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Abstract. We discuss network representations of dipole
antennas within electromagnetic cavities. It is pointed out
that for a given configuration these representations are not
unique. For an efficient evaluation a network representation
should be chosen such that it involves as few network el-
ements as possible. The field theoretical analogue of this
circumstance is the possibility to express electromagnetic
cavities’ Green’s functions by representations which exhibit
different convergence properties. An explicit example of a
dipole antenna within a rectangular cavity clarifies the corre-
sponding interrelation between network theory and electro-
magnetic field theory. As an application, current spectra are
calculated for the case that the antenna is nonlinearly loaded
and subject to a two-tone excitation.

1 Introduction

In Electromagnetic Compatibility (EMC) analysis it is often
useful to turn an electromagnetic field problem into an equiv-
alent network problem(Lee, 1995). This step usually re-
quires tosolvethe electromagnetic field problem in order to
explicitly calculate equivalent network parameters. Ideally,
the solution of a modeled problem consists of calculated net-
work parameters that are accessible to direct measurements,
such as scattering parameters that can be measured by means
of a network analyzer.

The advanced concept of Electromagnetic (EM) Topology
exemplifies the conversion of an electromagnetic field prob-
lem into a network problem. In EM topology complex sys-
tems are divided into smaller subsystems and dominant cou-
pling paths are identified, as schematically drawn in Fig.1.
These coupling paths are described by a Baum-Liu-Tesche
(BLT) network with BLT equations as corresponding dynam-
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ical network equations(Tesche et al., 1997). In this frame-
work subsystems reduce to transducers, power transfer ele-
ments, or coupling elements and are characterized by appro-
priate network representations.

We will concentrate in the following on network repre-
sentations of dipole antennas inside resonating environments,
such as dipole antennas that are located within the interior of
an electromagnetic cavity. Quite generally, dipole antennas
can serve as models for Electromagnetic Interference (EMI)
sources or victims. Since EMI sources or victims often are
enclosed by metallic boundaries, which can resemble elec-
tromagnetic cavities, one would like to be able to character-
ize antenna properties not only in free space (“exterior prob-
lem”) but also in resonating environments (“interior prob-
lem”).

Typically, network representations of antennas are given
by impedance functions which are defined via voltages and
currents at the antenna inputs(Elliott, 1981). The concept of
impedance is applicable to both single antennas or systems
of antennas. As an example, Fig.2 displays two coupled
antennas which are characterized by an impedance matrix.

In what follows we will mainly be concerned with the
characterization and calculation of antenna impedances that
relate to antennas within electromagnetic cavities. Recently,
in an EMC context this topic has been investigated in a
systematic way (Gronwald, 2006). In the context of an-
tenna theory it is not common to place antennas within cavi-
ties, simply because antennas are designed to radiate in free
space. However, there are exceptions such as the Wheeler’s
cap technique which serves to measure antenna efficiencies
within a cavity. In the application of this technique, network
representations of antennas are of interest, too(Huang et al.,
2005).

Published by Copernicus Publications on behalf of the URSI Landesausschuss in der Bundesrepublik Deutschland e.V.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/27252159?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


158 F. Gronwald et al.: On network representations of antennas inside resonating environments

system volume

subsystem volumes

conducted coupling
radiated coupling

Fig. 1. General example of a BLT network which consists of vari-
ous coupling paths. It is common to distinguish between conducted
coupling and radiated coupling.
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Fig. 2. Network representation of two coupled antennas by the
impedance matrix of a two-port.

2 Network representation of impedance functions

General and useful information on impedance functions can
be obtained from complex analysis. This requires to view
impedance functions as functions in the complex frequency
plane where the complex frequency is given by the Laplace-
transform variables=�+jω.

