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Abstract

The inverse Gaussian distribution is a positively skewed probability model that has
received great attention in the last 20 years. Recently, a family that generalizes this model
called inverse Gaussian type distributions has been developed. The new R package named
ig has been designed to analyze data from inverse Gaussian type distributions. This
package contains basic probabilistic functions, lifetime indicators and a random number
generator from this model. Also, parameter estimates and diagnostics analysis can be
obtained using likelihood methods by means of this package. In addition, goodness-of-fit
methods are implemented in order to detect the suitability of the model to the data. The
capabilities and features of the ig package are illustrated using simulated and real data
sets. Furthermore, some new results related to the inverse Gaussian type distribution are
also obtained. Moreover, a simulation study is conducted for evaluating the estimation
method implemented in the ig package.

Keywords: diagnostics, goodness of fit, lifetime analysis, likelihood methods.

1. Introduction

There are several fields of statistical application where the normal distributional assumption
does not hold. This is because some random variables (RV) considered in these fields fol-
low asymmetrical models. When researchers encounter skewed data, they generally try to
eliminate the asymmetry by transforming such observations so that the normal model can
be used. Problems of interpretation may arise, however, when analyzing data based on such
transformations. Thus, if a distribution is appropriate for modeling skewness data and be-
sides mathematically treatable and available for users, then this one should be employed. For
this reason, it is necessary to implement computational packages that take the utilization of
asymmetrical models into consideration.

A positively skewed probability model that has received great attention in the last 20 years is
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the inverse Gaussian distribution (IGD). The IGD is a probability model also known as the
first passage time distribution of Brownian motion with positive drift, which was developed
by Schrödinger (1915). Later, in 1941, Tweedie proposed the name inverse Gaussian for this
distribution since its cumulant generating function has an inverse relationship with that of the
normal distribution; see Tweedie (1957). The interest for the IGD is a result of its attractive
statistical and probabilistic properties. For example, the IGD belongs to the exponential
family, it has the reproductive property and it possesses similar inferential properties to that
of the normal model; see Mudholkar and Natarajan (2002). Thus, the IGD is a natural
alternative candidate to the normal distribution for modeling non-negative data with positive
skewness. For more details about the IGD see Chhikara and Folks (1989), Seshadri (1993,
1999) and Johnson, Kotz, and Balakrishnan (1994, pp. 259–297).

Maximum likelihood estimates (MLE) of the parameters of the normal model can be sensitive
to outlying observations. Lange, Little, and Taylor (1989) proposed the Student-t distribution
(which we will call simply t distribution or t model) as an alternative to the normal case,
since it has greater kurtosis than the normal model. Thus, cases which might be considered as
outlying under normality, might not under the t model, producing stable parameter estimates.
Recently, based on the relationship between the inverse Gaussian and normal distributions,
Sanhueza, Leiva, and Balakrishnan (2008) generalized the IGD using a class of models known
as elliptically contoured distributions. The elliptical univariate distributions contain all the
symmetrical models in R, the real line, and possess different degrees of kurtosis related to the
normal model. Therefore, this generalization, called the inverse Gaussian type distribution
(IGTD), can produce stable parameter estimates in the presence of outliers. In general, the
IGTD is highly flexible because it allows for different degrees of kurtosis and asymmetry,
other than modality and bimodality.

The aims of this paper are: (i) to present the R (R Development Core Team 2008) package
named ig, available from the Comprehensive R Archive Network at http://CRAN.R-project.
org/package=ig, which can be used to compute probabilistic characters, estimate parameters,
carry out diagnostics and produce goodness of fit for the IGTD; and (ii) to develop two new
aspects of the IGTD: lifetime analysis and generation of random numbers.

The rest of this article is organized as follows: in the second section, we give a background
about probabilistic properties of the IGTD and provide new results for lifetime analysis based
on this distribution; in the third section, we give a background about statistical results of the
IGTD and develop a procedure for obtaining random numbers from this model, which can be
useful for simulation studies; in the fourth section, the main functions of the ig package and
some illustrative examples are presented. Finally, some conclusions are drawn.

2. Probabilistic aspects of the IGTD

In this section, we present a summary of the most important properties of the IGTD obtained
by Sanhueza et al. (2008) and also provide some new results for lifetime analysis based on
this distribution. Specifically, in the first part of this section we discuss aspects related
to symmetrical distributions in the real line, also known as univariate elliptically contoured
(EC) distributions, and their implementation in the R software. Later, we summarize in seven
properties the most important results of the IGTD obtained by Sanhueza et al. (2008). In
the third part of this section, we develop a lifetime analysis for the IGTD mainly based on
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the hazard function (hf) including its change point. Finally, a shape analysis for this model
is provided, which shows some graphical tools implemented in the ig package.

