow 
range of 1 - 1.5 µm or 0.2 - 4 µm for safety factors of 
ten and two, respectively. In other words, in this case the 
model would be practically useless.
To summarize, the scattering coefficients for the 
Rayleigh approximation, Fraunhofer (or geometric 
optics) approximation and the two variants (for small 
and large spheres) of the RGD approximation are:

● Rayleigh:                                                         ,      (26)

● Fraunhofer
(and geometrical optics):                           ,                (27)

● RGD (large sphere ):                                               ,     (28)

● RGD (small sphere ):                                                . (29)

	 With respect to the fact that the calculation of 
the cosine integral in Equation 22 requires numerical 
integration and the theoretical requirement Qsca << 1 
generally restricts the use of the RGD approximation 
anyway (not only its small- and large-sphere variants), 
there is hardly any advantage – compared to the full 
exact Mie solution – in using the RGD approximation for 
spherical inclusions or pores (for non-spherical objects 
the situation is principally different, simply because 
a complete Mie solution is not available). However, 
for very small and very large spheres the Rayleigh 
approximation and the Fraunhofer (and geometric optics) 
approximation retain their validity, and an interpolative 

( ) ( ) ( ) ( ) ( ){ }







−+⋅






 −+−−−+⋅−=⋅−= xCix
x

x
xx

xxmxmQsca 44log...577.02
2
14cos1

16
7

4
4sin2

2
511 22

222 ϕ

( )24 1
27
32

−= mxQsca

2

2

2

4
0

34

2
14








+
−

=
m
mdnm

Rayleigh λ
πφ

α

dFraunhofer
φ

α
3

=

2
0

22

large
3

λ
πφ

α
dn

RGD
∆

=

4
0

3224

small 9
16

λ
πφ

α
dnn m

RGD
∆

=

( ) ( ) ( ) ( ) ( ){ }







−+⋅






 −+−−−+⋅−=⋅−= xCix
x

x
xx

xxmxmQsca 44log...577.02
2
14cos1

16
7

4
4sin2

2
511 22

222 ϕ

( ) ( ) ( ) ( ) ( ){ }







−+⋅






 −+−−−+⋅−=⋅−= xCix
x

x
xx

xxmxmQsca 44log...577.02
2
14cos1

16
7

4
4sin2

2
511 22

222 ϕ



A closed-form expression approximating the mie solution for the real-in-line transmission of ceramics with spherical inclusions or pores

Ceramics – Silikáty  57 (2) 151-161 (2013)	 155

combination of these two might be used for roughly 
estimating the intermediate size range in the vicinity of 
the wavelength of light without direct recourse to the full 
Mie solution. For this purpose we propose the following 
procedure (“R-scaling“, i.e. scaling of the Rayleigh 
approximation):

●	First, calculate the real-in-line transmittance (RIT)
according to the Rayleigh approximation, TR, then 
according to the Fraunhofer (geometric optics) ap-
proximation, TF.

●	Second, cut the Fraunhofer approximation at the va-
cuum wavelength, rescale the Rayleigh approximation 
with respect to the RIT at this point and connect the 
two curves.

	 The resulting closed-form expression for the relative 
RIT is then

,

(30)

where Hλ0(d) is the Heaviside step function defined as

.              (31)

	 Of course, the choice of d = λ0 is to a certain degree 
arbitrary and by adapting this cutoff value the fit to the 
Mie solution could be optimized. A simpler alternative, 
albeit much rougher as an approximation to the Mie 
solution, would be the use of the maximum function:

.               (32)
 
	 In the following sections we will compare our closed-
form expression, Equation 30, and the simple maximum 
function, Equation 32, to the exact Mie solution and 
the aforementioned approximations (Rayleigh, RGD, 
Fraunhofer), as well as another approximation, which is 
extremely useful, but has been largely neglected in the 
literature so far: the van de Hulst approximation (vdH 
approximation). Within this approximation, which holds 
for non-absorbing spheres, the scattering efficiency can 
be written in the form [14]     

                  (33)

with
ρ = 2x(m – 1)                       (34)

	 In contrast to the RGD approximation, which pre-
forms well only for relative refractive indices close to 
unity (m → 1), the vdH approximation works well even 
for values of m as large as 2 [14] and is indeed one of 
the most useful and precise approximations to the Mie 
solution.  