2.1 Systems with finite number of natural frequencies

In an early paper(Foster, 1924), Foster has shown that the
impedance of a lossless one-port with afinite number of in-
ductances and capacitances is of the form

Z(ω) = −
j

ωC0
+ jωL∞ +

N∑
n=1

jω

Cn(ω2
n − ω2)

(1)

=
a0(1 − ω/ωz1)(1 − ω/ωz2) · · ·

b0(1 − ω/ωp1)(1 − ω/ωp2) · · ·
, (2)

compare Fig.3, and it is seen that the impedance is largely
determined by its zerosωzn and polesωpn . Mathematically,
this is a consequence of the Mittag-Leffler theorem.

Antennas within electromagnetic cavities constitute elec-
tromagnetic systems with an infinite number of natural fre-
quencies. Therefore the result of Foster cannot be directly
applied to our analysis.

2.2 Systems with infinite number of natural frequencies

Schelkunoff showed that Foster’s network representation can
be generalized to systems with an infinite number of natural
frequencies(Schelkunoff, 1944). It turned out that the re-
sulting network representation is not unique. We have, for
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Fig. 3. Impedance of a lossless one-port which represents an elec-
tromagnetic system with a finite number of natural frequencies
when the input terminals are open. The number of parallel circuits
is equal to the number of natural frequencies.

C1 C2

L1 L2

C0 L0

1 2M M

Fig. 4. Alternative network representation of an electromagnetic
system with an infinite number of natural frequencies.

example,

Z(ω) = jωL∞ −
j

ωC0
+

∞∑
n=1

jω

Cn(ω2
n − ω2)

(3)

= jωL0 −
j

ωC0
+

∞∑
n=1

ω2
nM

2
n

Ln

(
jω

ω2
n − ω2

−
jω

ω2
n

)
. (4)

Clearly, Eq. (3) is a direct generalization of Eq. (1). The
fact that Eq. (4) is equivalent to Eq. (3) is not immediate
(Schelkunoff, 1944). We display in Fig.4 the network repre-
sentation that corresponds to the mathematical expression in
Eq. (4). The series in Eq. (4) often is prefered over the series
in Eq. (3) because it exhibits better convergence properties.
As a result, less network elements are required to model a
specific impedance.

2.3 Microwave networks

The above concepts are directly applicable to microwave net-
works and other resonating electromagnetic structures such
as cavities, waveguides or transmission lines. Besides the
general information that is provided by complex analysis it is
then also required to apply Maxwell’s theory and investigate
the modal properties of the electromagnetic field within the
resonating environment. Explicit values for the circuit ele-
ments that appear in network representations, such as Eq. (3)
or Eq. (4), are obtained by the solution of Maxwell’s equa-
tions. In this context, a standard method is to take advantage
of the Poynting theorem and calculate the wanted network
parameters via the electromagnetic energy that is stored in
each mode(Ramo et al., 1994).
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This and related methods yield network representations of
the resonating environment itself, like network representa-
tions of an empty cavity. They do not include the interaction
of the electromagnetic field with additional sources or scat-
terers, like the interaction with an antenna.

2.4 Antennas

Similar to Eq. (2) and its generalization to an infinite number
of natural frequencies the input impedance of an antenna in
free space can be described by a pole/zero expansion(Baum,
2002). For a dipole antenna in free space one has an expan-
sion of the form

Z(ω) =
(1 − ω/ωz1)(1 + ω/ωz1)(1 − ω/ωz2) · · ·

jωC(1 − ω/ωp1)(1 + ω/ωp1)(1 − ω/ωp2) · · ·
(5)

≈
1

jωC
+ R + jωL − Aω2

+ · · · (6)

Unfortunately, this mathematical expression has no exact
representation by a commonRLC network. Equivalent cir-
cuit models follow from theSingularity Expansion Method
and involve complex circuit elements(Baum, 1976). The
interpretation and use of these complex circuit elements is
not immediate. We have a similar situation in the study of
generalized transmission line models which exhibit complex
transmission line parameters if radiation phenomena need to
be taken into account (Haase et al., 2003, 2004).

