
Natural Hazards and Earth System Sciences, 5, 301–307, 2005
SRef-ID: 1684-9981/nhess/2005-5-301
European Geosciences Union
© 2005 Author(s). This work is licensed
under a Creative Commons License.

Natural Hazards
and Earth

System Sciences

Reconsidering the risk assessment concept: Standardizing the
impact description as a building block for vulnerability assessment

K. Hollenstein

Forest Engineering, Swiss Federal Institute of Technology Zurich

Received: 28 September 2004 – Revised: 6 January 2005 – Accepted: 15 March 2005 – Published: 29 March 2005

Part of Special Issue “Multidisciplinary approaches in natural hazard and risk assessment”

Abstract. Risk assessments for natural hazards are becom-
ing more widely used and accepted. Using an extended defi-
nition of risk, it becomes obvious that performant procedures
for vulnerability assessments are vital for the success of the
risk concept. However, there are large gaps in knowledge
about vulnerability. To alleviate the situation, a conceptual
extension of the scope of existing and new models is sug-
gested. The basis of the suggested concept is a stadardiza-
tion of the output of hazard assessments. This is achieved
by defining states of the target objects that depend on the
impact and at the same time affect the object’s performance
characteristics. The possible state variables can be related
to a limited set of impact descriptors termed generic impact
description interface. The concept suggests that both haz-
ard and vulnerability assessment models are developed ac-
cording to the specification of this interface, thus facilitating
modularized risk assessments. Potential problems related to
the application of the concept include acceptance issues and
the lacking accuracy of transformation of outputs of exist-
ing models. Potential applications and simple examples for
adapting existing models are briefly discussed.

1 Introduction

Risk assessments have become increasingly popular for ap-
plication with natural hazards in Switzerland as well as other
countries. They provide an avenue for improving the effi-
ciency of protection measures, since they focus on damage
rather than on hazards. However, while important progress
has been made in the field of hazard analysis, the other as-
pects of risk assessments are only poorly developed. To ex-
ploit the full potential of the risk concept, it is crucial that
it is evolved in a methodologically coherent way and at an
equal pace. The author argues that in the future more empha-
sis should be placed on the research addressing the targets at
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risk to ensure the overall quality of risk assessments. Vul-
nerability analysis is probably the area that is both the least
developed and most difficult one to address, requiring that
available knowledge and resources are used to their full ex-
tent.

2 Status of vulnerability analysis and current state of
knowledge

The simplest definition of risk is

R = F × N (1)

whereF is the frequency of an event occurring andN the
damage. This formulation comes from technical risk anal-
yses, and it is originally based on so-called level-1 assess-
ments where the focus is on “in-plant” damage (especially
core meltdowns in the nuclear industry). Risk is thus a rep-
resentation of the expected amount of damage for a given
period of time.

For natural hazards, an extension of this concept is useful
since there is no such thing as an in-plant perspective. Risk
in the context of natural hazards is characterized by hazard-
related aspects on one hand and target-related aspects on the
other hand. The hazard is defined via a probabilityP (or its
reciprocal, the return period) and an intensityI (comprising a
description of the impact, ideally together with its spatiotem-
poral distribution). Generally, a relation of the form

P = f (I) (2)

holds, and it is often possible to determine an analytic form
for f (e.g., extreme value statistics, power laws).

The target side is also characterized by two factors: the ex-
posureE (describing the spatiotemporal distribution of the
target objects) and the vulnerabilityV . Thus, for the pur-
poses of natural hazard risk analyses, risk can be defined as

R = P × I × E × V (3)
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Following Eq. (2), it is obvious that vulnerability analy-
sis is a key part of the risk assessment for natural hazards.
One would expect that there are proven, well accepted meth-
ods and models available for performing vulnerability anal-
yses. However, a State-of-the-Art review showed a different
pictureHollenstein et al.(2002). First, there are significant
differences in the definition of vulnerability. Broadly, the fol-
lowing definitions werde used:

– Vulnerability as a boolean variable.According to this,
the term vulnerability merely reflects whether or not a
given object (i.e., a component, structure or system) can
be negatively affected by the effects of a certain natu-
ral hazard. Within the concept of risk represented by
Eq. (2), the use of boolean vulnerability is limited to
synoptic assessments and to the identification of objects
at risk, but it cannot provide siginficant inputs to de-
tailed and scalable quantitative assessments. This def-
inition of vulnerability was used in rougly 30% of the
literature citatitions considered.

