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Abstract. Based upon eight field surveys conducted between
May 2011 and May 2012, we investigated seasonal varia-
tions in pH, carbonate saturation state of aragonite (�arag),
and ancillary data on the Chinese side of the North Yel-
low Sea, a western North Pacific continental margin of
major economic importance. Subsurface waters were CO2-
undersaturated in May and nearly in equilibrium with at-
mospheric CO2 in June. From July to October, the fugac-
ity of CO2 (f CO2) of bottom water gradually increased
from 438± 44 µatm to 630± 84 µatm, and pHT decreased
from 8.02± 0.04 to 7.88± 0.06 due to local aerobic rem-
ineralization of primary-production-induced biogenic parti-
cles. The subsurface community respiration rates in summer
and autumn were estimated to be from 0.80 to 1.08 µmol-
O2 kg−1 d−1 within a relatively high salinity range of 31.63
to 32.25. From November to May in the next year, however,
subsurfacef CO2 gradually decreased and pH increased due
to cooling and water column ventilation. The correspond-
ing bottom water�arag was 1.85± 0.21 (May), 1.79± 0.24
(June), 1.75± 0.27 (July), 1.76± 0.29 (August), 1.45± 0.31
(October), 1.52± 0.25 (November), and 1.41± 0.12 (Jan-
uary). Extremely low�arag values (from 1.13 to 1.40) were
observed mainly in subsurface waters within the high salin-
ity range of 31.63 to 32.25, which covered a major fraction of
the study area in October and November. Of the China seas,
the North Yellow Sea represents one of the systems most vul-
nerable to the potential negative effects of ocean acidifica-
tion.

1 Introduction

Both pH and CaCO3 saturation state (�) are essential pa-
rameters for the health of aquatic environments. Here pH is
the negative logarithm of the total concentration of H+ and
HSO4

− ions, i.e. pHT = −log10 [H+
]T, where [H+

]T = [H+]
+ [HSO−

4 ]. It affects chemical/biochemical properties of sea-
water, including chemical reactions, equilibrium conditions,
and biological toxicity. In response to increasing atmospheric
CO2, the effect of decreasing pH has received considerable
attention during the past decade (e.g. Caldeira and Wick-
ett, 2003; Orr et al., 2005; Doney et al., 2009; Duarte et al.,
2013).

� is defined as the product of calcium and carbonate
ion concentrations divided by the apparent solubility prod-
uct (K∗

sp) of calcium carbonate, i.e.� = [Ca2+][CO2−

3 ]/K∗
sp.

Without protective mechanisms, calcifying organisms are
vulnerable to corrosive CaCO3-undersaturated seawaters
with � < 1 (Feely et al., 2002, 2008; Yamamoto-Kawai et
al., 2009; Gruber et al., 2012).

CaCO3 occurs in marine environments as three poly-
morphs, i.e. calcite, aragonite and magnesian calcite. Pure
calcite (> 99 mol% CaCO3) is more stable than aragonite,
while high-Mg calcite (> 12 mol% MgCO3) is more solu-
ble than aragonite (Morse et al., 2006, 2007; Woosley et al.,
2012). Since aragonite is usually the most abundant carbon-
ate mineral in shallow sea areas (Morse et al., 2006), we
adopted the carbonate saturation state of aragonite (�arag) to
measure its potential to corrode CaCO3 shells and skeletons
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of marine organisms. In the Pacific Ocean, the present sur-
face�arag values are 1 to 2 in high-latitude regions and 3
to 4.5 in low-latitude regions (Feely et al., 2012). In high-
latitude regions, sea surface waters absorb a considerable
amount of CO2 from the atmosphere due to the high solu-
bility of CO2 at low temperatures, leading to low�arag val-
ues. Marine calcifying organisms may require a�aragmuch
higher than 1 for optimal growth (Shamberger et al., 2011),
while carbonate biominerals in calcic shells and skeletons
may undergo dissolution even at relatively high levels of
�arag (between 3.0 and 3.2) (Yamamoto et al., 2012). This
is partially because, in present oceans with seawater Ca : Mg
molar ratios of about 1 : 5 (Steuber and Rauch, 2005), many
carbonate biominerals are composed of instable high-Mg cal-
cite (Morse et al., 2006, 2007; Long et al., 2011).

Low pH and�aragvalues may occur in coastal zones due
to local oceanographic processes, e.g. coastal upwelling and
water mixing with fresh waters (Feely et al., 2008, 2010;
Salisbury et al., 2008; Yamamoto-Kawai et al., 2009; Gru-
ber et al., 2012), metabolic processes (Feely et al., 2010;
Taguchi and Fujiwara, 2010; Cai et al., 2011; Zhai et al.,
2012), and regional environmental changes, such as eutroph-
ication (Borges and Gypens, 2010; Sunda and Cai, 2012).
In eutrophicated regions, algal blooms and red tides absorb
CO2 on the sea surface, producing large amounts of sinking
organic matter, which is remineralized below the euphotic
depth (e.g. Feely et al., 2010; Taguchi and Fujiwara, 2010;
Cai et al., 2011; Zhai et al., 2012). The aerobic remineral-
ization process can be roughly characterized by the Redfield
equation (Redfield et al., 1963):

(CH2O)106(NH3)16H3PO4 + 138O2
→ 106CO2 + 16HNO3 + H3PO4 + 122H2O.

(1)

Clearly, the release of CO2 increases carbonic acid levels in
subsurface waters. If local hydrodynamic conditions do not
enable outgassing of subsurface CO2, a significant pH de-
crease (by 0.2 to 0.3 units) can occur on seasonal or shorter
time scales (e.g. Taguchi and Fujiwara, 2010; Cai et al.,
2011; Zhai et al., 2012). These seawater acidification pro-
cesses may threaten marine calcifying species (e.g. Gao et
al., 1993; Green et al., 2009; Dias et al., 2010; Liu and He,
2012; Andersen et al., 2013; Xu et al., 2013) and even non-
calcifying species (e.g. Munday et al., 2009, 2010; Baumann
et al., 2012; Briffa et al., 2012; Domenici et al., 2012).

So far, only a few mechanistic studies have been conducted
to investigate the dynamics of pH and� in continental mar-
gins of eastern Asia (Cao et al., 2011; Zhai et al., 2012; Chou
et al., 2013), although this region sustains numerous com-
mercially valuable and acidification-sensitive fisheries, e.g.
of bivalve molluscs and crustaceans. Surrounding the North
Yellow Sea (NYS), the Liaoning and Shandong provinces of
China are teeming with fast-developing marine aquaculture
activities, and are highly populated (Fig. 1). Acidification-
sensitive bivalve molluscs of the family Pectinidae and echin-
oderms of the class Holothuroidea are of major ecological
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Fig. 1. North Yellow Sea (NYS) together with the Bohai Sea and
sampling sites. The study focused on the area enclosed within the
red polygon. A major marine aquaculture zone in the NYS is en-
closed within the yellow ellipse. Closed circles mark stations that
were sampled in May, July, and October 2011. Triangles mark sta-
tions that were sampled in June, August, and November 2011, and
May 2012. White crosses mark stations that were sampled in Jan-
uary 2012. The Bohai Sea inflow current (1), Bohai Sea outflow
current (2) and wintertime Yellow Sea Warm Current (3) were mod-
ified from Chen (2009). Two northern stations enclosed by the pur-
ple ellipse were subject to frozen temperatures during the January
cruise. Several southwest stations enclosed by the blue ellipse were
likely influenced by the outflow of Bohai Sea water. A bottom-
water oxygen-depletion region in August 2011 in the Bohai Sea is
sketched with the grey shadowed area (Zhai et al., 2012).

and economic importance in these NYS coastal ecosystems.
Scallop-breeding failures have occasionally been reported in
this region (Du et al., 1996). Thus far, however, information
regarding pH and� in this region remains limited. We inves-
tigated seasonal variations in pH and�arag on the Chinese
side of the NYS, revealing controls of subsurface pH and
�aragdynamics in this continental margin. This high-quality
�arag data set is the first reported for this important marine
aquaculture region.

2 Materials and methods

2.1 Study area

The NYS is a shallow marginal sea of the western North
Pacific, surrounded by Liaoning and Shandong provinces
of China and the Democratic People’s Republic of Korea
(Fig. 1), with an area of 71 300 km2 and a mean depth of
38 m (He and Yu, 2013). Climatic variations of the NYS
are primarily dominated by the East Asian Monsoon (Chen,
2009). The rain-bearing southwest monsoon lasts from June
to September (Fig. 2a), while the strong northeast monsoon
prevails in winter, from November to March of the next year.

The NYS is connected to the Bohai Sea through a
relatively narrow channel, whereas it is more open to
the South Yellow Sea (SYS) (Fig. 1). In addition to the
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Fig. 2. Monthly rainfall in the study area(a); real-time water dis-
charge from the Yellow River into the Bohai Sea (brown line) from
January 2011 to May 2012(b). The usual variation range of wa-
ter discharge from Yalu River is shown by the indigotic shadowed
area in panel(b), based on real-time data between September 2012
and July 2013. All data are from the China Bureau of Hydrology
(http://xxfb.hydroinfo.gov.cn/). Vertical grey columns show survey-
ing periods.