2.5 Antennas inside electromagnetic cavities

So far we have discussed two points:

– Resonating microwave structures, such as cavities or
waveguides, have exact network representations of the
form Eq. (3) or Eq. (4)1. These representations do not
take into account the interaction of the electromagnetic
field with additional sources or scatterers.

– Antennas do not have exact network representations in
terms ofRLC network elements. This is due to the fact
that these elements cannot properly take into account
radiation effects. However, low-frequency expansions
of the form Eq. (6) are meaningful and take into account
radiation effects in an approximate way.

We will now focus on antennas inside electromagnetic
cavities and merge cavity properties with antenna proper-
ties. To this end, we note that, quite generally, antenna
impedances are of the form(Elliott, 1981)

Zself = −
〈E, J 〉p

I2
, (7)

Z12 = −
〈Eb, J a

〉p

I a
2 I b

1

, (8)

1The representations are exact as long as Ohmic losses are ne-
glected. Small losses can be acounted for in a perturbative way by
the inclusion of Ohmic resistors.

with Zself a self impedance andZ12 a mutual impedance be-
tween two antennas. The currentsI , I a

2 , andI b
1 denote an-

tenna input currents,E, Eb denote electric fields, andJ , J a

are electric current densities. We also introduced for nota-
tional convenience a pseudo inner product which, for vector
functionsf , g that are integrable over a domain0, can be
taken as

〈f , g〉p :=

∫
0

f (r) · g(r) d0 . (9)

The formulas (7) and (8) are valid both in free space and
within a cavity as long as reciprocity is satisfied. If an inner
product is defined by

〈f , g〉 :=

∫
0

f (r) · g∗(r) d0 , (10)

with the asterisk indicating the complex conjugate, the elec-
tric field E that is generated by a current densityJ can be
written as

E(r) = 〈G
E
, J 〉 , (11)

with the dyadic electric Green’s functionG
E

.
In a cavity, the dyadic electric Green’s function can be ex-

pressed in terms of a modal representation with longitudi-
nal eigenmodesLn and transverse eigenmodesF n (Collin,
1991) which fulfill

∇ × ∇ × Ln = 0 , (12)

∇ × ∇ × F n = k2
nF n . (13)

As a consequence, the electric field has the modal represen-
tation

E =
jωµ

k2

∑
n

〈J , Ln〉Ln + jωµ
∑
n

〈J , F n〉

k2 − k2
n

F n . (14)

with µ the absolute permeability andk the wavenumber. If
we insert this expansion into Eq. (8), for example, we find

Zself = −
jωµ

k2I2

∑
n

〈J , Ln〉
2
−

jωµ

I2

∑
n

〈J , F n〉
2

k2 − k2
n

. (15)

It follows that single modesF n are characterized by parallel
RLC circuits with

Rn =
Q〈J , F n〉

2

εI2ωn

, (16)

Ln =
〈J , F n〉

2

ε(Iωn)2
, (17)

Cn =
εI2

〈J , F n〉
2

, (18)

whereε denotes the absolute permittivity andQ the quality
factor of the cavity. This yields the desired relations between
field quantities and network quantities.
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Fig. 5. Dipole antenna within a rectangular cavity.

2.6 The problem of convergence

Expansions of the form Eq. (14) or Eq. (15) have the disad-
vantage that usually they exhibit poor convergence proper-
ties. To improve this situation it is required to find represen-
tations of the electric Green’s function which quickly con-
verge both in the source region and at resonance. The fact
that the representation of a cavities’ Green’s function is not
unique constitutes the field-theoretical analogue to the pos-
sibility to choose various representations for the impedance
function of a system with an infinite number of natural fre-
quencies.

