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Abstract - UV-B induced changes in plants can influence sap-feeding insects through mechanisms that have not been stud-
ied. Herein the grain aphid, Sitobion avenae (Fabricius) (Hemiptera: Aphididae), was monitored on barley plants under 
the treatments of control [0 kJ/ (m2.d)], ambient UV-B [60 kJ/ (m2.d)], and enhanced UV-B [120 kJ/ (m2.d)] irradiation. 
Electrical penetration graph (EPG) techniques were used to record aphid probing behaviors. Enhanced UV-B irradiated 
plants negatively affected probing behaviors of S. avenae compared with control plants. In particular, phloem factors that 
could diminish sieve element acceptance appeared to be involved, as reflected by smaller number of phloem phase, shorter 
phloem ingestion, and fewer aphids reaching the sustained phloem ingestion phase (E2>10min). On the other hand, fac-
tors from leaf surface, epidermis, and mesophyll cannot be excluded, as reflected by higher number of non-probing, longer 
non-probing and pathway phase, and later the time to first probe.

Key words: Grain aphid, electrical penetration graph, UV-B irradiated barley

INTRODUCTION

Ultraviolet-B (UV-B) is a very narrow band at the 
short wavelength (280-315nm) end of the daylight 
spectrum. Due to the human-induced destruction 
of the UV-B-absorbing stratospheric layer of ozone, 
the amount of UV-B radiation reaching the surface 
of the earth has increased during the last two dec-
ades (Björn et al., 1998; Randel et al., 1999). This has 
led to concerns about potential biological impacts on 
the environment (Madronich et al., 1998; McCloud 
and Berenbaum, 1999). Changes in plant morphol-
ogy and physiology in response to UV-B exposure 
are numerous. The most characteristic responses of 
plant morphology to UV-B are an increase in leaf 
thickness and an inhibition of plant growth (Jansen 
et al., 1998; Zavala and Ravetta, 2002; Caldwell et al., 
2003). Moreover, UV-B can affect the cuticle com-
positions, phytohormone levels, proteinase inhibitor 

activities, as well as levels of many secondary plant 
metabolites to varying extents (Kuhlmann and Mull-
er, 2011). 

UV-B-induced changes in plant texture and me-
tabolism can influence herbivorous insects including 
sap-feeding insects. The cabbage aphid, Brevicoryne 
brassicae, reproduced less on broccoli plants grown 
under high UV-B than on plants grown under low 
UV-B radiation (Kuhlman and Muller, 2010). Arti-
ficial UV-B radiation reduced survivorship and egg 
production of the spider mite, Tetranychus urticae 
and egg hatchability of the predaceous phytoseiid 
mite, Neoseiulus womersleyi (Ohtsuka and Osak-
abe, 2009). The UV-B absorbing plastic film used for 
greenhouse covers may have a significant influence 
on both the initial immigration and distribution of 
the greenhouse whitefly, Trialeurodes vaporariorum, 
into greenhouses (Mutwiwa et al., 2005).The UV-B 
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UV-absorbing plastic significantly reduced the move-
ment of the leafhopper Orosius orientalis (Weintraub 
et al., 2008). However, these studies focused on the 
effect of UV-B on sap-feeding insect biology per-
formance. The defense mechanisms of UV-B irradi-
ated plants against sap-feeding insects have been lit-
tle documented.

The electrical penetration graph (EPG) technique 
is frequently employed to characterize the host-plant 
effect on sap-feeding insects, as it allows the explo-
ration of interactions between insects’ probing be-
havior and plant tissues that may display some form 
of defense mechanism (McLean and Kinsey, 1964; 
Tjallingii, 1988 and 2006). Using this method, one 
electrode is implanted into the substrate supporting 
the plant and the other is positioned on the dorsal 
region of the insect using a drop of silver stain. The 
circuit is completed when the insect inserts its stylet 
into the plant tissue in order to probe the plant to 
feed. At this point, the variation in voltage can be 
recorded by computer software to construct a pen-
etration graph. Each waveform generated by this sys-
tem characterizes a particular type of probing activ-
ity and this, together with the location of the stylet, 
can be used to determine the non-probing, pathway, 
and phloem phases of insect probing (Tjallingii and 
Prado, 2001).

