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Introduction

It is known that mitochondria are unique organelles ca-
pable of, depending on the physiological stimuli, changing
their number and size 1, 2. Physical exercise has proved to be
a powerful stimulus to mitochondrial biogenesis in skeletal
muscle, which involves the orchestrated expression of the
mitochondrial genome and the nuclear genes that encode
mitochondrial proteins 3. The human mitochondrial genome
consists of approximately 1,500 genes, 37 are encoded mito-
chondrial DNA (mtDNA), and the rest of the nuclear DNA
(nDNK). Mitochondrial DNA (mtDNA) is a small double-
stranded circular molecule containing 16,569 pairs of nu-
cleotides. It encodes 13 subunits of complexes involved in
oxidative phosphorylation, and components necessary for its
own mRNA translation: large and small rRNA and 22 tRNA.
The process of oxidative phosphorylation (OXPHOS) is nec-
essary for formation of ATP, which is used for work, heat to
maintain body temperature and membrane potential required
for ion transport. Mitochondria also generate most of the re-
active oxygen species (ROS) and electrons involved in their
formation are usually derived from the reduced electron car-
riers of the respiratory chain. If not neutralized (damaged
mitochondria are removed by apoptosis), ROS can damage
mitochondrial proteins, lipids and nucleic acids which inhibit
oxidative phosphorylation 4, 5. A large number of disorders of
oxidative phosphorylation are attributed to mutations, which
are more common in mitochondrial DNA (mtDNA) than in
the DNA of chromosomes. These mutations are inherited
maternally. However, not all mtDNA mutations and varia-
tions are deleterious. About 25% of all mtDNA variations are
referred to as adaptive, and in some cases may be an impor-
tant factor in the individual's predisposition to a better physi-
cal condition 6.

This paper is an overview of recent research mitochon-
drial biogenesis and its adaptive effects to the potential im-
pact of an increase in athlete s endurance.

Exercise-induced mitochondrial biogenesis in
skeletal muscle

Skeletal muscles show significant metabolic and mor-
phological adaptations in response to a number of physio-
logical and pathophysiological conditions. One of the major
phenotypic changes occurs in mitochondria in response to
exercise or chronic contractile activity. In fact, intense exer-
cise leads to significant metabolic changes that may impair
mitochondrial function: the formation of reactive oxygen
species due to higher rates of oxygen uptake during intense
work 7, 8, hydrolysis of creatine phosphate leads to elevated
levels of phosphate, which may affect the permeability of
mitochondria, increased Ca²+ activates pyruvate dehydroge-
nase, alpha ( )-ketoglutarate dehydrogenase and NAD-
linked isocitrate dehydrogenase, and the maximum perme-
ability of the pores can lead to swelling and rupture of the
outer membrane of mitochondria leading to autophagia of
mitochondria and apoptosis or necrosis of the cells 9. This
distortion function of mitochondria in strenuous exercise can
cause not only fatigue, but muscle damage. Just under these
physiological conditions highly dynamic structure of mito-
chondria and the appearance of mitochondrial adaptation are
expressed. Exercise not only increases mitochondrial ATP
synthesis through oxidative phosphorylation but also affects
its morphology, increased gene expression of enzymes and
proteins and changes the dynamics of fusion and fission, op-
posing processes that are in balance and are responsible for
remodeling mitochondrial network 10, 11. These adaptation
changes are most noticeable in low-oxidative white muscle
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fibers, whose initial mitochondrial content ranging from 1–
3% of the total cellular volume 12.

