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Abstract. Understanding extreme precipitation is very im-
portant for Ethiopia, which is heavily dependent on low-
productivity rainfed agriculture but lacks structural and non-
structural water regulating and storage mechanisms. There
has been an increasing concern about whether there is an
increasing trend in extreme precipitation as the climate
changes. Existing analysis of this region has been descrip-
tive, without taking advantage of the advances in extreme
value modeling. After reviewing the statistical methodology
on extremes, this paper presents an analysis based on the
generalized extreme value modeling with daily time series
of precipitation records at Debre Markos in the Northwest-
ern Highlands of Ethiopia. We found no strong evidence to
reject the null hypothesis that there is no increasing trend in
extreme precipitation at this location.

1 Introduction

In Ethiopia, rainfall is by far the most important factor cli-
mate, as is true for most of Africa. Low-productivity agricul-
ture, which accounts for a majority of the national economy,
relies heavily on rainfall. Climate extremes such as drought
or flood often lead to famine and disaster for the vulnerable
agricultural, social and economic environment in Ethiopia,
which lacks structural and non-structural water regulating

Correspondence to:J. Yan
(jun.yan@uconn.edu)

and storage mechanisms. In particular, flood, as a result of
extreme precipitation, poses serious threat on food security
and public safety. Estimating the probability of extreme pre-
cipitation and characterizing the uncertainty of the estimates
are crucial to, for instance, structural design, public safety
alerts, evacuation management, and loss mitigation.

Given the increasing public concern on climate change,
it is of particular interest to test whether there is a long
term increasing trend in extreme precipitation. Studies have
been done for different parts of the world. For examples,
Kunkel et al. (1999) reported an increasing trend in the
United States at a rate of 3 % per decade from 1931 to 1996,
but no significant trend during 1951–1993 in Canada;Kunkel
(2003) showed a sizeable increase in the frequency of ex-
treme precipitation events since the 1920s/1930s in the US;
Frei and Scḧar (2001) found an increase in the frequency of
heavy precipitation during 1901–1994 in the Alpine region of
Switzerland;Goswami et al.(2006) detected a significant ris-
ing trend in both the frequency and the magnitude of extreme
rainfall events from 1951 to 2000 in central India;Karagian-
nidis et al.(2009) reported no significant trend in extreme
precipitation of the European continent from the mid 1970’s
to 2000.

Both descriptive approaches and model-based approaches
have been used to detect the trend in extreme precipitation.
Kunkel et al. (1999) defined extreme precipitation events
given a certain duration and a site-specific threshold, and
tested linear trend in the frequency of extreme precipitation
events using the nonparametric Mann-Kendall test.Frei and
Scḧar (2001) used a logistic regression model to test the
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long-term trend in the counts of heavy precipitation events
based on a binomial model for the counts.Zhang et al.(2004)
compared three methods for trend detection in extreme val-
ues in a Monte Carlo study, ordinary least squares regression,
nonparametric Mann-Kendall test, and generalized extreme
value (GEV) modeling. The GEV method can use them-
largest observations each year. Explicit GEV modeling was
found to always outperform the other two methods, and the
use ofm-largest observations was found to improve the de-
tection power for moderate values ofm.

Rainfall patterns in Ethiopia have been reported in previ-
ous studies. A decline of annual and summer rainfall in east-
ern, southern, and southwestern Ethiopia was found, but no
trend was detected over central, northern, and northwestern
Ethiopia (Seleshi and Zanke, 2004; Cheung et al., 2008). It
is worth noting, however, that annual or summer total rainfall
and annual maximum daily rainfall are very different aspects
of rainfall characterization.Seleshi and Camberlin(2006)
studied changes in extreme seasonal rainfall as measured by
extreme rainfall indices with daily rainfall data. One of the
indices was extreme intensity, defined as the average inten-
sity of events greater than or equal to the 95th percentile. A
weak increasing trend in summer extreme intensity over the
10–11◦ North band of the Ethiopia Highlands and no trend
was found over the remaining Highlands, based on the non-
parametric Mann-Kendall test for trend. These existing anal-
yses have been descriptive, without taking advantage of the
advances in extreme value modeling from the statistics liter-
ature. To the best of our knowledge, extreme value analysis
based on the GEV modeling has not been applied to extreme
precipitation data in Ethiopia.

