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Teaching Geometrical Principles to Design Students 
 

Loe Feijs & Christoph Bartneck 
Department of Industrial Design 

Eindhoven University of Technology 
 

Abstract 
 
We propose a new method of teaching the principles of geometry to design students. 
The students focus on a field of design in which geometry is the design: tessellation. We 
review different approaches to geometry and the field of tessellation before we discuss 
the setup of the course. Instead of employing 2D drawing tools, such as Adobe Illustrator, 
the students define their tessellation in mathematical formulas, using the Mathematica 
software. This procedure enables them to understand the mathematical principles on 
which graphical tools, such as Illustrator are built upon. But we do not stop at a digital 
representation of their tessellation design we continue to cut their tessellations in 
Perspex. It moves the abstract concepts of math into the real world, so that the students 
can experience them directly, which provides a tremendous reward to the students. 
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Introduction 
 
One of design’s main goals is to give form to products and communication. However, 
most design students approach form intuitively, neglecting the understanding of the 
underlying geometry. Adobe Illustrator, for example, gives powerful tools to students to 
design geometrical shapes, such as Bézier curves (see Figure 1). 
 

 
Figure 1: Bézier curve in Adobe Illustrator 

The mathematical principles of Bézier curves and other geometrical functions remain 
hidden.  A quadratic Bézier curve, for example, is the path traced by the function B(t), 
given the points P0, P1, and P2: 
 

B(t) = (1 - t)2 P0 + 2 (1 - t) tP1 +  t2 P2, t ∈ [0, 1] 
 
 
Teaching such abstract and technical topics to design students is challenging and we 
experimented with new approaches for industrial design students (Vlist et al., 2008). In 
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this study, we describe a new method of teaching geometry to industrial design students, 
but we believe that it can be used for other design disciplines as well, such as graphic 
design or fashion design. 
 Geometry is of course a topic characteristic of most high school maths 
education and therefore we focus on slightly more advanced topics than, for example, 
the Pythagorean theorem. When it comes to geometrical principles of design, the golden 
ratio is frequently brought forward. It is surprising that a book entitled “Geometry of 
Design” (Elam, 2001) is limited to the Golden Ratio, root squares and the human 
proportion. Moreover, the authors approach to directly apply these classic 
proportioning systems to design classics indicates how much design is concerned with 
the concretization and how little it is concerned with abstraction (Bartneck & 
Rauterberg, 2007). We capitalized on this move towards the concrete by focusing on a 
field of design in which geometry is the design: tessellation. 
 A tessellation is a collection of plane figures that fills the plane with no overlaps 
and no gaps. Tessellations are used in industrial design, textile design and interior 
design. Industrial design applies tessellations, amongst others, to tiles for bathrooms and 
kitchens and to paving stones. The principle of tessellation has also found great 
attention in manufacturing, since it minimizes the amount of wasted material when 
punching pieces from sheet metal (Bigalke & Wippermann, 1994). These application 
areas focus on the outer shape of the tiles. Sometimes tiles of different color are 
combined to introduce more variations. 
 Textile design and interior design focus even more on the inside of the tiles. 
They add decorative patterns onto the tiles, leaving the principle of the tessellation in 
the background. Throughout the centuries, fabrics and wallpapers utilized tessellation to 
create patterns. Maurice Cornelis Escher (1898-1972) took tessellation to the next level 
by adding meaning to the tiles. The graphical elements on the tiles are no longer just 
decoration, but they describe, for example, animals (see the fish in Figure 2).  
Schattschneider (1997) explored the different combinations in depth.  
 

 
Figure 2: Regular division of the plane drawing #20 (Escher, 1938) 

Before describing the process of the course, we will first give a short introduction to the 
different types of geometry, including group theory, matrices, and topology. 
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Geometry 
 
Group theory: the mathematics of symmetry 
Before going into the particularities of the mathematics used, we discuss a number of 
distinct views on geometry. Roughly the views were developed historically from 
concrete to abstract and from solutions of specific problems to powerful tools. In the 
context of design and education it is also important to pay attention to the mediums 
used. Each distinct view upon geometry naturally comes with its own preferred tools for 
representing and manipulating the constructions. We distinguish the following views 
upon geometry: 
 

• Euclidian geometry, 
• analytical geometry, 
• transformational geometry. 

