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Abstract. We present a review of recent analytical and nu- our simulations could be helpful to understand the nonlinear
merical studies of the dynamics of electron and ion holes indynamics of electron and ion holes in space and laboratory
a collisionless plasma. The new results are based on thplasmas.

class of analytic solutions which were found by Schamel
more than three decades ago, and which here work as initial
conditions to numerical simulations of the dynamics of ion |
and electron holes and their interaction with radiation and

the background plasma. Our analytic and numerical studapout a quarter century ago, Schamel (1971, 1972, 1979,
ies reveal that ion holes in an electron-ion plasma can trap 9ge: Bujarbarua and Schamel, 1981) presented a theory for
Langmuir waves, due the local electron density depletion asion and electron holes, where a vortex distribution is assigned
sociated with the negative ion hole potential. Since the scalesgr the trapped particles, and where the integration over the
length of the ion holes are on a relatively small Debye scalerapped and untrapped particle species in velocity space gives
the trapped Langmuir waves are Landau damped. We alsghe particle number density as a function of the electrostatic
find that colliding ion holes accelerate electron streams bypotential. The potential is then calculated self-consistently
the negative ion hole potentials, and that these streams gftom Poisson’s equation. This model has been used in theo-
electrons excite Langmuir waves due to a streaming instabilretical analyses of the existence criteria for the ion and elec-
|ty In our Vlasov simulation of two CO”ldlng ion hOIeS, the tron holes (Bujarbarua and Schamel, 1981), and in the anal-
holes survive the collision and after the collision, the eIec—ySiS of stability of phase space holes (Schamel, 1982, 1986).
tron distribution becomes flat-topped between the two ion' Numerical and theoretical studies of the interaction be-
holes due to the ion hole potentials which work as potentialyyeen electron and ion holes have been performed by sev-
barriers for low-energy electrons. Our study of the dynam-era| authors. Newman et al. (2001) in their numerical
ics between electron holes and the ion background reVea'éxperiments studied the dynamics and instability of two-
that standing electron holes can be accelerated by the sellimensional phase-space tubes, and Daldorff et al. (2001)
created ion cavity owing to the positive electron hole poten-inyestigated the formation and dynamics of ion holes in thee
tial. Vlasov simulations show that electron holes are repelledyimensions. Krasovsky et al. (1999) showed theoretically
by ion density minima and attracted by ion density maxima.and by computer simulations that that electron holes perform
We also present an extension of Schamel’s theory to relativisinelastic collisions, and Vetoulis (2001) studied the radia-
tically hot plasmas, where the relativistic mass increase of thgjon generation due to bounce resonances in electron holes.
accelerated electrons have a dramatic effect on the electrog,ig et al. (2003, 2004) have studied numerically the dy-
hole, with an increase in the electron hole potential and innamics of phase space vortices in a collisionless plasma as
the W|dth Of the electron hOIe. A Study Of the interaCtion be' We" as the generation Of phase Space structures by an Obsta_
tween electromagnetic waves with relativistic electron holesge in a streaming plasma. Saeki and Genma (1998) studied
shows that electromagnetic waves can be both linearly anghe disruption of electron holes in an electron-ion plasma.
nonlinearly trapped in the electron hole, which widens fur- The asymptotic nonlinear saturation of electrostatic waves
ther due to the relativistic mass increase and ponderomotivgas peen treated both theoretically (Medvedev et al., 1998;
force in the oscillating electromagnetic field. The results of | gncelotti and Dorning, 1998) and numerically (Manfredi,
1997). It has also been pointed out that plasma waves can
Correspondence td3. Eliasson be undamped due to particle trapping effects in waves with
(bengt@tp4.rub.de) arbitrarily small amplitudes (Holloway and Dorning, 1991;
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Schamel, 2000). Theoretical investigations of trapped paramplitude negative potential well created by localized Lang-
ticle effects in magnetized plasmas shows that trapped ionmuir wave electric fields in a quasi-neutral plasma with non-
influence strongly ion cyclotron waves (Abbasi et al., 1999). isothermal ions whose temperature is much smaller than the
In laboratory experiments, the formation and dynamics ofelectron thermal temperature.
solitary electron holes (Saeki et al., 1979; Petraconi and Ma- Relativistic effects play a very important role in high-
cel, 2003) and ion holes &eseli et al, 1981, 1984, 1987; energy laser-plasma experiments (Shukla, 1986; Mont-
Nakamura et al., 1999) as well as accelerated ion holegiomery, 2001), in plasma based electron and photon accel-
(Franck et al., 2001) have been observed. Observationsrators (Bingham, 2003; Bingham et al., 2004; Mendong¢a,
of broad electrostatic noise (BEN) by the GEOTAIL (Mat- 2001), in supernova remnants and in gamma ray bursts (Pi-
sumoto et al., 1994) and FAST spacecrafts (Ergun et al.ran, 1999), where electrons can be accelerated to relativis-
1998a, b, 2001) in the auroral acceleration regions haveic energies by strong electrostatic fields. For short laser
revealed that BEN is connected to solitary electron BGK pulse intensities exceeding #0W/cn?, electrons in the
modes/electron holes. Recent observations by the WINDOaser beam oscillate relativistically. Interactions between in-
satellite in the Earth’s bow shock also reveal localized struc-tense short laser pulses and background plasma give rise to
tures with bipolar electric fields typical for the electron BGK a number of nonlinear effects (Mendonca, 2001; Shukla et
modes/holes (Bale, 1998, 2002; Hoshino, 2003). The geoal., 1986; Bingham et al., 2003; Bingham, 2004) associ-
magnetic field-aligned bipolar electric field pulses associatechted with relativistic electron mass increase in the electro-
with electron phase space holes have also been observed Inyagnetic fields and the plasma density modification due to
the Polar and Cluster spacecrafts in the magnetosheath andlativistic radiation ponderomotive force. In the past, sev-
at the Earth’s magnetopause (Cattel et al., 2002; Dombeckral authors presented theoretical (Kaw et al., 1992; Esirke-
et al., 2001; Pickett et al., 2002, 2004; Drake et al., 2003) pov et al., 1998) and particle-in-cell simulation (Esirkepov et
while signatures of ion holes have been observed by the Fastl., 1998; Bulanov et al., 1999; Farina and Bulanov, 2001;
Auroral Snapshot (FAST) spacecraft (McFadden et al., 2003Naumova et al., 2001) studies of intense electromagnetic en-
and by the Viking satellite (Bosim, et al., 1988). velope solitons in a cold plasma where the plasma slow re-
The interaction between low-frequency ion-acoustic sponse to the electromagnetic waves is modeled by the elec-
waves with high-frequency Langmuir turbulence and elec-tron continuity and relativistic momentum equations, supple-
tromagnetic waves was described more than three decadesented by Poisson’s equation. Experimental observations
ago by Hasegawa (1970), Karpman (1971, 1975a, b) and ZaBorghesi et al., 2002) have shown bubble-like structures in
kharov (1972), in which high-frequency photons and plas-proton images of laser-produced plasmas, which are inter-
mons interact nonlinearly with low-frequency ion-acoustic preted as remnants of electromagnetic envelope solitons.
waves via the ponderomotive force arising due to the spa- In this paper, we present a review of recent theoretical and
tial gradient of the high-frequency wave intensity. This non- numerical results of the interaction between ion and electron
linear interaction is typically described by the two-fluid and holes with the background plasma. Specifically, we find that
Poisson-Maxwell equations, and the governing equations adeolliding ion holes may lead to non-Maxwellian electron dis-
mit the localization of photon and plasmon wavepackets,tributions due to the acceleration of electrons in the negative
leading to the formation of envelope light and Langmuir ion hole potential, which works as a barrier for the negatively
wave solitons (Rudakov, 1972; Varma and Rao, 1980; Raaharged electrons (Eliasson and Shukla, 2004a). Streams of
and Varma, 1982; Schamel, 1977). The latter are composedlectrons are accelerated by the colliding ion holes, and these
of electron/ion density depression which traps photon ancelectron streams can excite high-frequency Langmuir waves
Langmuir wave envelops. Schamel and Maslov (1999) studdue to a streaming instability. On the other hand, Lang-
ied theoretically the contraction of Langmuir waves trappedmuir waves can be trapped in the density cavity of the ion
in small-amplitude electron holes. Califano and Lontanoholes, as described by a nonlinear $ctinger equation for
(1998) and Wang et al. (1997) studied numerically by Vlasovthe Langmuir waves (Shukla and Eliasson, 2003). Numeri-
simulations the dynamics of finite-amplitude high-frequency cal studies show that the trapped Langmuir waves are Lan-
Langmuir waves in an one-dimensional electron-ion plasmagdau damped due to the relatively small Debye-scale of the
where wave collapse and heating of the electrons have beeion holes (Eliasson and Shukla, 2004a). We have also stud-
observed. In two and three dimensions, one encounters phaed the fully nonlinear interaction between electron holes and
ton self-focusing and Langmuir wave collapse (Zakharov,oxygen ions by means of a Vlasov simulations (Eliasson and
1972; Shapiro and Shevchenko 1984; Goldman, 1984). Th&hukla, 2004b), where it is found that the large-amplitude
formation of cavitons has been observed in the ionospherelectron hole potential accelerates the ions locally and that
(Wong, 1974) as well as in several laboratory experimentgshe self-created ion density cavity accelerates the electron
(Ikezi, 1976; Intrator, 1984; Wong, 1975). Yan'kov (1979) hole, which propagates away from the ion cavity with a con-
studied the response of kinetic untrapped ions in the Langstant speed close to half the electron thermal speed. Finally,
muir envelope soliton theory, and predicted the formation ofwe have extended the idea of Schamel to relativistic plasma,
sub ion thermal small-amplitude negative potential wells inwhere the trapped and free particles are given by solutions
plasmas. On the other hand, Mokhov and Chukbar (1984pf the relativistic Vlasov equation. We have studied theoret-
found a Langmuir envelope soliton accompanied with small-ically and numerically the properties of relativistic electron
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holes, and their interaction with relativistically high ampli- Ve g R R o
tude electromagnetic waves. . : : O
The article is organized as follows. In Sect. 2, we re- .
view the general theory of ion and electron holes based on I
Schamel’s solution of the quasi-stationary VIasov-Poisson_m