The GEV distribution was first introduced byFisher and
Tippett(1928) as limits of the sample maximum or minimum
for independent, identically distributed variables. Extreme
value theory has evolved into a proliferating field in statis-
tics, motivated by numerous environmental applications. Ac-
cessible statistical references are, for instances,Coles(2001)
and Beirlant et al.(2004). Extreme precipitation has been
an important application area of extreme value analysis (e.g.,
Durman et al., 2001; Kharin and Zwiers, 2005; Huerta and
Sanśo, 2007). In particular, statistical inferences for univari-
ate extreme value analysis, as is the case with the precipi-
tation data at a single location, have been rather mature and
widely applied by practitioners in many fields. Two standard
approaches can be used to fit a univariate GEV distribution.
The first one, known as the block maxima approach, applies
to annual maxima of a time series, using only one data point,
the maximum, per year. The second one applies to all ex-
ceedances over a high threshold, also known as “peaks over
threshold” (POT). The method we adopted in this article is a
variant of the POT approach, the point process approach; see
Sect.3 for more details. Compared to them-largest observa-
tion approach, which can be wasteful if one block happens to
contain more extreme events than another, the point process
approach utilizes more information from the data. Given the

relatively short period of data record, the point process ap-
proach is adopted in this application as it takes full advantage
of daily precipitation record in fitting GEV distributions.

Through GEV models, this article aims to provide an ex-
treme value analysis of the annual maximum precipitation in
Debre Markos, Ethiopia. Specifically, our objective is to test
whether there is an increasing trend in extreme precipitation
in this area given the public concerns of suspected trend as
a consequence of global climate changes. We incorporated
a linear function of time in the location parameter of a GEV
distribution and fitted the model with the POT approach to
the daily precipitation data at Debre Markos. No evidence
was found to support an increasing trend in extreme precipi-
tation since 1953 at this location.

The rest of the article is organized as follows. Details of
the data are described in Sect.2. The statistical methods to be
used, including the extreme value theory and modeling tech-
niques, are reviewed in Sect.3. The results of the extreme
value analysis are reported in Sect.4 with a test for trend. A
discussion concludes in Sect.5.

2 Data

Debre Markos is a city in the Blue Nile River basin on
the Northwestern Highlands of Ethiopia. It has latitude
10◦20′ N, longitude 37◦43′ E, and elevation 2446 m. Al-
though the topography of Ethiopia is highly diverse, more
than 45 % of the country is dominated by highlands with
elevations greater than 1500 m, where almost 90 % of the
nation’s population resides. The rain gauge station at De-
bre Markos provides the longest record among all stations
in Ethiopia. Daily precipitation records are available from
1953, with only a tiny proportion of missing data. We use
Debre Markos as a case study to investigate the long term
trend in extreme precipitation in the Northwestern highland
of Ethiopia.

Our raw data of daily precipitation at Debre Markos spans
from 1 November 1953 to 10 December 2006. Out of the to-
tal of 19 398 days, 229 (about 1.2 %) observations are miss-
ing. The observed daily time series of precipitation is plotted
in Fig. 1. The maximum daily was 86.9 mm, observed on
14 August 1997.

The daily precipitation series are obviously not indepen-
dent and not identically distributed. Larger precipitations
may tend to occur in clusters. For instance, out of 76 days
in Junes with precipitation exceeding the 95th percentile of
June precipitation, there were 9 occasions of two or more
consecutive exceedances. These counts are 7 out of 79, 3 out
of 78, and 7 out of 80 for July, August, and September, re-
spectively, the other three most rainy months. If there were
no temporal dependence, 5 % percent of the exceedences
would be expected to be followed by another exceedance.
The relative frequencies of clustered exceedances are higher
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Fig. 1. Times series of daily precipitation at Debre Markos, Ethiopia.
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Fig. 2. Left: scatter plot of mean precipitation for each day overlaid with the 11-day moving average. Right: threshold chosen for each
month.

than 5 %, which confirms that there is temporal dependence
and hence the declustering is necessary.

