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Abstract

In this paper, we consider the Hyers-Ulam stability for the following fractional differential equations, in the sense of
complex Caputo fractional derivative defined, in the unit disk: cDß

zf(z)=G(f(z), cDá
zf(z),zf‘(z);z)  0<á<1<ß<2 .  Furthermore,

a generalization of the admissible functions in complex Banach spaces is imposed and applications are illustrated.
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1.   Introduction

A classical problem in the theory of functional equa-
tions is that: If a function  f  approximately satisfies functional
Equation E , when does there exist an exact solution of E
which  f  approximates. Ulam (1964) imposed the question of
the  stability  of  Cauchy  equation  and  in  1941,  solved  it
(Hyers,  1957).  Rassias  (1978)  provided  a  generalization  of
Hyers  theorem  by  proving  the  existence  of  unique  linear
mappings near approximate additive mappings. The problem
has  been  considered  for  many  different  types  of  spaces
(Hyers, 1983; Hyers and Rassias,1992; Hyers et al.,1998).
Recently, Li and Hua (2009) discussed and proved the Hyers-
Ulam stability of spacial type of finite polynomial equation,
and Bidkham et al. (2010), introduced the Hyers-Ulam stabil-
ity of generalized finite polynomial equation. Finally, Rassias
(2011) imposed a Cauchy type additive functional equation
and investigated the generalized Hyers-Ulam ‘product-sum’
stability of this equation.

The  class  of  fractional  differential  equations  of
various  types  plays  important  roles  and  tools  not  only  in

mathematics but also in physics, control systems, dynamical
systems and engineering to create the mathematical model-
ing of many physical phenomena. Naturally, such equations
required to be solved. There are different fractional operators
appeared during the past three decades such as Riemann-
Liouville  operators,  Erdélyi-Kober  operators,  Weyl-Riesz
operators  and  Grünwald-Letnikov  operators  (Podlubny,
1999).

The main advantage of Caputo fractional derivative
is that the fractional differential equations with Caputo frac-
tional  derivative  use  the  initial  conditions  (including  the
mixed boundary conditions) on the same character as for the
integer-order differential equations (Podlubny, 1999). In the
present  work,  we  will  show  another  advantage  of  Caputo
fractional  derivative  based  on  admissible  functions  in
complex Banach spaces.

2. Preliminaries

Let 1}|<:|{:= zzU C  be the open unit disk in the
complex plane C  and H  denote the space of all analytic
functions on U . Here we suppose that H  as a topological
vector space endowed with the topology of uniform conver-
gence over compact subsets of U . Also for Ca  and

Nm ,  let  ],[ maH  be  the  subspace  of  H   consisting  of
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functions of the form
1

1( ) = , .m m
m mf z a a z a z z U

   
Srivastava  and  Owa  (1989)  posed  definitions  for

fractional operators (derivative and integral) in the complex
z-plane C  as follows:

Definition 2.1 The  fractional  derivative  of  order
1<<0   is defined, for a function )(zf  by

0

1 ( )( ) := ,
(1 ) ( )

z

z
d fD f z d
dz z







   
where  the  function  )(zf   is  analytic  in  simply-

connected region of the complex z-plane C  containing the
origin  and  the  multiplicity  of    )(z   is  removed  by  re-
quiring )( zlog  to be real when 0.>)( z

Definition 2.2 The fractional integral of order 0>
is defined, for a function ),(zf  by

1

0

1( ) := ( )( ) ; > 0,
( )

z

zI f z f z d    



 

where  the  function )(zf  is  analytic  in  simply-connected
region of the complex z-plane )(C  containing the origin and
the  multiplicity  of  1)(  z   is  removed  by  requiring

)( zlog  to be real when 0.>)( z
Note that Definition 2.1 and 2.2 correspond to the

Riemann-Liouville derivative and integral respectively in the
real form.

Remark 2.1

( 1)= , > 1
( 1)zD z z   


 

 


  
and

( 1)= , > 1.
( 1)zI z z   


 

 


  
It was shown that (Ibrahim and Darus, 2008)

( ) = ( ) = ( ), (0) = 0.z z z zI D f z D I f z f z f   

Definition 2.3 The Caputo fractional derivative of
order 0>  is defined, for a function )(zf  by

( )

10

1 ( )( ) := ,
( ) ( )

nzc
z n

fD f z d
n z




 
     

where 1,][= n  (the notation ][  stands for the largest
integer not greater than  ), the function )(zf  is analytic in
simply-connected region of the complex z-plane C  contain-
ing the origin and the multiplicity of 1)(   nz  is removed
by requiring )( zlog  to be real when 0.>)( z

Remark 2.2 The following relations hold:
(i) Representation

( ) = ( ), 1 < < ;c n n
z z zD f z I D f z n n   

(ii) The Caputo fractional derivative of the power function

( 1)= = ;
( 1)

c
z zD z z D z     

 
 

  

(iii)

( ) = ( ), , (0) = 0, (0,1);c
z zI D f z f z z U f   

(iv) Linearity

( ( ) ( )) = ( ) ( );c c c
z z zD f z g z D f z D g z    

(v) Non-commutation

( ) ( ).c c
z z z zD D f z D D f z   

More  details  on  fractional  derivatives  and  their
properties  and  applications  can  be  found  in  Kilbas  et  al.
(2006); Sabatier et al. (2007); Li et al. (2009) and Li et al.
(2011).