system. The dynamics of ion holes in plasmas and their in-
teraction with high-frequency waves and kinetic electrons is 3 ° 7
discussed in Sect. 3. In Sect. 4, we study the dynamics of -
electron holes in a plasma with mobile ions. An extension , o ﬁ. -
of Schamel’s theory is presented in Sect. 5, where relativis- -
tic electron holes and their interactions with intense electro- . |
magnetic radiation are studied theoretically and numerically.
Finally, conclusions are drawn in Sect. 6. P
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2 General theory of ion and electron holes 5l -
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The dynamics of electrons and ions in an unmagnetized, col-

lisionless plasma is governed by the Viasov-Poisson SySten”‘:ig. 1. The electron distribution function at= Oa);el (left panel),

a_ff + va_fj _ q_]8_<p% -0 (1) t= 7a);el (middle panel) and = 700);,(} (lower panel). The initial
dt dx  mjdx dv distribution function at = Ow,¢- is f = no(me/2nTe)Y?[1 +
and 0.5¢050.5x/rp)] exp(—mev2/2T,).
Bzgp
—=—47TZQ'I1', (2
2 iy
dx ; and
where the number density is d? o0
. Y Eﬁ = —4716/ (fi — f)dv. ©)
—00
nj = / fj dv. (3) . . . . . .
—00 Equationd can be integrated along its particle trajectories, so

Here f; is the distribution function of the particle species that the distribution functiong; are functions of the particle
j (j equalse for electrons and for ions), m; is the mass, €nergy
ge = —e, q; = e, e is the magnitude of the electron charge, 2
E = —d¢/0x is the electric field, ang is the electrostatic ¢, = mi(v — uo)” + e (6)
potential. In Fig.1, we have solved numerically the Vlasov 2
equation for the electrons, while the ions have been assumeand
to have a constant density, = ng. Here, the initial condi- 2
tion is a large-amplitude, density-modulated wave, which isg, = me(v — uo)” _ e @)
released at = Ow;el, and which then evolves in time, where 2
wpe = (dmnoe?/m,)Y/? is the electron plasma frequency and for ions and electrons, respectively. Hegg, > 0 corre-
no is the equilibrium electron number density. We see thatsponds to untrapped particles, while < 0 corresponds to
att = 7w}, some of the electrons have been accelerated byrapped particles, whep — 0 at|&| = co.
the self-consistent electrostatic field and have formed streams Electron holes are characterized by a localized positive po-
in velocity space. At = 7060;61, the streams of electrons tential, in which a population of the negatively charged elec-
have mixed further in a complex fashion. Two electron holestrons can be trapped. A special class of electron hole solu-
have been created at~ +3 Vr,, associated with a deple- tions can be found by prescribing the distribution function
tion of the electron distribution function and a population for the trapped and free electrons (Schamel 1971, 1972),
of trapped ele<1:t£ons moving with the electron holes. Here, 1272
Vre = (T,/m.)Y? is the electron thermal speed afidis the g, expl — L [:l:gj/z N (m_ug) } & -0,
electron temperature. T. 2

In order to describe ion and electron holes mathematically,’¢ ~ 5 ®)
we look for quasi-stationary structures moving with velocity ae exp[—Tle (,656 + ’”92“0)} i &, <0,
vo. In this case, we make the ansgiz= f;(¢, v) andy =
(&), where¢ = x — ugt, which transforms the system of
Egs. (1) and @) to a new set of equations

wherea, = no(m./2nT,)*?, andg is the trapping param-

eter describing the “temperatures” of the trapped electrons.
af;  qj dp of; Negative values o8, which we are interested in here, leads

(—uo+ U)E N m_jaﬁ =0, ) {0 a vortex distributions of the trapped electrons, where the
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Fig. 2. The electron distribution function in velocity space (from
Schamel, 1986). In a frame moving with speed of the the electron
hole, electrons with a velocitjy| < /24 are trapped. Negative

B corresponds to an excavated vortex distribution, wiile= 0
corresponds to a flat (constant) distribution. The veloeityscaled

by /T, /m., and the potentiap by T, /e.

distribution function is excavated locally. This is illustrated

in Figs.2 and3 (taken from Schamel, 1986), where electrons Fig. 3.  Particle trajectories in the vicinity of an electron hole

with negative energies are trapped in an excavated region dfrom Schamel, 1986), for different normalized (By) energies

the electron distribution function. In the study of electron Ee- Trapped electrons have negative energis € 0), while free

holes which are moving much faster than the ion sound spee§l€ctrons have positive energigs.(> 0). Here,s denotes the sign

(Te/mi)l/2| one can assume that the ions form a constantOf the velocities of the free electrons, in a frame moving with the
. . . speed of the electron hole.

neutralizing backgroundi; = ng. We discuss a deviation

from this treatment for the case of standing electron hole

in Sect. 4, where the ion dynamics becomes important am%ae dynamical interaction between ion holes may change

where the electron holes are accelerated by the self-creat o . .

. : : o . e electron distribution so that it deviates strongly from the

ion density. Integration of the electron distribution function : o . . N
axwellian distribution. By integrating the distributions for

over veloc_lty space gives _the eIectron densny as afunctu_)n OMe free and trapped ions and the electrons, both the ion and
the potentialn. (¢), which inserted into the Poisson equation o )
: : : . electron densities can be expressed as functions of the po-
gives an equation for the self-consistent potential (Schamel,_ " . : X
tential, n; (p) andn.(¢), respectively. Inserting the parti-

1971, 2000). O . : .
. : . cle number densities into the Poisson equation, one obtains
lon holes are characterized by a localized negative poten-

tial, which can trap a population of the ions. Similarly as for an equation for the self-consistent potential of the ion hole,

the electron holes, a special class of solutions can be foun&thCh may be solved analytically by means the Sagdeev-

by prescribing the ion distribution function for fre€; (> 0) potential method (Schamel, 1971, 2000), or numerically as

and trapped§; < 0) ions as (Bujarbarua and Schamel, 1981) ;Or(l)(lr;;near boundary value problem (Eliasson and Shukla,

o\ 1/272
a; exp —% |::|:5il/2 + (%) :| , & >0,
(9) 3 The dynamics of ion holes in plasmas

2
a; exp _Ti,- (aé’i + mlzu°>:| , & <0,

fi:

In the present section, we will study some kinetic effects as-
sociated with the interaction between ion holes and the back-
ground electron-ion plasma. lon holes are associated with

! ) . . a negative electrostatic potential, which repels the electrons.
of the trapped ions. We are interested in negative values R herefore, low-energy electrons can be trapped between two

a, giving an excavated vortex distribution of the ions. In the ion holes, and during collisions between the ion holes, the

study of ion holes, th_e e_Iectrons are usually assumed to bf"ow—energy electrons are accelerated to high energies by the
Maxwell-Boltzmann distributed, ion hole potential, forming electron streams escaping the two
m, \ Y2 ep  mev? colliding ion holes. Streams of electrons can excite high-

fe =no <271Te> p 7. 21, ) (10 frequency Langmuir waves due to a streaming instability, and

thus the processes on the slower ion timescale gives rise to

which simplifies the mathematics somewhat compared tdhigh-frequency waves on an electron timescale. On the other

using an exact solution of the Vlasov equation for elec-hand, ion holes are characterized by a depletion of the elec-
trons. We will see, however, in the following section that trons, which gives the possibility that high-frequency Lang-

whereq; = no(m; /2 T;)Y?, T; is the ion temperature and
is the trapping parameter which describes the “temperature




B. Eliasson and P. K. Shukla: The dynamics of electron and ion holes 273

0 -1 -1
t—pri t=0mpi
0.4
0.3 o
02 4 V/vTe
o1 W,
My
0
X/I’D 2 VIV,
=359 07 t=3590
0.4 0.4
03 "o
L 2 v/v_l_e
0 0.2
3
0.1 Fig. 5. The electron velocity distribution at = 8rp, for ¢t =
-5 -1 =1 i -1
o Oa)pl. (upper panel), = 35'9“’171' (middle panel) and = 133“)1”'
-40 20 0 20 40 (lower panel).

= -1
=1330;]

40 20 0 20 40

conditions @) and @0) is obtained by inserting them into
Eqg. ), which is then integrated (Bujarbarua and Schamel,
1981; Shukla and Eliasson, 2003) to obtain the potegtial
as a function ofx; in practice the integration of Eg5) is
performed numerically. The potential thus obtained is then
inserted into Eqs.9) and @L0) to obtain the initial conditions
for the ion and electron distribution functions.