– Vulnerability as a semiquantitative variable.In this
case, the vulnerability expresses the degree of the neg-
ative effects using pre-defined, mostly qualitative dis-
crete classes such as “no damage”, “minor damage”,
“severe damage” or “total damage”. If these classes are
consistently defined for all objects (such that the class
value can be related to the value of the object’s perfor-
mance characteristics), such a semi-quantitative formu-
lation can usually provide results that are sufficiently ac-
curate for most purposes. 23% of the literature sources
used this definition.

– Vulnerability as a fully quantitative variable.In this
case the vulnerability again represents the degree of the
negative effects, but not on the basis of qualitatively de-
fined classes, but as absolute or (more common) relative
values. While providing (at least in theory) the most
accurate information, this formulation is by far not as
frequent as the semiquantitative one. To some extent,
this is due to the large uncertainties that are inherent
in vulnerability assessments for all but the most simple
objects.

– Vulnerability as an interpolated variable. In many
cases, semi-quantitative vulnerability defintions are
transformed into quantitative ones by using character-
istic values for the individual classes (e.g., by represent-
ing “minor damage” as 0% to 5% with an average of
2.5% as characteristic value) and determining an inter-
polation function that can be used more efficiently in
high-volume computations. A well-known example of
this type of vulnerability definition isATC (1985). This
and the previous type accounted for about 40% of the
citations.

Besides that, there are numerous cases where the term vul-
nerability was used, but without explicitly defining what its
meaning is.

[NB: The selection of the literature citations used as a ba-
sis for this and other classifications may be subject to errors
of omission. This is addressesd in detail inHollenstein et al.
(2002). Due to the scarcity of models for certain harads, rea-
sonable statistical data could only be derived for earthquake
models.]

In addition to the definition of vulnerability, and with the
intention of judging the cited models for their potential appli-
cability for every-day risk assessments, the following classi-
fication criteria were used:

– Subject: the type of natural hazard the model is applied
to

– Potential applicability: limited to the specific applica-
tion domain/applicable to other domains/generic

– Methodology for describing the hazard: case
study/statistical description/probablistic description/use
of fuzzy sets

– Methodology for describing the target object: case
study/statistical description/probablistic description/use
of fuzzy sets

– Application field:
engineering disciplines/insurance/government activities

– Target audience:
engineering disciplines/insurance/government activities

– Orientation: basic science/practical application

– Input parameters for hazard representation

– Input parameters for target representation

– Output parameters of hazard representation

– Output parameters of target representation

– Distinction between hazard and target modelling:
clear separation/obvious distinction between submod-
els/distinction not obvious, combined hazard-target
modelling

– Definition of vulnerability (see above)

With regard to the subject, it was surprising to the au-
thor how the number of available models differs between
the natural hazards investigated. While there were numer-
ous hits (>1000) when searching for earthquake and wind
(>100) related vulnerability models, there were only a few
(<20) ones for gravitational hazards such as landslides, de-
bris flows, snow avalanches and even floods. The abundance
for the earthquake and wind models may be explained by the
economic impacts of these hazards, but the scarcity of mod-
els for the other hazards is by far not in agreement with their
associated damage. One potential reason is that these grav-
itationally driven processes are usually delimited quite ac-
curately, and in many cases the approach to managing these
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risks is simply avoiding the areas potentially affected. Con-
sequently, these hazards are not (or at least not explcitly)
taken into account in the design of structures, whereas the
ubiquitous processes are dealt with. Another potential rea-
son is that there exists sufficient empirical knowledge at the
institutions that are responsible for managing these risks, and
that there is thus little or no demand for theoretical models.
However, the third and most probable explanation is that the
issue of vulnerability was in the past simply not addressed on
a systematic level for these “minor” hazards. This sugges-
tion is supported by the IUGS in a statement of their work-
ing group on landslides which says: Although the state of
the art for identifying the elements at risk and their charac-
teristics is relatively well developed, the state of the art for
assessment of vulnerability is in general relatively primitive
. . .IUGS(1997). It seems reasonable to assume that the same
could be said for the other gravitational hazards.

When the applicability is considered, roughly 40% of the
models were judged to be applicable only for the hazard-
target combination they were derived from. However, judg-
ing 60% of the models as applicable for other purposes is
extermely opimistic and does not account for other than
methodological differences (i.e., issues such as data availi-
ability or comparability are not addressed).