Strong seasonality naturally exists in the data. As most
areas in Ethiopia, there are three seasons in Debre Markos:
main rainy season (June to September), dry season (October
to January), and small rainy season (February to May), which
are locally known as Kiremt, Bega, and Belg, respectively.
Figure2 (left panel) shows the mean precipitation for each
day in a year, with the 11-day moving average overlaid. The
plot is consistent with the three seasons. High precipitations
are observed in summer months and low precipitations are
observed in winter months. Our extreme value analysis needs
to take the clustering and seasonality into account.

3 Methods

The basis of extreme value modeling is the GEV distribution,
with distribution function

F(z;µ,σ,ξ) =

{
exp

{
−

[
1+ξ

(
z−µ
σ

)]−1/ξ
}
,ξ 6= 0, 1+ξ

(
z−µ
σ

)
> 0,

exp
{
−exp

[
−

z−µ
σ

]}
,ξ = 0,

(1)

whereµ ∈ R is a location parameter,σ > 0 is a scale pa-
rameter, andξ ∈ R is a shape parameter governing the tail
behavior. The Gumbel family is the limiting case ofξ → 0.
The sub-families defined byξ > 0 andξ < 0 correspond to
the Fŕechet family and the Weibull family, respectively. The
m-yr return levelzm, with the return period 1/m, is calcu-
lated fromF(zm) = 1−1/m. When the only available data
is a sequence of annual maxima of daily precipitation, the
maximum likelihood approach can be applied to make in-
ferences about the unknown parameters. Usual regularity
conditions of the maximum likelihood estimator are satisfied
whenξ >−0.5 (Smith, 1985).
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With daily precipitation available, the POT approach and
the point process approach are more attractive in that all ex-
ceedances over threshold, instead of just the annual max-
ima, contribute to the inference. Assuming thatX1,...,Xn

are independent and identically distributed,Pickands(1971)
showed that, for sufficiently large thresholdu, the sequence
of point processes{(i/(n+1),Xi) : i = 1,...,n} is approxi-
mated by a Poisson process on the region(0,1)×[u,∞) with
intensity function onA = (t1,t2)×[z,∞) given by

3(A) = nx(t2− t1)

[
1+ξ

(
z−µ

σ

)]−1/ξ

, (2)

wherenx is the number of years of data to which the avail-
ableXi correspond, ensuring that the parameters(µ,σ,ξ) are
the same as those in the GEV approximation (Eq.1) of an-
nual maxima. The point process approach is adopted because
the parameter estimates are not directly tied to the choice of
thresholdu and the ideal threshold is determined by consid-
ering the smallestu beyond which the parameter estimates
stabilize.

Suppose that we observek exceedances of daily precipita-
tion over thresholdu, x1,...,xk, from nx year’s of data. The
likelihood function is

L(µ,σ,ξ ;x1,...,xk) =

exp

{
−nx

[
1+ξ

(
u−µ

σ

)]−1/ξ
}

k∏
i=1

σ−1
[
1+ξ

(
xi −µ

σ

)]−1/ξ−1

. (3)

The point process likelihood is based on all data greater
thanu, thus inferences are likely to be more accurate than
estimates based on the classical GEV model which studies
only block maxima. The likelihood also takes into account
of missing data in that where there are missing data,nx will
be the number of year’s worth of observed data.

So far we have assumed that the data are independent and
identically distributed, which is clearly violated in the daily
series data. Before we can apply the likelihood function, we
need to remove the clustering and seasonality from the ob-
served data.