In the case of cavities’ Green’s functions it is often ad-
vantageous to split off the free space Green’s function. We
illustrate this by the example of a rectangular cavity: The

corresponding dyadic Green’s functionG
A

for the magnetic
vector potentialA has a modal expansion of the form(Morse
and Feshbach, 1953)

G
A
(r, r ′, k) =

∞∑
m,n,p=0

ε0mε0nε0p

lx ly lz

1

k2
mnp − k2

(
f x

mnp(r)f x
mnp(r ′)exex+ (19)

f
y
mnp(r)f

y
mnp(r ′)eyey + f z

mnp(r)f z
mnp(r ′)ezez

)
.

with ε0N the Neumann factor andf x,y,z
mnp the eigenfunctions

that correspond to the Helmholtz equation for the magnetic
vector potentialA. This expansion can be approximated by

G
A
(r, r ′, k) ≈

1

4π

e−jk|r−r ′
|

|r − r ′|
I +

M,N,P∑
m,n,p

ε0mε0nε0p

lx ly lz

1

k2
mnp − k2

(
f x

mnp(r)f x
mnp(r ′)exex+ (20)

f
y
mnp(r)f

y
mnp(r ′)eyey + f z

mnp(r)f z
mnp(r ′)ezez

)
.

where the summation now only extends over those modes
which, at the frequency range considered, are dominantly ex-
cited. In principle, all modes will contribute to the Green’s

free space resonance 110 resonance 130

Lfree = 286.4nH L110 = 12.65nH L130 = 4.171nH
Cfree = 2.652pF C110 = 1.850nF C130 = 1.278nF

—– R110 = 1500� R130 = 1500�

resonance 310 resonance 330

L310 = 3.469nH L330 = 2.434nH
C310 = 1.202nF C330 = 1.068nF
R310 = 1500� R330 = 1500�

Table 1. Explicit values of the elements of the network representa-
tion in Fig.6 as obtained from the method of moments.

function, but the majority of modes is required to model, by
superposition, the Coulomb interaction which is contained in
the Green’s function of free space. Therefore, if we split off
the Green’s function of free space we split off the contribu-
tion of most of the relevant modes and express this contri-
bution as a single term. This is, in short, the essential idea
of using so-calledhybrid representationsof electromagnetic
Green’s function which separate the singular features of the
Coulomb interaction from the summation of single modes
(Felsen, 1984,G).

3 Example and application

We now illustrate the concepts outlined above by means of an
example and an application to a nonlinearly loaded antenna.

3.1 Dipole antenna within a rectangular cavity

We consider a dipole antenna which is located within a rect-
angular cavity, compare Fig.5. The cavity dimensions are
lx=6 m, ly=7 m, lz=3 m, the antenna is aligned to thez-axis
and placed atr0=(lx/2, ly/2, lz/2).

In the frequency range 25 MHz to 100 MHz the antenna
will couple to the modes 110 (32.9 MHz), 130 (68.9 MHz),
310 (78.0 MHz), and 330 (98.7 MHz). It is then, in this fre-
quency range, sufficient to include in the expression (20) for

the electromagnetic Green’s functionG
A

the eigenfunctions
that correspond to these four modes. The error that is made
by this approxiation can be shown to be very small. With
this approximation a network representation of the dipole an-
tenna is obtained which consist of only 14 elements and is
shown in Fig.6. The elementsCfree andLfree take into ac-
count the near-field properties of the antenna that are mainly
due to the Coulomb interaction. They correspond to the ca-
pacitanceC and inductanceL of the low-frequency expan-
sion Eq. (6). The termsR and−Aω2, respectively, are ab-
sent because the antenna is assumed to be lossless and be-
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Fig. 6. Approximate network representation of the dipole antenna
of Fig. 5 for the frequency range 25 MHz to 100 MHz.

cause there are no radiation losses in our example. Explicit
values for the network elements are given in Table 1. They
follow from a method of moment solution which determines,
for a given excitation at the antenna input, the resulting cur-
rent distribution on the antenna. For the problem of calcu-
lating antenna impedances within cavities by the method of
moment we refer to(Gronwald, 2005).