Not surprising is the fact that rougly 90% of the models
are practically and only 10% theoretically oriented. This is
largely due to the fact that vulnerabilty is principally some-
thing that has to be dealt with in the “real world”. Engineer-
ing judgements about the sensitivity of given structures is
usually not a key topic of science, but a very important issue
in everyday life.

For a more detailed analysis of the other criteria, the reader
is encouraged to refer toHollenstein et al.(2002).

3 A concept for standardizing the scope and basis of
vulnerability analysis within risk analysis

Considering that there are many vulnerability assessment
methods available for some hazards and none or only very
few ones for other hazards, it would obviously be appealing
to apply the existing models beyond their original scope to
fill in the gaps. At the same time, new hazard and vulnera-
bility models being developed could be more useful if they
were applicable not only for one specific hazard-target com-
bination, but for a whole group of target objects and hazards
or even for arbitrary ones. Hazard and vulnerability analysis
would then become totally independent form each other.

[This idea was also the rationale for selecting most of the
other evaluation criteria in the list shown above: they can be
used i) for assessing the suitability of a model for being used
for other purposes than originally designed for and ii) for
evaluating its (conceptual) potential as a basis for developing
“generic” vulnerability analysis methods.]

Whether or not a model can be used for assessing the vul-
nerability of a certain target with regard to a particular haz-
ard primarily depends on the representation of the input that

the model requires, i.e. on the specification of the impact
parameters. Our review has shown that about 80% of the
available models are specificically designed for an explicit
combination of hazard and target object or derived exclu-
sively from empirical or experimental data (see e.g.Dowrick
and Rhoades(1997), Dameron and Parker(1996), Balendra
et al. (1999)). They often either use a specific interface be-
tween the hazard and the target rather than a generic one or
they even lack a clear distinction between hazard and tar-
get modelling (i.e., it is not clear which parts of the model
describe the target). Ther are a few more generic concepts
such as the “parameterless scale of intensity” approach sug-
gested byCoburn and Spence(1992) or the “assembly-based
vulnerability” method shown inPorter et al.(2001). It has
also been tested to what extent and with what accuracy exist-
ing model can be applied to other hazards, as in the case of
Dean and Soulage(1999), where wind design criteria have
been used for assessing the seismic vulnerability. However,
in spite of their wide conceptual scope, from an application
point of view even those approaches fall short from being
truly generic. One has thus to conclude that an operationl
adaptation and transfer of available models to new applica-
tion domains is extremely limited due to methodological con-
straints. A generic framework for vulnerability analysis thus
requires a substantial amount of conceptual standardization
and development. The pivotal part of such a framework is
probably the interface definition, i.e., the specification of the
inputs needed and the output provided. This concept out-
lined below only addresses the input side, i.e. it is investi-
gated what a suitable characterization of the hazard impact
could look like, but not what the descriptors of the vulnera-
bility (often referred to as damage indicators) are.

In a first step, it is useful that the term vulnerability is de-
fined in as generic a way as possible. For this purpose, the
state of a given target object can be described by a vector

S = (s1, s2, . . . sn) (4)

whose components represent the object’s performance char-
acteristics. For example, a residental house can be de-
scribed by performance characteristics such as “total inhab-
itable footage”, “number of inhabitable rooms”, “market
value”, while a road can be characterized by “available num-
ber of lanes”, “maximum safe speed”, “maximum admissible
load”. The characteristics are object-specific and have to be
selected according to to object’s purpose. Initially, they are
normalized such that the fully functional and structurally un-
damaged reference state is defined by

SND = (s1 = 1, s2 = 1, . . . sn = 1) (5)

and the total loss of performance by

ST D = (s1 = 0, s2 = 0, . . . sn = 0) (6)

The next step in the concept is the investigation of the way
that changes in the performance characteristics can occur, i.e.
what “states”σ1,...,m of the target or its environment lead to
a change in performance. This can be done on an abstract
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Table 1. States that affect the performance characteristics of a road
(example).

Performace characteristicss Statesσ affecting performance

Available number of lanes Obstacles
Geometric discontinuities
Closure of lanes

Maximum safe speed Geometric discontinuities
Visibility
Road condition (moisture etc.)

Maximum admissible load Deterioration of bridges
Gradient
Subsoil conditions (CBR etc.)

level, without any direct reference to a natural hazard. In the
above example of the road, an excerpt of the results of this
step is shown in Table1.