First, we investigate the process of two colliding ion
holes, as shown in Figet-6. Here,rp = Vr./wpe =
(T,/4mnoe®)/? is the electron Debye length. For the initial
conditions, we considered that the ion holes initially are well
panel) and = 35-9w;i1 (middle panel), and after the collision at separated in space, and that the interaction between the ion
t = 133");11 (lower panel). The color bar goes from dark blue holes is weak, so that the solutions for the single ion holes
(small values) to dark red (large values). can be matched in space to form an initial condition for the
case with two ion holes. Figueedisplays the features of the
ion and electron distribution functions for two colliding ion

muir waves can be trapped in the ion hole. Clearly, if the N0les, where initially (upper panels) the left ion hole propa-

i — . (T )12
Langmuir waves have a large amplitude, there will be a mod-9ates with the speaeh = 0.9 Vr;, whereVr; = (Ti/m;) /

ification of the ion hole due to the ponderomotive force act-1S the ion thermal speed, and the right ion hole is standing.
ing on the electrons, which are repelled in the direction 0fThe ion and electron distribution functions associated with

. .. . _1
decreasing Langmuir electric field amplitudes. These elec!n€ ion holes are shown before collision at times Ow

trons then change the ion hole potential, as described via théupper panels) and = 35.9a>;,.1 (middle panels), and af-
Poisson equation. Thus, the interaction between the ion holegr collision at timer = 133w~ (lower panels). The left
1

with the background plasma gives rise to a multitude of com-panels of Fig4 exhibit that the two ion holes undergo col-
plex phenomena on different timescales, which we will ex-isions without being destroyed, and as can be seen in the
plore theoretically and numerically in the present section.  right panels of Fig4, the electrons have a strongly non-
In order to investigate the time-dependent dynamics of ionMaxwellian flat top distribution in the region between the ion
holes as well as kinetic effects for electrons, we employ aholes after that the collision has taken place. We have plot-
newly developed code (Eliasson, 2001), which numericallyted the electron velocity distribution function againgt/;,
solves the Vlasov-Poisson system of Ed9.dnd @). The  atx = 8.0rp in Fig. 5. We see that the initial Maxwellian
initial conditions for f; is taken as the Schamel distribution distribution (the upper panel) changes to a distribution with
(Schamel, 1986) for the free and trapped ions, which in thebeams av ~ +0.6 V7, (the middle panel) slightly before
rest frame of the bulk plasma is given by E§).(We use collision, and to a flat-top distribution with two maxima after
(Shukla and Eliasson, 2003);/m. = 1836, = —1.0, collision (the lower panel). The reason for the creation of the
andT,/T; = 10. The initial condition for the electron dis- flat-topped velocity distribution is that the two ion holes are
tribution function is taken to be the Maxwell-Boltzmann dis- associated with negative electrostatic potentials, and the elec-

»
=

0
£

-5

o4 tribution, given by Eq. 10). The potentiaky for the initial
0.3
0.2
0.1
0
xIry

Fig. 4. The scaled ion distribution functiofj Vr; /ng (left panels)
and electron distribution functiotf, V. /ng (right panels) of two
colliding ion holes, before the collision at times= Oa);il (upper
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Eifann, Ty Pawer spectrum of E (decibe) overdense so that the waves are prevented from escaping the

025 * cavity. A similar scenario was investigated theoretically by

02 ” Schamel and Maslov (1999) for the trapping of Langmuir
o * waves in small-amplitude electron holes. In the present sec-
005 * tion, we investigate the trapping of Langmuir waves in ion
o ’ holes, while in Sect. 5 we consider the trapping of electro-
-01 e magnetic waves in electron holes.
o - We here consider an unmagnetized electron-ion plasma
-025 - in the presence of Langmuir waves and large-amplitude ion

0 50 100 o Y% os 1 15 2 25 3 holes. At equilibrium, we have.o = njo = no, wheren jo

o, W,

is the unperturbed number density of the particle spegies

Fig. 6. The electric field att = 8.0rp as a function otv ;¢ (left (/ equalse for electrons and for ions). The linear Lang-

. . 1/2
panel) and the power spectrum of the electric field as a function ofmuir wave frequency isg = (a)f,e + 3kSVT2€) , Whereko
@/wpe (right panel). is the wavenumber. Large-amplitude Langmuir waves inter-
acting nonlinearly with ion holes generate Langmuir wave

envelope whose electric fiell evolves slowly (in compar-

trons entering the region between the ion holes after collisiong,, with the electron plasma wave period) according to a
must have a large enough kinetic energy to cross the potentia|,jinear Schidinger equation

barriers that are set up by the ion holes. The flattening of the
low-velocity region then occurs probably due to repeated re-_ 0 0 32E e
flections and slowing down of the trapped electrons against©re <3, T 3x> E+ 3VT26@ + wfw (1 - no) E=0 (11)
the two moving potential barriers. On the other hand, we
also observe that before collision, the low-energy populationwherev, = 3koVT26/a)pe is the group velocity of the Lang-
of electrons are compressed between the ion holes (see thpuir waves. We note that EdLT) has been derived by com-
middle right panel of Fig4) and released during collision; bining the electron continuity and momentum equations as
these electrons are then accelerated to form beams of eleg¢ell as by using Poisson’s equation with fixed ions, and by
trons (see the middle panel of Fig) which escape the ion retaining the arbitrary large electron number density varia-
holes. The energy of the electron beams are then released tion n, associated with the ion holes in the presence of the
a beam-plasma instability triggering high-frequency plasmaLangmuir wave ponderomotive force. Assuming that the
oscillations, as illustrated in Fig.(the left panel) where the phase speed of ion holes is much smaller than the electron
electric field atvr = 8.0rp is plotted as a function ab,,;z. thermal speed, we readily obtain from the inertialess elec-
High-frequency plasma oscillations are beginning to be ex-tron equation of motion the electron number density in the
cited at timer ~ 1Owj.1. The large-amplitude bipolar elec- presence of the ponderomotive force of the Langmuir waves.
tric fields of the ion hole appear as it crosses- 8.0rp at  The resultis
timet ~ 50—80a)_il. By examining the frequency spectrum .
of the electric field (the right panel), we notice that the high- e = noexpit( — W2)], (12)
frequency oscillations have broad frequency spectrum which ]
is up-shifted compared to the electron plasma frequency. wéheret = Ti/T., W = |E|/(16mnoT;)"/? is the scaled
also have a slightly “downshifted” frequency band around L@ngmuir wave envelope, anfl = e¢/T; is the scaled
w/w,, = 0.9, which we may be the frequencies of Lang- eIectrosthc potential of the ion hole. We note that the
muir waves trapped in the ion holes, as described below. " 2-term in Eq. (2) comes from the averaging of the non-
The numerical solutions of the Vlasov-Poisson systemlinear termm.vj.dv./dx over the Langmuir wave period
were performed by means of a Fourier transform method??/@pe, Whereuv,e ~ —eEj;/m.wy. is the high-frequency
(Eliasson, 2001). We used 500 intervalscispace with the electron quiver velocity in the Langmuir wave electric field
domain—40 < x/rp < 40 with periodic boundary condi- Er = (1/2)E explikox — iwor)+complex conjugate.
tions. We used 300 intervals in velocity space. The electron f the potential has a maximuinax >_0, then there ex-
and ion speed intervals were in the rangd$.7 < v/ V7, < ISt in general, trapped ions whege < ¢max while at the
157 and—0.118 < v/ Vr, < 0.118, respectively. The time- POINt whereg = ¢ma there are no trapped ions. Similar
stepAt ~ 0.013601—)61 was adapted dynamically to maintain to Schamel (1971), we chose at this point a Maxwellian dis-

numerical stability. tribution for the free ions. The ion distribution function as-
sociated with the ion holes can then be obtained by solving
3.1 Trapping of Langmuir waves in ion holes the ion Vlasov equation for free and trapped ions, which have

speeds larger and smaller th@tpmax— ¢)1Y/2, respectively.
lon holes are associated with a local depletion of both ionsThe electric potential will turn out to be essentially negative,
and electrons, the latter due to the negative ion hole potentialvith only a small-amplitude positive maximuginayx com-
Clearly, there is a possibility that waves could be trappedpared to the large-amplitude negative potential well with a
in this plasma density cavity if the surrounding plasma is minimum atgmin = —. Thus, the potential is restricted by
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—¥ < ¢ < dmax, Wherey plays the role of the amplitude. and
Integrating the sum of the free and trapped ion distribution - M2
functions over velocity space, we obtain the ion number den-t_ —expt(d—WH+b exp( - _t) x
sity (Schamel, 1971) 982 2

- - M? -
{I(¢max -9+ K |:—l, Pmax — ¢] (18)

M? . .
ni=n0bexp<—7l){1(¢max—¢) 2

2 -
M2 2 — = Wpla@ — x>]}=o,
+K<7’,¢>max—¢)+WWD[\/a(¢—¢max)]}, 13)  Jala CVEETma

1 2,2 2 1
whereM; = ug/ Vr; is the Mach number, angy is the ion wherei = —20,50 — 3k*rj (1 — ug/vg) = —20,;0 —

hole speed. The normalization constant 3k2r2 +u3/3V2, represents a nonlinear frequency shrft The
) system of Egs.X7) and (L9) admits the first integral in the
M; . .
b= exp( ) {1(¢max) form of a Hamiltonian
- aw a
+K£i2(13 +Lw[ —aPmax ' H(W,$: M;, ra/\)—3<a ) (a¢>
5+ $max el D m , & &

- 1 .
is chosen so that whep = 0, the total density of ionsis —(* — HW? + ;{exp[r(qb - W3- 1
no. The special functions are defined as (Bujarbarua and 2
M: - -
Schamel, 1981) +b exp( - 7’) [P(¢max —¢,a)

1(®) = exp(®)[1 — erf(v/ )],

M2 . .
2 (72 +h(—’,0,¢ —¢)—1]—Ho=0, (19)
K(X, D) = —/ VX cost exp(—d tarf 6 (14) 2 max
N .