The grain aphid, Sitobion avenae (Fabricius) 
(Hemiptera: Aphididae) is one of the most abun-
dant and economically important pests on cereal 
crops. They damage their host by direct probing 
and by transmitting diseases (Stern, 1967; Fer-
eres et al., 1989). In our previous studies, the en-
hanced UV-B-irradiated plants negatively affected 
the development and reproduction of S. avenae 
(Hu, unpublished data). According to the effect of 
UV-B radiation on aphids through changing plant 
morphology and physiology, we hypothesized 
that UV-B irradiation of plants could modulate S. 
avenae probing behaviors. The electrical penetra-
tion graph (EPG) technique was used to analyze 
the aphid probing activities that occur before and 
during sap ingestion from phloem sieve elements. 
The objectives of this study were to elucidate the 

defense mechanisms of UV-B-irradiated plants to 
sap-feeding aphids.

MATERIALS AND METHODS

Plant material and growth conditions

Experiments were conducted using nine environmen-
tal growth chambers (conditions: 20 ± 1ºC, 65 ± 5% 
RH and a photoperiod of 16:8 (L:D ) h) located at the 
Bio-Test laboratory, Sagerheide, Germany. Fluorescent 
bulbs (115V, Philips Company, Eindhoven, Nether-
lands) were mounted in growth chambers to provide 
250 μE/cm2/s of light intensity at the leaf surface. 

Barley, Hordeum sativum Jess (var. ‘Lomerit’, 
Intergrano Agrohandel Sp. z o.o. Lubuskie, Ger-
many) was grown in 2009 in plastic pots (14 cm in 
height, 12 cm in diameter) with three seeds per pot 
using a growing medium (N: P: K = 20:20:20, Ein-
heitserde- und Humuswerke Gebr. Patzer GmbH 
and Co. KG, Germany). Experimental plants were 
watered as needed. When the plants were at the 2-3 
leaf stage, the strongest one was selected and main-
tained in each pot for UV-B radiation.

UV-B radiation treatments

During a pilot study in Rostock (54°09′N, 12°08′E), 
Germany, in May 2009, the natural daily UV-B dose 
of 60 kJ/(m2.d) (UV meter, Honle UV technology, 
Gräfelfing, Germany) was measured under clear-sky 
conditions at the top of the barley. We therefore uti-
lized the value of 60 kJ/ (m2.d) as the current ambient 
UV-B level (‘ambient UV-B’). 

The UV-B radiation treatments in this study 
were as follows. Treatment (i) plants were irradi-
ated with UV-B for 8 h a day in a growth chamber 
equipped with one UV-B lamp (UVB-313; Q-Panel, 
Cleveland, OH), which was placed 22 cm above the 
plants [2.09W/ m2, 60 kJ/ (m2.d) ‘ambient UV-B’]. 
Treatment (ii) plants were irradiated with UV-B for 
8 h a day in a growth chamber equipped with two 
UV-B lamps, which were placed 20 cm above the 
plants [4.20W/ m2, 120 kJ/ (m2.d), ‘enhanced UV-
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B’]. Treatment (iii) was not treated (control). To get 
rid of UV-C (under 290 nm) radiation, all UV-B 
lamps were blocked with a cellulose diacetate filter 
(Clarifoil, Derby, UK). Fifteen plants were placed in 
each growth chamber (one plant per pot), with three 
growth chambers per treatment (a total of 45 plants 
per treatment). Pot placement was re-randomized in 
each chamber daily. Plants were used for testing the 
probing behaviors of aphids after 10 days UV-B ir-
radiation.

Insect stocks

Single apterous grain aphid, Sitobion avenae, was 
originally collected from a field near collected Ros-
tock (54°09′ N, 12°08′ E), Germany, in 2008 and 
transferred to barley plants (var. ‘Lomerit’). The 
plants were maintained in insect-rearing tents 
(60×60×60cm, MegaView Science Co., Ltd., Taiwan) 
under the growth chamber conditions described 
above for one year. Newly cultured barley plants were 
exchanged weekly. The aphids were observed every 
3 days, and excess aphids were removed to keep the 
aphid population under low-density conditions.

Aphid probing behaviors

The Giga-8 DC-EPG (W.F.Tjallingii, University of 
Wageningen, The Netherlands) was used to exam-
ine aphid probing behavior on the abaxial face of the 
third fully developed leaf from the plant top. To insert 
one aphid and one plant in an electrical circuit, a thin 
gold wire (20 μm diameter and 2 cm long) was teth-
ered at the dorsum of the aphid by conductive silver 
paint (W.F.Tjallingii, University of Wageningen, The 
Netherlands); the other electrode was inserted in the 
dampened soil of the potted plant. Before an aphid 
was used for the EPG recording, it was allowed to 
acclimate to the tethering by allowing it to crawl on a 
solid surface without probing for 1 h. For each treat-
ment plant, 45 replicates (one aphid per plant) were 
conducted and the recordings were conducted con-
tinuously for 8 h during the daytime (9:00-17:00).

