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Abstract. Microphytobenthos (MPB) are ubiquitous in
coastal sediments, but the fate of their production (carbon
biomass) is poorly defined. The processing and fate of MPB-
derived carbon in subtropical intertidal sediments was inves-
tigated through in situ labeling with13C-bicarbonate. Of the
added13C, 100 % was fixed within∼ 4 h, suggesting that
MPB productivity was limited by inorganic carbon avail-
ability. Although there was rapid transfer of13C to bacteria
(within 12 h), a relatively small fraction of13C was trans-
ferred to heterotrophs (up to 12.5 % of total fixed13C into
bacteria and 0.01 % into foraminifera). MPB was the ma-
jor reservoir for13C throughout the study, suggesting that
production of extracellular polymeric substances was lim-
ited and/or MPB recycled13C. This retention of13C was re-
flected in remarkably slow estimated turnover times for the
MPB community (66–100 d). Over 31 d,∼ 70 % of the13C
was lost from sediments. This was primarily via resuspen-
sion (∼ 55 %), enhanced by elevated freshwater flow follow-
ing rainfall. A further∼ 13 % was lost via fluxes of dissolved
inorganic carbon during inundation. However,13C losses via
dissolved organic carbon fluxes from inundated sediments
(0.5 %) and carbon dioxide fluxes from exposed sediments
(< 0.1 %) were minimal. The retention of∼ 30 % of the car-
bon fixed by MPB within one tidal exposure after >30 d,
despite high resuspension, demonstrates the potentially sub-
stantial longer term retention of MPB-derived carbon in un-
vegetated sediments and suggests that MPB may contribute
to carbon burial (“blue carbon”).

1 Introduction

Sediments at the land–ocean interface are sites of rapid or-
ganic matter transformation. Due to the high availability of
light and nutrients (Heip et al. 1995), benthic communities in
coastal sediments are often dominated by microscopic pho-
toautotrophs (microphytobenthos, or MPB). MPB are highly
productive and fix inorganic carbon from overlying water
or air (in intertidal sediments). This carbon may undergo
various transformations before being ultimately lost to the
overlying water column or buried within sediments. As well
as being directly consumed, MPB can exude much of their
production (up to 73 %; Goto et al., 2001) as extracellular
polysaccharides (EPS), particularly where there is low nu-
trient availability (Cook et al., 2007). MPB and their EPS
provide a labile carbon source for bacteria (Bellinger et al.,
2009; Oakes et al., 2010b) and higher order consumers (Mid-
delburg et al., 2000; Oakes et al., 2010a). Ultimately, MPB,
EPS, and organic matter containing MPB-derived carbon
may be lost via resuspension (de Jonge and van Beusekom,
1995; Hanlon et al., 2006) or removed by mobile consumers.
Alternatively, processing within sediments can result in loss
of MPB-derived carbon via fluxes of dissolved organic car-
bon (DOC), dissolved inorganic carbon (DIC) or carbon
dioxide (CO2; exposed sediments). DOC fluxes can include
EPS (Smith and Underwood, 2000), but DOC can also be
released from algae via cell lysis by viruses, bacteria, or
grazers (Agustí and Duarte, 2013). Remineralization of or-
ganic matter containing MPB-derived carbon results in fluxes
of inorganic carbon (CO2, HCO−

3 , CO2−

3 ) that contribute
to losses of fixed carbon. All these inorganic carbon forms
can diffuse to overlying water as DIC while sediment is
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inundated, but only CO2 is released from sediment exposed
to air. These various transformation pathways for the carbon
fixed by MPB affect the quality and quantity of carbon inputs
to the coastal ocean.

Despite the potential importance of MPB processing path-
ways in coastal sediments, these have not been well defined.
Stable isotope labeling is a powerful approach for tracing
carbon in coastal systems, and has been used in a number
of studies to trace assimilation of MPB-derived carbon by
bacteria and higher consumers (e.g. Middelburg et al., 2000;
Oakes et al., 2010b; Evrard et al., 2012). More recently car-
bon stable isotope labeling has also been used to trace path-
ways of loss for MPB-derived carbon, including fluxes of
DIC (Evrard et al., 2010, Oakes et al., 2011; Oakes et al.,
2012) and DOC (Oakes et al., 2011; Oakes et al., 2012),
and loss of CO2 due to respiration of algal carbon (phytode-
tritus) in intertidal sediments (Maher et al., 2013; Oakes et
al., 2013). Carbon stable isotope labeling has been used in a
few studies in intertidal muds and sands and shallow subtidal
sands in temperate regions to investigate the processing of
MPB-derived carbon, but there has been only one study in the
subtropics, which looked at shallow subtidal sands (Oakes et
al., 2012). No studies have investigated the transformation
and fate of MPB-derived carbon in subtropical intertidal sed-
iments.

The processing of MPB-derived carbon in subtropical sed-
iments may be fundamentally different to processing in tem-
perate sediments. Differences in tidal movement may affect
rates of sediment resuspension and flushing, and tempera-
ture differences may affect the rate and relative importance
of carbon transformation pathways (Middelburg et al., 1996).
In addition, the higher biomass and productivity of bacte-
ria that is typical of sediments in warmer climates (Alongi,
1994) may also affect the rate and pathways of carbon pro-
cessing. The only study to have assessed the processing of
MPB-derived carbon in subtropical sediment (shallow subti-
dal sands; Oakes et al., 2012) reported marked differences
in the fate of carbon (greater burial and retention) com-
pared to previous studies of sands and muds in the intertidal
zone within temperate areas (e.g. Middelburg et al., 2000;
Bellinger et al., 2009). However, it was not clear whether
these differences reflected variations in climate and associ-
ated microbial communities, subtidal versus intertidal differ-
ences, the size of the systems studied and their connection
with the ocean, or some other factor.

An impediment to understanding MPB carbon process-
ing across all systems is the relatively short timescale over
which studies have been done (e.g. 4–6 d; Middelburg et
al., 2000; Evrard et al., 2008, 2010). We recently showed
that 30 % of the carbon fixed by MPB within 1 d remained
in subtropical shallow subtidal sands after 30 days (Oakes
et al., 2012). There has recently been considerable focus
on the carbon sink potential of coastal habitats (“Blue car-
bon”), but the focus has been on vegetated habitats (Duarte
et al., 2005; McLeod et al., 2011; Duarte et al., 2013). Al-

though MPB lack the extensive below-ground biomass of
other habitats, the long-term retention of carbon fixed by
MPB in unvegetated subtropical sands observed previously
suggests that MPB-derived carbon may accumulate within
sediments, thereby contributing to carbon sequestration.

In this study we aimed to combine in situ stable isotope la-
beling with measurements of DOC, DIC, and CO2 fluxes and
assimilation in sediment compartments to quantify the path-
ways for transformation and ultimate fate, including burial,
of MPB-derived carbon in subtropical intertidal sediments
over the longer term (31 d). Few studies have looked at pro-
cessing of MPB carbon in situ (Middelburg et al., 2000;
Bellinger et al., 2009; Oakes et al., 2010b; Oakes et al.,
2012), and only the latter two of these have considered such
an extended time period. We expected that the carbon fixed
by MPB in subtropical intertidal sediments would be more
susceptible to removal by resuspension compared to that in
subtropical subtidal sediments. We further expected that sub-
tropical intertidal sediments would have greater potential for
retaining MPB-derived carbon than temperate intertidal sed-
iments, due to greater processing and recycling by the more
active microbial community.