 
If we are to assign one mathematician as the main or most famous person behind each 
of these three views, then we have to name Euclid, Descartes and Klein. To simplify 
matters we call them the inventors of Euclidian geometry, analytical geometry and 
transformational geometry, respectively. Euclid (Greek: Εὐκλείδης) lived around 
300BC and his main work is known as “The Elements” (Euclid, Heath, & Densmore, 
2002). René Descartes (1596-1650) published his main filosophical work “Discours de la 
méthode” (Descartes & Clarke, 1999) and the mathematical “La Géométrie” (Descartes et 
al., 1659) both in 1637. Felix Klein (1849-1925) presented his influential “Erlangen 
Program” in 1872 (Sharpe, 1997). 
 Euclidian geometry studies points, lines, circles, angles, lengths, areas, etc. It is 
the heart of the geometry taught at secondary schools with nowadays aspects of the 
other views blended in. Euclidian geometry can be studied on a purely axiomatic basis, 
and although the mathematics community honors Euclid for this, modern primary and 
secondary school teaching of geometry relies heavily on links to practical applications 
and examples from optics, physics and everyday live. Particularly in the Netherlands, 
this is the case (Feijs, 2005). Figure 3 shows one of the oldest fragments of a textbook on 
geometry and indeed the text is about lines, segments, rectangles, sections etc.1 
 

 
Figure 3: Fragment of Euclid’s “The Elements” (Euclid, 75-125 A.D.) 

The ideal media for this type of geometry are books and classrooms using pencil and 
paper, with tools such as straightedge (ruler) and compass. It also goes very well with 
traditional blackboard and chalk or modern white board and marker. Although things 

                                                
1 translation: If a straight line be cut into equal and unequal segments, the rectangle contained by the 
unequal segments of the whole together with the square on the straight line between the points of 
section is equal to the square on the half”, [5] 
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can be done using computers, usually it means that someone has to program most of it 
first, using some form of analytical geometry. A typical example is The Geometry 
Applet by Joyce (1996). Plane geometry fits well with today’s flat computer screens and 
ink jet printers. Important results include Pythagoras’ law, functions such as sine, cosine, 
tangent and their inverses. These results are indispensable when designing tessellations. 
 Now we turn to the second view, analytical geometry. Descartes connected 
geometry and algebra by coding the points of geometry as number pairs. Each point is 
given an x and a y coordinate.  In Figure 4 this approach is shown in action. 
 

2

1

-2

-1

-2 -1 21

x2+y2=4

x

y

 
Figure 4: Circle described by equation in Cartesian coordinate system. 

The circle with radius 2 around the origin is described by an equation x2 + y2  = 4. The 
circle can be shifted, for example, the substituting x → x–2 and y → y–2 and a bit of 
algebra give the equation of the circle around {2,2}, which is x2 + y2 – 4x – 4y + 4 = 0. 
Straight lines, ellipses, parabolas etc. each have their own type of equation. Geometry is 
replaced by algebra. Deep geometric results can be obtained by unleashing the power of 
algebra, for example to prove that one cannot construct a square whose area is equal to 
that of a given circle using straight ruler and compass needs Galois theory (Galois, 
1830a, 1830b), which is algebraic in nature. The ideal medium for analytical geometry is 
anything that helps to solve equations. First pen and paper, later log tables, calculators 
and now of course computers. When using computers, numerical procedures are useful, 
symbolic procedures are useful and their combination is best.  
 Finally we address the third view on geometry, transformational geometry. As we 
shall see, this is about symmetries, including the symmetries encountered in art, from 
ancient times to Escher and beyond. It also is useful for modern physics, for example 
quantum physics, but that is outside the scope of our teaching.  In order to explain the 
basic idea, we refer to Figure 5 (snapshot of Microsoft PowerPoint). 
 Consider geometric transformations such as rotation, translation and reflection, 
for example those shown in the menu of Figure 5. The two-arrowed block shape can be 
rotated left over 90° or right over 90° but in both cases it becomes a different shape. 
When flipped horizontally or vertically it turns into the same shape again. The same 
applies rotation over 180° (twice 90°). Therefore we can say that the two-arrowed block 
shape is a symmetric shape. More precisely, each of the transformations which leave the 
figure the same, is a symmetry of this figure. Formulated somewhat more abstractly, the 
underlying mathematics is called group theory. Two operations can be composed, doing 
one and then the other, which is a transformation again. For example rotate left over  
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90° and then (again) left over 90° has the combined effect of the rotate 180° 
transformation2.  