600 to 800 mm yr−1 of rainfall (Zhang, 1994; Fig. 2a),
the NYS is fed by freshwater discharge of approximately
33× 109 m3 yr−1 from Yalu River (Liu and Liu, 1992;
Zhang, 1996; Zhang et al., 1997), with the runoff having
a relatively low alkalinity of approximately 740 µmol kg−1

(Zhang, 1997). Due to these freshwater inputs, the typical
NYS water mass has a relatively low salinity (31.50 to 32.50)
(Miao et al., 1991; Chen, 2009) compared with open oceans.
The general circulation in the NYS is a nearly year-round
weak counter clockwise gyre (Fig. 1; Miao et al., 1991;
Zhao, 1996; Qiao et al., 1998). The summertime hydrogra-
phy across the NYS is characterized by a pronounced strat-
ification in the deeper region. A cold pool, typically 5 to
11◦C, is overlain by 20 to 25 m of warm water (Miao et
al., 1991; Chen, 2009), which is regarded as the remnant
of winter cooling and documented as the NYS cold water
mass (NYSCWM; Miao et al., 1991; Zhao, 1996; Qiao et al.,
1998). Wintertime circulation is characterized by the Yellow
Sea Warm Current (YSWC), which is considered a compen-
sating current of the northeast monsoon driven coastal cur-
rents (Hsueh, 1988; Yuan et al., 2008), transporting saline
SYS water to the NYS (Fig. 1; Chen, 2009).

The high frequency of algae blooms has been noted in the
past 30 yr (Zhang, 1994; State Oceanic Administration of
China, 2012). Besides the limited effects of nutrient inputs
from Yalu River (Zhang et al., 1997), both atmospheric de-
position of nutrient elements and nutrient regeneration from
benthic processes may have significant impacts upon phy-
toplankton growth in the NYS (Zhang, 1994; Zhang et al.,
2002; Tan et al., 2011). The atmospheric CO2 concentration
in 2011 fluctuated from 383 ppmv (parts per million volume
in dry air) in late July to 408 ppmv in mid-May and mid-
November according to flask analyses at the adjacent Tae-ahn
Peninsula (TAP) site (36◦44′ N 126◦08′ E), and had an an-
nual average of 398 ppmv (data from NOAA/ESRL’s Global
Monitoring Division,http://www.esrl.noaa.gov/gmd/).

The western and central parts of the NYS (study area)
exchange water and other materials with the semi-enclosed
Bohai Sea (Fig. 1). The Bohai Sea has a volume of
1.4× 1012 m3 (Wei et al., 2002; Chen, 2009) and a very
long water exchange half-life of 17 to 21 months (Wei et
al., 2002). It is fed by more than a dozen rivers of mod-
erate or high alkalinity (1470 to 6300 µmol kg−1) (Wang
et al., 2005; Xia and Zhang, 2011), including major runoff
contributions from the Yellow River. During the past 60 yr,
annual water discharge from the Yellow River has signifi-
cantly declined; it was 50± 20× 109 m3 yr−1 in the 1950s
and 1960s, and only 5× 109 m3 yr−1 in the late 1990s (Wu
et al., 2004; Wang et al., 2007). Over the last 10 yr, annual
water discharge from the lower Yellow River has been ma-
nipulated at approximately 20× 109 m3 yr−1 (based on daily
water discharge data from the China Bureau of Hydrology,
http://xxfb.hydroinfo.gov.cn/). These remarkable freshwater
and alkalinity fluxes circulate in the Bohai Sea for more
than 1.5 yr (Wei et al., 2002; Mao et al., 2008), supporting
the relatively homogeneous low salinity of 30.50 to 31.50
(Chen, 2009; Zhai et al., 2012) and relatively high alkalin-
ity (∼ 2400 µmol kg−1, this study). Therefore, the outflow of
Bohai Sea water (Fig. 1) can serve as an alkalinity source in
the study area.

2.2 Survey design

Between May 2011 and May 2012, eight field surveys (Ta-
ble 1) were conducted in late spring (May), early summer
(June), mid-summer (July), late summer (August), autumn
(October and November) and winter (January). This hydro-
logical year was characterized by a wet summer (total rain-
fall of ∼ 610 mm in June, July, and August 2011) and a dry
winter (total rainfall of∼ 10 mm in December 2011, January
2012, and February 2012) (Fig. 2a). Both spring and autumn
were transitional seasons between the wet summer and dry
winter. However, water flow in the lower Yalu River was reg-
ulated by several major dams (including Sup’ung, Yunfeng,
Weiyuan, and Taipingwan), usually varying little within a
narrow range of 1000± 250 m3 s−1 (Fig. 2b).
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Table 1.Summary of the sampling cruises.

Surveying period R/V Stations in NYS Field-measured data

10–17 May 2011 Yixing 26 T , S, TAlk, DIC, pH, chla
22–24 Jun 2011 Dongfanghong 2 17 T , S, TAlk, DIC, pH, DO
24–31 Jul 2011 Yixing 24 T , S, TAlk, DIC, pH, chla
20–22 Aug 2011 Yixing 16 T , S, TAlk, DIC, pH, DO
18–23 Oct 2011 Yixing 25 T , S, TAlk, DIC, pH, DO, chla
22–25 Nov 2011 Dongfanghong 2 21 T , S, TAlk, DIC, pH, DO
9–13 Jan 2012 Yixing 8 T , S, TAlk, pH, DO, chla
13–15 May 2012 Dongfanghong 2 23 T , S, TAlk, DIC

During these surveys, water samples were collected at 8
to 26 grid stations for pH, total alkalinity (TAlk), dissolved
inorganic carbon (DIC), dissolved oxygen (DO), and chloro-
phyll a (chla) testing (Table 1). Most sampling stations had a
water depth of 25 to 78 m (Fig. 1). The northern sampling sta-
tions were near a highly developed marine aquaculture zone
around Dalian City (Fig. 1). To examine the influences of the
Bohai Sea water mass on the carbonate system in the study
area, TAlk data collected in the eastern part of the Bohai Sea
(Fig. 1) were also included in this study.

2.3 Sampling and analyses

Depth profiles of temperature and salinity (practical salinity
scale of 1978) were determined with calibrated conductivity-
temperature-depth/pressure (CTD) recorders (SBE911+ in
June 2011, November 2011, and May 2012, and SBE19+

during other surveying periods, Sea-Bird Co., USA) aboard
R/V Dongfanghong2 (June 2011, November 2011, and May
2012) and R/VYixing(other surveying periods). Water sam-
ples were obtained at three to four different depths using
rosette samplers fitted with 8 L or 2.5 L Niskin bottles, which
were mounted with CTD units. The bottom-water samples
were collected from a depth of 2 to 5 m above the sea bed.

Water samples for DO analyses were collected, fixed, and
titrated aboard following the classic Winkler procedure. A
small quantity of NaN3 was added during subsample fix-
ation to remove possible interference from nitrites (Wong,
2012). Based on repeat determinations of the Na2S2O3 titra-
tion reagent concentration, the uncertainty of the DO data
was estimated to be at the satisfactory level of < 0.5 % (Zhai
et al., 2012). The DO saturation (DO%) was calculated from
the field-measured DO concentration divided by the DO con-
centration at equilibrium with the atmosphere, as per the
Benson and Krause (1984) equation and the standard sea sur-
face barometric pressure (i.e. 1.013× 105 Pa).

Water samples for pH analyses were collected in 140 mL
brown borosilicate glass bottles using a procedure similar
to that used for DO. They were preserved with 50 µL satu-
rated HgCl2, sealed with screw caps, and measured at 25.0◦C
within 6 h of sampling. The precision pH meter (Orion
Star™, Thermo Electron Co., USA) was equipped with an

Orion
®

8102BN Ross combination electrode (Thermo Elec-
tron Co., USA) against two or three standard buffers. Dur-
ing field surveys, two pH buffer sets were used. The first
set included three NIST (National Institute of Standards and
Technology)-traceable buffers (pH= 4.01, 7.00, and 10.01
at 25.0◦C; Thermo Fisher Scientific Inc., USA), which were
used during all surveys. The second set was used only during
the June and November surveys, and included two carefully
prepared solutions of 2-amino-2-hydroxy-1,3-propanediol
(tris) and 2-aminopyridine, which are used by chemical
oceanographers as pHT buffers (Dickson et al., 2007). Based
on parallel measurements in June and November using the
two pH buffer sets, the pHT data were lower than the NIST-
traceable pH data by 0.143± 0.003 pH units (mean± stan-
dard deviation,n = 62) in the study area (Fig. A1), which
was comparable to Bohai Sea results (Zhai et al., 2012) and
the commonly accepted value for this difference (Lewis and
Wallace, 1998). Based on this result, we transferred the other
NIST-traceable pH data to the pHT scale, although the pHT
buffers were not used during those surveys. The overall un-
certainty of the pH data set was estimated to be 0.01 pH units
(Marion et al, 2011; Zhai et al., 2012).

Water samples for DIC and TAlk analyses were also col-
lected aboard. They were unfiltered but allowed to settle be-
fore measurement. As recommended by Huang et al. (2012),
they were stored in 60 mL borosilicate glass bottles (for DIC)
and 140 mL high-density polyethylene bottles (for TAlk).
They were mixed with 50 µL saturated HgCl2 and sealed
with screw caps and preserved at room temperature. DIC
was measured by infrared detection following acid extraction

of a 0.5 mL sample with a Kloehn
®

digital syringe pump,
as described in Cai et al. (2004). TAlk was determined by
Gran acidimetric titration on a 25 mL sample with another

Kloehn
®

digital syringe pump, using the precision pH meter

and an Orion
®

8102BN Ross electrode for detection. During
DIC and TAlk determinations, Certificated Reference Mate-
rials from A. G. Dickson’s lab were used for quality assur-
ance at a precision level of±2 µmol kg−1 (Cai et al., 2004;
Dickson et al., 2007).