We use runs algorithm to filter the dependent observa-
tions to obtain a set of threshold excesses that are approx-
imately independent (Smith and Weissman, 1994). For a
given threshold, define clusters to be wherever there are con-
secutive exceedances of this threshold. In particular, two ex-
ceedances of the threshold that are separated apart by fewer
thanr observations are deemed part of the same cluster. That
is, only after a certain number,r, of observations fall below
the threshold, the cluster is terminated. In practice, it is rec-
ommended to try differentr values for comparison (Smith,
1989; Mannshardt-Shamseldin et al., 2010).

To handle the seasonality, we adopt a simple and broadly
applicable approach that allows all model parameters of the
Poisson process to be seasonally dependent. Specifically,
we allow each month to have its own GEV parameters as
in Smith(1989).

Finally, how does one select the thresholdu? Although the
value of threshold can be arbitrary to some extent for initial
analysis, too low a threshold is likely to violate the asymp-
totic basis of the model and too high a threshold will lead
to too few exceedances for data analysis. An exploratory
tool for choosingu is the mean residual life plot (e.g.,Coles,
2001, Ch. 4). Whenu is sufficiently large, the expected
residual life,E(X −u|X > u), is a linear function ofu. In
a mean residual life plot, we plot the sample mean residual
life against thresholdu, and choose the smallestu beyond
which the mean residual life plot is approximately linear.

4 Results

The mean residual plots with 95% confidence intervals are
drawn for each month with run lengthr = 1 in Fig.3. For all
months, the figures are approximately linear when the thresh-
old exceeds the sample 95% percentile. Therefore, we take
the 95% percentile as threshold for each month. This is dif-
ferent from the analysis ofSmith (1989), where the same
threshold was used for all months. The right panel of Fig.2
shows the thresholds we choose for each month, which has
similar pattern as the average precipitation plot in the left
panel.

Each month is modeled separately, thus no specific form
describing the seasonal variation is assumed. Letµij , σij

and ξij denote the GEV parameters for monthj of year i.
To detect the long-term trend for each month, we assume the
form

µij = αj + iβj , σij = σj > 0, ξij = ξj , (4)

where the location parameterµij includes a linear trend in
year with coefficientβj . This form was also adopted to detect
trend bySmith(1989) with ground-level ozone and byCoo-
ley (2009) with annual maximum temperatures. The likeli-
hoodLj of monthj , j = 1,...,12, is maximized separately
to estimate(αj ,βj ,σj ,ξj ).

It turns out that none of theβj parameters is significant
at 5 % level, indicating there is no strong evidence of long-
term increasing trend over time. The models are re-fitted
with all βj = 0. The sum of the maximized log likelihood
is −3063.91 for the models in all 12 months, which is very
close to that withβj ’s in the model (−3060.29). The pa-
rameter estimates with no trend are shown in Table1. There
is strong seasonal pattern for the location parameterµ. The
other parametersσ and ξ , however, vary haphazardly. All
ξ ’s are estimated greater than−0.5, indicating that the esti-
mators are regular and they have the usual asymptotic prop-
erties. The 10-yr return level for each specific month, calcu-
lated from GEV distribution, is also shown in the table.

The 95 % confidence intervals for parameter estimates are
calculated by profile likelihood (Coles, 2001, Ch. 2), which
is shown in Fig.4. Although the confidence interval ofξ
covers zero in all months, we do not reduce the model to the
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Fig. 3. Mean residual life (solid lines) with 95 % confidence intervals (dashed lines) for all months withr = 1.
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Fig. 4. 95% confidence intervals for GEV parameters. Left: confidence intervals forµ. Middle: confidence intervals forσ . Right: confidence
intervals forξ .

Table 1. Parameter estimates and standard errors for each month with no trend.