 
Figure 5: Symmetry operations and symmetric figure (Microsoft, 2007) 

In two dimensions one can create patterns filling the entire plane such that the pattern 
remains the same under certain transformations. For a specific pattern, the set of 
transformations forms a so-called group. Next to translations, reflections and 
translations one needs an extra transformation called glide-reflection. Group theory is in 
the heart of studying regular patterns. There are three possibilities:  
 

• If there are no translations, the patterns are so-called rosettes. There exist two 
sets of rosette groups, either with or without reflections. They have applications 
in art and architecture, most notably the rose windows in Gothic cathedrals. A 
number of rosettes of logos, each with different symmetries, are in Figure 6. The 
logos are Opel (180° rotation), Crosiers (180° rotation and reflections), 
Mitsubishi (120° rotation and reflection), Yamaha (idem), and NATO (90° 
rotation, no reflection). 

• If there are only translations in one direction, the patterns are so-called friezes. 
There exist seven distinct frieze groups. They have numerous applications in art 
and architecture such as friezes of ancient temples and court buildings. 

• If there are translations in two or more directions, the patterns are so-called 
wall-paper patterns. There exist seventeen distinct wallpaper groups. They 
appear on wallpaper indeed, in brickwork, in floor tessellations, in Escher’s work 
and so on. 

 

 
Figure 6: Five rosette logos with different symmetries (Opel, Canons Regular of the Order of the Holy Cross, 
Mitsubishi, Yamaha, NATO) 

 
 
There exist also non-periodic tessellations such as invented by Penrose (1974), which 
have only been noted a few decades ago (folk wisdom of crystallography assumed such 
patterns would not be possible). In our teaching we used the rosette and the frieze 
                                                
2 A collection of such transformations is said to form a group if the following properties hold: Closure: if 
two transformations are in the group, then so is their composition; Associativity: composing T1 with “T2 
composed with T3” is the same as “T1 composed with T2” composed with T3; Identity: there is a special 
transformation called the identity (doing nothing) which can be composed with any T with the effect of 
T; Inverses: for any transformation T in the group there is a transformation denoted as T–1 such that T 
composed with T–1 equals the identity and also T–1 composed with T equals the identity transformation. 



Teaching geometrical principles to design students 
 

 109 

patterns as easy forerunners of the more complex wallpaper patterns. We did so both in 
the lectures and in the assignments given to the students. As literature we provided 
Chapter I of the book Regular Figures by L. Fejes Toth (1964). The pedagogic idea 
behind this choice is that the book is mathematically quite rigorous3 and that it is a good 
exercise for the students to develop their skill of getting information from such a book 
directly, instead of low-threshold and colorful Internet resources such as the Wikipedia 
Wallpaper group article  [ http://en.wikipedia.org/wiki/Wallpaper_group ].  Another 
reason is that the idea of one transformation being transformed by another turns out 
useful later, when implementing transformations. It is very practical being able to read 
formulas like S2