Biogeosciences, 11, 1103–1123, 2014 www.biogeosciences.net/11/1103/2014/
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For chl a determination, water samples from 300 to
1000 mL were filtered on board, depending on the chla con-
centration. Filters were folded and wrapped in aluminium
foil, and stored in liquid nitrogen until analysis. After extrac-
tion by acetone, concentrations of chla were measured us-
ing a TD-700 laboratory fluorometer (Turner Designs, USA)
with excitation and emission wavelengths set at 430 and
670 nm, respectively (Parsons et al., 1984).

2.4 Calculation of other carbonate system parameters

The seawater fugacity of CO2 (f CO2), pHT (in situ), and
�arag were calculated from DIC, TAlk, seawater tempera-
ture, and salinity using the calculation program CO2SYS.xls
(Pelletier et al., 2011), which is an updated version of the
original CO2SYS.EXE (Lewis and Wallace, 1998). For the
January 2012 cruise, however, DIC data were not available
due to sample loss. Therefore, thef CO2, pHT (in situ),�arag
and DIC values from this specific cruise were calculated
based on pHT (at 25◦C) and TAlk, using the same calculation
program. The dissociation constants for carbonic acid were
those determined by Millero et al. (2006), and the dissocia-
tion constant for the HSO−4 ion was determined as per Dick-
son (1990). TheK∗

sp values for aragonite were taken from

Mucci (1983), and the Ca2+ concentrations were assumed
to be proportional to salinity. By comparison with measured
Ca2+ data for our June, August, and November cruises (Zhai,
unpublished data), nearly all relative deviations of calculated
Ca2+ values were at satisfactory levels (< 2 %; plots not re-
ported).

All available information and measured and calculated
data in the sampled bottom waters are presented in the Sup-
plement for public reference. To further assess the quality
of this data set, the calculated DIC (from field-measured
pH at 25◦C and TAlk) versus measured DIC, calculated
pH (from DIC and TAlk) versus field-measured pH, and
�arag values from DIC and TAlk versus those from field-
measured pH (at 25◦C) and TAlk were compared (Fig. A2).
For DIC and pH, most measured data and calculated re-
sults were consistent with each other at deviation levels of
±15 µmol kg−1 (DIC) and±0.05 (pH). These deviation lev-
els were reasonably higher than the precision of DIC de-
termination (±2 µmol kg−1) and the uncertainty of the mea-
sured pH data (±0.01 pH units). Furthermore, the two sets of
�aragvalues were mostly consistent with each other at a mi-
nor deviation level of±0.1. Some�aragvalues from DIC and
TAlk were slightly higher than those from field-measured pH
(at 25◦C) and TAlk by 0.1 to 0.2. These comparisons sug-
gested that the measured data and calculated results of the
carbonate system parameters were reliable.

3 Results

3.1 Environmental settings

The surveys covered four seasons fully. In January, a win-
ter month, water temperature at deeper stations (water
depth > 25 m, the same below) ranged between 3.19◦C and
6.74◦C (Fig. 3). Lower temperatures – between−1.45◦C
and 0.64◦C – were also measured (Fig. 3g) at two north-
ern stations (enclosed by the purple ellipse in Fig. 1). From
late spring to late summer, sea surface temperature (SST) in-
creased from 6.62−13.46◦C in May to 11.24−19.75◦C in
June and to 19.22−24.83◦C in July–August (Fig. 3a–d, 3g),
while the mean bottom-water temperature of deeper stations
increased from 5.48± 1.23◦C in May and 6.95± 2.43◦C in
June to 8.98± 3.21◦C in July and to 13.65± 4.92◦C in Au-
gust (Fig. 4a). Therefore, it is evident that strong water col-
umn stratification occurred at most stations in the summer
months (June to August) (Fig. 3b–d), except for a well-mixed
station at the northeast corner during the June cruise. Sum-
mertime NYSCWM in bottom waters at a temperature of
< 11◦C was identified in the study area (Fig. 5). From June to
August, the area occupied by NYSCWM declined consider-
ably (Fig. 5b–d), while the lowest bottom-water temperature
increased from 3.84◦C in June to 4.21◦C in July and 5.07◦C
in August (Fig. 3b–d). In October, despite the fact that sur-
face waters had cooled to between 14.73 and 18.37◦C, wa-
ter column stratification still persisted (Fig. 3e). In Novem-
ber, SST further declined to between 11.47◦C and 14.53◦C
(Fig. 3f), while temperature-induced water column stratifica-
tion started to disappear at the northern or western stations
with bottom-water temperatures of > 11◦C (Fig. 5f). Note
that in the two autumn months, another bottom cold water of
< 11◦C was constructed in the southeastern part of the study
area (Fig. 5e–f), presumably influenced by the adjacent SYS
bottom waters (Chen, 2009).

Compared with the significant seasonal variation in
bottom-water temperatures (from 5.48± 1.24◦C in May
2011 to 13.65± 4.92◦C in August 2011 at deeper sta-
tions), bottom-water salinity at the deeper stations only
changed on average between 31.32± 0.60 in August 2011
and 31.89± 0.33 in May 2011 (Fig. 4a). However, bottom-
water salinity at shallower stations in the southwestern part
of the study area showed seasonal variations (Fig. 5a–f); in
May and June, bottom-water salinity values were at rela-
tively high levels (31.50 to 32.00; Fig. 5a–b), but showed
relatively low levels (30.50 to 31.50) from July to November
(Fig. 5c–f). This was roughly consistent with the seasonal
variation of water discharge from the Yellow River (Fig. 2b).
In 2011, both late June and late September showed peak
water discharge (∼ 3000 m3 s−1) from the Yellow River.
River discharge of 3.73× 109 m3 over 18 days (24 June to
11 July) and 2.34× 109 m3 over 14 days (17 to 30 Septem-
ber) enhanced the outflow of the relatively low-salinity Bo-
hai Sea water along the southern coastline of the study area

www.biogeosciences.net/11/1103/2014/ Biogeosciences, 11, 1103–1123, 2014
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Fig. 3. Depth profiles of water temperature(a–g), dissolved oxygen saturation(h–l), pHT (m–s), and carbonate saturation state of aragonite
(t–z).

(Fig. 5c–f). On seasonal or shorter time scales, this water was
generally confined to the southwestern part of the study area
(enclosed by the blue ellipse in Fig. 1), which was further
evidenced by our temperature–salinity diagrams (Fig. 6a–h).

Sea surface DO% ranged between 85 % (in November)
and 154 % (in August) (Fig. 3h–l). In subsurface waters, rel-
atively high DO% (from 86 % to 112 %) was observed in
both June and January (Fig. 3h, 3l). However, relatively low
subsurface DO% values were observed in August (68 % to
95 %, Fig. 3i), October (54 % to 104 %, Fig. 3j), and Novem-
ber (51 % to 98 %, Fig. 3k). In January, DO% values ranged
between 94 % and 105 % in water columns (Fig. 3l), indicat-
ing that winter DO was in equilibrium with the atmosphere.
The high sea surface DO% values (from 110 % to 154 % in
June, August, and October; Fig. 3h–j) were consistent with
the high chla and primary production levels in the study area
(Gao and Li, 2009; Yang et al., 2009; Tan et al., 2011; He et
al., 2013; Fig. 7). In November, however, the mixing of sur-
face and oxygen-depleted subsurface waters led to undersat-
urated DO (DO% ranged from 85 % to 98 %) in sea surface
waters (Fig. 3k).

As an indication of primary production levels, sea surface
chl a data were also collected in May, July, and October
2011, and January 2012 (Fig. 7). They were measured at 0.75
to 8.17 µg L−1 (average 1.96± 1.42 µg L−1) in May, 0.44
to 6.32 µg L−1 (average 1.87± 1.58 µg L−1) in July, 0.81 to
10.97 µg L−1 (average 3.29± 2.70 µg L−1) in October, and
0.33 to 2.81 µg L−1 (average 1.06± 1.01 µg L−1) in January.
These seasonal values were all comparable to or higher than
those from the shelf of the subtropical East China Sea, where
the sea surface chla was determined at 0.26 to 2.09 µg L−1 in
December 1997 (winter), 0.15 to 1.85 µg L−1 in March 1998
(early spring), 0.11 to 8.03 µg L−1 in July 1998 (summer),
and 0.28 to 2.75 µg L−1 in October 1998 (autumn) (Gong
et al., 2003). Earlier survey-based and satellite-based stud-
ies also revealed high chla and primary production levels in
the study area (e.g. Gao and Li, 2009; Yang et al., 2009; Tan
et al., 2011; He et al., 2013).

Significantly, extremely high sea surface chla values (4.12
to 6.32 µg L−1 in July in the northern and southwestern parts,
and 10.97 µg L−1 in October in the northern part of the study
area) (Fig. 7c) indicated very high primary production levels
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Fig. 4. Time series of averaged survey values of bottom-
water temperature/salinity(a), salinity-normalized total alkalinity
(NTAlk)/dissolved inorganic carbon (NDIC)(b), fugacity of CO2
and pHT (c), and carbonate saturation state of aragonite(d) at
deeper stations (water depth > 25 m). Error bars denote standard de-
viations. NTAlk and NDIC were calculated according to Eqs. (6)–
(11) (Sect. 3.2). Dashed line in panel(c) shows monthly mean air
pCO2 (partial pressure of CO2), i.e. air-equilibrated level off CO2
calculated from the flask analysis data of atmospheric CO2 con-
centration at the adjacent Tae-ahn Peninsula (TAP) site (36◦44′ N
126◦08′ E), and corrected to survey-based barometric pressure at
10 m above the sea surface and 100 % humidity at sea surface tem-
perature and salinity, following the procedure described in Zhai et
al. (2009).

in the northern and southwestern areas in 2011. According
to the marine environmental status bulletin released by the
State Oceanic Administration of China, seven cases of red
tide were recorded in 2011 in the northern part of the study
area (State Oceanic Administration of China, 2012), which
was generally consistent with the chla results. This is de-
tailed in the Supplement. These red tides probably produced
large sinking fluxes of particulate organic matter, leading to
bottom-water DO depletion and pH decline (Eq. (1)). The
relationship between bottom-water DO depletion and pH de-
cline shall be discussed in detail in Sect. 4.2.