Month
Number of

µ σ ξ
10-yr return

Exceedances level

1 65 3.97 (0.74) 5.74 (0.96) 0.04 (0.14) 17.45
2 56 4.61 (0.77) 5.71 (1.20) 0.11 (0.17) 19.15
3 67 11.54 (1.17) 9.05 (1.35) −0.04 (0.12) 31.00
4 68 15.60 (1.20) 9.25 (1.38) −0.04 (0.12) 35.42
5 69 18.18 (1.05) 8.13 (1.21) −0.14 (0.13) 33.92
6 67 21.72 (0.88) 6.89 (1.01) −0.11 (0.11) 35.46
7 72 30.68 (1.12) 8.80 (1.23) −0.02 (0.11) 50.00
8 75 33.04 (1.12) 8.66 (1.34) 0.18 (0.14) 57.14
9 73 28.01 (1.21) 9.50 (1.34) −0.09 (0.12) 47.34
10 66 18.71 (1.80) 13.96 (2.17) −0.24 (0.13) 42.94
11 60 6.17 (1.07) 8.20 (1.46) 0.01 (0.14) 24.94
12 57 3.89 (0.99) 7.45 (1.44) −0.03 (0.15) 20.16

Gumbel model with constraintξ = 0, because “a reduction to
the Gumbel subfamily is always risky” (Coles and Pericchi,
2003, p. 416); the uncertainty in parameterξ would other-
wise be inappropriately accounted for.

To check the sensitivity of results to the choice of threshold
u and run lengthr, return levels are compared under different
choices. Since there is seasonality during the year, the calcu-
lation of the return level can be derived through the maxima
for each month. LetM1,...,M12 denote the maxima for each
month. Them-yr return levelzm will satisfy

1−
1

m
=

Pr{max(M1,...,M12) ≤ zm}

=

12∏
i=1

exp

{
−

[
1+ξi

(
zm −µi

σi

)]−1/ξi
}

. (5)

The confidence interval for return level can be obtained
by simulation. We simulate the model parameters first from

the the multivariate normal approximation of the estimator.
For each set of generated parameters, a realization of the re-
turn level is obtained by solving Eq. (5). A large number
(N = 5000) of realizations is used to approximate the confi-
dence intervals.

Table2 summarizes the parameter estimates and 95% con-
fidence intervals for 10-yr, 50-yr and 100-yr return levels for
different combinations of(u,r). It appears that the inference
is quite robust on the choice ofr for all return levels. The
inference on the 10-yr return level is robust to the choice of
u, but the 50-yr and 100-yr return levels are less so, which is
most evident from the upper bound of the 95 % confidence
interval. The change in confidence intervals is not com-
pletely surprising because the sample size of exceedances de-
creases asu increases. With the confidence intervals in con-
sideration, the changes in the point estimate of return levels
appear reasonably robust.
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Table 2. Estimated return levels and their 95 % confidence intervals under different choices for thresholdu and run lengthr.

u r 10-yr return level 50-yr return level 100-yr return level

Q85 % 1 69.0 (64.6, 78.4) 90.0 (82.3, 117.6) 100.5 (91.3, 147.8)
Q85 % 2 69.0 (64.5, 78.5) 89.8 (81.8, 118.5) 100.1 (89.6, 154.0)
Q90 % 1 68.6 (63.5, 79.0) 91.4 (82.0, 122.8) 103.4 (90.8, 154.6)
Q90 % 2 68.5 (63.3, 78.7) 90.6 (80.9, 119.6) 102.0 (88.7, 146.6)
Q95 % 1 68.4 (61.7, 80.8) 97.2 (80.5, 142.2) 113.4 (89.5, 186.5)
Q95 % 2 68.4 (61.8, 80.5) 96.8 (80.0, 141.3) 112.7 (89.8, 184.0)
Q97 % 1 68.1 (61.3, 81.2) 99.3 (79.6, 155.4) 118.0 (90.1, 223.4)
Q97 % 2 67.9 (61.1, 80.1) 98.3 (78.5, 153.4) 116.4 (88.0, 208.9)

Among all those threshold sets, the only significantβj ’s
were found whenu = Q90 % and r = 1, with standardized
beta values−2.07 and−2.15 for February and July, respec-
tively. We conclude that there is no increasing long-term
trend for any month.