2 Methods

2.1 Site description

The study site was an intertidal shoal in the lower Rich-
mond River estuary, subtropical New South Wales, Australia
(28◦52′25.01′′ S, 153◦33′20.43′′ E). The river has a catch-
ment of∼ 6900 km with annual rainfall of∼ 1300 mm (Mc-
Kee and Eyre, 2000) and an average flow rate of∼ 2200
ML d−1 (daily gauged flow adjusted for catchment area, av-
eraged over years for which data was available; 1970–2013).
The catchment is subject to frequent episodic rainfall events,
and associated flooding, resulting in highly variable estu-
ary flushing, salinity, and nutrient concentrations (Eyre and
Twigg, 1997; Eyre, 2000). For details of the hydrology and
biogeochemistry of the Richmond River, refer to McKee and
Eyre (2000) and Eyre and Twigg (1997).

Sediment at the site was sandy mud, with the surface
layer (0–2 cm depth) dominated by fine sand (125–250 µm;
68 %) and very fine sand (63–125 µm; 23 %). Deeper sedi-
ments (2–10 cm) were also dominated by fine sand (∼ 78 %),
but had a lower contribution of very fine sand (∼ 12 %)
and a greater contribution of medium sand (∼ 10 %). Based
on O2 fluxes in control cores, the site was net autotrophic
(ratio of production to respiration (p/r) = 2.23). Exami-
nation by light microscopy (100×) showed that the mi-
crophytobenthos was dominated by diatoms. No cyanobac-
teria were observed. Gross productivity (GPP) of inun-
dated sediments based on O2 fluxes in control cores was
4.5± 1.5 mmol C m−2 h−1 (assuming O2 : C= 1 : 1). Surface
sediments (0–2 cm) had an organic carbon (OC) content of

Biogeosciences, 11, 1927–1940, 2014 www.biogeosciences.net/11/1927/2014/



J. M. Oakes and B. D. Eyre: Transformation of microphytobenthos carbon 1929

146.8± 18.7 g m−2. Sediment organic matter at depths of 0–
2 cm, 2–5 cm and 5–10 cm had molar C : N ratios of 15.8,
14.1 and 11.1, respectively.

2.2 13C-labeling

At the beginning of low tide two experimental plots
(1 m× 1 m) were established within 10 m of one another
on the intertidal shoal by pushing aluminium frames 3 cm
into the sediment such that their upper surface was flush
with the sediment. String stretched across each frame di-
vided the plots into grids of 20 cm× 20 cm squares. An equal
quantity of 13C-labeled NaHCO3 (99 % 13C) dissolved in
filtered (GF/F) site water was applied to the sediment sur-
face within each square using a motorized sprayer. This en-
sured even application of13C across each plot, equivalent
to 11.5 mmol13C m−2. The 13C-labeled plots remained ex-
posed to air for∼ 4 h of daylight before tidal inundation. One
tidal inundation was allowed to occur before the first sam-
pling to remove any13C-enriched sodium bicarbonate that
had not been incorporated by MPB. Frames were left in place
for the duration of the study.

2.3 Sample collection

During low tide when the sediments were exposed at 0.5,
1, 3, 10, 20 and 30 d after13C-labeling, one core of sedi-
ment (9 cm diameter× ∼ 20 cm depth) was collected from
each plot using a Plexiglasr core liner for incubation in the
laboratory. At 0.5, 10 and 30 d after13C-labeling, two cores
of sediment were also collected from 5–10 m outside of each
plot for incubation to determine background (control) isotope
values of sediment compartments (at depths of 0–2 cm, 2–
5 cm, and 5–10 cm) and fluxes. Incubation of cores delayed
collection of sediment samples by at least 5 h. Therefore, on
the first two sampling occasions (0.5 and 1 d), when the most
rapid changes in13C distribution among sediment compart-
ments were expected, an additional core was collected from
within each plot to allow immediate collection of sediment
for analysis. These cores were immediately split into sedi-
ment depth layers of 0–2 cm, 2–5 cm, and 5–10 cm, which
were stored frozen prior to analysis of13C within sediment
organic carbon (OC), fauna, MPB and bacteria. To minimize
site disturbance, PVC pipes filled with site sediment (90 mm
diameter, 20 cm long) were placed in the holes left following
core removal on each sampling occasion.

Because the site was intertidal, each core was incubated
in the dark and the light with water overlying the sediment
(inundated conditions), and in the dark and light with water
drained from the core (exposed conditions). Cores were in-
cubated for∼ 5 to 6 h under each set of conditions (dark in-
undated, light inundated, dark exposed, and light exposed).
Incubations began immediately upon return to the labora-
tory, under conditions reflecting those in the field at the
time (e.g. light exposed incubations occurred during day-

light hours when there was a low tide at the study site).
Control cores and13C-labeled cores were incubated in sep-
arate chambers of water maintained at approximately in situ
temperature (18.5± 1◦C) and light levels (1200 µmol pho-
tons m−2 s−1

± 5 %).
For exposed incubation, any water overlying the sediment

was carefully siphoned off, taking care to avoid disturbing
the sediment surface, and weighted containers and foam pads
were used to raise the sediment within each core sleeve so
that the sediment surface was within∼ 1 cm of a gas-tight
Plexiglasr lid containing two septa. Weighted containers
were used to prevent the cores from floating within the incu-
bation chambers, whilst the foam pads, which fitted tightly
within the core sleeves, allowed for finer adjustment of sed-
iment height whilst preventing drainage of interstitial pore-
water. At the start and end of each exposed incubation pe-
riod 2 mL sample of the air overlying the sediment within
each core was withdrawn into a gas-tight syringe through
one of the septa in the core lid. However, samples for the
first three sampling periods were lost. Sampled air was trans-
ferred to 12 mL Exetainersr prefilled with degassed water,
which were held upside down as air was injected. Displaced
water escaped via a second syringe tip placed through the
septa in each exetainer lid.

For inundated incubations, cores were gently filled with
site water, taking care not to disturb the sediment surface, and
capped with gas-tight Plexiglasr lids containing sampling
ports. When an inundated incubation followed an exposed
incubation, the weighted containers and foam pads used to
raise the sediment for exposed incubation were removed, and
the core of sediment was allowed to gently slide back to
the base of the core sleeve before water was added. Within
each inundated core, an external rotating magnet operated
magnetic stir bars suspended∼ 5 cm above the sediment sur-
face, maintaining water circulation below the sediment re-
suspension threshold. At the start and end of each incuba-
tion period, the dissolved oxygen concentration within each
core was measured (± 0.01 mg L−1; Hach HQ40d, lumines-
cent DO probe) and∼ 50 mL of water was removed from
each core. Sampled water was syringe filtered (precombusted
GF/F) into precombusted 40 mL glass vials with Teflonr-
coated septa, killed (200 µL 50:50 w/v ZnCl2) and refrig-
erated, without headspace, until analysis forδ13C and con-
centrations of dissolved organic carbon (DOC) and dissolved
inorganic carbon (DIC). Additional water samples were col-
lected for a separate study. Sampled water was replaced, as it
was withdrawn, with site water from a collapsible reservoir.

At the conclusion of the incubation procedure, sedi-
ment was extruded and sectioned (0–2 cm, 2–5 cm, and
5–10 cm depths) for analysis of sediment OC, fauna, and
phospholipid-derived fatty acid (PLFA) biomarkers for MPB
and bacteria.
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2.4 Sample analysis

Natural abundance and enriched stable isotope samples were
analyzed separately to prevent contamination.

The concentrations andδ13C of DOC and DIC were mea-
sured via continuous-flow wet-oxidation isotope-ratio mass
spectrometry using an Aurora 1030W total organic carbon
analyzer coupled with a Thermo Delta V Plus Isotope Ra-
tio Mass Spectrometer (IRMS) as described by Oakes et al.
(2011).