2 0)erf(v/X cosd) d where in the unperturbed staté|(= oo) we have used the
+X cos)ert( ’ boundary condition$V = 0,¢ = 0,0W/3& =0, 3¢/d& =
and the Dawson integral 0. The constant
Wp(Z) = EX[X—ZZ)/ exp(t?) dt. (15) Ho= bexF’(‘T) |:P(¢max o)+h <7 0, ¢max) i|

0
We are here mostly interested in negative values bow- is chosen so tha? = 0 at|&| = oo. The auxiliary functions

ever, for positivax, we use (Abramowitz and Stegun, 1972) are defined as
Wp(iZ) = i(J/7/2) exp(Z?)erf(Z) (wherei = +/—1) and
replace the ternt2//mla)) Wply/ o (¢ — dmaol in Eq. 13)  P(P.a) =1(P) + 2\/>(1 —a

by (1/va)expi—a(d — dmaolerly/ —a(d — dmad]; we Yooy

note especially tha¥?; = 0,« = 1 leads to a Boltzmann dis- +av 7|yl WD( P, (20)
tribution n; = ngexp(—¢) for the ion number density. The
Langmuir wave ponderomotive force acting on the ions is
weaker by the electron to ion mass ratio in comparison wrth
the one acting on the electrons, and therefore it is ignored in
Eq. (13). The electron ponderomotive force is transmitted to
ions via the ambipolar potential, which is determined from

b
h(X,a,b) = f K(X, ®)dD. (21)

Because we are interested in symmetric solutions defined

Poisson’s equation by W(§) = W(=§) and¢(§) = ¢(~%), the appropriate
boundary conditions & = 0 areW = Wy, ¢ = —,
2 ~
o} oW/dé = 0, anddgp/dé = 0. Hence, from Eq.19) we
b2 ox2 Ve~ N 16)  have

whereN, = n./no andN; = n;/no.
We are interested in quasi-steady state solutions of* HWg - —{exqr( v - wol-1
Egs. 1)—(16), which are fully nonlinear. We insert M.2 _
E(x,1) = WE)exp{i[Kx — ©t]} and¢ = ¢(&) where  —b exp( - 7’) [P(¢max+ v, o) (22)
& = (x —upt)/rp, and whereW (¢), K and® are assumed )
to be real, into .Eqs.](l)—(16) and obtain a coupled set of +h(% 0, fmax+ 1#) _ 1] — Hy=0,
nonlinear equations 2

2w - 2 which shows how the maximum values Bfy and ¢ are
3 952 (*=DW —Wexfr(¢ — W] =0, (17)  related toM;, gmax and A for given values ofr anda. A
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with the eigenvalue. and the corresponding eigenfunction
W, and wherep is obtained by assuming = 0 in the solu-

tion of Eq. L9); in the upper and lower panels of Fig.we
display the ion density profiles and the associated ambipolar
potentials for different sets of parameters, where the obtained
negative potentials are used in the eigenvalue probBsn (

The eigenvalue problenf) has a continuous spectrum
for A < 0, associated with non-localized, propagating Lang-
muir wave envelope®, and a point spectrum far > 0, cor-
responding to localized, trapped Langmuir wave envelopes.
We have investigated numerically the cases corresponding
to four different Mach numbers displayed in Fig. and
found the corresponding positive eigenvalues listed in the

-10 -5 0 5 10 left columns of Tablel, where each eigenvalueis asso-
g ciated to a bell-shaped eigenfuncti®vi. Using kg = 0O
in the definition ofx, we obtain the oscillation frequency
Fig. 7. _The ion de_nsity (upper pgnel) and the poteqtial (lower of the trapped Langmuir waves awp = 1+ 60 =
panel) of ion holes v_wthout Langmuir wave® (= 0) for different 1— /2 + (uo/ VT@)2/6 =1-2/2+ M~2‘L'me/6m,'. Only
Mach numbers/;, with = = 0.1 ande = —1.0. one positive eigenvalue was found for each case, admitting
only the ground states for the Langmuir waves to be linearly
trapped.

Next, we examine the influence of finite-amplitude Lang-
muir waves on the ion hole, in which the fully nonlinear sys-
tem of Egs. (17) and (18) has to be solved numerically, and
where we use the same parameters as in the linear treatment
above. The numerical solutions reveal that the ion hole deep-
ened and widened, admitting the eigenvalu¢éo become

2 larger. We have investigated the special case with a non-
1 (%) ¥ Vg(d: M. 7. a) =0, (23) Iir_1ear shift of 01 of A, listed in the cqumn_ with nonlinear
2\ 3¢ eigenvalues in Tablg, and have found solutions for all cases
except forM; = 1.4; the numerical solutions are depicted
where the Sagdeev potential for our purposes @ity =0  in Fig. 8. Comparing with Fig7, we see that the presence

practical application of the Hamiltonian9) is to check the
correctness of any numerical scheme used to solve Eds. (
and (19), while Eq. @3) depicts the parameter regimes for
the existence of trapped Langmuir waves in ion holes.

In the absence of the Langmuir waves, ion holes are gov
erned by the energy integral (Sagdeev, 1966)

is (Bujarbarua and Schamel, 1981) of trapped finite-amplitude Langmuir waves makes the ion
density depletion both deeper and wider, and the same holds
Ve(d: M;, 7, ) = —E{}[exp(nﬁ) —1 fqr the ambipplar poter)tial weI_I. The deepening of the am-
|7t bipolar negative potential well is a feature closely related to
M2 _ M2 B the strongly non-isothermal trapped ion distribution function.
+ exp( - 71) [P(—¢, o) + h(? 0, —¢> - 1} } (24)  For this case, the electrostatic potential had small-amplitude

maximagmay of the order~ 102 on each side of the ion
Equation 23), which is obtained from Eq.10) in the  hole, and this maximum of the potential increased with in-
limit of vanishing Langmuir wave electric fields, determines creasingV; .
the profile of ion holes. The latter exist provided that Physically, the broadening of the ion hole and the enhance-
Vs(é: M;, 7, a) is negative fop between zero andy. The ~ ment of negative ambipolar potential occur because the pon-
conditionVg(—; M;, T, ) = O gives a relation betweef deromotive force of the Langmuir waves locally expels elec-
andM; for given values o and. It turns out that ion holes ~ trons, which pull ions along to maintain the local charge
without large-amplitude Langmuir waves have only negativeneutrality. The deficit of the ions in plasmas, in turn, pro-
potentials, as pre-assumed earlier. duces more negative potential within the ion hole that is now
We have carried out numerical studies of the equationgvidened and enlarged to trap the localized Langmuir wave
governing ion holes with and without Langmuir waves for electric field envelope.
7 = 0.1 anda = —1.0. First, we consider small-amplitude In order to investigate the conditions for the existence of
Langmuir waves which are not strong enough to modify theion holes in the presence of strong Langmuir fields, we nu-
ion hole, but which can be linearly trapped in the electronmerically solved Eq. (22) fory as a function ofM;; see
density well of the hole. Accordingly, fo? < 1 Eq. (L7) Fig. 9. We used the same parameters: 0.1 ande = —1.0

turns into a linear eigenvalue prob'em of the form as above. Here, we assumed the Langmuir field to be giVen
as an external parameter (s#jy = 0.8) and with a non-
d2w linear shift that approximately follows the relatiaigM;) =

3 dE2 +[1—exprg) =AW =0, (25) 0.3 0.14 M; obtained from the fourth column of Table
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Table 1. Theoretical eigenvalues and normalized frequencies/w . for trapped Langmuir waves inside ion holes propagating with
different Mach numbergs/;. Theoretical linear values are compared with numerical values obtained from direct Vlasov simulation (left and
middle columns). Eigenvalues (and frequencies) used in the the nonlinear theoretical treatment of large-amplitude trapped Langmuir wave
envelopes are shown in the right columns.

Mach Linear eigenvalues Frequencies from Nonlinear eigenvalues
number and frequencies Vlasov simulation and frequencies

M; A ®/wpe o/wpe = (or + iV)/wpe A w/wpe

14 0.0013 0999 — —

0.9 0.0463 0977 0.98 — 0.00i 0.1463 0927

0.7 0.0772 Q961 0.1772 0911

0.0 0.1906 0905 0.93— 0.03i 0.2906 0855

20

Fig. 9. Numerical solutions of Eq. (22), depicting (= —émin)
versusM; for Wo = 0.0 andWg = 0.8, witht = 0.1 anda =
—1.0. We see that the ion hole loaded with the Langmuir wave
electric fields has an upper bound on the Mach number, which is
smaller than the one without the Langmuir wave fields.

but is studied by direct simulations of the Vlasov-Poisson
Fig. 8. The electric field (upper panel), the ion density (middle system below.

panel) and the potential (lower panel) of ion holes in the presence of
large-amplitude Langmuir waves for different Mach numbfs
with 7 = 0.1 ande = —1.0.

It should be stressed that the properties of the present
Langmuir envelope solitons significantly differ from those
based on Zakharov’'s model (1972) which utilizes the fluid
ion response for driven (by the Langmuir wave ponderomo-
tive force) ion-acoustic perturbations and yield subsonic den-
This relation overestimates slightly the Langmuir fiéi sity depression accompanied with a positive localized am-
for small M; and underestimates slightly the field for the bipolar potential structure. Furthermore, consideration of a
highestM; ; see the upper panel in Fi§. We assumed amax- Boltzmann ion density distribution, vizN; = exp(—¢),
imum potential 0fmax = 0.003. We found that for this set of would correspond to the cadé = 0 anda = 1 in Eq. (18).
parameters, the solution had an upper bofid= 1.25 for Here, as shown in FiglO, we have a localized Langmuir
the existence of localized solutions, which is clearly smallerwave electric field envelope trapped in a standing ion den-
than the existence in the absence of the Langmuir fields. In sity cavity. The corresponding slow ambipolar potential is
more exact mapping of the existence of ion holes, one needpositive and localized.

to explore more carefully the relationships between differ- In the numerical solutions of Eqgs. (17) and (18) , the sec-
ent parameters in Eq. (22), possibly by solving the systenond derivatives were approximated by a second-order cen-
of Egs. (17) and (18) for different cases. Furthermore, thetered difference scheme (Isaacson and Keller, 1994), and the
dynamics of the time-dependent system is not explored herejalues of W and¢ were set to zero at the boundaries of the
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Fig. 11. Normalized Langmuir wave Electric field /./4rwngT;

N : g
P 0.6l ] (the bipolar electric field has been removed from the data) as a
function of the normalized spaog'rp and timew,.t. The Lang-
040 5 0 5 10 muir wave is trapped in the ion hole which is initially centered at

3 x/rp = 0, and moving with the speetf; = 0 (left panel) and
M; = 0.9 (right panel).