We next introduce the generalized Hyers-Ulam stabi-
lity depending on the properties of the fractional operators.
Recently  the  author  studied  the  generalized  Hyers-Ulam
stability for various types of fractional differential equations
(Ibrahim, 2011; Ibrahim, 2012a,b,c,d).

Definition 2.4 Let p  be a real number. We say that

=0
= ( )n

n
n

a z f z


 (1)

has  the  generalized  Hyers-Ulam  stability  if  there  exists  a
constant 0>K  with the following property:

for every > 0, = ,w U U U    if

=0 =0

| || | ( )
2

p
n n

n n
n n

aa w  
 

  
then there exists some Uz  that satisfies equation (1) such
that

| | ,i iz w K 

).,,( N iUwz

In the present paper, we study the generalized Hyers-
Ulam  stability  for  holomorphic  solutions  of  the  fractional
differential equation in complex Banach spaces X and Y

( ) = ( ( ), ( ), ( ); ),c c
z zD f z G f z z D f z zf z z   (2)

where
(0 < < 1 < < 2, ) 

and  YUXG 3:   and  XUf :   are  holomorphic
functions such that =(0)f  (  is the zero vector in X).

3.  Generalized Hyers-Ulam stability

In this section we present extensions of the general-
ized  Hyers-Ulam  stability  to  holomorphic  vector-valued
functions. Let YX ,  represent complex Banach spaces. The
class of admissible functions ),,( YXG  consists of those
functions YUXg 3:  that satisfy the admissibility con-
ditions:

( , , ; 1, 1,g r ks lt z when r s t    (3)
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We need the following results:
Lemma 3.1 (Hill, 1957) If XDf :  is holomorphic,

then f  is a subharmonic of .CDz  It follows that
f  can have no maximum in D unless f  is of constant

value throughout D.
Lemma 3.2 (Miller  and  Mocanu,  2000)  Let :f U X

be the holomorphic vector-valued function defined in the
unit disk U with (0) =f   (the zero element of X). If there
exists a 0z U  such that

0
| |=| |0

( ) ,max
z z

f z f

then

0 0 0( ) ( , 1.z f z f z   

Theorem 3.1 Let ).,( YXG G  If XUf :  is a
holomorphic vector-valued function defined in the unit disk
U, with (0) =f  , then

( ( ), ( ), ( ); ) 1

( ) 1.

c
zG f z z D f z zf z z

f z

  

  (4)

Proof   From Definition 2.3, we observe that

0

1

( )( ) =
(1 ) ( )

( )
| |

(2 )
( )

, .
(2 )

zc
z

z fz D f z d
z

zf z
z

zf z
z U









 








  



 


 

 



Assume that ( ) 1f z   for .z U  Thus, there exists a point

0z U for which 0( ) 1.f z   According to Lemma 3.1, we
have ( ) 1f z 

0 00
( = { :| |<| |= }),rz U z z z r

and

0
| | | |0

( ) ( ) 1.max
z z

f z f z


 

In  view  of  Lemma  3.2,  at  the  point 0z  there  is  a  constant
1   such that

0 0 0( ) ( ) .z f z f z   
Therefore,

0 0 0
0 00

( ) ( )
( ) = = ,

(2 ) (2 ) (2 )
c

z

z f z f z
z D f z  

  



     

consequently, we obtain

0 0 00

0 0

(2 )( ) = ( )

1            = ( ) = 1, 1.

c
zf z z D f z

z f z







 

 

We put := 1
(2 )

k 



 

 and := ;l   hence from Equation (3),

we deduce

0 0 0 0 0 00

0 0 0 0 0 00

( ( ), ( ), ( ); )

( ( ), [ ( )/ ], [ ( )/ ]; )

1,

c
z

c
z

G f z z D f z z f z z

G f z k z D f z k l z f z l z





 





which contradicts the hypothesis in (4), we must have f <
1.