Aphid probing behaviors were recorded by their 
EPG waveforms using PROBE 3.5 software (EPG, 

W.F.Tjallingii, University of Wageningen, The Neth-
erlands). Three behavioral phases, each of which 
were characterized by one or more waveforms, 
could be distinguished: (i) non-probing phase 
(waveform Np) where the insect is not piercing into 
the plant tissues; (ii) pathway phase (waveform C), 
the main activity before reaching the sieve elements 
in the phloem, including primary penetration 
through plant tissues, often with cell punctures, and 
salivation; and (iii) phloem phase, formed by two 
waveforms, E1 and E2. The E1 waveform is formed 
by salivation into the phloem elements and the E2 
waveform is formed by passive phloem sap inges-
tion (Tjallingii, 1988). Other waveforms were also 
acquired but are not presented here because they 
did not provide significant information on aphid 
probing behavior.

Experimental design and data analysis

The current study utilized a randomized complete 
block design. The following EPG parameters were re-
corded and recognized through different waveforms: 
number of non-probing (n_Np); sum of non-prob-
ing phase (s_Np); time to first probe (t >1Pr); sum of 
the pathway phase (s_C); time to first phloem phase 
in experiment (t >1E); time to first phloem phase in 
probe (t >1E/Pr); number of phloem phases (n_E); 
sum of phloem salivation (s_E1); sum of phloem 
ingestion(s_E2); time to first sustained phloem in-
gestion in experiment (E2 > 10 min)(t >1sE2); and 
time to first sustained phloem ingestion in probe (E2 
> 10 min) (t >1sE2/Pr) (Table 1). Statistical analyses 
were performed using SPSS 17.0 software (Chicago, 
IL, USA). The data were transformed to log (base-
10 logarithm) to fit the normal distribution. Nested 
ANOVA was done to determine whether the effect 
of UV-B treatment was significant, with UV-B irra-
diation treatment as a main factor and growing in 
independent growth chamber as a subgroup nested 
within the UV-B irradiation treatment. One-way 
ANOVA followed by Tukey’s HSD test (α = 0.05) 
was also performed. The percentage of aphids with 
a sustained phloem ingestion phase in treatment and 
control plants were analyzed by χ2-test with continu-
ity correction.
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RESULTS

Probing behavior of the non-probing and 
 pathway phase

Nested ANOVA tests revealed that there were no 
significant differences among the subgroups (nested 
within UV-B treatment) for the number of non-prob-
ing (n_Np), sum of non-probing phase (s_Np), time 
to first probe (t > 1Pr), sum of the pathway phase 
(s_C), and time to first phloem phase in experiment 
(t >1E), but there were significant differences among 
UV-B treatments for those variables (Table 1). Com-
pared to the control and ambient UV-B plants, S. 
avenae fed on enhanced UV-B plants showed sig-
nificantly longer s_Np and s_C (s_Np : 83.01±2.51 
min vs 58.51±2.38 min or 70.01±2.45 min; s_C: 
250.78±5.85 min vs 190.47±5.75 min or 210.37±5.91 
min), significantly higher n_Np (26.09 ±1.14 vs 
19.65±0.89 or 22.69±0.90), and significantly later t > 
1Pr and t >1E (t > 1Pr:19.51 ±0.79 min vs 13.36±0.78 
min or 15.83±0.90 min; t >1E: 329.40±6.54 min vs 
264.93±6.54 min or 299.53±6.51 min) (Tukey’s HSD, 
P <0.05; Fig. 1, A-E). Moreover, the value of s_Np, 
s_C and t >1Pr were significantly increased on ambi-
ent UV-B plants compared to control plants (Tukey’s 
HSD, P <0.05; Fig. 1, B, D, E).