2.1. Symmetrical distributions in the real line

If a RV has a univariate EC distribution with location µ = 0 and scale σ = 1 parameters,
then the notation Z ∼ EC1(0, 1; g) is used, where g is the kernel of the probability density
function (PDF) of Z expressed as fZ(z) = c g(z2), with z ∈ R and c being a normalization
constant that allows fZ(z) to be a PDF. The cumulative distribution function (CDF) of Z is
denoted by FZ(z). Models of this type are known as standard symmetrical distributions in
the real line or symmetrical distributions about zero and can be denoted simply by Z ∼ S(g).
For details about symmetrical distributions see Fang, Kotz, and Ng (1990)

In the R software, the functions dlogis() and plogis(), dnorm() and pnorm() and dt()
and pt() are already implemented, which allow the standard symmetrical PDF and CDF of
the logistic, normal and Student-t models to be obtained, respectively. In addition, R also
has the normalp package available, which can be used for the Laplace distribution; see Mineo
(2003).

2.2. The inverse Gaussian type distribution

If a RV T follows the IGTD with mean µ, scale parameter λ and kernel g, then the notation
T ∼ IGT(µ, λ; g) is used and the following results hold:

(A1) The PDF of T is

fT (t) = fZ(at)

√
λ√
t3

= c g
(
a2
t

) √λ√
t3

; t > 0, µ > 0, λ > 0,

where at = at(µ, λ) =
√
λ/µ[

√
t/µ−

√
µ/t] and fZ(·) denotes the PDF of Z ∼ S(g)

(A2) The mode(s) of T denoted by tm is (are) obtained by the solution(s) of

ωg
(
a2
tm

) λ
µ

[
1
µ
− µ

t2m

]
=

3
2 tm

,

where at is given in (A1) and ωg(u) = g′(u)/g(u), with u > 0 and g′(·) being the
derivative of g(·) also given in (A1).

(A3) c T ∼ IGT(c µ, c λ; g), with c > 0, i.e., the IGTD belongs to the scale family.

(A4) The CDF of T is

FT (t) = FZ(at) +
∫ ∞
bt

c g
(
u2 − 4λ/µ

)
du,

where bt =
√
λ/µ[

√
t/µ+

√
µ/t] and FZ(·) denotes the CDF of Z ∼ S(g).

(A5) The quantile function (qf) of T must be numerically obtained by t(q) = F−1
T (q), with

F−1
T (·) being the inverse function of FT (·).

(A6) U = Z2 = [λ/µ][T/µ+ µ/T − 2] has a generalized chi-square distribution (Gχ2D) with
one degree of freedom, which is denoted by U ∼ Gχ2(g); see Fang et al. (1990, p. 91).
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Distribution of Z Distribution of U

Laplace U = V 2,where V ∼ Gamma (1, 1)

Logistic U =
[
log
(

1−V
V

)]2
,where V ∼ Beta(1, 1)

Normal U ∼ χ2(1)

Student-t U ∼ F(1, ν)

Table 1: Distribution of U = Z2 ∼ Gχ2(g), where Z ∼ S(g).

(A7) If all the moments of T exist, then E[T−r] = E[T r+1]/µ2r+1, for r ∈ {0, 1, . . .}. Thus,
the expected value of T is given by E[T ] = µ. In general, the (r + 1)th moment of T is

E
[
T r+1

]
=
µr+1

θr
υr−

r∑
k=1

(
2r
k

)
E
[
T r+1−k]

µ−k [−1]k
−

2r∑
k=r+1

(
2r
k

)
E
[
T k−r

]
µk−2r−1 [−1]k

; r = 1, 2, . . . ,

where θ = λ/µ and υr = E[U r] < ∞, with U ∼ Gχ2(g). From the expression for
E
[
T r+1

]
given below, the variance, standard deviation (SD), coefficient of variation

(CV), coefficient of skewness (CS) and coefficient of kurtosis (CK) of T can be obtained.

The IGTD may be generated from the Laplace, logistic, normal and t with ν degrees of
freedom (denoted by tν) kernels, which will be called IGT-lap, IGT-logis, IG and IGT-St
distributions, respectively. The Cauchy law is a t distribution with ν = 1 and the associated
IGT will be called IGT-Cauchy. Table 1 presents Gχ2D associated with the Laplace, logistic,
normal and t models. Specific expressions for the variance, CV, CS and CK for the IGT-lap,
IGT-logis, IG and IGT-St distributions can be found in Sanhueza et al. (2008, Table 8).

2.3. Lifetime analysis for the IGTD

For a nonnegative RV T with PDF fT (t) (and CDF FT (t)), lifetime distributions are equiva-
lently characterized in terms of the survival function (sf) ST (t) = 1−FT (t) and hf (or failure
rate) hT (t) = fT (t)/ST (t), with t > 0 and 0 < ST (t) < 1. For example, if hT (t) is nondecreas-
ing (or nonincreasing) in t, then FT (·) belongs to the class of increasing (or decreasing) failure
rate (IFR) (or DRF) distributions; if hT (t) = λ > 0, for all t, we have ST (t) = exp(−λt),
with t > 0, so that FT (t) is an exponential distribution.

If T ∼ IGT(µ, λ; g), then from (A1) and (A4), we have

hT (t) =
fZ(at)

√
λ/
√
t3

FZ(−at)−
∫∞
bt
c g (u2 − 4λ/µ) du

; t > 0

and

ST (t) = FZ(−at)−
∫ ∞
bt

c g
(
u2 − 4λ/µ

)
du; t > 0.