0.4r

s 2'2, | than in the standing hole case. This can be understood in
‘ that the frequency shift is smaller for the moving ion hole
0'1/\ case, making the scalelength larger for the Langmuir wave
9 5 0 5 10 envelope, resulting in a smaller Landau damping; some dis-
H tance away from the ion hole density minimum the potential
¢ vanishes, and there the Langmuir wave envelope decreases
Fig. 10. The Langmuir electric field (upper panel), the ion density exponentially withé with the scalelength/3/1. A smaller
(middle panel) and the potential (lower panel) of a Langmuir cavi- A leads to a larger length-scale, resulting in a weaker Lan-
ton with a Boltzmann ion distribution fa¥; = 0,4 =0.1,7 =01  dau damping. In numerical simulations of large-amplitude
anda = 1.0. Langmuir waves, one has to apply an external pump field
to sustain the Langmuir field at constant amplitude, since
) ] ] ) the trapped Langmuir waves are Landau damped. We have
computational domain &t = +40. The resulting nonlinear pnqerved the following phenomena in Vlasov simulations:
system of equations was solved iteratively. We used 200Q4gh_intensity Langmuir waves are initially trapped inside
sampling points to resolve the solution. the ion hole. The ion density well associated with the ion
_ ) ) hole deepened, and the ion density surrounding the ion hole
3.2 Vlasov simulations of trapped Langmuir waves is depleted. The Langmuir field trapped in the ion hole ac-
celerated electrons which formed propagating electron BGK
In order to explore the dynamics of trapped Langmuir wavesyayes (electron holes). We could not observe a clear widen-
in anion hole, we have performed a new set of simulations tdng of the ion hole predicted by theory. Possible explana-
study the time-dependence of trapped Langmuir wave elections of this discrepancy can be that the electrons are strongly
tric fields. The results are displayed in Fid. heated in the simulation, which increases the temperature ra-
In these simulations, the electron density is initially per- tio ¢, leading to a scenario in which the ion hole tends to
turbed so that Langmuir waves are excited around the iorbecome smaller if other parameters are kept constant (Bu-
hole centered at/rp = 0. We examine the above discussed jarbarua and Schamel, 1981). Further, the theory does not
ion hole with zero-speed (the left panel) and the ion hole havpredict how the parameters of an ion hole changes dynami-
ing the speeds; = 0.9 (the right panel). Figurélshows  cally when the amplitude of the trapped Langmuir envelope
that Langmuir waves are trapped in the ion hole, with a max-changes in time.
imum wave amplitude at/rp = 0. We find that the trapped
Langmuir waves are oscillating with a real frequency slightly
lower than the electron plasma frequeney/w,. ~ 0.93 4 The dynamics of nonrelativistic electron holes in plas-
for the standing ion hole case, ang/w,. ~ 0.98 for for mas
the moving ion hole case withf; = 0.9, which is consistent
with the linear results listed in Table 1. For the standing holeln this section, we study the dynamics of nonrelativistic elec-
case, the Langmuir waves are strongly Landau damped, wittron holes in an electron-ion plasma. The shape of the elec-
a damping ratey ~ 0.03w,., which is an effect not cov- tron hole is not unique but is strongly dependent on the his-
ered by our theoretical model which is based on the electrortory of its creation. In order to investigate the dynamics
hydrodynamic model for the Langmuir wave packets. In theof electron holes numerically in a controlled manner, we
moving ion hole case, the damping is significantly weakeruse Schamel’s solution of the stationary Vlasov-Poisson sys-
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Fig. 12. The potential (upper panel) and the electron density (lower 3 -0.5 0
panel), associated with a standing electron halge (= 0) with 000 -s0 0 100 50 a
B = —0.7 (solid lines) and8 = —0.5 (dash-dotted lines), anda € @/rp @/rp
moving electron hole witld1, = 0.5 andg = —0.7 (dashed lines)

in plasmas with fixed ion background/{ = 1). Fig. 13. The electron density (upper left panel), the ion density (up-

per right panel), the electric field (lower left panel) and the potential

N . . . (lower right panel) of an initially standing electron hole. The chosen
tem to construct initial conditions for our simulations. The {an5ing parameter i§ = —0.7.

Schamel solution is well-behaved in the sense that the so-
lution for the distribution function is continuous and that it
goes to a shifted Maxwellian distribution far away from the
electron hole where the electric potential vanishes. Follow- In Fig. 13 we show the time development of an elec-
ing Bujarbarua and Schamel (1981), we prescribe solutionsron hole initially at rest. As the initial condition for
to the electron Vlasov equation in the form of distributions of the electron distribution function, we use the parameters
free and trapped electrons, as given in B). (Ve hereuse M, = 0 andg = —0.7 (the solid lines in Fig12), with
m;/m, = 29500 for oxygen ions. Integrating the untrapped a small local perturbation of the plasma near the electron
and trapped electron distributions over velocity space, we obhole. The perturbation consisted of a Maxwellian popula-
tain the electron density tion of electrons added to the initial condition for the elec-
, 12 tron hole, with the same temperature as the background elec-
Nyme=M212 | [ () +x M; & 2Wpl(=B¢)~"] (26)  trons and with the density perturbation of the fof, =
e— ’ k] . o
2 (r|B)Y/2 —0.008 sintix /2rp)/ costf(x/2rp). The most striking fea-
) ) ture, seen at time~ 130a);61, is that the electron hole “sud-
whereM, = uo/ Vr. is the Mach numbeto is the speed of  genly” starts moving in the negativedirection with a Mach
the electron hole, anfl = eg/ T is the scaled potential. The ymperps, ~ 0.55. (The direction of the propagation de-

special functiond, « andWp are given in Eqs.¥4)—(15),  pends on the perturbation in the initial condition.) The tran-

respectively. Poisson’s equation sition seems to happen when the ion density has formed a
92 deep enough cavity. When the electron hole has escaped

r%ﬁ =N, — N, (27)  the ion cavity, the ion density cavity continues to deepen

and an electron density cavity is created at the same place,
whereN, is given by Eq. 26), is solved as a nonlinear bound- neutralizing the plasma. In Fid.4, we have repeated the
ary value problem where is set to zero far away on each same numerical experiment as in Fig, including the lo-
side of the electron hole; a central difference approximationcal perturbation of the plasma, but with= —0.5, making
is used for the second derivative in Poisson’s equation, leadthe electron hole larger. In this case, the electron hole starts
ing to a system of nonlinear equations, which is solved itera-moving in the positiver direction atr ~ 100w 2, also with
tively with (a slightly modified) Newton’s method. a Mach numbetM, ~ 0.55. For both the8 = —0.7 and

In Fig. 12, we have plotted the electric potential and elec- 8 = —0.5 cases, the potential maximum decreases slightly
tron number density of the electron hole for the case of aduring the transition from standing to moving electron holes,
fixed ion background, vizN; = 1. We note that larger val- fromy = 4.5toy = 3.8 and fromy, = 7.8toy = 7.0, re-
ues ofM, and| 8| give smaller maxima of the potentialand  spectively. FoM, = 0.55, the diagram in Figl4a of Bujar-
less deep electron density minima, in agreement with Fig. 3darua and Schamel (1981) predicts that the trapping parame-
of Bujarbarua and Schamel (1981). The potentials obtaineder has changed {6 ~ —0.67 andg ~ —0.45, respectively,
in Fig. 12 are used to construct the numerical initial condi- for the two cases. We next analyze the distribution of en-
tions for the electron distribution function of electron holes ergy in the system. The total energy is conserved exactly in
(Bujarbarua and Schamel, 1981), to be used in our Vlasouthe continuous system and to a high degree in our numerical
simulations including the ion dynamics. simulations (Eliasson, 2001), and is distributed between the
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Fig. 14. The electron density (upper left panel), the ion density (up- Fig. 15. The total potential energW,o; = (1/2) [ E%dx as a

per right panel), the electric field (lower left panel) and the potential function of time (upper panels) and the minimum of the electrostatic

(lower right panel) of an initially stationary electron hole. The cho- potential (lower panels) fof = —0.7 (left panels) angg = —0.5

sen trapping parameter fis= —0.5. (right panels), obtained from the model for a stationary electron
hole in the presence of a varying ion density, where the ion density
is obtained from the Vlasov simulations.

kinetic energy of the particles and the potential energy stored

in the electric field.