Probing behavior of phloem phase

Nested ANOVA on the values of number of phloem 
phase (n_E), sum of phloem salivation (s_E1), sum 
of phloem ingestion (s_E2), time to first sustained 
phloem ingestion in experiment (E2 > 10min) (t 
>1sE2), and time to first sustained phloem ingestion 
in probe (E2 > 10min) (t >1sE2/Pr), showed a sig-
nificant difference among UV-B treatments. How-
ever, there were no significant differences among 
subgroups (nested within UV-B treatment) (Table 
1). The n_E, s_E2 were significantly decreased for 
S. avenae fed on enhanced UV-B plants compared 
to those fed on the control or ambient UV-B plants 
(n_E: 2.644±0.16 vs 3.96±0.19 or 3.75±0.18; s_E2: 
86.75±5.12 min vs 157.13±20.34 min or 108.51±5.16 
min; Tukey’s HSD, P <0.05; Fig. 2; A,C). Furthermore, 
compared to control plants, S. avenae fed on ambient 

UV-B plants showed significantly shorter s_E2 (Tuk-
ey’s HSD, P <0.05; Fig. 2; C). No significant differ-
ences of s_E1 for S. avenae were found among con-
trol, ambient UV-B treatment, and enhanced UV-B 
treatment plants (21.91±0.71 min vs 21.11±0.65 min 
vs 21.68±0.70; Tukey’s HSD, P >0.05; Fig. 2, B). 

Compared to the control plants, S. avenae fed on 
enhanced UV-B and ambient UV-B plants showed 
significantly later t >1sE2 (297.83±4.62 min or 
329.47±4.75 min vs 356.05 ± 4.90 min; Tukey’s HSD, 
P <0.05; Fig. 2, D). No significant differences of t 
>1sE2/Pr for S. avenae were found among on control, 
ambient UV-B, and enhanced UV-B plants (200.45 
± 6.25 min vs 207.72 ± 6.65 min vs 209.11 ± 6.44; 
Tukey’s HSD, P >0.05; Fig. 2, E). In the course of this 
experiment, after 5 h monitoring, a lower percentage 
of aphids showed sustained phloem ingestion phase 
(E2 >10 min) on the enhanced UV-B plants than 
aphids on the control and ambient plants (χ2 =6.16-
28.67, P = 0.000-0.013, Fig. 3). 

DISCUSSION

The probing behavior performance of aphids pro-
vides invaluable clues for understanding the defense 
mechanism of UV-B-irradiated plants to sap-prob-
ing aphid at tissue levels. As mentioned earlier, the 
whole process of aphid probing behavior starts with 
labial contact with the plant surface, followed by the 
penetration of its stylets through successive tissue 
layers between the epidermis and phloem, eventu-
ally targeting on the sieve element of the phloem. 
Therefore, plant tissue factors can play various roles 
in the initiation, maintenance, and cessation of each 
subsequent event in the probing process contact by 
aphid (Lei et al., 1999).

On the enhanced UV-B-irradiated barley plants, 
the number of non-probing (n_Np), sum of non-
probing phase (s_Np), and time to first probe (t > 
1Pr) for S. avenae were significantly increased when 
compared with the control plants (Fig. 1). The fact 
that these activities occurred before the probing, 
strongly suggests that the defense factors are present 
on the surface tissue layer in enhanced UV-B-irradi-



Probing Behavior of S. avenae 251

ated plants. Steinmüller and Tevini (1985) reported 
that enhanced UV-B radiation could cause a 28% 
increase in leaf wax layers in different crop plant spe-
cies. Next to thickness, the chemical composition of 
waxes has been shown to be influenced by UV-B ra-
diation (Tevini and Steinmüller, 1987; Barnes et al., 
1996). It is possible that UV-B can change the physi-
cal properties or the chemistry of the plant surface 
and these changes can be considered as a decreasing 
host plant susceptibility to the aphids.

Sitobion avenae showed longer sum of the path-
way phase (s_C) and later time to first phloem phase 
in the experiment (t >1E) on enhanced UV-B-irra-
diated plants compared with control plants (Fig. 1). 
This result strongly indicates that the plant epider-
mis or mesophyll layers also might play an impor-
tant role in the defense of enhanced UV-B-irradiated 
plants against S. avenae. Plants generally adapt to 
changes in UV-B radiation by activating the induc-
tion of protective compounds (sunscreens). These 
sunscreens include phenolic compounds derived 
from phenylalanine (flavonoids and other phenyl-
propanoid derivatives, such as sinapate esters) that 
accumulate in large quantities in the vacuoles of 

epidermal cells and effectively attenuate the UV-B ir-
radiation (Caldwell et al., 2003; Jenkins and Brown, 
2007). Changes in enhanced UV-B-irradiated plant 
sunscreens may lead to decreased host plant accept-
ance of the aphids.