In some cases, instead of having a monotone hf, we have a change point, say tc, such that
FT (t) is IFR for t ≤ tc and DFR for t ≥ tc. The IGTD belong to this switching monotone
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FR patterns and its change point tc is the solution of the equation

FZ (−atc)−
∫ ∞
btc

f
(√

u2 − 4λ/µ
)

du =

√
λfZ(atc)t

−1/2
c

3
2 − tc ωg(atc)

d
dtc
atc

.

2.4. Shape analysis for IGTD

Here, we perform a graphical analysis for some IGTDs. Models presenting different degrees
of kurtosis, asymmetry as well as modality and bimodality and the absence of moments are
considered. In the following, we present the densities of these IGTDs.

Example 1. Let T ∼ IGT(µ, λ; g). Then, for the indicated IGTD, the PDF of T is

fT (t) =
1
2

exp

(
−

√
λ

µ

∣∣∣∣√ t

µ
−
√
µ

t

∣∣∣∣
) √

λ√
t3

; t > 0 [IGT-lap].

fT (t) =
exp

(√
λ
µ

[√
t
µ −

√
µ
t

])
[
1 + exp

(√
λ
µ

[√
t
µ −

√
µ
t

])]2
√
λ√
t3

; t > 0 [IGT-logis].

fT (t) =
1√
2π

exp
(
− λ

2µ

[
t

µ
+
µ

t
− 2
]) √

λ√
t3

; t > 0 [IG].

fT (t) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) [1 +
λ

νµ

[
t

µ
+
µ

t
− 2
]]− ν+1

2
√
λ√
t3

; t > 0, ν > 0 [IGT-St].

The IGTD can also be generated from the Kotz type (KT) and Pearson VII (PVII) kernels; for
more details about the IGTD based on the KT and PVII kernels, see Sanhueza et al. (2008).
By using the ig package, we can create Figure 1, which shows the behavior of densities of
IGTDs for several kernels. Figure 1 also shows a zoom of the right tails for different IGTDs
in order to highlight their kurtosis. From these graphical plots, we note that the IGT-lap,
IGT-logis and IGT-St models present greater kurtosis than the classical IGD. Thus, any of
these models should produce stable parameter estimates. However, the kurtosis of the IGT-
St model is flexible depending on the parameter ν, which allows one to consider the IGT-St
model as a good candidate in order to produce stable parameter estimates in the presence of
outliers.

From Section 2.3 and (A2), expressions for the lifetime indicators and the mode(s) of the
IGTDs given in Example 1 can be specified. In order to do that, we consider the values for
ωg(u) of the Laplace, logistic, normal and t distributions presented in Sanhueza et al. (2008,
Table 3), which have been implemented in the ig package.

3. Statistical aspects for the IGTD

In this section, we present a summary of inference and diagnostics tools for the IGTD pre-
sented by Sanhueza et al. (2008), which have been implemented in the ig package. Also, we
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Figure 1: IGT PDF plots for µ = 1 and λ = 4 obtained from the indicated kernels.
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provide new results useful for simulation studies from this distribution that have been imple-
mented in this package as well. Specifically, in the first part of this section, we summarize
some aspects related to estimation and inference for the parameters of the IGTD. Later, we
present tools associated with influence diagnostics mainly based on local influence for this
model. Finally, in the third part of this section, we derive a method for generating random
numbers from the IGTD that has not been developed thus far, which allows one to conduct
simulation studies.

3.1. Estimation and inference

The MLE of the parameter θ = (µ, λ)> for the IGTD, which is implemented in the ig package,
can be computed from

µ =
∑n

i=1 υi ti∑n
i=1 υi

and λ−1 =
1
n

n∑
i=1

υi

[
ti
µ2

+
1
ti
− 2
µ

]
, (1)

where vi = vi(µ, λ) = −2ωg(a2
ti), for i = 1, . . . , n, with ωg(·) given in (A2). The expressions

presented in Eq. (1) are obtained from the log-likelihood function associated with the model
given in (A1), which is

`(µ, λ) =
n∑
i=1

`i(µ, λ) ∝ n

2
log (λ) +

n∑
i=1

log
(
g
(
a2
ti

))
, (2)

and making L̇µ = 0 and L̇λ = 0, where L̇µ = ∂`(µ, λ)/∂µ and L̇λ = ∂`(µ, λ)/∂λ.

The ig package incorporates the analytical form of the score vector, L̇ = (L̇µ, L̇λ)>. Numerical
values for the MLEs of µ and λ must be computed by using iterative procedures which need
initial values µ(0) and λ(0). The MLEs of µ and λ for the classical IGD (see Eq. (1) with
υi = 1) are considered as starting values for the iterative procedure implemented in the ig
package. For the classical IGD, we have υi = 1 giving thus equal weight for each observation
located at the tails or at the center of the distribution. In the IGT-St model, υi gives less
weight to the extreme cases, which can be viewed in Figure 2.