RESULTS AND DISCUSSION

Parametric study

	 Figure 1 shows the theoretical maximum trans-
mittance of materials calculated according to Equations 
2 or 7. The bold region indicated in the central part of 
this curve refers to typical oxides, the refractive index of 
which is practically always in the range 1.4 - 2.7 (at wave- 
lengths of visible light). The theoretical maximum trans- 
mittance corresponding to this range of refractive indi- 
ces is in the range 65.1 - 94.6 % for optically homoge-
neous materials. Heterogeneities such as second-phase 
inclusions, pores and (in the case of non-isotropic crys-
tallites also) grain boundaries reduce the transmittance. 
Of course, since the refractive index depends on the 
wavelength, also the maximum transmittance changes 
with the wavelength.   

	 For a wavelength of 600 nm, which is somewhere 
in the middle of the visible range, the refractive index of 
yttrium-aluminum garnet (YAG = Y3Al5O12) is n =1.832 
[16], while alumina (α-Al2O3) has at this wavelength 
refractive indices no = n┴ = 1.7702 and nε = n║ = 1.7618, 
respectively [17], i.e. exhibits a birefrigence of ‒ 0.0084. 
Using the mixture rule 

               (35)

for the dielectric permittivity of an isotropic poly-
crystalline aggregate of uniaxial crystallites, we obtain 
the arithmetic average refractive index as 

.                     (36)

	 For alumina at 600 nm this value is 1.767. Thus 
the refractive indices of YAG and alumina are relati-
vely close. In fact, the difference between the two 
(Δn ≈ 0.065) is very similar to the difference of the 
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Figure 1.  Theoretical maximum transmittance of typical oxides 
at visible wavelengths.
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refractive indices of the ordinary and extraordinary rays 
(Δn = no − nε) of tetragonal zirconia, which is reported to 
be in the range 0.023 - 0.093 [8, 18, 19]. Therefore, since 
the Apetz-van-Bruggen approach, which is based on the 
RGD approximation (large sphere variant), has been 
successfully used to model the grain size dependence of 
the RIT of tetragonal zirconia [8], it would seem even 
more appropriate to apply the RGD approximation for 
YAG-alumina composites, because in contrast to the 
modeling of the grain size dependence of the RIT via 
the Apetz-van-Bruggen approach, where the differently 
oriented crystallites are treated as if they were virtual 
inclusions, YAG-alumina composites are really two-
phase composites and are therefore ideally suited to 
serve as a playground for parametric studies. Potential 

practical aspects of these composites, such as the possible 
development two-wavelength lasers, will be discussed in 
a forthcoming paper. 
	 Figures 2a-d show the scattering patterns of a model 
system containing spherical inclusions with refractive 
index 1.767 in a matrix with index 1.832, according to 
Mie calculations for a wavelength of 600 nm, using Scott 
Prahl’s web-based “Mie Scattering Calculator“ [15]. 
This model system can be considered as representative 
for YAG-alumina composites with low volume fractions 
of randomly oriented alumina inclusions in visible 
light. In these so-called “polar graphs” of the scattering 
pattern, light is incident from the left on a sphere located 
at the center. The radial axis in these graphs possesses 
a linear scale. Although the intensity of scattered light 

Figure 2.  Scattering patterns of a (nonabsorbing) spherical inclusion with diameter 0.01, 0.1, 1, 10 μm (Figures 2a, 2b, 2c and 2d, 
respectively, from top to bottom) and refractive index n = 1.767 (alumina) in a (nonabsorbing) matrix with n = 1.832 (YAG) in 
monochromatic light in the visible range λ = 600 nm; polar graph with linear radial axes.

a)

c)

b)

d)

Natural
Perpendicular
Parallel

0.001

0.01

Natural
Perpendicular
Parallel

0.001

0.01

Natural
Perpendicular
Parallel

0.001

0.01

Natural
Perpendicular
Parallel

0.001

0.01



A closed-form expression approximating the mie solution for the real-in-line transmission of ceramics with spherical inclusions or pores