The δ13C of CO2(g) (0.1‰ reproducibility) was deter-
mined using a preconcentration system attached to a Thermo
Trace GC Ultra gas chromatograph with a Porapak Q col-
umn (30 m ×0.32 mm) coupled to a Delta V Plus Isotope
Ratio Mass Spectrometer (IRMS) via a Conflo III interface.
The sample headspace was purged directly into the precon-
centration system using helium flow and was concentrated
at −65◦C using HaySep Q as a chemical sieve, and des-
orbed at 150◦C onto the GC column. The GC oven was held
at 40◦C, and the flow rate of the helium carrier gas was
3 mL min−1. Because variations in CO2(g) concentration
were within the range of instrument error, a constant CO2(g)
concentration was assumed (typical atmospheric concentra-
tion, 15.6 µmol L−1).

Macrofauna was only occasionally encountered at the site.
This low abundance, combined with high mobility of the ob-
served taxa, prevented assessment of their use of MPB car-
bon. Individuals would not have remained within the labeled
area and containment would have drastically altered their be-
haviour. We therefore focused on small fauna retained on
63 µm to 500 µm sieves (meiobenthos). Due to the labori-
ous nature of this work, only a single sample (n = 1) was
analyzed for each of days 3, 10, and 30, and only for surface
sediments. Fauna were sorted under a dissecting microscope.
Biomass was determined by manually removing (under a dis-
secting microscope) and weighing all meiobenthos, sorted by
taxa, from a known quantity of homogenized sediment. For
dominant taxa, based on biomass, individual organisms were
manually removed from the sediment under a dissecting mi-
croscope to obtain sufficient material for isotope analysis.

Sediment and fauna samples were lyophilized, homog-
enized, weighed into silver cups, and acidified (5 % HCl)
prior to the determination ofδ13C (± 0.2‰) and %C (error
∼ 1.0 % of measured value) using a Thermo Finnigan Flash
Elemental Analyzer 112 interfaced via a Thermo Conflo III
with a Thermo Delta V Plus Isotope Ratio Mass Spectrom-
eter (EA-IRMS). The %N of unacidified subsamples of sed-
iment was also determined via EA-IRMS, allowing calcula-
tion of molar C : N ratios for sediment OC. Helium dilution
of the carrier stream was turned off for foraminifera samples
to reduce the required mass.

Phospholipid biomarkers (PLFAs) to determine13C up-
take into MPB and bacteria were extracted from lyophilized
sediments following the addition of an internal standard
(tridecanoic acid, C13), using a modified Bligh and Dyer

method (Oakes et al., 2010b). PLFA concentrations andδ13C
were determined using a Thermo Trace GC Ultra gas chro-
matograph coupled with a Thermo Delta V Plus IRMS via a
Thermo Conflo III interface (Oakes et al., 2010b). The col-
umn used was a 60 m nonpolar HP5-MS (J&W Scientific,
0.32 mm i.d., 0.25 µm film thickness).

2.5 Calculations

PLFA δ13C values were corrected for the addition of a carbon
atom during methylation as described by Jones et al. (2003).
Natural abundanceδ13C values for bacteria and MPB were
calculated usingδ13C values of PLFA markers for bacteria
(i+a15:0) and diatoms (16:1(n-7)) in control core sediments,
corrected for fractionation of−5.0‰ (middle of range iden-
tified by Boschker et al., 1999) and−5.4‰ (Schouten et al.,
1998), as described by Oakes et al. (2010b).

Total 13C uptake into sediment OC, fauna, bacteria, and
MPB (µmol13C m−2) was calculated as described by Oakes
et al. (2012) based on the quantity of excess13C in each sam-
ple and the carbon biomass of each compartment. Carbon
biomass of sediment and fauna was the product of %C and
total dry mass per unit area. For fauna, the total number of
individuals per m2 was estimated based on the number of in-
dividuals within sediment subsamples of known volume. To-
tal mass was determined by multiplying this estimate by the
average mass of an individual, based on the mass of a known
number of individuals.

The PLFAs selected as biomarkers were i15 : 0 and a15 : 0
for bacteria, and 16 : 1(n-7) and 20 : 5(n-3) for MPB. Al-
though 16 : 1(n-7) is abundant in diatoms (Volkman et al.,
1989) it can also occur in cyanobacteria (which were ab-
sent from the study site) and gram-negative bacteria. How-
ever, based on the ratio of i15 : 0 and a15 : 0 to 16 : 1(n-7)
in bacteria-dominated sediments (Rajendran et al., 1994),
we estimated that bacteria contributed only 1.8± 0.2 % of
the 16 : 1(n-7) in our sediments. We therefore considered
16 : 1(n-7) to be a suitable biomarker for MPB in this study.

Concentrations of PLFA biomarkers for bacteria (i15 : 0
and a15 : 0) and MPB (16 : 1(n-7) and 20 : 5(n-3)) were cal-
culated based on their peak areas relative to the C13 internal
standard. Total biomass of bacteria and MPB was calculated
as described by Oakes et al. (2010b). The average fraction of
MPB PLFAs represented by 16 : 1(n-7) and 20 : 5(n-3) was
estimated to be 0.37, based on the PLFA composition of di-
atoms (Volkman et al., 1989), which were the dominant MPB
taxa at the study site. Similarly, the average fraction of bacte-
rial PLFAs represented by i+a15 : 0 was estimated based on
the PLFA composition of sediments dominated by bacteria
(Rajendran et al., 1993; Rajendran et al., 1994). Biomass es-
timates for MPB and bacteria calculated using minimum and
maximum fraction values (32.5 % and 41.1 % for diatoms;
9.8 % to 21.2 % for bacteria) were within 13 % and 60%, re-
spectively, of biomass estimates based on average fraction
values.
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Transfer of13C into DOC and DIC in the water column
and CO2 in air was calculated for the beginning and end of
the dark incubation period and for the end of the light period
as the product of excess13C in DOC, DIC, or CO2 (fraction
13C in labeled sample – average fraction13C in equivalent
control samples), water or air volume within the core, and the
concentration of DOC or DIC, or assumed concentration of
CO2 (15.6 µmol L−1). The total flux of excess13C in DOC,
DIC, or CO2 during dark or light incubation was then calcu-
lated as follows:

Excess13C flux =

(
Excess13Cstart− Excess13Cend

)
/(SA× t), (1)

where excess13Cstartand excess13Cend represent excess13C
at the beginning and end of the dark or light incubation pe-
riod, SA is the sediment surface area within a core, andt
represents hours of dark or light incubation. Net fluxes (ex-
cess13C m−2d−1) of DOC, DIC, or CO2 were calculated as
follows:

Net flux= (dark flux/dark hours) + (light flux/light hours) × t,(2)

wheret represents the number of hours of sediment inunda-
tion (for DOC and DIC fluxes) or exposure (CO2 fluxes). We
interpolated between measured net flux values and estimated
the total quantity of13C lost via fluxes of DOC, DIC, and
CO2 from the end of labeling up until each sampling period
by determining the area under the curve.

A 2-G model (Westrich and Berner 1984) determined the
rate of13C loss from total sediment OC (0–10 cm) from each
experimental plot, as follows:

GT (t) = G1
[
exp(−k1t)

]
+ G2

[
exp(−k2t)

]
+ GNR, (3)

whereGT is represents13C incorporation into sediment OC,
t is time, G1, G2, and GNR represent13C incorporation
into highly reactive, less reactive, and non-reactive (over the
timescale of the experiment) fractions of sediment OC, and
k1 and k2 represent first-order decay constants forG1 and
G2, respectively.