If the IGTD is obtained from a kernel different to the normal one, then E(L̈µλ) 6= 0. Thus, an
approximate (1 − α)100% confidence region for θ based on θ̂ ∼̇ N2(θ,Σθ̂) and implemented
in the ig package is given by

R ≡
{
θ ∈ R2 : (θ̂ − θ)>Σ−1

θ̂
(θ̂ − θ) ≤ χ2

1−α(2)
}
,

where χ2
1−α(2) denotes the (1 − α)th quantile of the χ2 distribution with two degrees of

freedom. Here, Σθ̂ is the covariance matrix of θ̂, which we approximate by −L̈−1 evaluated
at θ̂, with −L̈ being the observed information matrix obtained from the Hessian matrix. This
matrix is incorporated in an analytical form in the ig package and given by

L̈ =
[

L̈µµ L̈µλ
L̈λµ L̈λλ

]
=

[
∂2

∂µ2 `(µ, λ) ∂2

∂µ∂λ`(µ, λ)
∂2

∂λ∂µ`(µ, λ) ∂2

∂λ2 `(µ, λ)

]
.

For details about the score vector, Hessian matrix and asymptotic inference for the IGTD,
see Sanhueza et al. (2008).
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Figure 2: Plots of the υi against ti.

3.2. Influence diagnostics

Diagnostics techniques are relevant due to the importance for evaluating the effect of possible
atypical observations on the estimates. Also, these techniques allow one to verify the stability
of the estimation procedure in the presence of those atypical data. Next, we summarize a
diagnostics technique known as local influence, which is implemented in the ig package.
Let θ̂ω be the MLE of θ in the perturbed likelihood function `(µ, λ|ω) =

∑n
i=1 ωi`i(µ, λ),

where ω is a weight vector. The influence of the perturbation ω on the MLE can be evaluated
by LD(ω) = 2[`(θ̂) − `(θ̂ω)] by studying its local behavior around the non-perturbed vector
ω0, using the normal curvature Cl of LD(ω) in ω0 in the direction of some unitary vector l,
such that Cl = 2|l>∆>L̈

−1
∆l|, with ‖l‖ = 1 and L̈ and ∆ evaluated at θ = θ̂ and ω0. Here,

∆ is a 2× n matrix of perturbations given by ∆ = [∆1(θ), . . . ,∆n(θ)], with elements

∆i(θ) = [∆i(µ),∆i(λ)]> =
[

∂2

∂µ∂ωi
`(µ, λ|ω),

∂2

∂λ∂ωi
`(µ, λ|ω)

]>
; i = 1, . . . , n.

From the log-likelihood function `(λ, µ) of the IGTD defined in Eq. (2), we have

∆i(µ) =
λ

µ2

[
υiti
µ
− υi

]
and ∆i(λ) =

1
2λ
− 1

2

[
υiti
µ2

+
υi
ti
− 2υi

µ

]
; i = 1, . . . , n. (3)

The most influential cases can be identified by their large components of the direction vec-
tor, lmax, which produces the greatest local change in θ̂ and corresponds to the eigenvector
associated with the largest eigenvalue of B = ∆>L̈−1∆. In this case, the total local influence
of the ith case is given by Ci = 2|bii|, where bii is the ith diagonal element of B. Those
cases that satisfy the condition Ci >

2
n

∑n
i=1Ci can be considered as potentially influential;

see Verbeke and Molenberghs (2000). We have implemented Ci and its cut point as local
influence diagnostics tool in the ig package. For more details about diagnostics techniques in
the IGTD see Sanhueza et al. (2008).



Journal of Statistical Software 9

3.3. Simulation

In general, statistical inference tools may not exist in closed form for the IGTD. Hence,
simulation and numerical studies are needed, which require a random number (RN) generator.
Next, we present a RN generator for the IGTD following a procedure similar to the one given
in Chhikara and Folks (1989, pp. 52–53). This generator has been implemented in the ig
package. Thus, if T ∼ IGT(µ, λ; g), the algorithm steps are:

(B1) Generate a RN u from U ∼ Gχ2(g) by using an appropriate generator.

(B2) Generate a RN w from W ∼ U(0, 1).

(B3) Set values for µ and λ and then compute a random number t = t1 or t = t2 from
T ∼ IGT(µ, λ; g) according to the following criterion:

(B3.1) If w ≤ p0, then

t1 = µ+
uµ2

2λ
− µ

2λ

√
4µλu+ µ2 u2; p0 =

µ

µ+ t1
;

(B3.2) If w > p0, then t2 = µ2/t1.

4. The IG functions

In the ig package, the logistic, Laplace, normal and t kernels for the IGTD are implemented.
This package provides mainly two groups of functions in R code for the IGTD. These groups
are related to: (i) probabilistic characters, lifetime indicators and a random number generator,
and (ii) estimation, inference, diagnostics and goodness-of-fit methods. In addition, some tools
useful for exploratory data analysis (EDA) are also included. The ig package is independent
of other R packages already created.

4.1. IG probabilistic functions

In order to compute the PDF, CDF and qf given in (A1), (A4) and (A5), the commands
digt(), pigt() and qigt() are used, respectively. The following instructions illustrate these
functions.