3.2 Intermodulation effects of a nonlinear load

The necessity to use network representations of electromag-
netic systems becomes apparent if the effect of nonlinear el-
ements needs to be taken into account. In this case it usually
is not practicable to apply nonlinear field theory. Rather, the
general strategy is to first transform the linear part of a non-
linear problem into a network representation. Then the non-
linear elements are included in the problem and the resulting
problem is solved by means of nonlinear circuit theory.

For illustration we consider a dipole antenna within a rect-
angular cavity, as defined in the last subsection. We now
assume that the antenna is loaded with a nonlinearity of the
form

vnl(t) = 1k� i(t) − 6
k�

A
i2(t) + 3

k�

A2
i3(t) . (21)

If we excite this antenna by a two-tone excitation we expect
that intermodulation will occur. This phenomenon describes
the generation of secondary frequencies from the electro-
magnetic excitation of nonlinearities by primary frequencies
(Maas, 2003).

The network representation of Fig.6 together with the ex-
plicit form Eq. (21) of the nonlinearity and a prescribed ex-
citation defines a nonlinear circuit problem for the unknown
antenna current. The corresponding network problem can be
solved by standard methods. In this context we found the
method of Picard iteration useful(Nitsch et al., 2005). This
method, as is typical for a calculation method for nonlinear
problems, is an iterative one, but it also is analytic and can be
realized by means of a computer algebra program. Therefore
the influence of numerical errors is greatly reduced.

As an example, we first excite the antenna by the two
frequenciesf1=70 MHz andf2=80 MHz. After four Pi-
card iterations the amplitudes of the major frequencies in the
emerging spectrum of the current through the nonlinear load
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Fig. 7. Resulting spectrum of the currentI (ω) through the nonlin-
ear antenna load. The chosen two-tone excitation consists of the
frequenciesf1=70 MHz andf2=80 Hz. Significant contributions
to the current at intermodulation frequencies are clearly visible.
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Fig. 8. Resulting spectrum of the currentI (ω) through the nonlin-
ear antenna load if the two-tone excitation consists of the (resonant)
frequenciesf1=69 MHz andf2=78 MHz. If compared to the spec-
trum of Fig.7 the amplitudes are considerably reduced.

do no longer significantly change and the corresponding re-
sult is shown in Fig.7.

The chosen frequenciesf1=70 MHz andf2=80 MHz are
slightly above the resonance frequenciesf130 andf310, re-
spectively. To change this situation we lower the exciting
frequencies and choosef1=69 MHz andf2=78 MHz such
that these resonance frequencies are approached. Figure8
shows the current spectrum which results after four Picard
iterations. It is seen that the current amplitudes are consid-
erably reduced. An explanation of this phenomenon is that
the cavity resonances, which are represented by the parallel
RLC-circuits of Fig.6, act like filters that suppress the ex-
citing frequencies. A more detailed discussion of this result
can be found in(Gronwald, 2006).
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Nonlinear canonical problems, like the example just con-
sidered, clearly are important in the context of Electromag-
netic Compatibility since they allow to calculate electric cur-
rent and electromagnetic field spectra within systems that are
subject to EMI fields. The corresponding techniques, as out-
lined above, are not trivial, though, and require in many re-
spects a careful analyis.

4 Conclusions

In areas such as EMC analysis, network representations of
electromagnetic field problems often are useful or even nec-
essary. For systems with an infinite number of natural fre-
quencies these representations are not unique. They must be
chosen such that the occuring series expressions have good
convergence properties. In field theory, this difficulty relates
to the problem of choosing a quickly convergent electromag-
netic Green’s function. If antennas in resonating systems are
considered the Green’s function must efficiently represent
both the Coulomb interaction and the resonances. In this
respect it is often useful to split off the free space Green’s
function from the modal representation of the corresponding
Green’s function. As a result, a suitable network representa-
tion will contain network elements which either characterize
free space properties or characterize resonances. It finally
has been exemplified that the network representation of an
antenna within a cavity can be used to calculate current spec-
tra that originate from the intermodulation of primary fre-
quencies at a nonlinear load.
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