Apart from the surface and epidermis/meso-
phyll layers, phloem tissue layers were often typical 
features associated with defenses as reported in EPG 
studies performed on aphid-plant combinations 
(Sauge et al., 1998; Kaloshian et al., 2000). From our 
data, the number of phloem phase (n_E) and sum of 
phloem ingestion (s_E2) for S. avenae were signifi-
cantly decreased, the time to first sustained phloem 
ingestion in experiment (E2 >10 min) (t >1sE2) was 
significantly increased on enhanced UV-B-irradiated 
plants when compared with control plants (Fig. 2). 
Moreover, fewer aphids reached sustained phloem 
ingestion (E2 >10 min) within the 8 h experiments 
(Fig. 3). The previous laboratory studies have shown 
that UV-B radiation can alter leaf phloem-layer char-
acteristics, such as total leaf N, available carbohy-
drates, fiber (Lindroth et al., 2000), and free amino 
acids (Salt et al., 1998). It is possible that changes in 
the nutrition composition in enhanced UV-B-irradi-

Table 1. F values and significance (P) from nested ANOVA tests of effects of UV-B treatment and independent growth chamber site 
(nested within UV-B treatment) on variables of probing behavior.

Parameters Symbol
UV-B treatment Subgroup(Independent growth

 chamber site)
F2,6 P F6,109-126 P

Number of non-probing n_Np 26.388 0.001 0.394 0.882

Sum of non-probing s_Np 43.945 <0.001 0.559 0.762

Time to first probe t > 1Pr 15.771 0.004 0.963 0.453

Sum of the pathway phase s_C 43.199 <0.001 0.631 0.705

Time to first phloem phase in experiment t >1E 13.415 0.006 1.890 0.087

Time to first phloem phase in probe t >1E/Pr 1.286 0.343 6.922 <0.001

Number of phloem phase n_E 9.342 0.014 2.149 0.052

Sum of phloem salivation s_E1 1.867 0.234 0.185 0.981

Sum of phloem ingestion s_E2 7.636 0.022 1.100 0.366
Time to first sustained phloem ingestion in 

experiment(E2 > 10min) t >1sE2 65.329 <0.001 0.591 0.737

Time to first sustained phloem ingestion in 
probe (E2 > 10min) t >1sE2/Pr 0.438 0.667 1.204 0.310
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Fig. 2 Electronically monitored probing behaviors (mean ± SE, n = 36-45) of S. avenae on control, ambient UV-B and enhanced UV-B-
treated plants during the 8h access experiments. n_E: number of phloem phase,	 s_E1: sum of phloem salivation, s_E2: sum of phloem 
ingestion,	t >1sE2: time to first sustained phloem ingestion in experiment (E2 > 10 min), t >1sE2/Pr: time to first sustained phloem 
ingestion in probe (E2 >10 min). Bars with different lower-case letters are significantly different from one another according to Tukey’s 
HSD test (P <0.05).

Fig. 1 Electronically monitored probing behaviors (mean ± SE, n = 45) of S. avenae on control, ambient UV-B and enhanced UV-B-
treated plants during the 8 h access experiments. n_Np: number of non-probing, s_Np: sum of non-probing, t > 1Pr: time to first probe, 
s_C: sum of the pathway phase, t >1E: time to first phloem phase in experiment. Bars with different lower-case letters are significantly 
different from one another according to Tukey’s HSD test (P <0.05). 
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ated plant can also be considered as decreased host 
plant acceptance to the aphids. Together with our re-
sults, such variations in diet may explain the negative 
effect on development and reproduction of S. avenae 
when fed on enhanced UV-B-irradiated plants (Hu, 
unpublished data).

In this study, we tested the hypothesis that en-
hanced UV-B-irradiated plants negatively affected 
the probing behaviors of S. avenae. In particular, 
phloem factors diminishing sieve element accept-
ance appear to be involved, as reflected by fewer 
aphids reaching sustained phloem ingestion within 
the 8 h experiment, smaller number of phloem phase 
(n_E), shorter sum of phloem ingestion(s_E2), and 
later time to first sustained phloem ingestion in ex-
periment (t >1sE2). On the other hand, factors from 
the leaf surface, epidermis, and mesophyll cannot be 
excluded, as reflected by the higher number of non-
probing (n_Np), longer sum of non-probing phase 
and pathway phase (s_Np, s_C), and later time to 
first probe (t > 1Pr) and time to first phloem phase 
in experiment (t >1E). Based on the results of this 
study, we conclude that populations of S. avenae 
will be significantly decreased under sustainable en-
hanced UV-B in the future. Future studies are need-

ed to evaluate the significance of the findings of this 
study under field conditions.
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