In the upper panel of Fidl5, we have plotted the poten- Schamel (1971, 1986). We plotted the potential minimum
tial energyW,,; = (1/2) [ E?dx of the system for the two ~ @min &s a function of time, and found that at~ 1700,,}
simulation runs, as a function of time. Here, most of the & part of the potential becomes negative. It seems that the
potential energy is stored in the large-amplitude bipolar elec-acceleration of the electron hole occurs at approximately the
tric field of the electron hole, while some potential energy Same time as a part of the potential for the theoretical model
is released in high-frequency Langmuir waves. We observéddecomes negative. An alternative way of explaining accel-
a gradual decrease of the potential energy till the transitiorerating electron holes is as follows: The positive electron
time when the electron hole leaves the ion cavity and the pohole potential starts to reflect low energy ions giving rise to
tential energy performs large fluctuations~ 1300);61 for a local reduction ofv;. A_fter a while, at the center of the
the g = —0.7 case and ~ 100w, for the g = —0.5 case), electron hole, the conditiop”(x) = Ne(x) — Ni(x) < 0

whereafter the potential energy performs high-frequency osfor x near zero is no longer met and the .standing structure
cillations attributed to Langmuir waves released in the tran-C€@S€s to exist. Then the electron hole is accelerated such
sition, around a somewhat smaller constéfy,, attributed that a free ion component exists, giving rise to afre_e ion de_zn-
to the propagating electron hole bipolar electric field. The Sty Nif(x) necessary for the maintenance of the inequality
slow decrease of the potential energy in the initial phase in1€a" the electron hole center. Figui&indicates that indeed

dicates that the positive electrostatic potential of the electrorf¥i () = Nis (x) ~ 1 at the location of the propagating elec-
hole accelerates the ions which leave the vicinity of the elecron hole.

tron hole. In a homogeneous ion background' the sing|e' FinaIIy, we have studied interactions between two elec-
steady-state electron hole is associated with a positive poterfron holes with each other and with ions in a longer simu-
tial which traps electrons. Since the positive potential of thelation; see Figs16 and17. The electron holes witi$ =
electron hole and the negative potential of the ion cavity are—0.5 andg = —0.7 were initially placed att = —40rp
competing processes, there could be a problem of the exisahd x = 40rp, respectively. A local electron density
tence of a stationary electron hole if the ion density becomegerturbation was taken to be Maxwellian with the density
deep enough. In our case, the electron hole remains stable bédVe = —0.08{sinl (x/rp+40)/2]/ cosK[(x/rp+40)/2]+
escapes the ion cavity. In the lower panel of Ai§.we have ~ Sinh(x/rp—40)/2]/ costf[(x/rp+—40)/2]}, i.e. the same
taken the ion density; obtained in our Vlasov simulation ~Perturbations as in the single-hole cases, centered at the two
as an input to Poisson’s equation, which we then solve withelectron holes. Here, the electron holes also creates local
the electron density given by ERf). The potential of the ion density cavities, and after some time escapes the density
electron hole is norma”y positive everywhere when the ionscaVitieS at the same times as in the single electron hole cases.
are fixed background. In the presence of a local ion densitylhis can clearly be seen in Fig6, where the two electron
cavity, the potential may have a slightiggativeminimum, ~ holes start moving at ~ 100w, and: ~ 130w}, re-

and at this point we prescribe a Maxwellian distribution for spectively. Atr ~ 17040;@1, the two electron holes collide

the untrapped electrons in the same manner as often done higelastically and merge into a new electron hole, in accor-
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Fig. 16. The electron density (upper left panel), the ion density Fig. 17. The electron distribution for two electron holesrat=
(upper right panel), the electric field (lower left panel), and the po-0wp.- (upper left panel); = 155w, (upper right panel); =
tential (lower right panel) of two electron holes initially placed at 175w,/ (middle left panel); = 251w,¢ (middle right panel); =
x/rp = £40. The trapping parametgr= —0.5 for the left elec- 461w,¢ (lower left panel) and = 576w,a (lower right panel).
tron hole initially placed ak/rp = —40, andf = —0.7 forthe  gee the associated densities etc. in Egynitially, the left electron
right electron hole placed a/rp = 40. hole (placed at/rp = —40) has a trapping parametgr= —0.5,
while the right electron hole (placed.atrp = 40) hasg = —0.7.

dance with the results of Matsumoto (1994), whereafter the

single electron hole propagates slightly in the posilivéi-  properties of the electron holes are dramatically changed by
rection, and becomes trapped at a local ion density maximunghe relativistic mass increase of the electrons. Our relativis-
atx ~ 30rp; see the upper right panel of Fig6 for the ion ¢ simulation studies show that strongly relativistic electron
density and the lower right panel for the electron hole po-holes are long-lived, and that they survive head-on collisions.
tential. Afters ~ 400w, & new ion density cavity is cre- e expect that intense electron hole potentials can accelerate
ated where the electron hole is centered, and at this time thgjectrons to extremely high energies.

electron hole is again accelerated in the negatidéection. The dimensionless relativistic Vlasov-Poisson system,

~ 1 : : . i
At ~ 480w, the moving electron hole again encounters here jons are assumed to form a neutralizing background,
an ion density maximum located at~ —30rp, where the ;o

electron hole is trapped, performing large oscillations. The
electron phase space density is depicted in Erg.The ini- afe p afe | 3¢ 3fe

tial condition (upper left panel), the two electron holes hav- 3; + \/mg dx dp =0 (28)
ing started moving (upper right panel), collisions between

the two electron holes (middle left panel), the newly createdand

electron hole trapped at= 30rp (middle right panel), and

the electron hole trapped at= —30rp (lower panels). We 9% Y d 1 29
see that the electron holes remain stable during the accelerapx2 — /,oo fedp =1 (29)

tion by ion density cavities.

The numerical solutions of the Vlasov-Poisson systemWhereu = Vr./c, the distribution functionf, has been
were performed with a Fourier method (Eliasson, 2001).normalized byno/meVre, t by w2, x by rp, the momen-
We used 500 intervals in space with the domair-80 <  tUm p by m.Vr., and¢ by 7./e. Here,c is the speed of
x/rp < 80, and 300 intervals in velocity space. The electronlight in vacuum and the nonrelativistic plasma frequency is
velocity interval was set te-15.7 < v/Vr, < 157 and the ~ @pe = (4mnoe?/m)*/2. We (the observer) remain in the
ion velocity interval was set te-0.118 < v/ V7, < 0.118.  frame of the bulk plasma while the electron hole is moving
The time-stepAt ~ 0.01360;61 was adapted dynamically to With the speedio. Accordingly, we look for solutions of the
maintain numerical stability. form f(p, ) and¢ (§), where§ = x — M,t, M, = uo/ Vre

is the Mach number ang, is the constant propagation speed
of the electron hole. With this ansatz, the Vlasov-Poisson

5 Relativistic electron holes system £8) and @9) takes the form

In the present section, we develop a theory for the steady(_M )4 ) afe  d¢dfe 0 (30)

state electron holes in a relativistic plasma. We find that the /1 + u2p? E EE -
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and
d%¢

a2 31

o
=/ fodp—1.
—0oQ0
Integrating Eq. 80) along its trajectories, one finds the gen-
eral solution of the forny, = fo(€), wherefy is some func-
tion of one variable and

1 1
&=~ ep+ﬁ<\/l+uzp2—%>—¢

(32)

is a conserved quantity (energy) along the particle trajecto-

ries. Here, we have denoted = 1/,/1— M%MZ- At the
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& =07, we havep1(0) = yoM,, and the value of the distri-
bution function is
1
),wn

which should be matched with the distribution function for
the trapped electrons withh = 0 in order to obtain a con-
tinuous distribution function. For the trapped electrons, we
choose a relativistic Maxwell-Boltzmann distribution with a
negative “temperature”, viz.

fele=o+ = fo(0) = folyoMe) = ao exp<_ you_z

Y0
Je= aOeXp<_ 2
m

1—,35), £ <0, (38)

electron hole, a population of electrons is trapped in a |Oca|‘|eading to a vortex distribution fof < 0, a flat top distri-

ized positive potentiap, which goes to zero far away from
the electron hole. The energyhas been shifted so that the

bution for g = 0 and a shiftedixtner-Synge distribution for
B = 1. Clearly, the separatrix between the free and trapped

trapped electrons have a negative energy, while the untrappegdectron distributions is found whefe= 0 in Eq. B2). Solv-

(free) electrons have a positive energy.

A condition for the untrapped electrons is that far away
from the electron hole, the distribution should connect

smoothly to a Qttner-Synge distribution (de Groot et al.,

1980), which restricted to one momentum dimension takes

the form

~ 1
fo(p) = ao eXp[_?(‘/ 1+ u?p?— 1)} ,

where the normalization constant is

ao = [ffooo exp[—#(\/m_ 1)] dp}—l

_ pexp—p?)
2Ky (=2

(33)

and K; is a modified Bessel function of second kind. The
weakly relativistic limit corresponds t@ « 1 so thatug ~

(1 + 3u?/8)~1/y/21 (Gradshteyn and Ryzhik, 1965), and
Eq. (33) converges to a non-relativistic Maxwellian distribu-
tion whenu — 0. In order to impose the above mentioned
condition for the free electrons, we use the solution

fo = fo&) = flPE)], (34)

wherep(€) is a function of the energy such that) — p
wheng — 0. Such a function can be found with the help of
Eq. 32) by setting

£ >0,

~ 1 1
- M.p(€) + — <\/1+ u2p2(€) — —) =E. (35)
w Y0
Solving for p(£), we have
- 1 2 1\2 1
P (E)=y{M. <u25+—> iy—ol <u2€+—) ——,(36)
Yo M Yo 120

wherep(€) and p_(€) correspond to a modified momen-

ing for p in Eq. 32) with £ = 0, we have

1\ 2 1\? 1
p+ = v§M. <M2¢+—> i—OJ <M2¢+—) -—, (39)
Y0 Y0

©w Yo

where p_(¢) and p(¢) constitute the limits between the
trapped and free electron distributions in momentum space.
Using these limits and combining Eq&4j, (36) and (38),

we can now write the full electron distribution function as

fe=1{ apexp —%_1—55], P-<p=<p+, (40)

apexp —H%(\/lJruzﬁQ(S)—l)} , P<p-,

where& is given by Eg. 82). Integrating the distribution
function over momentum space we obtain the total elec-
tron density as a function ap, which is calculated self-
consistently by means of Poisson’s equatidt) (