3 Results

3.1 Estuary conditions

Around 35 d before sampling began a rainfall event increased
freshwater flow rates at the head of the estuary to a maxi-
mum of 24 248 ML d−1. Although flow rates at the head of
the estuary decreased to typical levels (∼ 2000 ML d−1) and
remained so for the first three sampling occasions (up to 4 d
after label application, Fig. 1), another rain event then in-
creased flow to 39 757 ML d−1 within 9 d of label application
(Fig. 1). Flow rates remained elevated for the fourth sam-
pling occasion (37 952 ML d−1), but declined rapidly there-
after. However, flow remained elevated above typical levels

 

 

 

 

 

 

 

 

Fig. 1.Variations in flow rate of the Richmond River and variations
in salinity, dissolved inorganic nitrogen concentration (DIN), and
dissolved inorganic phosphorus concentration (DIP) at the study site
during the study period.

for the remainder of the study period, with rates of∼ 3000–
4000 ML d−1 in the final days of the study. These varia-
tions in flow rate are typical of the estuary (Eyre & Twigg,
1997; Eyre, 2000) and corresponded with variations in salin-
ity (0.91 to 24.04) and concentrations of dissolved inorganic
nitrogen (1.02 to 18.11 µmol L−1) and dissolved inorganic
phosphorus (0.37 to 1.36 µmol L−1) over the duration of the
study (Fig. 1).

3.2 Sediment organic carbon distribution

Sediment OC content was higher by volume in
shallower sediments (average over the study of
611± 78 µmol mL−1 in 0–2 cm sediments) than in deeper
sediments (418± 46 µmol C mL−1 in 2–5 cm sediments,
333± 23 µmol mL−1 in 5–10 cm sediments). The total OC
content of surface sediments decreased by∼ 24 % over the
duration of the study.

On average, MPB and bacteria together accounted for
∼ 89 % of the OC in 0–2 cm sediments (Table 1) and∼ 77 %
of the OC in 2–5 cm sediments. However, whereas MPB and
bacteria had similar biomass in surface sediments, there was
a marked decline in MPB biomass in deeper sediments, with
MPB accounting for∼ 24 % of OC in 2–5 cm sediments,
and only∼ 3 % of OC in deeper sediments. Bacteria repre-
sented∼ 44 % and 54 % of the OC in 0–2 cm and 2–5 cm
sediments, respectively, but accounted for only 11.6 % of the
OC in 5–10 cm sediments. MPB and bacteria in surface sed-
iments showed similar declines in biomass over the duration
of the study, with respective losses over 31 d of∼ 35 % and
∼ 40%.

A total of 51 species of meiobenthos were recorded, and
these were primarily foraminiferans. Only two species (El-
phidium advenumandAmmonia beccarii) were common to
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Table 1. Mean natural abundance carbon stable isotope ratios (δ13C), biomass (standard errors in brackets), and % of sediment organic
carbon (% OC) represented by sediment compartments at depths of 0–2 cm, 2–5 cm and 5–10 cm, based on control samples. Note thatδ13C
values for bacteria and MPB are for whole cells. Units are per area, not volume.δ13C of uncharacterized material estimated using isotope
mixing models. Sample size for all means and standard errors = 6.

0–2 cm 2–5 cm 5–10 cm

Compartment δ13C Biomass % OC δ13C Biomass % OC δ13C Biomass % OC
(mmol C m−2) (mmol C m−2) (mmol C m−2)

Sediment OC −16.0 (1.0) 12 221.8 (1557.2) 100 −16.3 (0.3) 12 550.3 (1369.3) 100 −14.4 (0.2) 16 637.8 (1151.8) 100
Microphytobenthos −14.3 (0.6) 5518.6 (461.9) 45.1 (3.8) −13.0 (0.3) 2972.9 (962.4) 23.7 (7.7) −14.4 (0.5) 481.9 (82.1) 2.9 (0.5)
Bacteria −15.6 (0.7) 5404.1 (593.2) 44.2 (4.8) −15.0 (0.7) 6726.5 (2526.3) 53.6 (20.1) −14.9 (0.4) 1929.6 (865.8) 11.6 (5.2)
Elphidium advenum −16.4 2.1 (0.9) 0.01 (0.01) n.d. n.d. n.d. n.d. n.d. n.d.
Ammonia beccarii −15.4 1.2 (0.6) 0.02 (0.01) n.d. n.d. n.d. n.d. n.d. n.d.
Uncharacterized −24.8 1295.8 (1729.2) 10.7 (6.1) −22.7 2850.9 (3030.4) 22.72 (21.5) −14.3 14 227.3 (1443.3) 85.5 (5.22)

most samples and were present at sufficient biomass for iso-
tope analysis (∼ 2000 µmol C m−2 and∼ 1000 µmol C m−2,
respectively). These species together accounted for 62± 5 %
of the total mass of fauna in 0–10 cm sediment, but repre-
sented <1 % of the sediment OC pool (Table 1). There was
a similar contribution ofE. advenumandA. beccariito total
meiobenthos in 0–2 (∼ 22 %) and 2–5 cm sediment (∼ 31 %),
but E. advenumwas more abundant thanA. beccarii in 5–
10 cm sediments (45 % vs 34 % of meiobenthos mass).

The fraction of sediment OC that was not within the com-
partments considered in the current study (i.e. uncharacter-
ized OC) increased with sediment depth (Table 1). Whereas
only ∼ 11 % of sediment OC was uncharacterized in 0–2 cm
sediments, we were unable to account for∼ 23 % and∼ 86 %
of OC at 2–5 and 5–10 cm (Table 1).

3.3 Natural abundance stable isotopes

Sediment OCδ13C values were similar for 0–2 cm and 2–
5 cm sediments (average =−16.0‰ and−16.3‰ , respec-
tively), but enriched in deeper sediments (−14.4‰ ). Values
of δ13C for MPB and bacteria varied little with depth (Table
1), andδ13C values for bacteria were 0.5 to 2‰ depleted, on
average, compared to MPB (Table 1).E. advenumandA. bec-
carii in 0–2 cm sediments hadδ13C values of−16.4‰ and
−15.4‰, within the range of bacteria and bulk sediment OC.
In contrast,δ13C values for uncharacterized surface sediment
OC were relatively depleted (∼ −23‰ to−25‰; Table 1),
but were more enriched in 5–10 cm sediments (−14.3‰).

Controlδ13C values of water column DOC were relatively
depleted (−30.6± 0.5‰). Controlδ13C values for DIC aver-
aged−1.5± 1.8‰ throughout the study period.

3.4 13C incorporation, burial, and transfer

By 12 h after label application 12.0± 4.5 mmol13C m−2 had
been incorporated into OC at sediment 0–10 cm deep, giv-
ing an uptake rate for13C of 1.0± 0.4 mmol13C m−2 h−1.
However, given that unincorporated label would have been
removed with the first tidal inundation,13C uptake most
likely occurred within 4 h of label application (before
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Fig. 2. Percentage (mean± SE, n = 2) of the 13C that was ini-
tially incorporated by microphytobenthos(A), and percentage
(mean± SE,n = 2) of the13C remaining within total sediment OC
at each time(B), that was found within total organic carbon, micro-
phytobenthos, and bacteria in sediment at depths of 0–2 cm, 2–5 cm
and 5–10 cm throughout the study period. Days after labeling in-
dicate time of sample collection, including time required for core
incubation.

tidal inundation), giving an adjusted uptake rate of 3.0
±1.1 mmol13C m−2 h−1. Rates of carbon fixation at the site
apparently have the potential to be far higher than this, how-
ever, as 100 % of the added13C was assimilated, indicating
that MPB at the site was carbon limited.