As a model diagnosis, we performed goodness-of-fit test
for the GEV distribution with the annual maximum daily pre-
cipitation data in each of the 12 months over 53 yr. There
were 10, 10, and 13 zeros in January, February, and De-
cember, respectively. These zeros were removed to run the
goodness-of-fit test as, otherwise, a distribution with point
mass at zero would be needed and any continuous distribu-
tion would fail to capture this. For the POT approach, these
zeroes would not affect the result as they do not affect the
selection of the threshold. Thep-values of the Kolmogorov-
Smirnov test statistic are, respectively, 0.405, 0.220, 0.197,
0.127, 0.674, 0.621, 0.562, 0.560, 0.313, 0.465, 0.494, and
0.372 from January to December, suggesting no lack of fit
from the GEV distribution. Thep-values of the Anderson-
Darling test give similar results.

Finally, we present the estimated return level plots for the
model with no trend in Fig.5. The 95 % confidence intervals
were obtained again by a large number (N = 5000) of Monte
Carlo simulation that accounts for the uncertainty in param-
eter estimate. The 100-yr return level was estimated as 96.4,
with a 95 % confidence interval(78.7,161.0).

5 Conclusions

With the extreme value theory, we presented a case study
with the daily precipitation series at Debre Markos, Ethiopia.
No evidence was found to support long-term increasing trend
in extreme precipitation at this location. This means, for in-
stance, that the 100-yr return level has not increased signifi-
cantly during the period of 1953–2006. We have performed
the same analysis with daily records separately at two other
sites, Bahir Dar and Gondar, in the Blue Nile River basin on
the Northwestern Highland in Ethiopia. No significant trend
was found at either sites.

In practice, for a given data set, many parametric fami-
lies may fit the data well and pass the goodness-of-fit test.

Return period (Years)

R
et

ur
n 

le
ve

l (
m

m
)

1 5 10 100 1000

50
10

0
15

0
20

0

●●●●●●●
●●●●●●

●●●●
●●●●●●

●●●●●●
●●
●●●●●

●●●
●
●●●●●●● ●

● ●

●

● ●

Fig. 5. Return levels (solid line) with 95 % confidence intervals
(dashed lines) obtained from 5000 Monte Carlo simulation. The
circles are the empirical estimates based on the observed 53-yr’s
data.

One can always maximize the likelihood under the assump-
tion that the data come from an assumed family, which
is likely a misspecification of the real distribution (White,
1982). As the true distribution is unknown, the fitted distribu-
tion for any assumed parametric family from the maximum
likelihood approach is the one in this assumed family that
minimizes the Kullback-Leibler divergence (e.g.,Kullback,
1987). Models from different families are in general not
nested, and to perform model selection, one can use Vuong’s
test (Vuong, 1989), which chooses the model with the least
Kullback-Leibler divergence. Nevertheless, distinguishing
two nonnested models with statistical significance requires
a large amount of data when competing models offer similar
capabilities in capturing the observed data frequencies. With
only 53 observations, other distributions such as generalized
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Pareto, fatigue life, and lognormal may fit the data as well as
GEV. These distributions, however, can differ very much in
tails, which is what we want to study through extreme value
analysis. For this reason, a GEV model may be preferred as
it is by definition the limit distribution of sample maximums.

Our current extreme value analysis deals one site at a time.
It cannot address important questions that involve events
jointly defined across multiple sites; for instance, what is
the probability that the 100-yr return levels of three sites in
the vicinity of a city occur in the same year? Estimating
the probability of extremal events at a network of locations
with spatial dependence appropriately accounted is a much
more challenging problem. Spatial extremes is a new and
rapidly developing field (e.g.,Cooley et al., 2007; Padoan
et al., 2010). Further extreme analysis in a spatial context for
Ethiopia, with data from a network of sites, is worth investi-
gating.
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