3.2 TAlk and DIC and their water mixing behaviours

In the study area, TAlk ranged between 2073 µmol kg−1 (at a
salinity of 28.34 in August) and 2346 µmol kg−1 (at a salin-
ity of 31.47 in May 2011) (Fig. 6i–p), while DIC ranged be-
tween 1809 µmol kg−1 (at a salinity of 28.34 in August) and
2214 µmol kg−1 (at a salinity of 31.77 in October) (Fig. 6q–
w). In the adjacent eastern Bohai Sea, however, relatively
high TAlk – from 2222 µmol kg−1 (at a salinity of 30.56 in
October) to 2447 µmol kg−1 (at a salinity of 29.16 in May
2012) – was obtained (Fig. 6i–p).

TAlk, a nearly conservative parameter, showed compli-
cated water mixing behaviours in the study area. Ideally,
three-endmember or even four-endmember mixing models
were needed to fully describe the complicated water mixing
behaviours of the water column TAlk under multiple influ-
ences of river discharge (from Yalu River), the outflow of Bo-
hai Sea water, and the intrusion of SYS water (Fig. 1). Fortu-
nately, most bottom-water TAlk versus salinity at deeper sta-
tions followed several simple two-endmember mixing lines
(Fig. 6i–p). From May to October 2011, the simplified water
mixing line was

TAlk (µmolkg−1) = 61.745 × Salinity
+ 320(from May to October 2011).

(2)

This is much higher than the water mixing line be-
tween nearby open ocean surface waters (TAlk= 2300 to
2310 µmol kg−1 at the salinity of 35) (Chen and Wang, 1999)
and rainwater. During the late autumn and winter cruises,
however, the bottom-water mixing lines at deeper stations
shifted from Eq. (2) to Eq. (3) in November 2011 and Eq. (4)
in January 2012 (Fig. 6n–o).

TAlk (µmol kg−1) = 56.814 × Salinity
+ 452(n = 19, r = 0.95, in November 2011)

(3)

TAlk (µmol kg−1) = 45.404 × Salinity
+795(n = 6, r = 0.99, in January 2012)

(4)
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Therefore, the high-salinity endmember (S = 32.1) with
high TAlk exhibited declining TAlk in the northeast monsoon
seasons, which decreased by∼ 20 µmol kg−1 in Novem-
ber and ∼ 60 µmol kg−1 in January compared with the
usual value in the southwest monsoon seasons (TAlk=

2302 µmol kg−1 at the salinity of 32.10 from May to Octo-
ber 2011) (Fig. 6i–o). These changes likely indicated the in-
fluences of the SYS water intrusion via YSWC in the north-
east monsoon seasons (Fig. 1; Chen, 2009), as evidenced by
the relatively high-salinity water intrusion (S > 32.0) at the
bottom in the southeastern part of the study area in October
and November (Fig. 5e–f). In addition, the TAlk values from
320 to 795 µmol kg−1 at the extrapolated freshwater end were

consistent with the low TAlk features of both the river plume
from Yalu River and rainwater.

A typical nonconservative parameter, DIC is largely af-
fected by both sea surface photosynthesis and subsurface res-
piration/remineralization. To characterize water mixing be-
haviours of water column DIC in the study area from May
to October 2011, a two-endmember water mixing line was
assumed (Eq. (5)).

DIC (µmol kg−1) = 56.161 × Salinity
+ 320(from May to October 2011)

(5)
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That is, a simple water mixing between an ideal freshwater
endmember with DIC of 320 µmol kg−1 (equal to the above-
mentioned freshwater endmember value of TAlk from May
to October 2011) and a seawater endmember with DIC of
2123 µmol kg−1 at the salinity of 32.10. As shown in Fig. 6q–
w, most DIC values in the water columns were lower than the
predicted values due to sea surface biological uptake as indi-
cated by relatively high chla levels (Fig. 7). However, many
bottom-water DIC values were higher than the predicted
values (Fig. 6r–v), indicating respiration/remineralization-
induced addition of DIC (Eq. (1)).

To eliminate the dilution and concentration effects of river
discharge and precipitation and evaporation on the seawa-
ter carbonate system, we normalized bottom-water TAlk and
DIC to a uniform salinity of 32. Following Friis et al. (2003),
the salinity-normalized parameters (NTAlk and NDIC) were
calculated as below.

In May, June, July, August, and October 2011, and May
2012,

NTAlk = (TAlk − 320 µmol kg−1)

× 32/ Salinity+ 320 µmol kg−1,
(6)

NDIC = (DIC − 320 µmol kg−1)

× 32/ Salinity + 320 µmol kg−1.
(7)

In November 2011,

NTAlk = (TAlk − 452 µmol kg−1)

× 32/ Salinity+ 452 µmol kg−1,
(8)

NDIC = (DIC − 452 µmol kg−1)

× 32/ Salinity + 452 µmol kg−1.
(9)

In January 2012,

NTAlk = (TAlk − 795 µmol kg−1)

×32/ Salinity+ 795 µmol kg−1,
(10)

NDIC = (DIC − 795 µmol kg−1)

× 32/ Salinity+ 795 µmol kg−1.
(11)

In the southwestern part of the study area, a tongue-
like region with a relatively high NTAlk from 2310 to
2370 µmol kg−1 was identified in bottom waters (Fig. 5g–
l). This region was rather shallow (water depth mostly
< 25 m) and likely influenced by the outflow of the rela-
tively low-salinity Bohai Sea water. Focusing on the deeper
stations, 75 % of the bottom-water NTAlk values were in
a compact range of 2290± 25 µmol kg−1 (Fig. 8). This
specific value was slightly lower than the cruise mean
bottom-water NTAlk values of deeper stations from May
to August 2011 (between 2295± 9 µmol kg−1 in July and
2303± 22 µmol kg−1 in May), but quite consistent with
the cruise mean bottom-water NTAlk values of deeper
stations in October 2011 (2290± 15 µmol kg−1) and May
2012 (2292± 20 µmol kg−1) (Fig. 4b). During the Novem-
ber and January cruises, the mean bottom-water NTAlk
values were only 2270± 9 µmol kg−1 in November and
2248± 2 µmol kg−1 in January (Fig. 4b), likely reflecting the
influence of the SYS water intrusion, as mentioned above.

The cruise mean bottom-water NDIC values of deeper
stations increased from 2137± 22 µmol kg−1 in May 2011
to 2176± 31 µmol kg−1 in October 2011, and then gradu-
ally declined to 2127± 33 µmol kg−1 in May 2012 (Fig. 4b).
Therefore, a baseline value of NDIC (2130 µmol kg−1) was
obtained for this study, which was roughly free from the
modulation of sea surface photosynthesis and subsurface res-
piration/remineralization. In August, October and November,
most bottom-water NDIC data at the deeper stations were
higher than the baseline value, especially at the salinity range
from 31.63 to 32.25 (Fig. 8), which was possibly due to
the community respiration- and/or aerobic remineralization-
induced addition of DIC in bottom waters (see Sect. 4.2).

3.3 Seasonal variations of bottom-water
f CO2, pHT and �arag

Figure 4c shows seasonal variations of bottom-water
f CO2 and pHT at the deeper stations. On average,
bottom-water f CO2 increased from CO2-undersaturated
339± 22 µatm in May 2011 and 342± 49 µatm in May
2012 to nearly air-equilibrated 387± 30 µatm in June to
CO2-supersaturated 438± 4 µatm in July, 526± 49 µatm in
August, and 630± 84 µatm in October. In November and
January, bottom-waterf CO2 declined to 560± 100 µatm
and 468± 61 µatm, respectively. Overall, bottom water pHT
mirrored f CO2 (Fig. 4c), which declined from relatively
high levels of 8.11± 0.03 in May 2011 and 8.11± 0.06
in May 2012 to 8.06± 0.04 in June, 8.02± 0.04 in July,
and 7.94± 0.04 in August, reaching the lowest value
of 7.88± 0.06 in October. In November and January,
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bottom-water pHT increased to 7.92± 0.07 and 7.98± 0.06,
respectively.

Seasonal variation in bottom-water�arag (Fig. 4d) was
more complicated than pHT andf CO2. From spring to sum-
mer, bottom-water�arag declined slightly from 1.86± 0.14
in May 2011 and 1.85± 0.21 in May 2012 to 1.79± 0.24
in June, 1.75± 0.27 in July, and 1.76± 0.29 in August. In
autumn and early winter, cruise mean bottom-water�arag
was 1.45± 0.31 in October, 1.52± 0.25 in November, and
1.41± 0.12 in January.

Figure 5 also shows seasonal variations in bottom-water
pHT and�aragdistributions. The low pHT area (pHT < 7.90)
and low�arag area (�arag < 1.40) reached peaks in October
(Fig. 5). In this month of maximum acidification, low pHT
values of 7.81 to 7.90 were detected at 15 stations, covering
the main body of the study area (Fig. 5q). In these stations,
bottom-water pHT declined by 0.17 to 0.30 units from May
to October, demonstrating significant increases in bottom-
water total-hydrogen-ion concentrations by 48 % to 100 %
over the six months. In November, low pHT values (7.79 to
7.90) were detected at six northern stations and two south-
eastern stations (Fig. 5r). Low�arag values (1.13 to 1.40)
were detected at ten stations in October and seven stations

in November (Fig. 5w–x), while such low�aragvalues were
rarely observed in spring and summer (Fig. 5s–v).