R> digt(3, mu = 1.0, lambda = 1.0, nu = 1.0, kernel = "normal")

[1] 0.03941836

R> digt(3, mu = 1.0, lambda = 1.0, nu = 1.0, kernel = "normal")

[1] 0.03941836

R> pigt(0.6758413, mu = 1.0, lambda = 1.0, nu = 1.0, kernel = "normal")

[1] 0.5
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R> qigt(0.5, mu = 1.0, lambda = 1.0, nu = 1.0, kernel = "normal")

[1] 0.6758413

Figure 1 (third panel on the left) was plotted with the function digt() using the following
instructions:

R> t <- seq(0, 4, by = 0.01)

R> ft1 <- digt(t, 1.0, 4.0, 1.0, "t")

R> ft2 <- digt(t, 1.0, 4.0, 1.0, "laplace")

R> ft3 <- digt(t, 1.0, 4.0, 1.0, "logistic")

R> ft4 <- digt(t, 1.0, 4.0, 1.0, "normal")

R> ft <- cbind(ft1, ft2, ft3, ft4)

R> matplot(t, ft, type = "l", xlim = c(0, 4), ylim = c(0, 1.7), xlab = "t",

+ ylab = "f(t)", col = c(4, 3, 2, 1), lty = c(1, 1, 1, 1),

+ lwd = c(2, 2, 2, 2))

R> rect(3, -0.00005, 4, 0.1, border = "orange", lwd = 2)

R> legend(2.6, 1.7, c("Cauchy", "Laplace", "Logistic", "Normal"),

+ col = c(4, 3, 2, 1), lty = c(1, 1, 1, 1), lwd = c(2, 2, 2, 2),

+ cex = 1.25)

In order to carry out a lifetime analysis, we have implemented the functions sfigt() and
hfigt() for computing the survival and hazard functions, respectively.

To generate data from the IGTD, we have considered the method given in (B1) to (B3) by
implementing the function rigt(). The following instruction illustrates this command:

R> rigt(n = 6, mu = 1.0, lambda = 1.0, nu = 1.0, kernel = "normal")

[1] 0.2559006 0.2829651 3.9604401 0.9365816 1.8822376 0.9176596

4.2. IG statistical functions

Another group of functions related to graphical analysis, estimation, diagnostics, simulation
and goodness of fit for the IGTD is also available. In order to estimate the mean (µ) and
scale (λ) parameters of the IGTD, we implemented the method summarized in Section 3.1.
Four functions for estimating the parameters of the IG, IGT-lap, IGT-logis and IGT-St distri-
butions have been developed. These functions are: mleig(), mleigt(), mleigStNuFixed()
and mleigSt(). The parameters of the IGD based on a data set call lifetime, for example,
may be estimated from mleig(lifetime) or mleigt(lifetime, kernel = "normal"). The
parameters of the IGT-lap and IGT-logis models based on lifetime may be estimated from
mleig(lifetime, kernel = "laplace") and mleig(lifetime, kernel = "logistic"),
respectively. The parameters of the IGT-St model based on lifetime may be estimated
from mleigStNuFixed(lifetime, nu = 1.0), if the parameter ν is fixed, which for example
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is useful for conducting simulation studies. However, if the purpose is to achieve the optimal
value for ν, then the function mleigt(lifetime) must be used.
Next, two examples related to the use of these and other commands are presented. The
first example corresponds to a simulation study carried out by using the functions rigt(),
mleig() and mleigStNuFixed(). The second example is from a real data set available in
the literature and implemented in the ig package. In this example, we illustrate that the
estimation procedure presented for the IGT-St model is stable in the presence of atypical
observations. Also, we present the functions implemented for EDA in the ig package.

Example 2. Simulation study

In this example, we study the behavior of the MLEs of the parameters of the IGTD by consid-
ering the Monte Carlo simulation. We simulate samples under different scenarios considering
small, moderate and large sample sizes (n = 10, 25 and 100, respectively) and normal and tν
kernels, with ν = 2, 8 and 50, where the values ν = 2 corresponds to high kurtosis, ν = 8
to moderate kurtosis and ν = 50 to low kurtosis. The scale parameter was fixed at λ = 1.0,
without a loss of generality, and the mean was fixed at µ = 0.5.
We use the bias and mean square error (MSE) of the MLE in order to study the quality of
the estimation method. The samples were generated from an IGTD with a specific kernel
(normal or tν) that we called the “true kernel” and the estimation of parameters computed
using samples obtained from the same or other kernels, called the “assumed kernel”. The
empirical bias and MSE values are the average of simulated samples for each combination of
sample size and kernel. The results of the simulations are presented in Tables 2 and 3 for the
estimates of µ and λ, respectively.
We have noted that the bias of the estimators for µ and λ gets smaller when the sample
size tends to be greater for those cases where the true and assumed kernels are the same. In
addition, we find greater bias when we estimate λ instead of µ. On the other hand, We have
also noted that the MSE gets smaller when the sample size gets bigger and when the kurtosis
increases as well. Furthermore, we can see that there are greater MSEs when we estimate λ
instead of µ.