Ceramics – Silikáty  57 (2) 151-161 (2013)	 157

is shown for the cases of incident light with parallel 
and perpendicular polarization as well, only the case 
of natural light (circumscribed figures) is of interest to 
us here. Figures 3a-d show similar scattering patterns 
of a model system containing spherical inclusions with 
refractive index 1 in a matrix with index 1.832, for a 
wavelength of 600 nm. This system corresponds to 
porous YAG ceramics at low porosities.   
	 In both cases the scattering patterns are very similar. 
It is evident that for inclusion diameters smaller than 
100 nm there is a considerable amount of scattering in 
the backward direction (backscattering) and that for 
10 nm inclusions the scattering is completely isotropic 
(Rayleigh limit), whereas for inclusion diameters larger 
than 1 μm the scattering is essentially in the forward 

direction (small-angle scattering, Fraunhofer diffraction 
and geometric optics limit).
	 Figures 4 and 5 show the dependence of the sca-
ttering efficiency on the size of spherical inclusions 
or pores for YAG-alumina composites (nmatrix = 1.832, 
ninclusion = 1.767) and porous YAG ceramics (nmatrix = 
= 1.832, npore = 1), respectively. In the first case, the phase 
contrast is sufficiently close to unity (i.e. the difference 
between the two refractive indices is sufficiently small) 
for the (two variants of the) Rayleigh-Gans-Debye 
(RGD) approximation to be justified, in the second case 
it is not. However, for reasons of comparison, the RGD 
approximations have been calculated also for this case 
and are shown in Figure 5.      

Figure 3.  Scattering pattern of a spherical pore inclusion with diameter 0.01, 0.1, 1, 10 μm (Figures 3a, 3b, 3c and 3d, respectively, 
from top to bottom) in a (nonabsorbing) matrix with n = 1.832 (YAG) for monochromatic light in the visible range (λ = 600 nm); 
polar graph with linear radial axes.
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	 Figure 4 shows that the vdH approximation is an 
excellent approximation to the exact Mie solution for 
YAG-alumina composites at 600 nm, far better than 
any other approximation. The vdH approximation is 
an initially increasing and subsequently oscillating 
function which decreasing amplitude that levels off to 
the Fraunhofer diffraction limit value of the scattering 
efficiency of two (lim Q = 2). With decreasing inclusion 
size the vdH approximation approaches the large-
size variant of the RGD approximation from below 

and remains below the small-size variant of RGD 
approximation down to an inclusion diameter of approx. 
135 nm. Below this size, the scattering efficiency of the 
vdH approximation (and also the large-size variant of the 
RGD approximation) exceeds the small-size variant of 
RGD approximation and becomes thus unrealistic.   
	 Figure 5 refers to the case of porous YAG ceramics. 
In this case, where the small-size RGD approximation 
is shifted to smaller values and the large-size RGD 
approximation is closer to the small-size RGD, it is 
evident that the vdH approximation is not as good as 
before, but seems not to be much worse than the other 
approximations. However, also in this case its validity 
is restricted to pore diameters larger than approx. 
135 nm, and it will be shown that this failure has serious 
consequences when either the phase contrast or the 
inclusion concentration are large.
	 Figures 6 through 8 show the inclusion size depen-
dence of the real-in-line transmission (RIT) of YAG-based 
composite ceramics (matrix: YAG n = 1.832 – inclusion: 
alumina n = 1.767) in monochromatic light of wavelength 
(λ = 600 nm) for alumina (inclusion) volume fractions 
of 0.1, 1 and 10 %, respectively, calculated (for a slab 
thickness 1 mm) according to different models, including 
our closed-form expression (denoted “R-scaling“), 
the van-de-Hulst (vdH) approximation and the exact 
Mie solution. It is evident, that for inclusion volume 
fractions as low as 0.1 % the vdH approximation is by 
far the best approximation to the Mie solution. However, 
already for an inclusion volume fraction of 1 % the RIT 
prediction calculated using the vdH approximation is 
highly misleading. It would lead to the conclusion that 

Figure 5.  Dependence of the scattering efficiency on the size 
of spherical pores for porous YAG ceramics in monochromatic 
light at 600 nm, calculated according to the Rayleigh approxi-
mation, the Fraunhofer approximation, the two variants of the 
Rayleigh-Gans-Debye (RGD) approximation (unjustified in 
this case), the van-de-Hulst (vdH) approximation and the exact 
Mie theory.