For the first 4 d following label addition, MPB was the
major reservoir for fixed13C, accounting for 77.6 to 100 %

Biogeosciences, 11, 1927–1940, 2014 www.biogeosciences.net/11/1927/2014/



J. M. Oakes and B. D. Eyre: Transformation of microphytobenthos carbon 1933

of the total 13C remaining within sediment OC (77.4 to
89.6 % of the initially fixed13C; Fig. 2a). The importance
of MPB declined thereafter, however, with MPB accounting
for 15.0 % of the13C remaining in sediment OC (Fig. 2b),
and 4.6 % of the initially fixed13C, by day 31 (Fig. 2a).

Despite their higher overall biomass (Table 1), bacteria
had a far smaller role in13C incorporation than MPB, ac-
counting for between 1.6 and 8.8 % of the13C remaining
in sediment OC within the first 3 d following label addition
(Fig. 2a). Thereafter, the importance of bacteria generally in-
creased, with bacteria accounting for a maximum of 28.4 %
of the13C remaining within sediment OC (Fig. 2b) (9.3 % of
fixed 13C; Fig. 2a) at 11 d after label addition.

The proportion of13C remaining in sediments that was ac-
counted for by MPB and bacteria generally decreased dur-
ing the study to 25.4 % at day 31 (Fig. 2a). Fauna accounted
for 0.01 to 0.03 % of the13C remaining within the sediment
OC at the times samples were analyzed (4 d, 11 d, and 31 d;
Fig. 2b).

There was a general increase in the13C content of deeper
sediments (2–5 cm and 5–10 cm) over time (Fig. 2), but this
transfer of13C to deeper sediments did not match the larger
decline in13C content of surface sediments. This reflected
the overall loss of13C from 0–2 cm sediments. The trans-
fer of 13C to deeper sediments was relatively slow; a total of
3.69 % of the fixed13C was within 2–10 cm sediments 12 h
after label addition, equating to a burial rate of 0.3 % h−1.
By the conclusion of the study, 75.3 % of the remaining13C
was within deeper sediments (2–10 cm; Fig. 2b), represent-
ing burial over 31 d of around 23.2 % of the13C that was
initially fixed by MPB (Fig. 2a).

3.5 13C loss from sediments

By the end of the study, 69.2 % of the added13C had been
lost from 0–10 cm sediment (Fig. 3). However, only 13.6 %
of the added13C was estimated to be lost via the pathways we
considered, and this was almost entirely due to fluxes of13C
as DIC (Fig. 3). Over the 31 day study, 1572.7 µmol13C m−2

(13.1 % of added13C) was lost from the sediment as DIC,
with ∼ 80 % of this loss occurring over the first∼ 4 d (Fig. 3).
There was generally uptake of DIC into sediment during the
light (2943.0± 3213.374 µmol m−2 h−1) and release during
the dark (1406.6± 1711 µmol m−2 h−1). This corresponded
with higher fluxes of13C-labeled DIC in the dark than in the
light.

Far less13C was lost from sediments as CO2 or DOC.
DOC fluxes accounted for loss of only 58.34 µmol13C m−2

(0.48 % of fixed13C). This was not surprising as there was
a net uptake of DOC (85.6± 149.7 µmol m−2 h−1) into sed-
iments. In this case, losses of13C via DOC fluxes indicate
an exchange of DOC between the sediment and the over-
lying water. DOC fluxes were highly variable, with gen-
erally smaller DOC uptake in the light (23.9± 278.0 µmol
m−2 h−1) than in the dark (147.4± 189.3 µmol m−2 h−1).
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Fig. 3.Carbon budget showing cumulative percentage (mean± SE,
n = 2) of the 13C that was initially incorporated by microphyto-
benthos that remained in total sediment organic carbon (0–10 cm
depth) and that had been lost via dissolved organic carbon and dis-
solved inorganic carbon or via unknown pathways since the end of
13C-labeling. Note that fluxes of CO2 were too low to be shown.
Arrows indicate13C expected to remain in total sediment organic
carbon at each sampling time, based on 2-G modeling. Days after
labeling indicate time of sample collection, including time required
for core incubation.

The greatest rate of loss of13C as DOC was recorded dur-
ing the first dark incubation period. At all times thereafter,
there was greater loss of13C as DOC in the light than in the
dark.

Fluxes of CO2 were only measured for the last three time
periods, but at these times the loss of13C via CO2 was only
0.2 % to 5.1 % of the loss of13C via DIC. Assuming that
fluxes of13C in CO2 at all times represented∼ 5 % of the13C
lost as DIC (the maximum observed in the current study), a
total of 0.02 % of the fixed13C (∼ 3 µmol 13C m−2) would
have been lost via fluxes of CO2 from exposed sediments.

The 55.6 % of added13C that was lost from sediments
and which was not accounted for by the pathways that were
directly measured was assumed to represent the fraction of
fixed carbon that was lost from sediments via resuspension,
burial to deeper sediments than those considered here, or re-
moval by mobile animals (Fig. 3).

The decline in13C content of OC in 0–10 cm sediments
over the duration of the current study could be fitted with
a 2-G model (R2

= 0.89± 0.08; Fig. 3). Of the total sedi-
ment OC, 22.24± 7.24 % was highly reactive (fractionG1),
with a degradation rate (k1) of 0.022± 0.018 d−1). A fur-
ther 47.72± 8.06 % was less reactive (fractionG2), degrad-
ing at a rate (k2) of 0.002± < 0.001 d−1). The remaining
30.03± 0.82 % of the sediment OC was nonreactive over the
timescale of the experiment (fractionGNR).

www.biogeosciences.net/11/1927/2014/ Biogeosciences, 11, 1927–1940, 2014



1934 J. M. Oakes and B. D. Eyre: Transformation of microphytobenthos carbon

4 Discussion

4.1 Site characteristics

The microbial community at the study site was highly abun-
dant; MPB and bacteria together comprised∼ 90 % of the
OC in surface (0–2 cm) sediments (Table 1). Based on O2
fluxes in control cores (assuming O2:C=1:1 and 12 h of pro-
duction per day), the estimated GPP of the MPB community
(∼ 240 g C m−2 yr−1) was towards the upper end of values
reported for MPB in intertidal and shallow coastal sediments
(Colijn and de Jonge, 1984; Barranguet et al., 1998 and ref-
erences therein). The productivity of the MPB was similar
throughout the study despite variations in MPB biomass, but
the ratio of biomass to productivity was high, indicating that
turnover was slow. During the first 11 d of the study the
turnover time of MPB was∼ 100 d, and even at the con-
clusion of the study, with 40 % lower MPB biomass, the
turnover time was still∼ 66 d. This is remarkably slow com-
pared to estimates for temperate subtidal and intertidal sand
and mud (1.3–62 d; Sundbäck et al., 1996; Middelburg et al.,
2000; Evrard et al., 2010) and subtropical shallow subtidal
sand and mud (0.6 to 21.7; Ferguson et al., 2003; 5.5 d; Oakes
et al., 2010b). As noted by Middelburg et al. (2000), similar
rates of MPB production can correspond with substantial dif-
ferences in MPB biomass. For example, MPB in subtropical
shallow subtidal sediments have been reported to be simi-
larly productive, but with far lower biomass than in the cur-
rent study (Ferguson et al., 2003; Oakes et al., 2010b). This
demonstrates that MPB biomass is not a reliable indicator of
productivity.