Example 3. Application to practical data

Birnbaum and Saunders (1969) reported a data set corresponding to fatigue life (T ) mea-
sured in cycles (×10−3) of n = 101 aluminum coupons (specimens) of type 6061-T6. These
specimens cut parallel to the direction of rolling and oscillating at 18 cycles per second. The
coupons were exposed to a pressure with maximum stress of 31,000 psi (pounds per square
inch). All specimens were tested until failure. The ig package incorporates these lifetime data
so that if we input the command data("psi31") it will be ready to use the data.
Exploratory data analysis: In order to carry out an EDA for psi31, we implement the func-
tion descriptiveSummary() and some graphical tools. Firstly, descriptive statistics of the
data can be obtained from the function descriptiveSummary(), which uses the command
searchMode() to find the empirical mode of the data. This descriptive statistics is summa-
rized in Table 4 and obtained by the instruction

R> descriptiveSummary(psi31)

Secondly, the instruction
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True kernel
t2 t8 t50 N(0, 1)

n Assumed Bias MSE Bias MSE Bias MSE Bias MSE
kernel

10 t2 −0.0261 0.0307 −0.0186 0.0380 −0.0229 0.0787 −0.0638 0.2273
t8 −0.0273 0.0217 −0.0224 0.0192 −0.0233 0.0363 −0.0266 0.0366

t50) −0.0142 0.0157 −0.0063 0.0129 −0.0016 0.0123 −0.0004 0.0122
N(0, 1) −0.0070 0.0154 0.0002 0.0118 0.0043 0.0113 0.0054 0.0112

25 t2 −0.0139 0.0095 −0.0222 0.0320 −0.0060 0.0215 −0.1177 0.3720
t8 −0.0012 0.0063 −0.0003 0.0056 0.0018 0.0056 0.0027 0.0057
t50 0.0023 0.0057 0.0044 0.0047 0.0057 0.0046 0.0061 0.0046

N(0, 1) −0.0025 0.0064 −0.0103 0.0239 −0.0011 0.0051 −0.0009 0.0051
100 t2 −0.0028 0.0021 −0.0056 0.0029 −0.0362 0.0674 −0.2931 0.8756

t8 −0.0024 0.0018 −0.0017 0.0016 −0.0011 0.0017 −0.0009 0.0017
t50 0.0006 0.0015 0.0001 0.0012 0.0000 0.0012 0.0000 0.0012

N(0, 1) −0.0016 0.0016 −0.0008 0.0013 −0.0004 0.0012 −0.0002 0.0012

Table 2: Biases and MSEs of the estimate of µ based on µ = 0.5 and λ = 1.0.

True kernel
t2 t8 t50 N(0, 1)

n Assumed Bias MSE Bias MSE Bias MSE Bias MSE
kernel

10 t2 −0.6762 2.7509 0.2368 0.5056 0.4138 0.4998 0.4083 0.4927
t8 −1.5647 7.6427 −0.4652 1.2197 −0.2302 0.6787 −0.1891 0.6195
t50 −1.7448 7.0752 −0.6142 1.4566 −0.3701 0.9391 −0.3285 0.8713

N(0, 1) −1.8926 12.2263 −0.6648 1.6477 −0.4135 0.9832 −0.3708 0.8995
25 t2 −0.2215 0.4229 0.4293 0.2792 0.6319 0.4661 0.6140 0.4867

t8 −0.9173 1.4039 −0.1522 0.1849 0.0610 0.1195 0.1011 0.1204
t50 −1.1716 2.0469 −0.3590 0.3071 −0.1422 0.1438 −0.1015 0.1263

N(0, 1) −1.1437 1.9066 −0.3676 0.3163 −0.1600 0.1454 −0.1204 0.1262
100 t2 −0.0432 0.0538 −0.5124 0.2780 0.7268 0.5390 0.6407 0.5828

t8 −0.6707 0.5400 −0.0348 0.0323 −0.1695 0.0508 0.2139 0.0671
t50 −0.8567 0.8453 −0.2022 0.0728 −0.0051 0.0206 0.0347 0.0202

N(0, 1) −0.9189 0.9669 −0.2597 0.1051 −0.0644 0.0289 −0.0255 0.0234

Table 3: Biases and MSEs of the estimate of λ based on µ = 0.5 and λ = 1.0.

Mean Median Mode SD CV CS CK Range Min. Max. n

133.73 133 142 22.36 16.72% 0.33 0.97 142 70 212 101

Table 4: Descriptive statistics for lifetimes of aluminum specimens.

R> histigt(psi31,

+ mainTitle = "",

+ xLabel = "Lifetimes with maximum stress of 31.000 psi",

+ kernel = "t",

+ colourHistogram = 4,

+ colourBoxPlot = 4)

simultaneously produces a box-plot and a histogram for psi31. Figure 3 shows these plots.
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Figure 3: Histogram and box-plot for psi31.

The box-plot may be suppressed by the instruction boxplot = FALSE.

The EDA based on Table 4 and Figure 3 indicates a slightly positively skewed distribution
(CS = 0.33) with moderate kurtosis (CK = 0.97) and some atypical values (see box-plot). The
IGTD considers the degrees of skewness and kurtosis presented in the data. The potential
influence of the atypical cases will be analyzed next by the IGT-St model. This IGTD should
produce stable parameter estimates to the potentially influential cases.

Estimation: Next, we find the MLEs of the parameters µ and λ of the IGT-St distribution.
Due to problems of unbounded and local maximum in the likelihood function, which can be
revised in Lange et al. (1989) and Sanhueza et al. (2008), it is better to fix ν and assume
that it is a known value or otherwise get information for it from the data. Then, in order to
compute the estimates of µ and λ of the IGT-St model, the function mleigSt() has been im-
plemented by using the procedure described in Section 3.1 by means of the following algorithm:

(C1) For ν = 1 to ν = 100:

(C1.1) Estimate the parameters µ and λ of the IGT-St model considering the MLEs of µ
and λ in the classical IGD as starting values for the numerical procedure.

