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Abstract  

The paper deals with the new approach of solving traditional kinematical synthesis of mechanisms.  
The kinematical synthesis is reformulated as nonlinear dynamical problem. All searched parameters  
of the mechanism are in this dynamical dissipative system introduced as time-varying during motion of mecha-
nism’s dimension iteration. The synthesis process is realized as the time evolution of such system.  
One of the most important objectives of the machine synthesis is the dexterity measure. The new approach  
is applied to optimization of this property. 
© 2007 University of West Bohemia. All rights reserved. 
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1. Introduction 

Mechanical synthesis is necessary method that is used during design of mechanism. This 
method gives the optional kinematical parameters of a designed mechanism. Solution of such 
difficult task usually requires large amount of iterations. The current applied methods are ei-
ther very specific for simple mechanisms or they are based on iterative solution of kinematical 
description of mechanism’s motion in certain limited number of so called precision points or 
they are based on more general methods of optimization approaches, recently using evolu-
tionary methods like genetics algorithm (e.g. [3]). 

The general synthesis methods seem to be enough powerful and to find the solutions for 
all problems. They are based on performing mechanism’s synthesis rely on an attempt to re-
define the dimensions of the system in such a way that a deviation from the desired behaviour 
is minimized by the use of optimization methods. However, all current methods suffer from 
two related problems. The first problem is that the proposed dimensions of the mechanism be-
ing synthesized do not allow the mechanism assembly in all positions required for the desired 
motion. The second problem is that if a mechanism’s synthesis iteration fails for certain pa-
rameter because of constraint and/or assembly violation the whole knowledge from this itera-
tion is lost. Moreover the mechanism’s synthesis requires different properties during different 
motion phases and this selective knowledge from different motion phases is not available 
from one parameter setting for the whole motion. The solution of the first problem has been 
proposed by the usage of time-varying dimensions during motion of mechanism’s dimension 
iteration [2]. However, this scheme requires large amount of iterations. 
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This insufficiency has been overcome by the approach based on nonlinear dynamical or 
nonlinear control [6]. This approach reformulates mechanism’s synthesis as a nonlinear dy-
namical problem or nonlinear control problem. It proved that nonlinear dynamical or nonlin-
ear control could be used for kinematical synthesis of a simple guiding mechanism. The ap-
proach based on nonlinear dynamical system had been further developed and proved on the 
latest version of redundant parallel kinematical machine sliding star [1]. 

This paper deals with synthesis of mechanism using dexterity measure optimization.  
The dexterity describes the quality of the motion and the force transfer between input and 
output [7]. 

The theory has been tested on a simple planar parallel kinematical machine. This means 
that the method tested previously on the mechanisms has been extended in order to optimize 
more complex kinematical properties. 

2. Geometrical synthesis of the mechanism 

As it has been mentioned this method transforms problem of kinematical synthesis into a 
problem of solution of associated dissipative dynamical system. All searched (synthesized) 
parameters of the mechanism are in this dynamical dissipative system introduced as time-
varying during motion of mechanism’s dimensions iteration. The associated dynamical dissi-
pative system consists of n subsystems for individual positions of end-effector point. End-
effector point passes through demanded workspace and describes asked net. The sought 
mechanism is then decomposed as follows. Dimensions of the mechanism that are synthe-
sized are replaced by linear springs with prescribed stiffness. Joints of the mechanism which 
are in touch with synthesized dimensions are replaced by prescribed masses. The nonzero 
force acts into relevant masses whenever the corresponding dimension differs among subsys-
tems. Masses are damped by damper elements. These damper elements are connected to the 
inertial frame according to sky-hook idea [4] or [5] and ensure the stabilization of the whole 
system. The solution then consists of synthesis of dimensions of the particular bodies. The 
dimensions of the bodies assemble the overall dynamical system that enables separate pa-
rameters but requires their ultimate equality. The synthesis process is then realized as the time 
evolution of such system. 

Based on the decomposition, final dynamical equations for subsystem i are as follows 
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Where mP is mass of particular joint P. PiPi yx &&&& , are accelerations of joint P in dynamical sub-
system i in x axe and in y axe respectively. kl1 and kl2 are constant stiffness introduced  
in varying dimensions l1i and l2i of particular subsystem i and dimensions l1j and l2j 
of all simulated subsystems. ϕl1i and ϕl2i are the angles which are responsible for projection  
of force acting in the directions of dimensions l1i and l2i to the x axe or to the y axe. bxP and 
byP are constant damper coefficients and finally PiPi yx && , are velocities of joint P in dynamical 
subsystem i. 

The principle of the method is presented in fig. 1. The transformation of synthesis of an 
original mechanism into the associated dynamical dissipative system is illustrated in a simple 
guiding mechanism. 
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a) Original mechanism                                               b) Associated dynamical dissipative system 

Fig. 1. Associated dynamical dissipative system of given example. 

3. Geometrical synthesis using dexterity measure optimization  

Also synthesis using dexterity measure optimization consists in transformation of dexter-
ity computation of mechanical system into a problem of solution of associated dissipative dy-
namical system. The transformation is based on computation of dexterity for each demanded 
end-effector position and computation of force that ensures convergence to the demanded 
dexterity. 