Figure 6.  Inclusion size dependence of the real-in-line trans-
mission of YAG-based composite ceramics (matrix: YAG 
n = 1.832 – inclusion: alumina n = 1.767) for monochromatic 
light in the visible range (λ = 600 nm) for an alumina 
(inclusion) volume fraction of 0.1 % and a slab thickness of 
1 mm, calculated according to different models, including our 
closed-form expression (R-scaling), the van-de-Hulst (v-d-H) 
approximation and the exact Mie solution.
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Figure 4.  Dependence of the scattering efficiency on the size 
of spherical inclusions for YAG-alumina composites in mono-
chromatic light at 600 nm, calculated according to the Rayleigh 
approximation, the Fraunhofer approximation, the two variants 
of the Rayleigh-Gans-Debye (RGD) approximation, the van-
de-Hulst approximation (vdH) and the exact Mie theory.
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inclusion sizes considerably smaller than 10 nm would 
be necessary to achieve maximum RIT, whereas in 
reality (according to the Rayleigh approximation and the 
exact Mie solution) inclusion sizes of several tens of nm 
would be appropriate, which appears much more feasible 
to realize in practice. For inclusion volume fractions 

of 10 % the vdH approximation fails completely for 
inclusion sizes smaller than approx. 200 nm, while our 
closed-form expression is almost as good as the exact 
Mie solution. 
	 Figures 9 through 14 show the pore size dependence 
of the real-in-line transmission (RIT) of porous YAG 
ceramics (n = 1.832) for monochromatic light in the visible 
range (λ = 600 nm) for a porosities of 0.0001, 0.001, 0.01, 
0.1, 1 and 10 % and a slab thickness of 1 mm according 
to exact Mie theory, the Rayleigh approximation, the 
Fraunhofer approximation, the vdH approximation 
and our closed-form expression (R-scaling). 

Figure 7.  Inclusion size dependence of the real-in-line trans-
mission of YAG-based composite ceramics (matrix: YAG 
n = 1.832 – inclusion: alumina n = 1.767) for monochromatic 
light in the visible range (λ = 600 nm) for an alumina (inclu-
sion) volume fraction of 1 % and a slab thickness of 1 mm, 
calculated according to different models, including our 
closed-form expression (R-scaling), the van-de-Hulst (v-d-H) 
approximation and the exact Mie solution.

Figure 8.  Inclusion size dependence of the real-in-line trans-
mission of YAG-based composite ceramics (matrix: YAG 
n = 1.832 – inclusion: alumina n = 1.767) for monochromatic 
light in the visible range (λ = 600 nm) for an alumina (inclu-
sion) volume fraction of 10 % and a slab thickness of 1 mm, 
calculated according to different models, including our 
closed-form expression (R-scaling), the van-de-Hulst (v-d-H) 
approximation and the exact Mie solution.

Figure 9.  Pore size dependence of the real-in-line transmission 
of YAG ceramics (n = 1.832) for monochromatic light in the 
visible range (λ = 600 nm) for a porosity of 0.0001 % and a slab 
thickness of 1 mm according to exact Mie theory and several 
approximations, including our closed-form expression.
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Figure 10.  Pore size dependence of the real-in-line transmission 
of YAG ceramics (n = 1.832) for monochromatic light in the 
visible range (λ = 600 nm) for a porosity of 0.001 % and a slab 
thickness of 1 mm according to exact Mie theory and several 
approximations, including our closed-form expression.
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It is evident that porosities of the order 0.0001 %  
have virtually no influence on the RIT, see Figure 9. 
However, already porosities as low as 0.001 % lead to a 
sensible decrease of the RIT when the pore size is critical, 
i.e. similar to the wavelength of light, see Figure 10. For 
this case, where the phase contrast is high (the ratio of the 
two refractive indices is 1.832), the vdH approximation 
predicts a RIT that is too low and comes to lie even 
below the Rayleigh approximation for pore diameters 
smaller than 135 nm, which is clearly unrealistic. On the 
other hand, our close-form expression provides values 