Corollary 3.1 Assume the problem (2). If ),( YXG G
is the holomorphic vector-valued function defined in the
unit disk U then

( ( ), ( ), ( ); ) < 1
( ( ), ( ), ( ); ) < 1.

c
z

c
z z

G f z z D f z zf z z
I G f z z D f z zf z z



 


 (5)

Proof By  continuity  of   the  fractional  differential
equation (2) has at least one holomorphic solution  f  satisfy-
ing ( (0) = (0) = 0).f f   According to Remark 2.2, the solu-
tion  f(z) of the problem (2) takes the form

( ) = ( ( ), ( ), ( ); ).c
z zf z I G f z z D f z zf z z  

Therefore, in virtue of Theorem 3.1, we obtain the Assertion
(5).

Theorem 3.2 Let  ),( YXG G   be  holomorphic
vector-valued functions defined in the unit disk U then the
Equation (2) has the generalized Hyers-Ulam stability for

.z U 
Proof Assume that

=0
( ) := ,n

n
n

G z z z U



therefore, by Remark 2.1, we have

=0
( ) = = ( ).n

z n
n

I G z a z f z 



Also, .z U   and thus | | 1.z   According to Theorem
3.1, we have

( ) < 1 =| | .f z z

Let > 0  and w U  be such that

=1 =1

| || | ( ).
2

p
n n

n n
n n

aa w  
 

  
We will show that there exists a constant K independent of
  such that

| | , ,  i iw u K w U u U   
and satisfies (1). We put the function

=1,

1( ) = ,n
n

n n ii

f w a w
a










  (6)

( 0,0 < < 1)ia 
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thus, for ,w U  we obtain

=1,

=1

| | =| ( ) ( ) |
| ( ) | | ( ) |

<| ( ) | | |
1=| |

| |
1 | | | | .

| |

i i i i

i i

i i i

i n
n

n n ii
i i

n i i
n

ni

w u w f w f w u
w f w f w u
w f w w u

w a w
a

w u

a w w u
a





 
 
 













   
   

  



 

  





Without loss of generality, we consider 1| |= (| |)max ni na a

yielding

=1

=0

1

=0

1

1| | | |
| | (1 )

| |( )
| | (1 ) 2

| | 1( )
(1 ) 2

2 | |
(1 )

:= .

i i n
n

ni
p

n
n

ni
p

i
n

n

p
i

w u a w
a

a
a

a

a

K





















 



 

















This completes the proof.

4.  Applications

In  this  section,  we  introduce  some  applications  of
functions to achieve the generalized Hyers-Ulam stability.

Example  4.1 Consider the function RUXG 3:
by

( , , ; ) = ( ) ,G r s t z a r s t b z  

with 0.5,a  0b   and ( , , ,0) = 0.G     Our aim is to
apply Corollary 3.1, this follows since

( , , ; ) ( )
                       = (1 ) | | 1,
G r ks t z a r k s l t b z

a k l b z
    

   

when 1, .r s t z U     Hence by Corollary 3.1, we
have : If 0.5,a   0b    and :f U X  is a holomorphic
vector-valued function defined in U, with (0) = ,f   then

( ( ) ( ) ( ) )
| |< 1 ( ) < 1.

c
za f z z D f z zf z

b z f z

  
 

Consequently,

( ( ), ( ), ( ); ) < 1,c
z zI G f z z D f z zf z z  

thus in view of Theorem 3.2,  f  has the generalized Hyers-
Ulam stability.

Example  4.2 Assume the function 3:G X X  by
1( , , ; ) = ( , , ) = ,s tG r s t z G r s t re 

with ( , , ) = .G      By applying Corollary 3.1, we need to

show that ).,( XXG G  Since

1 1( , , ) 1,ks lt klG r ks lt re e   

when 1,  1r s t k     and 1.l   Hence by Corollary

3.1, we have : For :f U X  is a holomorphic vector-valued

function defined in U with (0) = ,f   then

( ) ( ) 1( ) < 1
( ) < 1.

cz D f z zf zzf z e
f z

  


 Consequently,

( ( ), ( ), ( ); ) < 1,c
z zI G f z z D f z zf z z  

thus in view of Theorem 3.2,  f  has the generalized Hyers-
Ulam stability.

Example 4.3   Let CUcba :,,  satisfy
| ( ) ( ) ( ) | 1,a z b z c z   

for every 1, > 1   and .z U  Consider the function G :
3:G X Y  by

( , , ; ) = ( ) ( ) ( ) ,G r s t z a z r b z s c z t  

with ( , , ) = .G      Now for 1,r s t    we have

( , , ; ) =| ( ) ( ) ( ) | 1G r s t z a z b z c z     

and thus ).,( YXG G  If :f U X  is a holomorphic vec-
tor-valued function defined in U with (0) = ,f   then

( ) ( ) ( ) ( ) ( ) ( ) < 1
( ) < 1.

c
za z f z b z z D f z zc z f z

f z

  


Hence according to Theorem 3.2,  f  has the generalized Hyers-
Ulam stability.
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