In the next conceptual step, the relevant have to be re-
lated to impacts associated with natural hazards, i.e. it must
be determined what impacts can lead to a certain state
or change in state. In other words, causal chainsim-
pact→state→performanceare to be identified.

NB: It may seem that the link impact – performance could
be made without referring to the intermediate state. The
main purpose of introducing the state in the new concept
is to reduce the probability of important failure modes not
being considered, comparable to failure-mode based risk as-
sessment methods used in technical applications. For model
application purposes, the state layer can still be “hidden” by
re-integrating it into the performance characterization.

The result of this step is a description of the hazard’s im-
pactI using a limited set of components

I = (i1, i2, . . . im) (7)

that can be related to the value of performance characteristics
si and represented as functions1sj=f (i1, i2, . . .im) (implic-
itly including the state of the target or its environment). This
mapping is shown in Fig.1.

The suggested concept is based on the assumption that
there exists a minimal setImin applicable to all arbi-
trary objects. This means that it is possible to define the
i1, i2, . . ., ik≤m on the left side in Fig.1 in a way that it does
not need to be changed regardless of how the states and per-
formance characteristics are defined. ThisImin represents the
generic impact description concept.

Using this approach, the vulnerability of a given target ob-
ject can now be expressed using the partial differential

V = f

(
∂S

∂il

)
∀ l ∈ 1, 2, . . . , k (8)

i.e. as the relative change in performance that results from a
change in the impact.

Conceptually, this definition is not only applicable for
physical or structural, but also for “softer” ones such as so-
cial or institutional properties. However, it is much more
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Fig. 1. The concept of mapping impact descriptors to states and states to performance characteristics.
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demanding to define performance characteristics and, conse-
quently, states for representing these properties. For an initial
implementation, the suggested concept should thus prefear-
bly be limited to physical vulnerability assessments.

4 Composition, characteristics and implementation of
the generic impact description concept

4.1 Composition of the generic impact description and its
characteristics

Conceptually, the generic impact description interface must
comprise elements for all the impacts that can potentially
affect the states of any arbitrarily chosen target object, but
avoid redundancies whenever possible (both for preventing
double-counting and for reducing the effort required for its
application). Many of the impacts can be expressed us-
ing various terms (e.g., pressure and acceleration can be ex-
pressed as force), and consequently, the selection of the de-
scriptors is based on engineering judgement and cannot be
unambigously derived from scientific principles. Table2
contains a preliminary list of components that the author sug-
gests should be part of a generic impact description interface.

Most of the components are well-defined physical vari-
ables with internationally agreed-upon (mostly SI) units. In
some cases (e.g., for comparisons across a wide range of
scales), it may be helpful to refer to a non-parametric for-
mulation of the components.

Both for comparisons and for design and modeling pur-
poses, the components listed in Table2 must be distinguished
in space and time, i.e. in principle the values of

I = I (t, x, y, z) (9)

I
′

l =
dI

dll∈{x,y,z}

(10)

I
′

t =
dI

dt
(11)

must ideally be accessible to provide an accurate assessment
of the expected spatiotemporal distribution of damage.
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Table 2. Preliminary conceptual list of parameters to be contained
in a generic impact description interface.

Component Description
(Type, indicator for)

Mechanical impacts
acceleration vector, external acceleration acting on target
force vector, external force acting on target
pressure number, pressure acting on target surface
shear stress numer, shear stress acting on target surface
pulse vector, external pulse acting on target
Thermal effects
Temperature change number, change in ambient temperature
Ignition potential boolean, release of ignition sources or fuel
Electromagnetic impacts
Changes in conductivity number, change in ambient conductivity
Electromagnetic fields vector, ambient electromagnetic fields
Electrical currents number, electrical currents
Chemical impacts
Changes in acidity number, change in ambient pH
Toxicity number, toxicity (e.g., relative toLD50)
Changes in O2 number, change in oxygen level
Other impacts
Change in visibility boolean, optical disturbance by smoke, particles
Generation of flying debris boolean, potential for generating missiles

At a first glance, the requirements for the new concept of a
standardized impact description seem much more demanding
than those of existing hazard and vulnerability models. These
models often work with outputs or inputs that are much less
complex, sometimes comprising just one parameter (e.g., the
intensity in the case of earthquake-related models). However,
the new concept does not aim at replacing simple and proven
models, but at complementing and extending their area of
application. Conceptually, the output of in most cases, this
can be achieved by operations as simple as setting irrelevant
parameters to zero and transforming others to those compat-
ible with the generic impact description (e.g., by providing
a relation between earthquake intensity and acceleration, see
below). The latter case is illustrated in Fig.2.