Mitochondrial adaptations in muscle are highly specific
and dependent on the type of exercise, its frequency, inten-
sity and duration. Prolonged and strenuous training can pro-
duce an increase in mitochondrial content of 50–100% for a
period of 6 weeks 13. Experiments in animal models (8 weeks
of training on the treadmill, 80% VO2, 5 days per week)
showed an increased mitochondrial function, reflected by an
increased activity of mitochondrial enzymes and the maxi-
mum speed of ATP synthesis in isolated mitochondria 14.
The physiological meaning of mitochondrial adaptation in
muscle is reflected in metabolic changes, which are ex-
pressed more in the metabolism of lipids compared to carbo-
hydrates. For example, the formation of lactic acid is re-
duced, glycogen loss is smaller, the utilization of high-
energy phosphates is reduced, as well as muscle fatigue 15.
These mitochondrial adaptations in response to exercise are
generally referred to as mitochondrial biogenesis, as a syno-
nym for metabolic plasticity. It is a complex process that in-
volves increasing in the mitochondrial content per gram of
tissue and changes in the mitochondrial composition, with an
alteration in mitochondrial protein-to-lipid ratio. This se-
quence of molecular events that initiate mitochondrial bio-
genesis begins with an increase in intracellular Ca²+, which is
a mediator of interaction actin and myosin, which then acti-
vates the kinase, for example, Ca²+ calmodulin kinase
(CaMK) and phosphatase, which trigger a signaling cascade
and increase gene expression of transcription factors. Spe-
cifically, muscle contraction leads to an increase in the
maximum capacity of muscle to generate ATP via oxidative
phosphorylation. Repeated muscle contractions lead to re-
ducing the concentration of ATP and increasing the concen-
tration of free ADP, thus causing activation of creatine phos-
phokinase (CPK), formation of ATP and creatine. ADP is
also a substrate and allosteric activator of the glycolytic
pathway and control mitochondrial respiration. These adap-
tations, along with increased activities of mitochondrial -
oxidation enzymes, lead to a greater lipid and less carbohy-
drate oxidation during exercise and enhance endurance per-
formance. As a result of increased mitochondria, oxygen
consumption and ATP production per mitochondrion are less
at the same submaximal work rate in trained compared to
untrained muscle. This means that with more mitochondrial
respiratory chains, the rate of electron transport per respira-
tory chain will be “turned on” to a lower level to achieve the
same rates of oxygen utilization and ATP production per
gram of muscle at the same work rate in the trained com-
pared to the untrained state. Consequently, the concentration
of ATP and PC decreases less, and ADP, AMP and inorganic
P increase to lower "steady state" levels, while glycogenoly-
sis and glycolysis are turned on to a lower degree in the
trained compared to the untrained state in response to the
same submaximal work 16.

The literature supports the fact that adaptive responses
to exercise are manifested during the recovery phase that
follows the exercise period 17. This happens because stop-
page the exercise, reduces the energy required for the proc-

esses such as gene expression and protein synthesis from
serving contractile activity purposes to those that are more
anabolic. Holoszy and Winder 18 showed that -
aminolevulinic acid synthase (ALAs), enzyme involved in
determining the functional content of mitochondrial cyto-
chromes of respiratory chain, was increased several hours
after the exercise bout. Similar results were observed in heart
muscle postexercise 19. It suggests that the recovery period is
an important component of the adaptation phase of the genes
necessary for the proliferation of mitochondria in muscle.
However, research shows that chronic muscle disuse, as limb
immobilization, denervation or bed rest, decreases mito-
chondrial content and the whole oxidative capacity. Chronic
muscle inactivity disrupts the expression of both nuclear and
mitochondrial genomes and inhibits mitochondrial biogene-
sis, increases apoptotic susceptibility contributing to a
greater degree of apoptosis and a resultant increase in muscle
atrophy 20.

Mitochondrial dynamic structure is also reflected in the
ability to constantly fuse and divide in response to various
physiology and pathological stimuli. They are able to change
their shape through fission and fusion events, opposing proc-
esses that exist in equilibrium, leading to continuous remod-
eling of the mitochondrial network. If fusion predominates,
mitochondria become more interconnected and networked 21.
In contrast, excessive fission leads to mitochondrial network
breakdown, the loss of mtDNA, an increase in ROS produc-
tion and respiratory defects 22. Recent studies show that these
processes have important consequences for the morphology,
function and distribution of mitochondria. First, fusion and
fission control the shape, length and number of mitochon-
dria. Second, fusion and fission allow mitochondria to ex-
change lipid membranes and intramitochondrial content.
Third, the shape of mitochondria affects the ability of cells to
distribute their mitochondria to specific subcellular locations,
and finally, mitochondrial fission facilitates apoptosis, which
has consequences for development and disease 23. Despite
the fact that the exact mechanisms responsible for mitochon-
drial fission and fusion events have not been identified, a
significant progress has been made in recognizing some
genes and proteins involved in this process – mitofusin 1 and
2 (Mfn1 and Mfn2) and dynamin-related GTPase (OPA).
The mechanisms of mitochondrial fission are still poorly un-
derstood, but there are dynamin-related protein 1(Drp1) and
mitochondrial fission protein (Fis1), who regulates this proc-
ess. A recent study has demonstrated an increase in Mfn1
and Mfn2 mRNA levels in human skeletal muscle 24 h post-
exercise 24, but the regulation of the expression of these mito-
fusin izoforms have not yet been investigated. This remains
an important area for future investigation in the study of mi-
tochondrial structure and function in muscle.