In order to proceed further and to explore the impact of the
relativistic effects on the electron holes for different sets of
parameters, we have solved Poisson’s equaB&hr{umeri-
cally, where the integration of the trapped and free electron
populations has been done with a sum representation of the
integrals, and Eq.3Q) has been solved as a nonlinear bound-
ary value problem where the potential has been set to zero far
away from the electron hole, and the resulting nonlinear sys-
tem of equations have been solved iteratively with a Newton-
like method. An alternative would be to use the so-called po-
tential method (Schamel, 1971). In Fit8 we display the
electron hole Mach numbevl, as a function of the maxi-
mum amplitude)r of the potential for different values of the
parametep.. We see that for larger values af the ampli-
tude of the electron holes drastically increases. Note that the
electron hole potential has been normalizedibye, so the

tum for free electrons on each side of the trapped electrorcurves in Fig18 show pure relativistic effects due to the rel-

population in momentum space. Usipg€) = p+(£) and
p(E) = p_(&) in Eq. 34), we obtain the distribution func-
tion for the free electrons. In the limit of vanishing energy,

ativistic mass increase of the electrons. In the non-relativistic
limit (i« = 0), we recover the previous results of Bujarbarua
and Schamel (1981); see their Fig. 1. The profiles of the
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a)

Fig. 18. The Mach numbed, of the electron hole as a function
of the maximum amplitudeg, of the electron hole potential, for
a constant trapping paramejge= —0.5 and for different values of

Fig. 20. Phase space plots for electron holes with f)= —0.5,
uw=04andM, =0.2,b): 8 = -0.5, u = 0.2 andM, = 0.2, ¢):
B =-05u=04andM, =0.7,and d);8 = —0.7, » = 0.4 and

. . L
M, = 0.2, corresponding to the cases a) —d) in Big.
40
a) 1.2
¢ 20 N 1 0.3
€08 0.2
0 0.6
-50 0 0 -5 0.1
10 0
b) 12
¢ 5 1
€08 03
0 0.6
-50 0 50 -50 0.2
20 04
c) 12
¢ 10 1 0
e 0.8
0 0.6
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d) 12 0.2
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€ 0.8 0
0 0.6 - i
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) . ) . Fig. 21. Interactions between strongly relativistic electron holes.
Fig. 19. The potential (left panel) and electron density (right panel) Initially, the parameters are — 0.4 andg = —0.5 for both holes,

of electron holes with a)f = —0.5, u = 0.4 andM, = 0.2,b): 514 the left and right holes have the Mach numbgs= 0.7 and

B = -05u =02andM, =02, ¢): g = ~05 1 = 04 and M, = —0.2, respectively, corresponding to the cases a) and c) in

M, =0.7,and d):;f = —0.7, u = 0.4 andM, = 0.2. Figs.19and20. Time intervals aret = 0 (upper left panely, = 50
(upper right panel); = 100 (middle left panel); = 150 (middle
right panel), = 200 (lower left panel), and = 250 (lower right

electrostatic potential and the electron density are shown ipanel).

Fig. 19for a few sets of parameters. To convert the potential
to Volts, the values op should be multiplied by the factor
5.1 x 10° u2; accordingly, the amplitude of the potential for has a negative Mach numbgf, = —0.2, while both holes

the case a)y ~ 33,1 = 0.4) is~ 2.4 x 10° \olts, while
for the case b)y ~ 9, u = 0.2) itis ~ 0.18 x 10° Volts.

have = —0.5 andu = 0.4. During head-on collisions,
the two holes merge and form a new electron hole, which

The profiles of the electron holes in phase space is shown isurvives through the rest of the simulation time. As a com-

Fig. 20 for the same sets of parameters as in Big. We

have solved the Vlasov-Poisson syste&28){(29) and have

parison, shown in Fig22, we changed the relativistic fac-
tor to u = 0.01, while keeping the same trapping param-

investigated interactions between two large-amplitude eleceter§ = —0.5 and the initial speeds of the holes. In this

tron holes. The results are shown in F&j. The left hole
has initially the Mach numbed, = 0.7 and the right hole

case, the electron holes are considerably smaller, and do not
merge as they did in the strongly relativistic case. The numer-
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tive electric potential distributions. The latter may contribute

03 to accelerating electrons to extremely high energies. We
P 02 also present numerical studies of the dynamics of interacting
01 electromagnetic envelope solitons by means of a fully rela-
0 tivistic Vlasov simulations. Interesting nonlinear features of
laser light intensification and corresponding density cavita-
03 tion have been observed.
P 02 We present the relevant equations describing the action of
01 intense laser light on the electrons in a relativistically hot col-
0 lisionless plasma, as well as the electromagnetic wave equa-
03 tion accounting for the relativistic mass increase of the elec-
0'2 trons and the electron density modification due to the radia-
P 0' ; tion relativistic ponderomotive force (Shukla, 1986)
° F = —mecza—y, (41)
X X 0z
where

Fig. 22. Interactions between weakly relativistic electron holes. Ini-
tially, the parameters age = 0.01 andg = —0.5 for both holes, 2 21812\ L2

i p e“A|
and the left and right holes have the Mach numbgr= 0.7 and =14+ ==+ ————

: : Y 2.2 2.4

M, = —0.2, respectively. Times = O (upper left panel); = 50 mgc megc
(upper right panel)s = 100 (middle left panel) = 150 (middle . L .
right panel),: = 200 (lower left panel) and = 250 (lower right IS the relativistic gamma factor. Herg,is thex component
panel). of the electron momentum, and we have used that the perpen-

dicular (to thex direction) momentunp, = e¢A/c, whereA

is the vector potential of the circularly polarized electromag-
ical method used in our simulations was a pseudo-spectrdi€etic waves. The dynamics of the coupled electromagnetic
method to approximate thederivatives, a fourth-order com- Waves and relativistic electron holes with immobile ions is
pact Paé scheme to approximate thederivative, and the ~governed by
fourth-order Runge-Kutta method for the time stepping. The ., 2 o
) . : . 2A 1 92A fo
integral overp space in Eq.Z29) was done with a simple sum — — 5>+ “dpA =0, (43)
representation of the integral. ot pe ox -0 ¥

_ 2
5.1 Trapping of electromagnetic waves in relativistic elec- % + pdfe + @ —y/17) 3fe

tron holes ryox dx op

(42)

=0, (44)

We here present fully relativistic nonlinear theory and com- o
puter simulations for intense electromagnetic envelope soli-0°¢ .
tons in a relativistically hot electron plasma, by adopting the 0x 0

MaxweI!—I_Dollsson—relatwlstlc \_/Iasov sy.stem which account§WhereA is normalized bym,c/e, ¢ by T,/e, p by meVre
for relativistic electron mass increase in the electromagnetic 2 5 2
fields and the relativistic radiation ponderomotive force, in andx by rp. We have denotegl = (1+ u"p”+ |A[%).
addition to trapped electrons WhiChpSU ort the driven r’ela- Far away from the relativistic electron hole, where=
. pp . bp |A| = 0, the electrons are assumed to obeyingér-Synge
tivistic electron holes. The importance of trapped electrons

has also been recognized (Montgomery, 2001) in the contex({jls’[rIbUtlon function (de Groot et al., 1980)

of stimulated Compton scattering of laser light off electron ~ 1 5 2
quasi-modes in a non-relativistic situation. However, our ob-/0(?) = @0 €Xp _F(V 1+pp=D|. (46)
jective here is to consider nonlinear interactions between in-

tense electromagnetic waves and relativistic electron holegVhere the normalization constant is

For this purpose, we derive the electromagnetic wave equa- 00 ———s -1
tion by including the nonlinear current density arising from 0 = {f—oo exp[—ﬁ ( 14 p2p? — 1)]}

the coupling of the relativistic electron quiver velocity and _pexp—u~?)

the density variation of the relativistic electron holes. The 2K

latter are modified by the relativistic ponderomotive force. For the dittner-Synge distribution function, the last term in
We find that such nonlinear interactions between electrothe |eft-hand side of Eq4@) takes the value

magnetic waves and relativistic electron holes produce in- ~

tense electromagnetic envelope solitons composed of local-[*  fo(p) Ko(u=2) A2 (47)
ized light wave envelope and large amplitude localized posi- /_o, /14 2p2  Ki(u=2 7

and
2
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whereKo andK; are the modified Bessel functions of second wherep(€) is a function of the energy such that€) — p
kind. The frequency2, represents the normalized (by,.) whenW — 0 and¢ — 0. Such a function can be found

relativistic plasma frequency at equilibrium. with the help of the energy integral by setting
We now investigate the properties of driven relativistic 1 1
electron holes which move with a constant speed. Accord-— M, p(€) + — ( [1+ u2p2(E) — _) =E£. (54)
w Yo

ingly, we use the ansatf(p, &) for the relativistic electron
distribution function, and assume thatind|A|? depend on Solving for 5(£), we have
& only, where¢ = x — M,t. Then, Eqgs.44) and @5) take

the form _ 1 Y2 1\2 1
26 o ace) = (1 + =) £ 28 |(se s 2 ) - (69)
(—Me + 3) et %a—e —0, (48) "
Y P wherep () and p_(€) correspond to a modified momen-
and tum for free electrons on each side of the trapped electron
5 - population in momentum space. Usipge) = p,(£) and
¢ _ / fodp—1 (49) p(€) = p—(&) in Eq. (63), we obtain the distribution func-
dg? N ’ tion for free electrons. In the limit of vanishing energy,

& =07, we havep1(0) = yoM,, and the value of the distri-
bution function is

fele=o-=fo@=folyoMo)=aoexp[ ~(ro—1/u?],  (56)

which should be matched with the distribution function for
) ) the trapped electrons with = 0 in order to obtain a con-
is the energy integral. ~Here, we have denoted = iy 0us distribution function. For the trapped electrons, we

11— .2m2 i
1/y/1— p=Mg. We note that trapped electrons have negativeqy, o ose 4 relativistic Maxwell-Boltzmann distribution with a
energy while untrapped (free) electrons have positive energynegative “temperature,” viz.