The long turnover time of MPB at the study site may re-
flect inorganic carbon limitation and substantial recycling of
fixed carbon by MPB. Inorganic carbon availability has been
reported to limit primary production by MPB in laboratory
studies (Admiraal et al., 1982; Cook and Røy, 2006) and
epilithic microalgae in situ (coral biofilms; Larkum et al.,
2003), particularly when productivity is high. At the study
site, the uptake of all of the added13C suggests that inor-
ganic carbon limited MPB productivity, at least during ex-
posure. This probably relates to the high biomass of MPB,
leading to intense competition for resources. The estimated
productivity of MPB during exposure, based on13C uptake
(3.0± 1.1 mmol m−2 h−1), was similar to the productivity of
inundated sediments based on O2 fluxes (see ‘Site descrip-
tion’; ∼ 3 mmol m−2 h−1). This is despite the potential stim-
ulation of the carbon-limited exposed MPB through addi-
tion of inorganic carbon. It is therefore likely that carbon
limitation was greatest during exposure of the sediment and
productivity of MPB during exposure is usually somewhat
lower. This may reflect depletion of inorganic carbon within
porewater during emersion, and limited diffusion of new CO2
into sediment porewater. Given that our estimate of GPP over
the year was based on inundated fluxes, true GPP of the study

site may be as low as half of that estimated, as sediments
would be exposed to air for approximately half of each day.

Although MPB and bacteria represented most of the OC
within surface sediments, a further 10.7 % was uncharacter-
ized. This would likely be comprised of both labile and re-
fractory components including extracellular organic carbon
exuded by MPB and bacteria, and allochthonous OC. Based
on the known biomass andδ13C values of the total sediment
OC and the measured sediment compartments (MPB, bac-
teria, and fauna), isotope mixing suggests aδ13C value for
uncharacterized OC of∼ −25‰ (Table 1). This is within
the range ofδ13C values for phytoplankton and terrestrial
plants (Michener and Schell, 1994), confirming a contribu-
tion of allochthonous OC. Given the relatively depleted nat-
ural abundanceδ13C value for DOC at the site (∼ −30‰),
allochthonous OC may also be the source of the DOC re-
leased from control sediments. The relatively high C : N ratio
of sediment OC was well above a typical Redfield ratio. This
could reflect substantial re-working of sediment OC, leading
to enrichment of the C : N ratio, but more likely reflects a
contribution of terrestrial material, as episodic rainfall events
increase the flow of freshwater at the study site, and can en-
hance the delivery of terrestrial OC (Eyre and Twigg, 1997).
Given the dominance of fine particles in the surficial sedi-
ments at the study site, some of this is likely to be derived
from recent deposition of terrigenous sediments following
the flood events. This deposition of new material would off-
set losses of OC and is reflected in the lower apparent rate
of loss of total OC from sediments (25 %) compared to MPB
(40 %) and bacteria (45 %).

The contribution of uncharacterized OC to the total sedi-
ment pool increased with sediment depth (Table 1), but its
source was less clear. Theδ13C value of uncharacterized
OC was considerably enriched in deeper (5–10 cm) sedi-
ments (Table 1), suggesting that there has been (i) burial of
MPB-derived carbon; (ii) burial of relatively13C-enriched al-
lochthonous OC (e.g. seagrass; Jones et al,. 2003), or sub-
stantial re-working of OC resulting in preferential removal
of 12C, or 13C-depleted compounds (e.g. lipids; DeNiro and
Epstein, 1977).

Given the considerable contribution of bacteria to sedi-
ment OC at all sediment depths (11.6 % to 53.6 % of total
OC), they are likely to be the main contributor to carbon pro-
cessing at the study site. The relatively enrichedδ13C values
of bacteria suggested that there was a substantial contribution
of MPB-derived carbon, but the uncharacterized OC fraction
also contributed, leading to the depletion ofδ13C values for
bacteria compared to MPB. Assuming a trophic fractiona-
tion of 0.5‰ for carbon (McCutchan et al., 2003), MPB and
the uncharacterized OC fraction contributed 82.9 and 17.1 %,
respectively, of the carbon for bacteria in 0–2 cm sediments,
and 74.2 and 25.8 % in 2–5 cm sediments. The carbon source
for bacteria in 5–10 cm sediment could not be resolved, as the
δ13C value was depleted compared to both potential sources.
However, given the greater biomass of bacteria in shallow
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sediment, theδ13C value of bacteria in 5–10 cm sediments
was likely dominated by bacteria towards the upper extent of
this layer, which would have access to more depleted unchar-
acterized OC (Table 1).

4.2 13C transfer and burial

Given that an earlier study∼ 120 km north of the site of the
current study showed that there was no carbon fixation in
muddy or sandy sediments in the dark (Oakes, 2007), all13C
within the sediments was assumed to have been initially fixed
by MPB. There was rapid transfer of13C to heterotrophs,
with 4.5 % of the fixed13C found within bacteria 12 h af-
ter label addition, but the total quantity of13C transferred
was limited. Throughout the study, only 1.2 % to 12.5 % of
the total fixed13C was found in bacteria, and up to 0.01 %
in fauna. At best, 28.4 % of the13C remaining within sedi-
ment OC at any one time was within bacteria (at 11 d), but
this only equated to just over half of the13C within MPB
at this time. This was similar to the proportion of remain-
ing fixed carbon that was in bacteria 11 d after13C-labeling
of MPB in subtropical subtidal sands (Oakes et al., 2010b).
However, whereas this and a number of other studies (Mid-
delburg et al., 2000; Woulds et al., 2007; Oakes et al., 2010b)
have found13C incorporation by sediment compartments to
be roughly proportional to biomass this was not the case in
the current study. Whereas the biomass of MPB and bacteria
were similar in 0–2 cm sediments, the majority of fixed13C
within sediments was in MPB at all sampling times. Even in
the 2–5 cm sediments, where bacterial biomass exceeded that
of MPB, MPB contained a greater portion of13C at all times.
Until at least 4 d after label addition, 78 % or more of the
13C remaining within sediment OC was within MPB, and by
the end of the study (at 31 d) 15 % of the13C was still within
MPB. This corresponds with the slow turnover rate estimated
for MPB. An exponential curve fitted to the data (R2

= 0.98)
predicted that13C would remain within MPB until >80 d af-
ter label addition (Fig. 4).

Possible explanations for the apparent slow turnover and
13C retention of MPB include (i) substantial recycling of
fixed carbon by MPB via mobilization of their own EPS
(Stal 2003) or internal storage compounds (Bellinger et al.,
2009), (ii) limited grazing of MPB by higher heterotrophs
(supported by low biomass and13C content of fauna), and
(iii) efficient recapture of13C remineralized by bacteria, but
most likely relates to (iv) limited production of EPS. A sub-
stantial portion of the carbon fixed by MPB can be rapidly
exuded as EPS (up to 70.3 % h−1; Goto et al., 1999). In the
current study, however, only 10.5 % of the13C within sedi-
ment OC had been transferred from MPB to bacteria and/or
DOC within 12 h, equating to an EPS production rate at the
lower end of the range reported for marine benthic diatoms
and sediment biofilms (0.9 % h−1; Underwood and Paterson,
2003). Given that EPS can play an important role in the
transfer of carbon from autotrophs to heterotrophs (Oakes

 

 

 

 

Fig. 4. Exponential curve predicting percentage of13C remaining
in sediment organic carbon that is expected to be within MPB over
time. Data points show values measured over the 31 day study.

et al., 2010b), low production of EPS is likely to have con-
tributed to the limited transfer of13C to bacteria and higher
heterotrophs (Fig. 5). The production of EPS assists with di-
atom movement and attachment and increases with nutrient
limitation (Cook et al., 2007), functioning to maintain Red-
field C : N whilst protecting cells from potential damage by
excess energy (Stal, 2003). Around the time of the current
study, rain events most likely ensured that nutrients were in
plentiful supply, both in the water column and in sediments,
due to degradation of recently deposited allochthonous ma-
terial. Excessive production of EPS by MPB would therefore
be unnecessary and, given that inorganic carbon availabil-
ity is sometimes limited, may be undesirable. Rather, it is
possible that fixed carbon is stored intracellularly as chryso-
laminarin (Bellinger et al., 2009), for use when carbon limits
MPB production (e.g. during exposure; Fig. 5).