Nuclear receptor peroxisome proliferator-activated re-
ceptor delta (PPAR- ) and coactivator peroxisome prolif-
erator-activated receptor-  coactivator1-  (PGC1 ) are con-
sidered as important regulators of many metabolic processes,
including mitochondrial biogenesis in muscle and heart 25, 26.
PGC-1  binds and coactivate DNA binding transcription
factors and increases their activity, or binding for many nu-
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clear receptors increases transcriptional activity of their tar-
get genes. In addition to increased mitochondrial content,
this coactivator induces other adaptations related to the
strenuous training, including an increased proportion of mus-
cle type I fibers and an increase in resistance to fatigue 27, 28.

Expression of PGC-1 is dynamically regulated by al-
tered types of physical activity. In response to a single bout
of exercise, PGC1  mRNA and protein are significantly ele-
vated in mice, rats and humans 29. This increase in gene ex-
pression is present as early as two hours after exercise. The
same increase is also present in the repeated exercise 30,
which indicates that the contractile activity is a main stimu-
lus for exercise-induced PGC-1  upregulation. It is evident
that this coactivator plays an important role in the mainte-
nance of mitochondrial content and function in muscle, but
the literature data show 31 that its absence does not abolish
the effect of endurance exercise on mitochondrial biogenesis,
which was confirmed by increasing the protein markers, and
concludes that there is a substitution of alternative transcrip-
tion factors in the coordination of increased mitochondrial
content 32.

Thus, it is clear that exercise can lead to changes in the
expression of numerous transcription factors involved in
mitochondrial biogenesis. The progressive increase in the ac-
cumulation of these proteins and coactivating factors in re-
sponse to exercise indicates their important role in the me-
diation of mitochondrial adaptation to exercise, but the
mechanisms by which this expression is regulated remain
unclear.

Mitochondrial mutations and physical performance

Since the majority of mitochondrial proteins are en-
coded by nuclear genes, inheritance of mitochondrial disor-
der is autosomal recessive. In contrast, the disorders caused
by mutations in mtDNA show great variability due to the
phenomenon of heteroplasmy (intracellular mixture of mu-
tant and normal mtDNA), because when the heteroplasmic
cell divides, it is just a matter of coincidence which mito-
chondria and thus mtDNA will be distributed into the
daughter cells. There is a combination of neurological and
myopatic symptoms (MELAS, Leigh disease, Barth syn-
drome, Leber hereditary neuropathy of opticus etc.). On the
other hand in many mitochondrial mutations declines of the
energy output or energy deficit are present 33. All mtDNA
variations are usually classified into deleterious mutations
present in maternally inherited disease, ancient polymor-
phisms, the characteristic of our ancestors to adapt to new
environmental conditions and somatic, that occur with aging
(they provide the aging clock) 34. However, some variations
of mtDNA appeared to have a positive effect and led to a
functional mitochondrial adaptation. For example, the
mtDNA variant of adaptation to warm climates results in
more tightly coupled oxidative phosphorylation, with maxi-
mum ATP output and minimizing heat production. These
changes in mtDNA permit maximum muscle performance,
but these people are predisposed to obesity, diabetes, exces-
sive ROS production, degenerative diseases and premature

aging. Partially uncoupled mitochondria generate more heat,
but at the expense of efficiency in ATP production. Individu-
als with these variants are more tolerant to cold, and less sus-
ceptible to obesity, they generate less ROS and are more re-
sistant to aging and degenerative diseases, but have reduced
endurance.

Based on the fact that the mitochondrial genome has 37
genes, alleles in some places define nine haplogroups 35. The
different versions of mtDNA within a population can be de-
fined by distinct sets of polymorphisms called as hap-
logroups. Haplogroups serve as markers of genetic as well as
geographic clusters. Castro et al. 36 were among the first to
study the correlation of each haplogroup with elite athletic
performance. Analysis of the Spanish long-distance runners,
professional cyclists and rowers, revealed that the hap-
logroup T is less frequent in these athletes compared with the
control, and athletes carrying this haplotype are clearly at a
genetic disadvantage for performance in endurance sports.
Scott et al. 37 compared the frequencies of mtDNA hap-
logroups found in elite Kenyan endurance athletes with those
in the general Kenyan population. National Kenyan athletes,
international Kenyan athletes and members of the general
population of Kenya were compared and results showed that
the haplogroup distribution of national and international
athletes differed significantly from controls, and mtDNA
haplogroup of international athletes were different from the
general Kenyan population. The definitive conclusions of
other studies are not relevant because of a small number of
athletes, and because this one points out the complexity of
comparing results from athletes of different ethnic groups 38.