Vertical profiles suggested that most pHT values of less
than 7.90 and�arag values of less than 1.40 were observed
from July to October and were confined to subsurface waters
(below 25 m depth) due to stratification (Fig. 3). They be-
came higher in November and January, when bottom waters
were mixed with sea surface waters (Fig. 3r–s, 3y–z).

In the previously mentioned tongue-like region in the
southwestern part of the study area, bottom-water�aragwas
at relatively high levels (1.80 to 2.40; Fig. 5s–x), although
low pHT values (from 7.82 to 7.90) were also detected in Au-
gust (Fig. 5p). Salinity distributions suggested that both the
highestf CO2 values and lowest pHT and�aragvalues were
associated with relatively high salinity (31.63 to 32.25) in
bottom waters (Fig. 9), where significant DO depletion was
observed (Fig. 10).

3.4 Subsurface community respiration in summer
and autumn

Variations in bottom-water DO following changes in salinity
are shown in Fig. 10. In June, the average bottom-water DO
was 291± 12 µmol-O2 kg−1 (n = 13, salinity range 31.65
to 32.15, DO% range 88 % to 110 %), which was simi-
lar to the air-equilibrated DO in winter (286 to 311 µmol-
O2 kg−1). In August, a rather uniform bottom-water DO level
of 243± 7 µmol-O2 kg−1 (n = 5, DO% range 83 % to 89 %)
corresponded to a narrow salinity range (from 31.78 to 31.89;
Fig. 10). In October, three bottom-water DO clusters were
identified at different salinity ranges (Fig. 10). Of these clus-
ters, one with relatively high salinity (32.13 to 32.23) ex-
hibited an average DO of 193± 5 µmol-O2 kg−1 (including
two DO values of 188 and 198 µmol-O2 kg−1, with a DO%
of 63 % and 66 %, respectively). The second cluster had
DO values of 176 and 181 µmol-O2 kg−1 (average 178 µmol-
O2 kg−1, with DO% of 61 % and 64 %, respectively) and
salinity values of 31.87 and 31.88. The third cluster, with
relatively a low salinity (from 31.65 to 31.73) had an aver-
age DO of 162± 7 µmol-O2 kg−1 (n = 4; DO% range 57 %
to 62 %). Since water column stratification was intensified
from June to October (Fig. 3), replenishing of oxygen via
vertical mixing was possibly negligible during these months.
Therefore, the apparent DO depletion rate can be regarded
as a rough estimate of the subsurface community respiration
rate.

Based on Fig. 10, the bottom-water community respiration
rates at different salinity ranges were estimated in Table 2.
All results were in the narrow range of 0.80 to 1.08 µmol-
O2 kg−1 d−1 (overall salinity range from 31.63 to 32.25),
suggesting relatively low community respiration rates in the
high-salinity bottom waters from summer to autumn, as com-
pared to the earlier values of 2.00 to 2.80 µmol-O2 kg−1 d−1

observed in summer oxygen-depleted bottom waters in the
adjacent Bohai Sea (Zhai et al., 2012).
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Fig. 9.Fugacity of CO2 versus salinity(a), pHT versus salinity(b),
carbonate saturation state of aragonite versus salinity(c) in bottom
water at deeper stations (water depth > 25 m). Dashed lines are con-
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based on bottom-water mixing lines of TAlk and DIC from May
to October (Fig. 6), while the unbroken turquoise line in panel(c)
shows the best-fitted conic for October data.

At the relatively low salinity range of 30.80 to 31.40, fairly
low bottom-water DO values of 138 to 168 µmol-O2 kg−1

(DO% range 54 % to 63 %) were also observed in Octo-
ber and November (Fig. 10), suggesting community respi-
ration. Unfortunately, the rate within this salinity range was
not calculable due to data limitation and potential water dis-
turbance.
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4 Discussion

4.1 Effects of temperature

Prior to discussion on biogeochemical controls, the effects of
temperature onf CO2 (Takahashi et al., 1993), pH (Gieskes,
1969), and�arag must be delineated and put into perspec-
tive. Figure 9 shows that a temperature increase from 5◦C
to 14◦C led to a seawaterf CO2 increase of 155± 8 µatm
(Fig. 9a) and a pH drop of∼ 0.137 units (Fig. 9b). This is
because increasing temperature added a greater proportion of
free CO2 than that of CO2−

3 in water at a given salinity, TAlk,
and pressure. Based on the seasonal increase in bottom-water
temperature from May to August (5.48± 1.23◦C in May
2011, 8.98± 3.21◦C in July, and 13.65± 4.92◦C in August,
Fig. 4a), we roughly predicted bottom-waterf CO2 and pHT
in May, July, and August (Fig. 9a, 9b).

However, the temperature-based prediction was not ver-
ified by our autumn data. From late summer (August) to
autumn (October and November), although bottom temper-
ature declined by∼ 2◦C (Fig. 4a),f CO2 increased from
526± 49 µatm (August) to 630± 84 µatm (October) and
559± 101 µatm (November) (Fig. 4c), and pHT decreased
from 7.95± 0.04 (August) to 7.88± 0.06 (October) and
7.92± 0.07 (November) (Fig. 4c). The bottom-waterf CO2
increase and pH decline from late summer to autumn were
both caused by local community respiration and/or aerobic
remineralization, which induced an addition of DIC in bot-
tom waters (see Sect. 4.2).

From late autumn to winter to early spring, tempera-
ture also had major effects on the bottom-waterf CO2 de-
cline. As indicated by Fig. 4a, the average bottom-water
temperature decreased by 5.20◦C from November to Jan-
uary (11.20◦C minus 6.00◦C). According to the approxi-
mate temperature coefficient off CO2 (4.23 % ◦C−1) (Taka-
hashi et al., 1993), this temperature decline could solely
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Table 2. Calculation of bottom-water apparent dissolved oxygen (DO) depletion rates at deeper stations (water depth > 25 m). See Fig. 10
for details.

Serial Salinity Duration DO changes Apparent DO depletion rate
number ( µmol-O2 kg−1) ( µmol-O2 kg−1 d−1)

(1) between 31.78 and 31.89 June to August (60 d) 291 – 243= 48 0.80
(2) between 31.78 and 31.89 August to October (60 d) 243 – 178= 65 1.08
(3) between 31.63 and 31.72 June to October (120 d) 291 – 162= 129 1.08
(4) between 32.13 and 32.25 June to October (120 d) 291 – 193= 98 0.82

account for the bottom-waterf CO2 drop of∼ 100 µatm (av-
erage 560 µatm in November versus 467 µatm in January,
Fig. 4c). In the northeast monsoon season, supposing the
initially CO2-equilibrated YSWC water quickly cooled from
9◦C to 5◦C and then submerged in the study area, the lower
temperature could lead to af CO2 drop of∼ 17 % or 68 µatm,
which may explain the CO2-undersaturated bottom waters
observed in May (average∼ 340 µatm, Fig. 4c).

In contrast with its major effects onf CO2 and pH, tem-
perature had only minor effects on�arag (Figs. 4d, 9c). If
bottom-water�aragwas calculated for a temperature of 5◦C
or 15◦C instead of the in situ temperature, the changes in
�aragwould only be−3 % or 5 % (Fig. 4d).

4.2 Controlling effects of community respiration
on subsurface pH and�arag declines from
summer to autumn

To reveal the influences of community respiration and/or aer-
obic remineralization on carbonate system dynamics in sub-
surface waters, the bottom-water DIC, TAlk, pH, and�arag
data in the narrow salinity range of 31.63 to 32.25 were plot-
ted against DO (Fig. 11). Field-measured pHT (at 25◦C)
were used to eliminate the influence of temperature on pH.
To quantify the respiration-derived changes, relevant Red-
field lines based on Eq. (1) were also plotted. As shown in
Fig. 11, the plots of the four carbonate system parameters
versus DO in relatively high salinity (31.63 to 32.25) bottom
waters in June, August, October, and November satisfacto-
rily followed the Redfield lines, suggesting controlling ef-
fects of community respiration and/or aerobic remineraliza-
tion on pH and�arag declines in these waters from summer
to autumn.

From August to October, changes in bottom-water
DIC/TAlk and thereby bottom-waterf CO2/pHT/�aragat the
deeper stations were modelled based on Eq. (1) and the
lower limit of the community respiration rate (0.80 µmol-
O2 kg−1 d−1). During simulation, initial NTAlk and NDIC
were set to the August values of 2300 µmol kg−1 and
2150 µmol kg−1, respectively (Fig. 4b), while salinity and
temperature were replaced by constant values of 31.50 and
12.50◦C, respectively (Fig. 4a). The simulation results (plot
not reported) suggested that community respiration and/or
aerobic remineralization led to a bottom-waterf CO2 in-

crease from 500 µatm in late August to 670 µatm in late
October, a pHT decrease from 7.97 to 7.85, and an�arag
decline from 1.76 to 1.38. All latter values were close to
the field-based data in October (f CO2 630± 84 µatm, pHT
7.88± 0.06, and�arag1.45± 0.31 at deeper stations, Fig. 4).
On average, however, the field-based�aragdecline from Au-
gust to October (1.76−1.45 = 0.31, Fig. 4d) was equal to
only 82 % of the predicted�aragdecline value (1.76−1.38 =
0.38), suggesting other processes counteracting the season-
ally and locally intensified acidification. This issue will be
discussed in Sect. 4.3.