4.2 Concept for the potential implementation of the generic
impact description

A generic impact description will ideally be implemented
as an interface specification within modularized risk assess-
ment procedures that separate hazard and damage assessment
tasks. Adhering to such standard interfaces facilitates both
the re-use of existing knowledge (e.g., existing hazard as-
sessment models) and the development of widely applicable
hazard and vulnerability models in the future. A modular-
ized and standardized procedure will also be a basis for com-
paring different models for the same purpose (e.g., applying
different vulnerability models for the same target object or
different models for the same hazard) and thus for calibration
and optimization between computational effort and accuracy.
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Fig. 2. Wrappers can be used to transform the output of existing
hazard assessment models into a form compliant with the generic
hazard impact description interface.

Another promising field for implementing the concept of
a generic impact description as an interface specification are
(self-)learning expert and decision-support systems. These
knowledge-based systems will become more important both
for classical pre-event risk assessments and for emergency
management purposes. Data and computational facilities are
increasingly available, but these resources can be utilized to
their full potential only if the compatibility of hazard model
outputs with vulnerability model inputs is ensured by means
of standardization.

4.3 Potential problems of the concept and its implementa-
tion

As promising as the concept of a generic impact description
interface for combining the hazard and vulnerability assess-
ments looks to the author, there are some problems that could
make its application difficult.

The first problem – and the most likely to arise – is the
acceptance. In Switzerland, risk-based approaches to deal-
ing with natural hazards have been promoted for almost two
decades, and only now they are becoming adopted on a
widespread basis. This is despite the broad agreement that
the underlying concepts are useful for improving the effi-
ciency protective measures. However, the need to re-think
proven and well-established practices in favor of new ones
that are perceived as competing and more complex has led to
a certain reluctance in adopting the new concept. Shortcom-
ings in communicating the benefits of risk-based approaches
have probably aggravated the situation. Even today, hazard
assessments are still the best accepted subtask within risk as-
sessments for natural hazards; and this is probably true not
only for the practice, but for research and development as
well. A new concept introduced in such a situation is perhaps
perceived as yet another complication of something that just
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Table 3. Beaufort scale and Saffir-Simpson hurricane scale converted to windspeed.

Beaufort 9 10 11 12
Saffir-Simpson 1 2 3 4 5

v(ms−1) 21–25 −29 −33 −42 −49 −58 −69 >69

started to gain acceptance, and reactions ranging from scep-
ticism to outright rejection might not be surprising. If risk
assessments were performed by or under the lead of just one
institution, this might give it the authority to implement such
a new concept by simply declaring it as mandatory. However,
in reality most risk assessments are the collaborative work of
several institutions of which none has the competency to de-
fine the procedures that the others must apply.

Another issue is the effort required to adapt existing mod-
els to the generic interface. Many of them are designed for
discrete space and time application and thus not readily avail-
able for transformation into a spatiotemporally continuous
representation. In other cases, it may be difficult to find ap-
propriate conversions between the output of the model and
the components of the generic interface. These are more gen-
eral problems of the existing models per se: discrete models
will never be able to provide truly continuous information,
and models outputs that cannot be converted are likely to be
in a highly specific form (e.g., with regard to the units they
use) and thus never be comparable to other assessment re-
sults. However, the adaptation of existing models is certainly
a difficulty that must not be underestimated in the concept.

5 Conceptual application

The generic impact description interface is still in the con-
ceptual and early prototyping stage. There are yet no case
studies available that illustrate the procedure and give an es-
timate about the cost and benefits of the concept. Instead,
the author will show one potential application and various
examples of wrappers for existing models.

5.1 The generic impact description interface as a guideline
for hazard mapping

Regional-scale hazard mapping is one of the first steps in
a comprehensive risk assessment procedures as required by
the Swiss forest lawSwiss Conf.(1991a) and the law on hy-
draulic engineeringSwiss Conf.(1991b). In the course of the
mapping, various hazards are usually investigated, ranging
from snow avalanches over torrent-related hazards to land-
slides. The models used for the hazards differ not only in
complexity and accuracy, but also in their output parameters.