Since mitochondrial metabolic and genetic therapies
used to treat mitochondrial disease, it may become the sub-
ject of use by healthy people who want to change their ener-
getic phenotype changing their mtDNA genotype and en-
hancing their physical performance. For example, changing a
single mtDNA nucleotide of elite athletes to increase mito-
chondrial ATP production through altered oxidative phos-
phorylation coupling could increase physical performance by
several percent 4. Such a substitution could not be detected
by standard anti-doping tests.

Mitochondrial nutrient supplementation

Mitochondrial nutrients are a group of micronutrients
that are either mitochondrial components or those which
metabolites influence the structure and function of mito-
chondria 39. They protect mitochondria from oxidative dam-
age and eliminate oxidative stress, increase the antioxidant
defense, enhance mitochondrial metabolism by repairing of
mitochondria or by increasing mitochondrial biogenesis,
protects mitochondrial enzymes and stimulate mitochondrial
enzyme activity by elevating substrate and cofactor levels 40.
Well-known mitochondrial nutrients or prosthetic groups are:
R-alpha lipoic acid, acetyl-L-carnitine, coenzyme Q10, B
vitamins, creatine, resveratrol, vitamin E, etc. Their individ-
ual effects in reducing oxidative stress and tissue damage
and improved mitochondrial function in strenuous exercise
have been demonstrated both in animal and human studies 41,
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but more positive effects of combined supplements have
been pointed out because of their synergistic action 42. Spe-
cial attention is payed to their role in stimulating transcrip-
tion of genes involved not only in mitochondrial biogenesis
but also in mitochondrial fusion in skeletal muscle, resulting
in the increase in mitochondria function and better antioxi-
dant defense, and thus leading to enhancement of physical
performance and of fatigue recovery. Mitochondrial nutrients
are selected based on their characteristics, the target of action
and possible synergistic interactions, such as a group of anti-
oxidants (coenzyme Q10, lipoic acid and glutathione), the
energy enhancers (creatine, pyruvate, choline) or their pre-
cursors and cofactors (lipoic acid, coenzyme Q10, B vita-
mins). Some nutrients may have multiple functions, and
some combinations may possess unique functions, quite dif-
ferent from their individual effects. B vitamins (riboflavin,
piridoxin, biotin and nicotinamide) are used for cellular re-
pair and production, and are particularly important for the
protection of mitochondrial and other enzymes, because they
are their precursors and cofactors. It is found that athletes
with a lack of vitamin B have a reduced high-intensity exer-
cise performance and are less able to repair damaged mus-
cles 43. Lipoic acid is a coenzyme involved in mitochondrial
metabolism, it recycles vitamins C and E, raises intracellular
glutathione and chelates iron and copper, and in coadminis-
tration with creatine and acetyl-L-carnitine shows synergistic
effects in improving mitochondrial function 44. Coenzyme
Q10 affects the synthesis of ATP, thus increasing mitochon-
drial activity, delaying fatigue, reducing oxidative stress and
damage to muscle tissue during exercise 45. Resveratrol
(RSV) is a natural polyphenolic compound mainly found in
the skin of grapes and is well known for its phytoestrogenic

and antioxidant properties. Research data shows that of the
effects RSVs are in association with an induction of genes
for oxidative phosphorylation and mitochondrial biogenesis
by mediated roles in increasing PGC1  activity 46.

Conclusion

Exercise is a powerful stimulus to mitochondrial bio-
genesis in skeletal muscle. The results of mitochondrial bio-
genesis are increased mitochondrial content, improved aero-
bic capacity and better ATP output, thus improving muscular
endurance, reducing the predisposition to fatigue and in-
creasing the effectiveness of physical exercise. The purpose
of these changes in mitochondria is not only the process of
energy supplying for muscle work, but they are part of a
well-tailored mechanism of metabolic adaptation that re-
duces exercise-induced stress and maintains the physiologi-
cal balance. Individual effects of numerous transcription
factors that are part of mitochondrial biogenesis cascade and
mitochondrial network remodeling, are not exactly specified,
as well as their interactions, and they need further study and
definition of sites, roles and possible activation outside in the
form of natural, dietary or pharmacological activators. Better
understanding of mitochondrial variation can contribute to
more detailed introduction with the differences in aerobic
capacity and defining the phenotype of elite athletes.

Mitochondrial nutrient supplementation enhances the
physical performance of endurance exercise, decreases oxi-
dative stress and fatigue and stimulates mitochondrial bio-
genesis. Future directions include their identifications and
investigation useing modern technology of nutrigenomics for
optimal effects and combinations.
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