that are slightly higher than the exact Mie solution, but 
approach the Rayleigh approximation for small pore 
size, as required on physical grounds. For porosities of 
order 0.1 % and higher the material becomes more or 
less opaque when the pore size is submicron (i.e. pore 
diameters of several hundred nm), and for porosities of 
order 1 % and higher the pore size should be of order 10 
nm and lower to attain maximum RIT. With increasing 
porosity from 0.01 to 10 % the vdH becomes more and 
more unrealistic, whereas our closed-form expression 
more and more approaches the exact Mie solution. 

Figure 12.  Pore size dependence of the real-in-line transmission 
of YAG ceramics (n = 1.832) for monochromatic light in the 
visible range (λ = 600 nm) for a porosity of 0.1 % and a slab 
thickness of 1 mm according to exact Mie theory and several 
approximations, including our closed-form expression.

Figure 14.  Pore size dependence of the real-in-line transmission 
of YAG ceramics (n = 1.832) for monochromatic light in the 
visible range (λ = 600 nm) for a porosity of 10 % and a slab 
thickness of 1 mm according to exact Mie theory and several 
approximations, including our closed-form expression.

Figure 11.  Pore size dependence of the real-in-line transmission 
of YAG ceramics (n = 1.832) for monochromatic light in the 
visible range (λ = 600 nm) for a porosity of 0.01 % and a slab 
thickness of 1 mm according to exact Mie theory and several 
approximations, including our closed-form expression.

Figure 13.  Pore size dependence of the real-in-line transmission 
of YAG ceramics (n = 1.832) for monochromatic light in the 
visible range (λ = 600 nm) for a porosity of 1 % and a slab 
thickness of 1 mm according to exact Mie theory and several 
approximations, including our closed-form expression.
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SUMMARY AND CONCLUSIONS

	 A new closed-form expression has been presented 
that enables one to estimate the real-in-line transmission 
of ceramics consisting of non-absorbing phases, e.g. of 
certain composites or porous ceramics, in dependence 
of the inclusion or pore size. In the theoretical part of 
this paper the classic approximations to the exact Mie 
solution of the scattering problem for spheres have 
been recalled (Rayleigh, Fraunhofer, Rayleigh-Gans-
Debye / RGD) and commented upon. In particular, it 
has been emphasized that there are two variants of the 
RGD approximation (small-size and large-size variant) 
and that the latter is – together with other, very specific 
assumptions – the basis of the popular Apetz-van-
Bruggen approach, which is briefly criticized in passing. 
Moreover, in the theoretical part another – less well 
known, but all the more useful – approximation has been 
brought to light from the shadows of oblivion: the van de 
Hulst approximation. The latter relation and our simple 
closed-form expression (essentially a combination of 
the Rayleigh and Fraunhofer approximations) have 
been compared mutually and vis-a-vis the exact Mie 
solution. A parametric study has been performed for 
monochromatic light in the visible range (600 nm) for 
two model systems corresponding to composites of 
yttrium-aluminum garnet (YAG, matrix with refractive 
index 1.832), and alumina (spherical inclusions with 
refractive index 1.767) and to porous YAG ceramics 
with spherical pores (refractive index 1). The parametric 
study has shown that for the YAG-alumina composites to 
achieve maximum transmission with inclusion volume 
fractions of 1 % (and slab thickness 1 mm), inclusion 
sizes of up to 100 nm can be tolerated, while pore sizes 
of 100 nm will be completely detrimental for porosities 
as low as 0.1 %. While the van-de-Hulst approximation 
is excellent for small phase contrast (e.g. here a refractive 
index difference of 0.065) and low concentration (e.g. 
0.1 % of alumina inclusions in a YAG matrix), it fails 
for principal reasons for small inclusion or pore sizes. 
Our closed-form expression, while slightly less precise 
in the aforementioned special case, is always the safer 
choice and performs definitely better in most cases of 
practical interest, including high phase contrasts (e.g. 
here a refractive index difference of 0.832) and high 
concentrations of inclusions or pores.   
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