Although 75.3 % of the13C remaining at the end of the
study (31 d) was in sediments at 2–10 cm depth, representing
23.2 % of the13C that was initially fixed, the rate of down-
ward transport of13C was slower than has been seen in pre-
vious studies. Oakes et al. (2012) observed transfer of 12.9 %
of fixed carbon to 2–5 cm and 18.6 % to 5–10 cm within 60 h
in shallow subtidal subtropical sands, and Middelburg et al.
(2000) and Evrard et al. (2010) reported similar transport of
fixed carbon to 2–5 cm in temperate mud and sand within
3 d. However, in the current study a far smaller proportion
of the initially fixed 13C was at these depths even 31 d after
label addition (8.3 % and 14.9 % to 2–5 cm and 5–10 cm, re-
spectively). In contrast to our earlier study of subtidal sands
(Oakes et al., 2012), there was considerable removal of13C
via resuspension in the current study, possibly reflecting dif-
ferences in water depth and/or the absence of substantial
freshwater input during the previous study. The resuspension
of organic carbon in the current study would have limited the
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Fig. 5.Conceptual model showing pathways for the transfer of car-
bon fixed by microphytobenthos in the subtropical intertidal sed-
iments investigated in this study during inundation and exposure.
Thicker arrows indicate pathways that, in the current study, were
determined or estimated to be more dominant over 31 days.

pool of 13C available for downward transport (Fig. 5). The
low biomass of fauna would also have limited the potential
for carbon burial through bioturbation, subduction, and con-
sumption by mobile animals. However, the intertidal study
of Middelburg et al. (2000) also reported substantial loss of
fixed carbon via resuspension, but had greater burial. Sedi-
ment flushing and mixing, which is influenced by sediment
porosity and tidal movement, can transport fixed carbon to
deeper sediments. The grain size of our sediment was inter-
mediate to that of sediment at two sites studied by Middel-
burg et al. (2000). However, the tidal amplitude (∼ 5 m) at
the site studied by Middelburg et al. (2000) was far greater
than in the current study (∼ 2 m). Although this would have
contributed to sediment resuspension, this may also have en-
hanced sediment mixing and, therefore, burial of carbon that
had not been resuspended. Increased flow rates and scouring
at the time of the current study may also have reduced the po-
tential for new sediments to deposit at the study site, thereby
limiting burial through this mechanism.

4.3 13C loss

An important attribute of this study is that the13C-labeled
sediment community was exposed to natural environmental
conditions for the majority of the study, allowing for natural

loss processes to occur. The overall loss of13C from sedi-
ments and the budget for loss and retention over the duration
of the study therefore incorporates the effect of these in situ
processes. A further characteristic of the current study is that
it is one of very few (e.g. Oakes et al., 2012) to have di-
rectly measured so many loss pathways. However, we were
still unable to account for loss of∼ 50 % of the carbon ini-
tially fixed by MPB. This carbon was most likely lost via
resuspension of surface sediment OC, particularly given the
elevated freshwater flow rates at the study site, but this was
not directly quantified in the current study. Although burial to
sediments below 10 cm and/or removal by mobile consumers
are also possible pathways for loss that were not considered,
the general lack of fauna in the sediments and limited burial
of 13C below 5 cm suggests that these pathways are probably
relatively minor contributors to carbon loss.

The lack of fauna in the system is likely to have had a sig-
nificant impact on the processing and fate of MPB carbon,
by reducing burial and grazing. Although the low biomass
of fauna may relate to highly variable environmental con-
ditions (e.g. episodic freshwater inputs), which is typical of
this and other (sub) tropical systems (Eyre and Twigg, 1997;
Eyre, 2000), it is also typical of intertidal sediments in tropi-
cal systems in general (Purwoko and Wolff, 2008). It should
be noted that where macrofauna is more abundant the reten-
tion of MPB carbon may be greater, due to enhanced burial,
or reduced due to increased grazing and respiration.

Resuspension of sediment and associated material, includ-
ing MPB, is generally driven by wind- or tide-generated tur-
bulence (de Jonge and van Beusekom, 1995), but in the cur-
rent study was probably also strongly driven by enhanced
freshwater flow rates following a rain event (Eyre and Twigg,
1997). The potential importance of these rain events is
demonstrated in the discrepancy between the quantity of13C
measured within sediment OC and the higher value predicted
by 2-G modeling, shortly after a rain event (11 days after la-
beling, Fig. 4). However, given that estimated and measured
quantities of13C in sediment OC were more similar there-
after, it appears that removal of13C may be spatially hetero-
geneous. Significant episodic freshwater flows are typical of
any (sub) tropical systems (Eyre, 1998; Eyre and Balls, 1999;
Eyre, 2000). However, it is likely that a smaller portion of the
carbon fixed by MPB would be lost from sediments via resus-
pension under drier conditions. Similarly, a larger proportion
of the carbon fixed by MPB would be lost from sediments via
resuspension during larger floods (see Eyre and Twigg, 1997;
Eyre, 2000) and scouring of sediments may remove deeper
sediments, reducing longer term carbon storage potential.

The susceptibility of surface sediments to resuspension
depends on a number of factors including water depth and
flow rate, tidal height, activity of fauna and characteristics
of the sediment including the presence or absence of a sta-
bilizing biofilm (MacIntyre et al., 1996). In intertidal sed-
iments, tidal movements can cause resuspension of a sub-
stantial part of the MPB community (up to 50 % or more
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in temperate mudflats; de Jonge and van Beusekom, 1995)
and EPS (∼ 60 %; Hanlon et al., 2006). Migration of MPB
can buffer against their resuspension, but given that MPB
were the major reservoir for fixed carbon throughout the cur-
rent study, and there was similar loss of MPB and bacterial
biomass from the sediments, it is likely that resuspension of
MPB was the major conduit for loss of fixed carbon via this
pathway. Alternatively, resuspension may have removed EPS
before it was assimilated by heterotrophs.

Few studies have specifically assessed rates of loss of
MPB-derived carbon from sediment. In subtropical subtidal
sands, we saw very little loss of fixed carbon from subtidal
sands via resuspension over 30 days in a previous study (<

3 %; Oakes et al., 2012). In contrast, Middelburg et al. (2000)
reported loss via resuspension of 34 % of carbon fixed by
MPB from intertidal sands within 5.6 d, reflecting the influ-
ence of the turbid tidal edge. Although we observed simi-
lar loss of fixed carbon overall in subtropical intertidal sedi-
ments in the current study, the rate of loss was slower, occur-
ring primarily over 11 d. As discussed previously, this may
relate to the lower tidal movement at the site of the current
study, compared to that at the site studied by Middelburg et
al. (2000). Given that losses due to resuspension were al-
most certainly enhanced by elevated river flows in the cur-
rent study, it is likely that the loss to resuspension would be
lower again under more typical flow conditions. Although
other factors may also be important, the pattern of faster loss
of MPB carbon with increased tidal movement across three
studies (Middelburg et al., 2000; Oakes et al., 2012; current
study) suggests that tidal movement has a major influence on
MPB carbon fate.