(C1.2) Compute the likelihood function.

(C2) Choose the value of ν that maximizes the likelihood function and consider the values of
the estimates of µ and λ as MLEs of these parameters.

Thus, the instruction mleigtSt(psi31) automatically chooses the value of ν that maximizes
the likelihood and computes the MLE for µ and λ of the IGT-St model according to (C1) and
(C2). These results can be saved in the variable estimate as

R> estimates <- mleigSt(psi31)

obtaining
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R> estimates

$muEstimate
[1] 134.3009

$lambdaEstimate
[1] 6348.45

$nuOptimal
[1] 7

$logLikelihood
[1] 455.4684

The values of the estimates of µ and λ and the optimal value of ν can be saved in the variables
mu, lambda and nu, respectively, as

R> mu <- estimates$muEstimate

R> lambda <- estimates$lambdaEstimate

R> nu <- estimates$nuOptimal

Additionally, the function loglikigt() provides the value of the log-likelihood function.

Figure 4 shows values for the log-likelihood function against values for the parameter ν in the
range [1, 100]. This curve shows that the log-likelihood is maximized at ν = 7. This graph
was plotted by means of the instructions:

R> nus <- vector("numeric")

R> resultsLogLik <- vector("numeric")

R> for(i in 1:100) {

+ nu <- nus[i]

+ a <- loglikigt(t, nu, "t")

+ resultsLogLik[i] <- a

+ }

R> plot(resultsLogLik, type = "p", main = "", xlab = expression(nu),

+ ylab = "Log-likelihood", pch = 20, col = 3, lwd = 1.5, axes = FALSE)

R> box()

R> axis(1, at = c(1, 20, 40, 60, 80, 100), labels = c(1, 20, 40, 60, 80, 100))

R> axis(1, at = 7, labels = 7)

R> axis(2, at = seq(-468, -456, by = 2), labels = seq(-468, -456, by = 2),

+ las = 1)

R> points(7, resultsLogLik[7], pch = 4, lwd = 2.0, col = 2)

Diagnostics: Now, an influence diagnostics based on the total local influence technique given
in Section 3.2 is carried out. This analysis is presented on a graphical plot, which is produced
by the function diagnosticsigt(). Thus, the instructions:
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Figure 4: Log-likelihood for the IGT-St model against ν.
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Figure 5: Total local influence index plot for the indicated models.

R> diagnosticsigt(psi31, "normal")

R> title(main = "IG distribution")

and

R> diagnosticsigt(psi31, "t", yRange = c(0, 2))

R> title(main = "IGT-St distribution")

produce the graphs shown in Figure 5, which demonstrate that the estimation procedure
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IGT-St(ν = 7) IG
Removed case(s) µ̂ λ̂ µ̂ λ̂

{1} 0.05 13.62 0.48 16.17
{2} 0.20 1.57 0.33 4.68
{100} 0.37 1.08 0.47 4.31
{101} 0.42 0.17 0.59 6.96

{1, 2, 100, 101} 0.64 2.37 0.25 42.11

Table 5: RC (in %) for the indicated parameters and models.

presented for the IGT-St model with ν = 7 is stable in the presence of atypical data. This
figure shows potentially influential observations only in the classical IGD. These observations
are the cases: 1, 2, 100 and 101.

In order to compute the magnitude of the changes produced on the MLE of µ and λ when
the potentially influential observations are eliminated, we implement the function rcigt().
This function computes the relative change (RC), in percentage, of each estimated parameter,
defined by RCθj = |(θ̂j − θ̂j(I))/θ̂j | × 100%, where θ̂j(I) denotes the MLE of θj after the set
I of cases has been removed. Table 5 shows these RCs, which were obtained by using the
commands

rcigt(psi31, casesRemoved = 1, kernel = "t")

rcigt(psi31, casesRemoved = 1, kernel = "normal")

Analogously, the instructions casesRemoved = 2 and casesRemoved = c(1, 2, 100, 101)
allow one to eliminate the case 2 and the cases {1, 2, 100, 101}, respectively. From Table 5,
we note that the RCs are greater in the classical IGD than in the IGT-St model with ν = 7,
as we expected.

Goodness of fit: In order to select the best model, we implement three goodness-of-fit tools
for the IGTD: (i) probability-probability (PP) and quantile-quantile (QQ) plots; (ii) the
Kolmogorov-Smirnov (KS) test; and (iii) a criteria of model selection. Next, the goodness-
of-fit functions implemented in the ig package will be described. Firstly, the commands
ppigt() and qqigt() enables to detect the fitting of the IGTD to the data by means of
the visualization of the PP and QQ plots. The commands ppigt() and qqigt() allow also
incorporate a straight line that sketches a line passing through the first and third quartile of
the theoretical IGTD in order to check graphically if a set of observations follows a particular
IGTD. Also, the coefficients of determination (R-square in %) of these plots are calculated
and shown inside these graphs. The following instructions give QQ plots for psi31:

R> qqigt(psi31, kernel = "t", line = TRUE)

R> title(main = "IGT-St distribution", cex.main = 1.5)

$coefficientofdetermination
[1] 98.84587

R> qqigt(psi31, kernel = "normal", line = TRUE)

R> title(main = "IG distribution", cex.main = 1.5)
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Figure 6: QQ plots of the indicated models for psi31.