Synthesis of dexterity measure is in principal based on geometrical synthesis. Furthermore 
the geometrical synthesis is taken as a fundamental part of the synthesis of other parameters, 
e.g., dexterity measure. Also in this case all searched (synthesized) parameters of the mecha-
nism are in the dynamical dissipative system introduced as time-varying during motion of 
mechanism’s dimensions iteration and the synthesis process is realized as the time evolution 
of the system. 

Let us introduce the dexterity and the condition number as one of important feature of the 
mechanism. Kinematical constraint is described as a function of dimensions l, the input coor-
dinates in the joints s and the output coordinates, i.e. the position of the end-effector v

0vslf =),,( . (2) 

The condition number C and the dexterity D are derived from the equation 2 as follows 
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where JS, JV are corresponding Jacobi matrices of the constraint 2. Instead of the dexterity  
parameter D, the condition number C of the Jacobi matrices of the system is treating as the 
synthesized parameter in following notation and example. 
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Based on principle of virtual power we can count for force contributions of the particular 
parts (dimensions). For the most clearness of the transformation two parameters (dimensions) 
l1 and l2 are taken as parameters influence the system. 
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Where klC is again constant stiffness, C is computed (actual) dexterity and CD is demanded 
dexterity. Acting forces for particular dimension are taken form substitution of equation (7) 
into equation (6). In the following the stiffness klC is divided into kl1C and kl2C 
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The final dynamical equations of mass particles of the joint P with dexterity demand for 
subsystem i are as follows 
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4. Example 

The realization of the method is presented in fig. 2. The used example of kinematical sys-
tem has two synthesizable dimensions (ll, lr). The point M of mechanism (end-effector of the 
simple planar parallel kinematical machine) should pass through given points Mi
(i = 1, 2,…,n) inside of a given workspace. 

Fig. 2. Original mechanism. 
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The associated dynamical dissipative system then consists of n subsystems for individual 
positions of point M, fig. 3. The masses mBl, mBr are introduced in points Bli, Bri. The interac-
tions among the subsystems are ensured by forces Flli, Flri of linear spring nature. The nonzero 
force acts into relevant masses whenever the corresponding dimension differs between sub-
systems i and j (i, j = 1, 2,….n). The stabilization of the whole system is ensured by damper 
elements. 

Fig. 3. Associated dynamical dissipative system.  

Forces that comes from geometrical synthesis act in the dynamical system as follows 
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Acting forces that comes from synthesis using condition number optimization for particu-
lar dimensions of the system are then 
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The final dynamical equations for mass particles in the points Bl and Br with demand of 
condition number are as follows 
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The simulation of the associated dynamical system has been realized within Matlab-
Simulink. The demanded condition number has been set equal 1 for all subsystems (for all 
end-effector’s positions). This value means that the forces FllC and FlrC will act to the system 
until the mechanism reaches such dimensions for which the dexterity is maximal. 

5. Results 

The system coordinates (lli, lri, i = 1, 2,…, 16) for all subsystems come to stay on equilib-
rium values, fig. 4. These equilibrium values can be interpreted as searched parameters of the 
mechanism. Also the condition number of each of the 16 end-effector’s position has de-
creased and reached equilibrium values close to number 1.2, fig. 5. This means that mecha-
nism’s dexterity has increased to maximum value. 

It’s necessary to remark that for getting these results the stiffness coefficients had to be set 
to different values. For the equal stiffness parameters the system hasn’t reached equilibrium 
values of the system coordinates. The forces FllC and FlrC had been so great and the system 
hasn’t been able to converge to the equilibrium state with the same dimensions for each sub-
system. For kll > 20.kllC the system reaches the equilibrium values in a short time. 

 

Fig. 4. Dynamical response of the dimensions ll, lr.
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Fig. 5. Evolution of the condition numbers of all positions.  

Two examples of optimization runs are illustrated in fig. 6. The pictures in the column  
fig. 6a correspond to time evolution of parameters and measure presented in fig. 4 and fig. 5. 
This simulation has started from different dimensions (lengths) of the arms, fig. 6a top for the 
different positions of points Mi. Simulation in fig. 6b has started from constant dimensions of 
the arms, fig. 6b top for the different positions of points Mi. It can be seen that the system has 
reached the same equilibrium values for both simulations, fig. 6a and fig. 6b bottom. 

a) Start from different dimensions                           b) Start from constant dimensions  

Fig. 6. Evolution of the mechanism’s structure.  
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6. Conclusion 

The new approach of solving traditional kinematical synthesis of mechanism has been 
proposed and tested. The presented method introduces the associated dissipative dynamical 
system. The synthesis process is realized as the time evolution of such system. The approach 
could be used for basic synthesis tasks as well as for more complex problems of synthesis of 
parallel machines with dexterity demand. The method is very robust and currently solved 
benchmarks indicate its ability for global optimization in context of mechanism synthesis.  
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