–1S1S2 and interpret them as action sequences to be programmed. 
 What is the ideal medium for studying and using this type of geometry? Again, 
pen with paper and computer algebra are useful, but both the development of intuition 
and the practical applications call for ways to make the transformations happen in 
physical reality and before one’s eyes, or even better, in one’s hands. Shifting pieces of 
paper one over another, transparent sheets, sliding and rotating images and semi-
transparent images in picture editors, physical tiles, paper and scissors are all very useful. 
For certain Heesch tilings (see next sections for a detailed discussion of the Heesch 
tilings) there exist a trick called “The Envelop Method” based on slicing 3D objects 
(envelopes) into tile-able ground forms (Feijs, 2008). It is important to realize that the 
student can not “see” the transformations in the same way he or she can see the points 
and lines of Euclidean geometry.  
 
Matrices: implementing transformations 
In this section we briefly outline a technique for programming and executing 
transformations in practice. The same technique is used in computer graphics, computer 
games, etc.  The technique was explained to our students, examples being coded in 
Mathematica (Wolfram Research, 2009, Version 7) and in this form it was also used to 
make the tessellations. Stephen Wolfram conceived Mathematica and is a standard 
software package used in scientific, engineering, and mathematical fields and other areas 
of technical computing. It is also the foundation of Wolfram’s work on cellular 
automata (Wolfram, 2002). Points, lines and other geometric objects are moved around 
the plane by using Descartes’ trick: manipulating their coordinates. To move a point 
with coordinates {x,y} into a new position one needs four parameters: how the old x 
contributes to the new x, how the old x contributes to the new y and so on. It is 
customary to group those four numbers in a two by two block called a matrix. There are 
calculation rules how to apply a matrix to a coordinate pair. There are also rules how to 
multiply two matrices to yield a new one, representing the composed transformation. In 
Figure 7 four example matrices are shown. They represent the identity transformation, 
flipping along a diagonal, counter clockwise rotation over 90° and 45°, respectively.  
 Mathematica has very useful built-in notations and algorithms to work with 
matrices. It takes another trick to move from the level of points to the level of lines and 
curves (sets of coordinate pairs) and to the higher levels of complex shapes and 
complete figures (for example birds, fish, etc. as appearing in Esher’s work). The trick 

                                                
3 To give an impression what we mean with “quite rigorous” we give a short quotation from Fejes Toth 
(pages 11 and 12), the paragraph where it is explained why a rosette group can only have rotations around 
a single centre: Such a group contains only rotations about a single centre. For, if there were two rotations S1, and S2 with 
distinct centres O1 and O2, the transformation S1

–1S2
–1S1S2 of the group would be a degenerate rotation, by the additivity 

theorem for angles of rotation. It cannot be the identity, since it displaces O1, into the image of O1, under S2
–1S1S2, i.e. under 

S1 transformed by S2. But the centre of this transformed rotation is the image of O1 under S2  i.e. a point different from O1 
and therefore S2

–1 S1S2  effects a change in O1 . Hence S1
–1S2

–1S1S2 would be a non-degenerate translation, contrary to our 
assumption. 
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deploys “mapping”, using the Mathematica operator /@. This operator is well known to 
programmers in special languages such as LISP, ML or Clean but no such thing exists in 
C, C++ or Java.   
 

! 1 0
0 1

" ! 0 1
1 0

" ! 0 !1
1 0

" 1
2

2 ! 1
2

2
1
2

2 1
2

2
 

Figure 7: Matrices for identity, flipping, 90° rotation and 45° rotation. 

Topology: from patterns to tilling. 
It is tempting to assume that each of the 17 regular wallpaper patterns gives rise to 
precisely one schema of regular tiling. However, the relation is not one-to-one. What is 
still missing from the wallpaper patterns is: where are the cutting lines between the tiles? 
This question has been explored by Escher, aiming at his beautiful art. It also has been 
explored very thoroughly by Heesch and Kienzle (1963) aiming at industrial application 
and standardization. Heesch and Kienzle (1963) were well aware of group theory, but 
they added an analysis of the networks to be formed by the cutting lines between the 
tiles. Essentially this is about the edges (cutting line segments) and the vertices (nodes 
where three or more edges come together). For example, consider the structure of a 
honeybee comb where each tile has n = 6 edges and each vertex is joining three edges, 
see Figure 8. 
 