$coefficientofdetermination
[1] 98.1134

while Figure 6 displays these graphs. Once again, from this figure, we note that the estimation
procedure presented for the IGT-St model with ν = 7 is stable on the tails of this distribution.
This is because the IGT-St model behaves better than the classical IGD on the tails and
then produces stable parameter estimates to outliers. The R2 of the PP plot for psi31 by
considering the IGT-St distribution with ν = 7 is 99.46% (see Table 6), which demonstrates
the model’s excellent fit to the data (for the QQ plot, the R2 is 98.85% upon this same model).

Secondly, we also implement a command for a goodness-of-fit test useful for the IGTD. This
function is ksigt(), which calculates the KS test and also provides a comparative graph of
the theoretical and empirical distribution functions. This graph is shown in Figure 8 (on the
right) and is produced when the instruction graph = TRUE is added in ksigt(). Finally, we
implemented the Schwartz information criterion (SIC) by the function sicigt(), which is a
well known criterion of model selection that can also be used for goodness of fit.

Next, the results of the fit for psi31 are presented in Table 6, which show that the IGT-St
distribution with ν = 7 presents a better fit to the data.

Inference and invariance: For inferential purposes, we have implemented the function aciigt(),
which computes an approximate (1−α)×100% confidence region for the parameters µ and λ

Distribution R2 (in %) SIC KS (p-value)

IG 99.16 4.573 0.0851 (p = 0.4571)
IGT-St(ν = 7) 99.46 4.555 0.0602 (p = 0.8576)

Table 6: PP R2, SIC and KS test for psi31.
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Figure 7: Approximate confidence regions for the indicated models.

of the IGTD. Also, this function provides a graph of this region, which is reported by means of
simultaneous approximate confidence intervals (ACI) in the form: ACI(1−α1)100%(µ) = [µ, µ]
and ACI(1−α2)100%(µ) = [λ, λ], where α1 + α2 = α. We note that these ACIs can only be
computed if the sample size is large. In our example, we have computed ACI for µ and λ of
the IGD and IGT-St distribution with ν = 7 using of the instructions:

R> aciigt(psi31, kernel = "normal", confLevel = 95,

+ chart = c(120, 150, 2000, 9000), colourRegion = 3,

+ colourEstimates = 2)

R> title(main = "IG distribution", cex.main = 1.5)

R> aciigt(psi31, kernel = "t", confLevel = 95,

+ chart = c(120, 150, 2000, 9000), colourRegion = 3,

+ colourEstimates = 2)

R> title(main = "IGT-St distribution", cex.main = 1.5)

The ACIs of the parameters of the IGTD based on psi31 are presented in Table 7.

In addition, by using the invariance property of the MLEs, the estimated PDF may be sketched
on the histogram adding the instruction densityLine = TRUE into the function histigt().
Figure 8 (on the left) shows the histogram with the estimated PDF from which we observe

Distribution µ µ̂ µ λ λ̂ λ

IGT-t(ν = 7) 128.99 134.30 139.61 3739.74 6348.45 8957.16
IG 128.16 133.73 139.30 2998.28 4573.36 6148.45

Table 7: Estimates and ACI95% for µ and λ of the indicated distributions.



Journal of Statistical Software 19

Lifetimes with maximum stress of 31.000 psi

F
re

qu
en

cy

100 150 200

0.000

0.005

0.010

0.015

0.020

100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

Lifetimes with maximum stress of 31.000 psi

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n

Figure 8: Histogram with estimated PDF for psi31 (left side) and empirical CDF against
theoretical CDF of the IGT-St with ν = 7 (right side).

that the proposed model fits the data very well. This figure was produced by the instructions

R> histigt(psi31,

+ kernel = "t",

+ boxPlot = FALSE,

+ densityLine = TRUE,

+ mainTitle = "",

+ xLabel = "Lifetimes with maximum stress of 31.000 psi",

+ yLabel = "Frequency",

+ yRange = c(0, 0.02),

+ colourHistogram = 4,

+ colourDensity = 2,

+ colourBoxPlot = 4)

Remark: Seven other data sets called psi21, psi26, precipitations, repairtimes, shelflife,
fracture and runoff used frequently in the literature of this topic, have also been incorpo-
rated into the ig package.

5. Concluding remarks

In order to analyze data from the IGTD, we have developed the ig package, which can execute
several useful commands. The created functions are related to probability and lifetime indica-
tors, estimation, diagnostics, goodness-of-fit, simulation and graphical tools. In addition, we
have provided new theoretical results of the IGTD related to lifetime analysis and generation
of random numbers. Furthermore, we have conducted a brief simulation study for evaluating
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the estimation method used here. By using numerical examples, we illustrate the different
capabilities and features of the ig package. We believe that, in the future, the ig package can
be improved by incorporating other functions related to the estimation for censored data and
regression methods.
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