Of the pathways measured directly, DIC flux during inun-
dation was the most important for loss of carbon fixed by
MPB (Fig. 5), but still accounted for only∼ 19 % of the to-
tal lost13C, or∼ 13 % of the carbon that was initially fixed.
In temperate and subtropical subtidal sands, respiration has
been reported to have a greater contribution to removal of
MPB-derived carbon (14 % over 4 d and 63 % over 30 d;
Evrard et al., 2010; Oakes et al., 2012). This difference is
not surprising, given the considerable removal of fixed car-
bon by resuspension in the current study, which would limit
the carbon available for respiration. However, in temperate
intertidal sands that are similarly susceptible to resuspen-
sion, respiration was estimated to account for 40 % of the to-
tal loss of MPB-derived carbon, although it should be noted
that this was not measured directly (Middelburg et al., 2000).
The limited role of respiration for transformation and loss
of MPB-derived carbon in the current study site is further
evidence that limited MPB-derived carbon is transferred to
heterotrophs, including bacteria, over at least 31 d. The con-
tribution of recycling to the retention of carbon by MPB
is supported by the reduced flux of13C-labeled DIC in the
light, particularly early in the study. This clearly reflects the
re-capture of respired MPB-derived carbon by MPB for use
in photosynthesis and would contribute to the apparent slow

turnover of MPB and long-term retention of MPB-derived
carbon within the sediment.

Fluxes of DOC were a relatively minor contributor to loss
of MPB-derived carbon in the current study (Fig. 5). Given
that tidal flushing and resuspension can remove a substantial
portion of the EPS produced by MPB (e.g.∼ 60 %; Hanlon
et al., 2006), our ex situ core incubations may have under-
estimated DOC fluxes. However, this is unlikely, given the
apparently low rate of EPS production. Furthermore, the two
studies that have specifically considered this loss pathway
(in temperate and subtropical shallow subtidal sands, respec-
tively; Cook et al., 2007; Oakes et al., 2012) also reported
limited loss of MPB-derived carbon via DOC fluxes. This
may reflect rapid use of DOC within the sediment by bacte-
ria, particularly in the current study, due to the greater bacte-
rial biomass typical of more tropical sediments, and intense
competition for labile EPS due to its limited production.

Fluxes of CO2 from sediments exposed at low tide are a
further potential loss pathway but contributed very little to
loss of MPB-derived carbon in the current study (up to 5 %
of DIC fluxes at the times measured; Fig. 5). Differences in
fluxes of inorganic carbon from intertidal sediments during
inundation and exposure may relate to variations in the ac-
tivity of fauna during the tidal cycle. For example, bioirri-
gation by fauna occurs only during tidal inundation and can
enhance exchange of solutes between sediment and the over-
lying water (Forster et al., 1999; Hedman et al., 2011). At
the site of the current study, however, little macrofauna was
observed at the site, and variations in the activity of biota
are therefore unlikely to explain the differences in fluxes
of DIC and CO2 from inundated and exposed sediments.
Chemical factors offer a more likely explanation. Whereas
only CO2 is released from sediments during exposure, DIC
consists of CO2, HCO−

3 and CO2−

3 , all of which be trans-
ferred to overlying water (Cook et al., 2004). Therefore, if
the production of DIC is constant across a tidal cycle, the
ability of a greater fraction of DIC to transfer to water could
lead to greater fluxes of inundated DIC than exposed CO2
from intertidal sediments. However, the few studies that have
compared fluxes of CO2 and DIC from intertidal sediments
during exposure and inundation have produced variable re-
sults. Whereas Gribsholt and Kristensen (2003), Cook et
al. (2004), and Faber et al. (2012) all found that exposed
CO2 fluxes were at least∼ 2× lower than inundated DIC
fluxes in unvegetated sediments, Alongi et al. (1999) found
little difference in tropical intertidal sediments, and Gribsholt
and Kristensen (2003) found that exposed CO2 fluxes were
higher than inundated DIC fluxes in a vegetated marsh. In the
current study, we saw very little loss of13C via CO2 fluxes
compared to DIC fluxes. However, it should be noted that
previous studies have looked at total fluxes of DIC and CO2,
whereas we are comparing fluxes derived from recent (within
31 d) MPB carbon fixation. Regardless, even assuming that
fluxes of CO2 were half as important as fluxes of DIC, as re-
ported for bare sediments (Gribsholt and Kristensen, 2003;
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Cook et al., 2004), CO2 fluxes would still only account for
loss of∼ 6.5 % of the13C initially fixed by MPB over 31 d.

4.4 Carbon storage implications

Despite differences in carbon processing pathways, particu-
larly the influence of resuspension, we observed similar sub-
stantial retention of MPB-derived carbon in subtidal (Oakes
et al., 2010b; Oakes et al., 2012) and intertidal subtropical
sites (this study; Fig. 5). Approximately 30 % of the car-
bon that had been fixed by the MPB community in each
of these environments within one exposed period was still
present within sediment OC after∼ 30 d. In the current study,
75.3 % of this remaining carbon had been buried below 2 cm,
suggesting that there could be a substantial contribution of
MPB to long-term carbon sequestration in unvegetated sedi-
ments. This is particularly remarkable given that the burial
and retention of MPB-derived carbon in the current study
was observed under conditions of high flow, when resus-
pension would be enhanced. This clearly demonstrates the
potential of MPB in subtropical sediments to contribute to
coastal carbon storage. In unvegetated sediments, scouring
of sediment following rain events has the potential to limit
longer term storage of MPB carbon, but this will depend on
the depth of sediment removed, and the subsequent process-
ing and fate of this resuspended carbon (e.g. re-deposition
or respiration). Given the high productivity of MPB, and the
potential for their carbon to be buried, it should also be con-
sidered that MPB may contribute to carbon storage in more
stable, vegetated sediments.

Only two previous studies of which we are aware (Oakes
et al., 2010b; Oakes et al., 2012) have considered the pro-
cessing of MPB-derived carbon over such an extended time
period (∼ 30 d). However, a comparison of the13C remaining
in sediments at the end of shorter term studies with the13C
remaining at a similar time in the longer term studies shows
that there is some variation in carbon retention. Whereas we
estimate that∼ 75 % of the13C incorporated in our study
remained in sediments after 4 d, Middelburg et al. (2000)
found∼ 67 % of MPB-derived carbon remaining in temper-
ate intertidal mud and∼ 20 % in temperate intertidal sand
after a similar time. In the study by Bellinger et al. (2009),
∼ 60 % of the carbon fixed by MPB remained within muds
after 36 h, although there was not a clear trend of carbon loss
over time. The greater carbon retention we observed in sub-
tropical sediments may reflect the higher productivity and/or
biomass of bacteria in warmer climate sediments, leading to
greater recycling of MPB-derived carbon. There is currently
considerable interest in carbon burial in coastal ecosystems
(“Blue Carbon”; Duarte et al., 2005; McLeod et al., 2011;
Duarte et al., 2013), but the potential of MPB to contribute
to this has not been considered. Most of tthe Blue Carbon
work has focused on seagrass, mangroves and salt marsh, but
MPB may also have contributed to some of carbon buried in
these systems. In the current study, the retention of a substan-

tial portion of fixed carbon after 31 d (30.0 %), with most of
this (75.3 %) buried below 2 cm, suggests that MPB in sub-
tropical intertidal sediments have the potential to contribute
substantially to carbon burial in unvegetated sediments. Con-
sidering that previous studies in a variety of sediment types
(intertidal or subtidal, muddy or sandy) and in both temper-
ate and subtropical regions have also shown that carbon fixed
by MPB within hours remains within sediments after a num-
ber of days, and because light reaches 33 % of the global
shelf area (Gattuso et al., 2006), the contribution of MPB to
carbon storage may be widespread and warrants further in-
vestigation.
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