4.3 Potential precipitation/dissolution of CaCO3 and
influences of water mixing

Bottom water NTAlk, pHT (at 25◦C) and�aragversus NDIC
showed diverse patterns at a relatively high salinity range
(31.63 to 32.25) (Fig. 12) and a relatively low salinity range
(30.31 to 31.59) (Fig. 13). To further discuss the impacts
of biogeochemical processes (including water mixing) on
bottom-water pH and�arag, several stoichiometric relation-
ships were modelled based on ideal changes of DIC and TAlk
associated with community respiration and aerobic reminer-
alization, calcification, and CaCO3 dissolution in different
waters (Figs. 12, 13).

4.3.1 Relatively high salinity bottom waters

In the relatively high salinity (31.63 to 32.25) bottom wa-
ters, pHT / �aragversus NDIC plots suggested that three bio-
geochemical processes affected carbonate system dynamics
(Fig. 12). In addition to the major effects of community res-
piration and/or aerobic remineralization, signals of precipita-
tion and dissolution of CaCO3 were revealed. As mentioned
above, the study area is abundant in bivalve molluscs that in-
habit bottom waters. Although no direct measurement was
made, bottom-water calcification was possible in spring due
to the relatively high�aragof 1.69 to 2.19 (Fig. 5s). In sum-
mer and autumn, however, bottom-water�arag declined to
between 1.13 and 1.40 at many stations (Fig. 5u–x), where
CaCO3 biominerals in native-born calcic shells may have un-
dergone dissolution (Xu et al., 2013).

As represented with chemical reaction equations, calcifi-
cation lowers TAlk by two equivalents and DIC by one mole
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tionships based on the Redfield equation. To eliminate temperature
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situ) were used in panels(c).

for every mole of CaCO3 precipitated (Eqs. (12) and (13)).
In addition, CaCO3 dissolution raises TAlk by two equiva-
lents for every mole of DIC increase (Eq. (14)). As indicated
by the arrows in Fig. 12, the precipitation of CaCO3 low-
ered�arag and pH due to the decline in CO2−

3 ion concen-
tration (Eq. (12)) or the increase in free CO2 concentration
(Eq. (13)), and vice versa for CaCO3 dissolution (Eq. (14)).

Ca2+
+ CO2−

3 → CaCO3 (12)
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Fig. 12. Bottom water pHT/�arag versus salinity-normalized DIC
(NDIC) at the salinity range of 31.63 to 32.25. Calculation of NDIC
is detailed in section 3.2. To eliminate temperature effects on pH,
field-measured pHT at 25◦C instead of pHT (in situ) were used.
Usual relationships derived from ideal changes of pHT/�aragversus
NDIC in aerobic respiration, CaCO3 dissolution, and calcification
are delineated by grey lines. Dashed red lines are best-fitted regres-
sion lines of all data. Dashed violaceous lines are ideal changes of
pHT/�arag versus NDIC in respiration based on carbonate system
obtained during our November cruise.

Ca2+
+ 2HCO−

3 → CaCO3 + CO2 + H2O (13)

CaCO3 + CO2 + H2O → Ca2+
+ 2HCO−

3 (14)

At the relatively low NDIC range of 2070 to 2137 µmol kg−1

(with relatively high�arag of 1.69 to 2.19) during the two
spring cruises, several bottom-water�arag values were 6 %
to 11 % lower, and several bottom-water pHT (at 25◦C) val-
ues were 0.02 to 0.05 units lower than those predicted by
the Redfield relationship (Fig. 12). Both were influenced by
possible calcification. However, most�arag and pH values
with relatively high NDIC values of 2143 to 2228 µmol kg−1
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Fig. 13.Bottom water NTAlk/pHT/�aragversus NDIC at the salin-
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measured pHT at 25◦C instead of pHT (in situ) were used. Data
points enclosed by brown quadrangles are from the southwestern
region of the study area (enclosed by the blue ellipse in Fig. 1).
Grey lines show the Redfield relationship outside the southwestern
region of the study area.

ranged between the two modelled lines of aerobic respiration
and CaCO3 dissolution. In July, August, and October, several
bottom-water�arag values were∼ 13 % higher and several
bottom-water pHT (at 25◦C) values were∼ 0.06 units higher
than those predicted by the Redfield relationship (Fig. 12).
These differences may result from CO2-consuming CaCO3

dissolution (Eq. (14)). In November, however, NTAlk de-
clined by∼ 20 µmol kg−1 compared with the specific value
(2290 µmol kg−1) in southwest monsoon seasons (Fig. 8),
leading to a downward shift in Redfield lines (Fig. 12).
Therefore, the November bottom-water data also suggested
CaCO3 dissolution as discussed above.

In summary, the carbonate system parameters versus DIC
plots suggested that high-salinity bottom waters in the study
area may undergo both precipitation (in spring) and dissolu-
tion (in summer and autumn) of CaCO3. The latter process
may be utilized to combat locally intensified acidification and
to mitigate its impacts on valuable bivalve molluscs (Green
et al., 2009; Kelly et al., 2011).

4.3.2 Relatively low-salinity bottom waters

In the relatively low-salinity (30.31 to 31.59) bottom waters,
data points of NTAlk versus NDIC were divided into two
clusters (Fig. 13a), corresponding to the above-mentioned
two low-salinity regions (Fig. 5a–f). Very high NTAlk val-
ues (from 2315 to 2379 µmol kg−1) were observed in the
southwestern region of the study area, which was likely in-
fluenced by the outflow of Bohai Sea water (enclosed by the
blue ellipse in Fig. 1). Other NTAlk values were obtained
in the northeastern study area under the influence of water
discharge from Yalu River (Fig. 1). Accordingly,�arag and
pHT (at 25◦C) versus NDIC showed two different relation-
ships (Fig. 13b–c). In the area under the possible influence
of the outflow of Bohai Sea water, the bottom-water�arag
was at relatively high levels of 1.73 to 2.39 (Fig. 13c). Sim-
ilarly, the bottom-water pHT (at 25◦C) in the southwestern
region was 0.04 to 0.24 higher than the Redfield prediction
values in another low-salinity region near the Yalu River es-
tuary (Fig. 13b). Therefore, the outflow of Bohai Sea water
could counteract the long-term reduction of subsurface�arag
in the study area if mixed with NYS bottom waters in late
autumn and winter (Fig. 3). This issue needs further investi-
gation.

4.4 Air–sea re-equilibration of CO2-rich waters
in winter

From late November to January, water cooling and the strong
northeast monsoon destratified the water column (Fig. 3f–g),
leading to a DO recovery by January (Fig. 3l). However, both
pH and�arag were still at low levels in this winter month
(Fig. 3s, 3z), mainly due to the relatively highf CO2 value
of 468± 61 µatm in January (Fig. 4c). This is because air–sea
re-equilibration of CO2 is slower than DO due to the chemi-
cal buffering capacity of the marine carbonate system (e.g.
DeGrandpre et al., 1997; Zeebe and Wolf-Gladrow, 2001;
Zhai et al., 2009). Therefore, we cannot directly link DO
change to DIC change during air–sea exchange. To resolve
this issue, we intend to discuss the air–sea equilibration time
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(τ ). Following Zeebe and Wolf-Gladrow (2001),

δ[O2]/δt = k/dML × ([O2]equ− [O2]), (15)

δDIC/δt = (δDIC/δ[CO2]) × (δ[CO2]/δt), (16)

δDIC/δt = k/dML × ([CO2]equ− [CO2]), (17)

where prefixδ is the differential change,t is the time,k is the
gas transfer velocity,dML is the mixed layer depth (75 m in
winter), subscript equ is the air-equilibrated value. Therefore,

τ(O2) = ([O2]equ− [O2])/(δ[O2]/δt) = dML/k, (18)

τ(CO2) = ([CO2]equ− [CO2])/(δ[CO2]/δt)

= dML/k × (δDIC/δ[CO2])

= dML/k × (DIC/[CO2]/RF),

(19)

where RF is the Revelle factor (∼ 15 in acidified bottom wa-
ters). An eloquent definition of RF refers to Sundquist et
al. (1979). To determine gas transfer velocity, the revised
equation of Wanninkhof (1992) by Sweeney et al. (2007) was
used, that is,

k = 0.27× u2
10× (Sc/660)−0.5, (20)

wherek is the gas transfer velocity (unit: cm h−1), u10 is the
wind speed at 10 m height, and Sc is the Schmidt number in
seawater, calculated from temperature using a equation rec-
ommended by Wanninkhof (1992). During calculation, tem-
perature and salinity were set to 6◦C and 32, respectively,
while u10 was replaced by a constant value of 10 m s−1.

The regional gas transfer velocities in winter was
4.39 m d−1, which is reasonable and slightly higher than the
global mean gas transfer velocity value (3.50± 1.12 m d−1)

derived from radiocarbon measurements (Sweeney et al.,
2007). Theτ (O2) value was then determined to be 75/4.39
= 17 d. According to Zeebe and Wolf-Gladrow (2001), this
τ (O2) value meant that ([O2]equ− [O2]) declined, in the
time span of 17 days, to 37 % of its initial value when wa-
ter column stratification disappeared. This time scale was
consistent with the bottom-water DO changes from October
to November to January (Fig. 3j–l). However, bottom-water
τ (CO2) in the study area was 75/4.39× (2155/23.6/15)=
104 d in November and 75/4.39× (2120/24.0/15)= 100 d in
January. Both were 4.5 times longer thanτ (O2). Thef CO2
data from November 2011 to May 2012 (Fig. 4c) also sug-
gested that a time span of nearly half a year, i.e. twice the
τ (CO2) value, was needed in order to fully ventilate the su-
persaturated CO2 from water columns.