 
Figure 8: Network of tile edges. 

This is a network of tile edges. This network has 32 vertices, 41 edges and 11 faces 
(including the outer space). Now there exists a mathematical result about such networks 
named after Leonhard Euler (1707-1783). It belongs to topology, that is the geometry of 
properties which are preserved by “rubber” transformations. Euler found that V – E + 
F = 2, where V is the number of vertices, E the number of edges and F the number of 
faces. Indeed, 32 – 41 + 11 = 2. Heesch (1963) characterizes this network as type 
333333, meaning that the six consecutive vertices when going round one tile, each 
connect 3 edges. The above network has eight tiles, so a first very rough guess could be 
that is has 10 x n vertices but of course most vertices are then counted three times 
instead of once. And the first guess of 10 x n edges has to be corrected because edges 
are counted twice. Going from 10 tiles to N tiles and inserting the corrections we find 
that N.(⅓ + ⅓ + ⅓ + ⅓ + ⅓ + ⅓) – N.½.n + N = 2. For very large N, taking the limit, 
we find ⅓ + ⅓ + ⅓ + ⅓ + ⅓ + ⅓ = ½.n – 1. This is for the given honeybee network, 
but the same reasoning can be applied to find all networks of triangles (n = 3). Let the 
three vertices have i, j and k edges. Now 1/i + 1/j + 1/k = ½.3 – 1. This is only 
possible for certain numbers of i, j and k. For example ¼ + ⅛ + ⅛ = ½, so i = 4, j = k 
= 8 is a possibility. Thus the network type 488 is found. Working further in this way 
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only 11 networks are possible. Finally Heesch (1963) integrates this theory with 
wallpaper theory to get 28 tiling types. He describes them in a prescriptive style (in 
German). This is what we gave to the students (actually we gave access to all of 
Heesch’s book, but we have no indication that they read anything except the 
prescriptions). An example is Figure 9. The network type is 43433. The tile itself is given 
a type code CC4C4C4C4 where C refers to 180° rotational symmetry and C4 to 90° 
symmetry. These prescriptions are very practical to use. They could be used without any 
group theory or network theory, but we did present the essentials of those theories 
nevertheless. 
 

A

B

C
90°

A

B
C

D
E

90°
A

B

C

D

E

90°

90°

C4

C4

C4
C4

C

Basic type CC4C4C4C4 Nr. 16

Turn the arbitrary line AB around A by 90° 
into the position AC. Draw a second arbitrary 
line from C to the arbitray point D. Turn this 
line 90° around D into the position DE. Close 
the figure through a C-type line EC.

Number of arbitrary lines: 3

Net:43433, 4 Orientations

Corner of a net

Rotation point of a C-type line

 
Figure 9: One of the 28 Heesch tile descriptions (Heesch & Kienzle, 1963), translated from German by the authors. 

Execution of the course 
 
Several steps need to be taken in advance of the course. First, the material needs to be 
ordered, ideally already cut to the dimensions of what the laser cutter can process. We 
use a Speedy300 laser cutter that can cut plates up to 40 x 70 cm. We used Perspex in at 
least three different colors to allow color variations. Dark colors are preferable since 
they bring out the engravings. Transparent Perspex is also available, but it requires 
additional attention during mounting. 
 Software licenses for Mathematica, Illustrator and Corel Draw must be available and 
the laser cutter needs to be booked. The duration of the cutting varies, in particular 
depending on the amount of engravings. In our experience, the works of six students 
can be cut in one day. 
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Workflow 

a b

c d  
Figure 10: Workflow of tessellation. (design by Wouter Widdershoven) 