In in the slowly varying envelope approximationz. A =
(1/2)A(x, 1)( + i2) exp(—iwot + ikox)+ complex conju- £ = a0 exp<— -1 ﬁg) Ce<o. 57)

respectively. The general solution of E48]is f. = fo(&),
where fp is some function of one variable and

1 1
8=—Mep+—2<y——>—¢ (50)
Iz Y0

gate, Eq.43) can be written as u?
9A 9A 1 924 The separatrix between the free and trapped electron distri-
2iwg <a—t +vg 5) 12 9x2 butions is found wheré = 0 in the energy integral. Solving

for p in the energy integral witd = 0, we have

* fe 2
- Zdp-Q2)A=0, (51)
—oo ¥ 2 o 1\ ¥
p=yoM. | uo+— | £—
/) 1

5, 1
12+ —
Yo

> (58)

>2 1+ W2
Yo

wherewo = (Q2 + k3/u?)%? is the electromagnetic wave

_ 2 : _
frequenzcy,zvg = go/u wo IS Fhe group velocity, ahd/ ~  wherep_ and p, constitute the limits between the trapped
V1+uop®+]AJ% IntroducingA = W(E)exp(—i®r + g4 free electron distributions in momentum space. Using

iKx) into Eq. 61), whereW is a real-valued function, we {,ase limits and combining Eq$3), (55) and 67), we can

obtaink = p2wo(M, — v,) and now write
d*w 1 2~2 oy
M- 12 (92 - szf,) W =0, (52) ao €xp| =15 (\/ +12p5 (€) 1)] . P>Pe
£=1{ agexp —”5’:21—/65], p—<p<p+, (59)
where) = —2wou?® + uiwf(MZ — v2) represents a non-
linear frequency shift, and the gamma factor becomes ao exp —l%(\/ 1+M2172(5)—1)} ., P<p-.

V1+u2p2+ W2, Here, Q2 = [* (f./v)dp represents
the square of the local electron plasma frequency that ackntegrating the distribution functiorb@) over the momen-
counts for the relativistic electron mass increase in the electum space, we obtain the total electron number density as a
tron hole potential and the electromagnetic wave fields. function of ¢ and W, which are calculated self-consistently

A condition for the untrapped electron is that far away by means of the Poisson and Sathinger equations, respec-
from the relativistic electron hole, the electron distribution tively.

function should smoothly connect to thétther-Synge dis- Figure23exhibits the influence of intense electromagnetic
tribution function. In order to impose this condition for the waves on relativistic electron holes, described by the coupled
free electrons, we use the solution system of Egs.49) and 62). In the Schédinger equation

~ (52), A represents the eigenvalue, and the square of the local
fe= fo&) = folp(€)], & >0, (53) electron plasma frequenc§?, enters as a “potential.” We
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Fig. 23. Large-amplitude trapped electromagnetic wave envelope
(upper panel), the potential (second panel), the electron numbekig. 25. Phase space plots of the electron distribution funciipn
density (third panel), and the square of the local electron plasmédleft panels) and the amplitude of the vector poterAigtight pan-
frequency (lower panel) for large amplitude electromagnetic wavesels) forr = 0, = 50, = 125 andr = 162.

with @ maximum amplitude oWmax = 1.5 (solid lines) and

Wmax = 1.0 (dashed lines), and as a comparison a relativistic elec-

tron hole with small-amplitude electromagnetic waves which have —-—— 4

Wmax < 1 (dotted lines). The nonlinear frequency shift for the \ 30
Wmax = 1.5 case ish = 0.099, and for theWmax = 1.0 case it 3 20
is A = 0.095, to be compared with the small-amplitude case which ;. ) 10
has)x = 0.088. Parameters ardf, = 0.7, u = 0.4, andg = —0.5. t t 0
50 1 -10
20
w 0 — \\\\\// //:: -
80 60 40 20 0 20 40 60 80 12
g 150 1 2
100 08 15
t 06 t
Fig. 24. Small-amplitude trapped electromagnetic waves in a rel- 50 04 1
ativistic electron hole. Upper panel: Three eigenstates of trapped 02 05
electromagnetic waves, corresponding to the eigenvalyes= 0 100 0 100
0.088 (solid line),A» = 0.053 (dashed line) antz = 0.013 (dash- x X
dotted line). The parameters used are the same as for the dotted
lines in Fig.23.

Fig. 26. The amplitude of the vector potential (upper left panel),
potential (upper right panel), squared local plasma frequency (lower
see that for larger electromagnetic fields the relativistic  |eft panel) and electron density (lower right panel) for two colliding
electron hole potentiah becomes larger and the relativistic relativistic electron holes.
electron hole wider, admitting larger eigenvalued his can
be explained in that the relativistic ponderomotive force of
localized electromagnetic waves pushes the electrons awatyvistic electron holes is displayed in Fig4, where we have
from the center of the relativistic electron hole, leading to assumed a zero electromagnetic fighd = 0) in the expres-
an increase of the electrostatic potential distribution and asion fory used in Eg. %$2) and in the energy integral. The
widening of the relativistic electron hole. We see that the de-eigenvalue problem admits a discrete set of localized eigen-
pletion of the electron density in the relativistic electron hole functions with positive eigenvalues, and in this case we found
is only minimal, while the local electron plasma frequetizy  two even and one odd eigenfunction corresponding to three
is strongly reduced owing to the increased mass of the elecdifferent eigenvalues. Equatiof?) has been solved as a lin-
trons that are accelerated by the relativistic electron hole poear eigenvalue problem fo¥, where the amplitud&/ax of
tential. The linear trapping of electromagnetic waves in rela-the electromagnetic waves was kept fixed, to obtain new val-
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ues onW anda. Then, the procedure of solving ferand W enough. A standing electron hole accelerates locally the ions
was repeated until convergence. The second derivatives wemue to the positive electron hole potential. The self-created
approximated with a second-order centered scheme with then density cavity, on the other hand, accelerates the electron
function values set to zero at the boundaries. hole, which leaves the ion cavity and propagates with a con-
In order to study the dynamics of interacting electromag-stant speed. The propagating electron hole can be trapped at
netic envelope solitons composed of localized electromagion density maxima, where it again accelerates the ions lo-
netic waves and relativistic electron holes, we have solved theally and a new ion density cavity is formed, etc. Thus, both
time-dependent, relativistic Vlasov equatiofd) together  ion and electron holes show an interesting and complex dy-
with the Schiadinger equation51) numerically. The results namics during their interaction with the background plasma,
are displayed in Fig25and26. As an initial conditiontothe  with a variety of couplings between fast and slow timescales.
simulation, we used solutions to the quasi-stationary equaknowledge of dynamically evolving electron and ion holes
tions described above, where the left electron hole initiallyand their interaction with the background plasma is required
has the speeff, = 0.7 and is loaded with electromagnetic for understanding the properties of localized electric pulses
waves withWmnax = 1.5, while the right electron hole has in the Earth’s auroral zone and in the magnetosphere.
the speed, = —0.3, and is loaded with electromagnetic = We have also presented a theory for relativistic electron
waves withWmax = 2.5. Further, we usefly = v, = 0in holes and their interactions with high-amplitude electromag-
the initial condition forA and in the solution of Eq5Q). In netic fields, taking into account the relativistic electron mass
Fig. 25we show the phase space distribution of the electronsncrease in a hot plasma. Due to the relativistic effect, the
and the electromagnetic field amplitude at different times.size of the electron hole as well as the amplitude of the
We see that the relativistic electron holes loaded with trappedlectron hole potential increase dramatically with increasing
electromagnetic waves collide, merge and then split into tworelativistic electron temperature. Large-amplitude electro-
electron holes, while there are a few strongly peaked electromagnetic fields also modify the electron hole owing to the
magnetic wave envelopesxat: 70 remaining after the split- relativistic ponderomotive force and the electron mass in-
ting of the relativistic electron hole, and where a populationcrease due to the relativistic quivering velocity in the high-
of electrons has been accelerated to large energies. The tinfeequency electromagnetic fields. Simulation studies of in-
development of the electromagnetic wave amplitudes, relateractions between relativistic electron holes show that they
tivistic electron hole potential, the squared local plasma fre-interact in a complex fashion, and may merge when they col-
guency and the electron number density is shown in®ag. lide, resulting in accelerated particles and a release of the
We observe collision and splitting of the relativistic electron electromagnetic radiation. We stress that the present results
holes and the creation of localized electromagnetic solitaryshould help to understand the salient features of localized
waves atz ~ 70; clearly visible in the left two panels at intense electromagnetic and electrostatic pulses in relativisti-
t > 150. The electromagnetic solitary waves are created bycally hot plasmas, such as those in inertial confinement fu-
the combined action of the relativistic electron mass increasesion as well as in compact astrophysical objects in which
and relativistic ponderomotive force of localized electromag-gamma-ray bursts are produced by acceleration of electrons
netic waves, which have been further intensified due to nonto extremely high energies.
linear interactions where the collapsing relativistic electron
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