5 Summary and implications

We investigated the dynamics of subsurface pH and�aragbe-
tween May 2011 and May 2012 on the Chinese side of the
North Yellow Sea. The results indicated that local commu-
nity respiration and aerobic remineralization led to seasonal
drops in subsurface pH and�arag. Low pHT values of 7.79 to
7.90 and low�aragvalues of 1.13 to 1.40 dominated subsur-
face waters in October and November. In these waters, car-
bonate biominerals in calcic shells and skeletons may begin
to dissolve.

In the broader context, increasing atmospheric CO2 con-
centration (WMO/GAW, 2012) has induced sea surface car-
bonic acid levels to rise (Lenton et al., 2012), pH to decline
(Caldeira and Wickett, 2003; Orr et al., 2005; Byrne et al.,
2010), and carbonate ions to be titrated (Sabine et al., 2004;
Turley and Gattuso, 2012), leading to declines in sea surface
carbonate saturation state (Feely et al., 2012). These ocean
acidification processes have been recognized as general CO2
problems on the global scale (Doney et al., 2009). However,
coastal oceans are more vulnerable to its impacts due to the
combined stresses of complex oceanographic processes and
increasing human activities (e.g. Thomas et al., 2007; Feely
et al., 2008, 2010; Taguchi and Fujiwara, 2010; Cai et al.,
2011; Kelly et al., 2011; Gruber et al., 2012; Sunda and Cai,
2012; Zhai et al., 2012; Chou et al., 2013; Duarte et al.,
2013). This study clearly showed that this was also the case
in the North Yellow Sea. The high-quality carbonate system
data set will assist future predictions of marine environment
changes in this important marginal sea under the context of
ocean acidification.

In the China seas, several qualified carbonate system stud-
ies have shown that ocean acidification currently plays a mi-
nor role in lowering the CaCO3 saturation state in the north-
ern South China Sea and East China Sea shelves, where the
lowest surface and bottom-water�arag values were previ-
ously ascertained to be 1.70 to 2.00 (Cao et al., 2011; Chou et
al., 2013). In the Bohai Sea, a summertime pH decline event
has been reported (Zhai et al., 2012). However, the lowest
bottom-water�arag value was 1.69 in the bottom oxygen-
depleted waters in the Bohai Sea in August 2011 (Zhai, un-
published data). The only CaCO3-undersaturated case re-
ported along the Chinese coastal zone is in the upstream re-
gion of the Pearl River Estuary, where CaCO3 saturation for
calcite was calculated to be 0.3 to 1.0 when salinity is on the
range of 1 to 16 (Dai et al., 2006). Therefore, the NYS may
represent one of the systems in the China seas most vulnera-
ble to the potentially negative effects of ocean acidification.
So far, however, it is not clear how marine organisms and
ecosystems are affected by locally intensified acidification
(e.g. Xu et al., 2013). It is also unknown how the high-TAlk
water inputs (from the Yellow River – Bohai Sea system) and
the CaCO3 cycle will affect localized acidification on inter-
annual to decadal scales. These problems need future inves-
tigation.
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Fig. A1. Comparison between parallel pH measurements using
total-hydrogen-ion scale pH buffers and NIST-traceable pH buffers.

Appendix A

Comparison between parallel pH measurements

Based on parallel measurements in June and November using
two pH buffer sets, it was concluded that the pH data on the
total-hydrogen-ion scale were lower than the NIST-traceable
pH data by 0.143± 0.003 pH units (mean ±standard devia-
tion, n = 62, based on the experiment in June) in the North
Yellow Sea (Fig. A1).

Appendix B

Comparison between measured and calculated carbonate
system parameters

To assess data quality, the calculated DIC (from field-
measured pH at 25◦C and TAlk) versus measured DIC, cal-
culated pH (from DIC and TAlk) versus field-measured pH,
and�aragvalues from DIC and TAlk versus those from field-
measured pH (at 25◦C) and TAlk were compared. Most
were consistent with each other at satisfactory deviation lev-
els of± 15 µmol kg−1 (DIC), ±0.05 (pH) and±0.1 (�arag).
Some�arag values from DIC and TAlk were slightly higher
than those from field-measured pH (at 25◦C) and TAlk by
0.1 to 0.2 (Fig. A2).

1850

1950

2050

2150

2250

1850 1950 2050 2150 2250
Measured DIC (μmol kg-1)

C
al

cu
la

te
d 

D
IC

 ( μ
m

ol
 k

g-1
)

May-11
Jun-11
Jul-11
Aug-11
Oct-11
Nov-11

(a)

7.5

7.6

7.7

7.8

7.9

8

8.1

7.5 7.6 7.7 7.8 7.9 8 8.1
Measured pHT (25 oC)

C
al

cu
la

te
d 

pH
T 

(2
5 

o C
)

(b)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 1.2 1.4 1.6 1.8 2 2.2 2.4
Ωarag from pH & TAlk

Ω
ar

ag
 fr

om
 D

IC
 &

 T
A

lk

(c)

Fig. A2. Comparisons between calculated DIC (from measured pH
at 25◦C and TAlk) and measured DIC data(a), between calculated
pH (from DIC and TAlk) and measured pH data(b), and between
calculated�arag values from pH/TAlk and those from DIC/TAlk
(c). Unbroken lines are 1 : 1 lines, dashed lines denote deviation
levels of±15 µmol kg−1 (a), ±0.05 pH units(b), and±0.1 �arag
(c). Note that the precisions of DIC and pH determination were es-
timated at±2 µmol kg−1 (Cai et al., 2004) and±0.003 pH units
(in correspondence with the precisions of potential determination
of ±0.1 mV), respectively. The overall uncertainty of the measured
pHT data was estimated to be 0.01 pH units (Marion et al., 2011;
Zhai et al., 2012). Primary data are presented in the Supplement for
public reference.
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Supplementary material related to this article is
available online athttp://www.biogeosciences.net/11/
1103/2014/bg-11-1103-2014-supplement.pdf.

Acknowledgements.We thank L.-G. Guo, D. Qi, L. Sun and
Y. Wang for data collection, D.-L. Wang for constructive discussion
on the early manuscript, and C. Watts for her assistance with
English. H.-J. Wang, X. Huang, Y.-W. Jiang, M.-H. Li and the
crews of R/V Dongfanghong 2and R/V Yixing provided much
help during the sampling surveys. Valuable comments and careful
editing from K.-K. Liu, H. Thomas, and two anonymous reviewers
have greatly improved the quality of this paper. The research was
jointly supported by the National Natural Science Foundation of
China (NSFC) (41276061 and 41076044) and the National Basic
Research Program of China (2009CB421204). Sampling surveys
were separately supported by the pilot project of the State Oceanic
Administration of China (SOA) on air–sea carbon dioxide flux
monitoring in the North Yellow Sea in May, July, October 2011,
and January 2012; by the NSFC Open Ship-time projects in June,
November 2011, and May 2012; and by the SOA project on marine
environmental assessment method (contract DOMEP-MEA-01-10)
in August 2011.

Edited by: K.-K. Liu

References

Andersen, S., Grefsrud, E. S., and Harboe, T.: Effect of in-
creasedpCO2 level on early shell development in great scallop
(Pecten maximus Lamarck) larvae, Biogeosciences, 10, 6161–
6184, doi:10.5194/bg-10-6161-2013, 2013.

Baumann, H., Talmage, S. C., and Gobler, C. J.: Reduced early life
growth and survival in a fish in direct response to increased car-
bon dioxide, Nat. Climatic Change, 2, 38–41, 2012.

Benson, B. B. and Krause, D.: The concentration and isotopic frac-
tionation of oxygen dissolved in fresh water and seawater in equi-
librium with the atmosphere, Limnol. Oceanogr., 29, 620–632,
1984.

Borges, A. V. and Gypens, N.: Carbonate chemistry in the coastal
zone responds more strongly to eutrophication than to ocean
acidification, Limnol. Oceanogr., 55, 346–353, 2010.

Briffa, M., de la Haye, K., and Munday, P. L.: High CO2 and marine
animal behaviour: Potential mechanisms and ecological conse-
quences, Mar. Pollut. Bull., 64, 1519–1528, 2012.

Byrne, R. H., Mecking, S., Feely, R. A., and Liu, X.: Direct obser-
vations of basin-wide acidification of the North Pacific Ocean,
Geophys. Res. Lett., 37, L02601, doi:10.1029/2009GL040999,
2010.

Cai, W.-J., Hu, X.-P., Huang, W.-J., Murrell, M.-C., Lehrter, J. C.,
Lohrenz, S. E., Chou, W.-C., Zhai, W.-D., Hollibaugh, J. T.,
Wang, Y.-C., Zhao, P.-S., Guo, X.-H., Gundersen, K., Dai, M.-
H., and Gong, G.-C.: Acidification of subsurface coastal waters
enhanced by eutrophication, Nat. Geosci., 4, 766–770, 2011.

Cai, W.-J., Dai, M.-H., Wang, Y.-C., Zhai, W.-D., Huang, T., Chen,
S.-T., Zhang, F., Chen, Z.-Z., and Wang, Z.-H.: The biogeochem-
istry of inorganic carbon and nutrients in the Pearl River estuary

and the adjacent Northern South China Sea, Cont. Shelf Res., 24,
1301–1319, 2004.

Caldeira, K. and Wickett, M. E.: Anthropogenic carbon and ocean
pH, Nature, 425, 365, 2003.