The students prepare their tessellation in Mathematica. The lines they draw define 
the paths that the laser cutter will use for the cutting and engraving. The colours of 
the lines define if a certain line is used for cutting or engraving. For the engraving, 
the line thickness defines the thickness of the engraving. For the cutting, an ideal 
value of 0.001 mm is used. It is important that the students do not simply create a tile 
and repeat it, since this would create overlapping lines. The laser cut would cut this 
line multiple times, which takes far too much time and can reduce the overall quality 
of the tiles. The students export the Mathematica graphic as an encapsulated post 
script (EPS) file and final adjustments in Illustrator. The illustrator file is then 
imported into CorelDraw and transferred to the Laser Cutter control software 
through a virtual printer driver. Figure 10 shows the workflow that the students go 
through. First, they create a tile (a) which is then repeated using rotations and 
translations in Mathematica (b) before the necessary colours and thicknesses are 
assigned (c). The graphic in (c) is then sent to the laser cutter. Last, the students 
create a coloured version of (d), which makes it easier to puzzle the pieces together 
(see Figure 11). 
 The tiles are then mounted to foam board or another plate of Perspex. 
Transparent Perspex is more difficult to mount, since the mounting plate and the glue 
shines through. Additional examples of the students’ work are available at 
http://www.bartneck.de/2008/05/21/the-golden-ratio-course/. 
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Figure 11: Perspex tiles cut with a laser cutter. (Design by Wouter Widdershoven) 

Conclusions 
 
We described a new approach for bringing the mathematical foundations of geometry 
into the focus of design work. The approach is new to the best of our knowledge. One 
possible reason is that the tools used are relatively new and moreover the community of 
mathematicians and the community of industrial designers are usually very separated.  
 The students did not use common 2D design software packages, such as Adobe 
Illustrator, to create a tessellation, but we asked them to define the tessellation in the 
abstract language of math. This truly brought mathematical foundations of geometry 
into the focus of the course and Mathematica is one of the most accessible tools for 
design students to express their ideas in math. Of course the students could have 
stopped their effort after the production of a digital version of their tessellation, but 
going the extra mile of cutting real tiles with a laser cutter had a tremendous effect on 
the motivation of the students. The final tessellations have been hung at the walls of our 
department and it represents a great reward to our students. The Perspex tiles moved the 
abstract geometrical principles out of the computer and into the real world. The 
tessellations are physical objects to which the students can relate. They are not just an 
abstract ideas, but products that can be touched and experienced. The students 
responded that they appreciated the brushing-up of their math, but most of all it was 
fun. They truly enjoyed understanding the mathematical principles of vector graphics, as 
it is used by Adobe Illustrator and other design software. Moreover, it empowered them 
to create their own tessellations more easily. The patterns used in the currently 
fashionable handbags (e.g. Louis Vuitton) are now trivial to them and they can create 
advance tessellations for the design of textiles, bathroom tiles and visual design in 
general. Our approach facilitates design because of four reasons. First it empowers the 
design students because they become familiar with Mathematica and related tools, which 
allows them to address other modeling problems as well. Secondly it allows the students 
to design patterns whose aesthetic qualities can be added or embedded in other works 
of design. Thirdly it gives them additional knowledge about patterns as they appear in 
nature and in technical domains. Fourth it invites them to learn more about Escher, 
Japanese art and similar cultural topics relevant for design students. 
 We can also conclude that the technology for creating tessellations has 
developed rapidly. The math tools and graphic design tools allow the creation of 
tessellations within minutes and the remaining limiting factor is the creativity of the 
designer. The development of affordable laser cutters also has a tremendous effect on 
tessellation: the cutting line is negligible. It is no longer necessary to calculate in the 
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width of the cutting line and true tessellations can be cut in one run. In the future we 
intend to extend the module to include aperiodic patterns, such as Penrose tilling. We are 
also further exploring the usage of semi-transparent Perspex that can then be glued 
against windows, creating an effect similar to windows in cathedrals.  
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