The current approach for comparing the impacts of the var-
ious hazards is the delineation of zones according to a com-
mon scheme. Usually, the following zones are distinguished
with regard to the intensity of impacts (the frequency is an-
other criterion, but not considered here):

– Red Zone:The impacts are such that people in buildings
are may suffer serious injury or death; buildings may be
severely damaged or destroyed.

– Blue Zone:The impacts can seriously injure or kill peo-
ple that are outdoors while those inside are sufficiently
protected; buildings may be damaged, but not to a de-
gree that could result in structural collapse.

The zoning concept is similar to the idea behind the
generic interface: one tries to illustrate the impacts of dif-
ferent hazards on a common scale. However, most guide-
lines define the zones in terms of physical parameters (e.g.,
flow velocity, flow depth, pressure). Instead of hiding this
explicit values behind color codes, the author suggests that
they should be transformed in a way that makes them directly
comparable using the components of the generic impact de-
scription interface. It is planned to apply this idea in a pilot
case study in practice, where hazard maps for a region are
developed in the traditional way. The focus of the project
lies on the procedures and efforts that are necessary to derive
comparable and standardized hazard description.

5.2 Example wrapper definitions

The following examples illustrate the wrapper concept using
a couple of very simple examples. The models used in prac-
tical applications are often not much more sophisticated than
those shown below, the difference to the “real world” might
thus not be very big. One limitation has to be made: the
wrappers are not able to provide the time history of the im-
pacts (unless already known from the original hazard model).
This is not primarily a proof of the concept’s inadequacy, but
of the pragmatism that is inherent in most practical models.

5.2.1 Example wind model wrapper

From the classification of storms using scales such as the
Beaufort or the Saffir-Simpson scale, wind speeds can be de-
rived (see Table3), and the speed can then be further trans-
formed into force and pressure terms using the relations

Ff low =
1

2
cwAρv2 (12)

for the turbulent flow friction force and

pf low =
1

2
ρv2 (13)

for the flow pressure. The other relevant components of the
interface such as shear stress (surface erosion), changes in
visibility and debris generation will usually also depend on
the speed and can be derived using expert judgment.
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Table 4. Earthquake intensity (MMI) to peak ground acceleration
(PGA) relation as used inFEMA (1999).

MMI VI VII VIII IX X XI XII

PGA 0.12 0.21 0.36 0.53 0.71 0.86 1.15

5.2.2 Example earthquake model wrapper

For many areas, earthquake hazard maps are available that
indicate the expected intensity (usually related to a certain
probability) that results from quakes along known fault sys-
tems. The intensity scales such as MSK, MMI or EMS are
phenological ones, i.e. they use the damage characterization
as measurement criterion. However, there are conversions
available between intensity and various physical descriptors
of an earthquake. One example is the MMI to PGA relation
shown in Table4.

Using the information in Table4 as a wrapper, the earth-
quake impact can now be described using the generic inter-
face: The acceleration is derived from Table4, the force,
pressure, pulse and temperature components are set to zero,
the ignition potential to true, and all the other components to
zero or false.

5.2.3 Example flood model wrapper

Flood maps are currently available for many areas close to
rivers, and they are usually based on hydraulic models. In
their simplest form, they only delineate the flooded area, but
more sophisticated approaches include water depth and flow
velocity. A wrapper for these models is easily designed using
the formulas

pstat = ρ × h (14)

for hydrostatic and Eq. (13) for hydrodynamic pressure. The
pulse component can be calculated according to

p = m × v (15)

i.e., basic mechanics play a very central role in the wrapper
concept. In the case of floods, the shear stress (channel ero-
sion) and changes in conductivity can also become relevant,
and depending on the water depth also the changes in O2.
The flood model wrapper is also illustrated in Fig.2.

6 Conclusions

To exploit the full potential of comprehensive risk assess-
ments for natural hazards, the progress in hazard analysis that
has been made over the last two decades must be matched by
a similar progress in vulnerability analysis. For this purpose,
the applicability of the models that are currently available,
but also those that will be developed in the future, must be
maximized. The suggested concept of standardizing the in-
terface between the hazard model output and the vulnerabil-
ity model input is one step in this direction.

What remains to be done is the validation of the concept
by applying a prototype of the interface description to the
requirements of a real-world situation. Once this has been
achieved, the implementation of the standard interface
in expert and decision support systems could be a useful
tool both for promoting the idea and for illustrating its
applicability and benefits.
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