Cao, Z.-M., Dai, M.-H., Zheng, N., Wang, D.-L., Li, Q., Zhai, W.-
D., Meng, F.-F., and Gan, J.-P.: Dynamics of the carbonate sys-
tem in a large continental shelf system under the influence of
both a river plume and coastal upwelling, J. Geophys. Res., 116,
G02010, doi:10.1029/2010JG001596, 2011.

Chen, C.-T. A.: Chemical and physical fronts in the Bohai, Yellow
and East China seas, J. Mar. Syst., 78, 394–410, 2009.

Chen, C.-T. A. and Wang, S.-L.: Carbon, alkalinity and nutrient
budget on the East China Sea continental shelf, J. Geophys. Res.,
104, 20675–20686, 1999.

Chou, W.-C., Gong, G.-C., Hung, C.-C., and Wu, Y.-H.: Carbon-
ate mineral saturation states in the East China Sea: present con-
ditions and future scenarios, Biogeosciences, 10, 6453–6467,
doi:10.5194/bg-10-6453-2013, 2013.

Dai, M.-H., Guo, X.-H., Zhai, W.-D., Yuan, L.-Y., Wang, B.-W.,
Wang, L.-F., Cai, P.-H., Tang, T.-T., and Cai, W.-J.: Oxygen de-
pletion in the upper reach of the Pearl River estuary during a
winter drought, Mar. Chem., 102, 159–169, 2006.

DeGrandpre, M. D., Hammar, T. R., Wallace, D. W. R., and Wrick,
C. D.: Simultaneous mooring-based measurements of seawa-
ter CO2 and O2 off Cape Hatteras, North Carolina, Limnol.
Oceanogr., 42, 21–28, 1997.

Dias, B. B., Hart, M. B., Smart, C. W., and Hall-Spencer, J. M.:
Modern seawater acidification: the response of foraminifera to
high-CO2 conditions in the Mediterranean Sea, J. Geol. Soc.
London, 167, 843–846, doi:10.1144/0016-76492010-050, 2010.

Dickson, A. G., Sabine C. L., and Christian J. R.: Guide to best prac-
tices for ocean CO2 measurements, PICES Spec. Publ., No.3,
2007.

Dickson, A. G.: Standard potential of the reaction: AgCl(s)+ 1/2
H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of
the ion HSO−4 in synthetic sea water from 273.15 to 318.15 K, J.
Chem. Thermodyn., 22, 113–127, 1990.

Domenici, P., Allan, B., McCormick, M. I., and Munday, P. L.: Ele-
vated carbon dioxide affects behavioural lateralization in a coral
reef fish, Biol. Lett., 8, 78–81, 2012.

Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean
acidification: the other CO2 problem, Annu. Rev. Mar. Sci., 1,
169–192, 2009.

Du, B., Zhang, Y.-J., Shan, Y.-C., and Wang, H.: The characteristics
of cold water mass variation at the bottom of the North Yellow
Sea and its hydrological effects on the mortality of shellfish cul-
tured in the waters of outer Chang-Shan Islands, Mar. Sci. Bull.,
15 (4), 17–28, 1996 (in Chinese).

Duarte, C. M., Hendriks, I., E., Moore, T. S., Olsen, Y. S., Steck-
bauer, A., Ramajo, L., Carstensen, J., Trotter, J. A., and McCul-
loch, M.: Is ocean acidification an open-ocean syndrome? Under-
standing anthropogenic impacts on seawater pH, Estuar. Coast.,
36, 221–236, 2013.

Feely, R. A., Sabine, C. L., Byrne, R. H., Millero, F. J., Dickson,
A. G., Wanninkhof, R., Murata, A., Miller, L. A., and Gree-
ley, D.: Decadal changes in the aragonite and calcite saturation
state of the Pacific Ocean, Global Biogeochem. Cy., 26, GB3001,
doi:10.1029/2011GB004157, 2012.

Biogeosciences, 11, 1103–1123, 2014 www.biogeosciences.net/11/1103/2014/

http://www.biogeosciences.net/11/1103/2014/bg-11-1103-2014-supplement.pdf
http://www.biogeosciences.net/11/1103/2014/bg-11-1103-2014-supplement.pdf
http://dx.doi.org/10.5194/bg-10-6161-2013
http://dx.doi.org/10.1029/2009GL040999
http://dx.doi.org/10.1029/2010JG001596
http://dx.doi.org/10.5194/bg-10-6453-2013
http://dx.doi.org/10.1144/0016-76492010-050
http://dx.doi.org/10.1029/2011GB004157


W.-D. Zhai et al.: pH and carbonate saturation state in North Yellow Sea 1121

Feely, R. A., Alin, S. R., Newton, J., Sabine, S. L., Warner, M.,
Devol, A., Krembs, C., and Maloy, C.: The combined effects of
ocean acidification, mixing, and respiration on pH and carbonate
saturation in an urbanized estuary, Estuar. Coast. Shelf Sci., 88,
442–449, 2010.

Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D., and
Hales, B.: Evidence for upwelling of corrosive “acidified” water
onto the continental shelf, Science, 320, 1490–1492, 2008.

Feely, R. A., Sabine, C. L., Lee, K., Millero, F. J., Lamb, M. F.,
Greeley, D., Bullister, J. L., Key, R. M., Peng, T.-H., Kozyr, A.,
Ono, T., and Wong, C. S.: In situ calcium carbonate dissolu-
tion in the Pacific Ocean, Global Biogeochem. Cy., 16, 1144,
doi:10.1029/2002GB001866, 2002.

Friis, K., Körtzinger, A., and Wallace, D. W. R.: The salinity nor-
malization of marine inorganic carbon chemistry data, Geophys.
Res. Lett., 30, 1085, doi:10.1029/2002GL015898, 2003.

Gao, K.-S., Aruga, Y., Asada, K., Ishihara, T., Akano, T., and Kiy-
ohara, M.: Calcification in the articulated coralline algaCarollina
pilulifera, with special reference to the effect of elevated CO2
concentration, Mar. Biol., 117, 129–132, 1993.

Gao, Y. and Li, Z.-Y.: Spatial and seasonal variation of chlorophyll
and primary productivity in summer and winter in the Northern
Yellow Sea, J. Ocean Univ. China, 39, 604–610, 2009 (in Chi-
nese).

Gieskes, J. M.: Effect of temperature on the pH of seawater, Limnol.
Oceanogr., 14, 679–685, 1969.

Gong, G.-C., Wen, Y.-H., Wang, B.-W., and Liu, G.-J.: Seasonal
variation of chlorophylla concentration, primary production
and environmental conditions in the subtropical East China Sea,
Deep-Sea Res. Pt. II, 50, 1219–1236, 2003.

Green, M. A., Waldbusser, G. G., Reilly, S. L., Emerson, K., and
O’Donnell, S.: Death by dissolution: Sediment saturation state
as a mortality factor for juvenile bivalves, Limnol. Oceanogr.,
54, 1037–1047, 2009.

Gruber, N., Hauri, C., Lachkar, Z., Loher, D., Frölicher, T. L., and
Plattner G. K.: Rapid progression of ocean acidification in the
California current system, Science, 337, 220–223, 2012.

He, H.-C. and Yu, K.: The Yellow Sea, in: China Physical Geog-
raphy Series – Chinese Marine Geography, edited by: Wang, Y.,
Liu, R.-Y., and Su, J.-L., Science Press, Beijing, 539–574, 2013
(in Chinese).

He, X., Bai, Y., Pan, D., Chen, C.-T. A., Cheng, Q., Wang, D., and
Gong, F.: Satellite views of the seasonal and interannual vari-
ability of phytoplankton blooms in the eastern China seas over
the past 14 yr (1998–2011), Biogeosciences, 10, 4721–4739,
doi:10.5194/bg-10-4721-2013, 2013.

Hsueh, Y.: Recent current observations in the eastern Yellow Sea, J.
Geophys. Res., 93, 6875–6884, 1988.

Huang, W.-J., Wang, Y.-C., and Cai, W.-J.: Assessment of sample
storage techniques for total alkalinity and dissolved inorganic
carbon in seawater, Limnol. Oceanogr. Methods, 10, 711–717,
2012.

Kelly, R. P., Foley, M. M., Fisher, W. S., Feely, R. A., Halpern,
B. S., Waldbusser, G. G., and Caldwell, M. R.: Mitigating local
causes of ocean acidification with existing laws, Science, 332,
1036–1037, 2011.

Lee, K., Tong, L. T., Millero, F. J., Sabine, C. L., Dickson, A. G.,
Goyet, C., Park, G. H., Wanninkhof, R., Feely, R. A., and Key,
R. M.: Global relationships of total alkalinity with salinity and

temperature in surface waters of the world’s oceans, Geophys.
Res. Lett., 33, L19605, doi:10.1029/2006GL027207, 2006.

Lenton, A., Metzl, N., Takahashi, T., Kuchinke, M., Matear, R.
J., Roy, T., Sutherland, S. C., Sweeney, C., and Tilbrook, B.:
The observed evolution of oceanicpCO2 and its drivers over
the last two decades, Global Biogeochem. Cy., 26, GB2021,
doi:10.1029/2011GB004095, 2012.

Lewis, E. and Wallace D. W. R.: Program developed for CO2 sys-
tem calculations, ORNL/CDIAC-105, Carbon Dioxide Informa-
tion Analysis Center, Oak Ridge National Laboratory, US De-
partment of Energy, Oak Ridge, Tennessee, 1998.

Liu, W.-G. and He, M.-X.: Effects of ocean acidification on the
metabolic rates of three species of bivalve from southern coast
of China, Chinese J. Oceanol. Limnol., 30, 206–211, 2012.

Liu, Q. and Liu, Y.-J.: On export fluxes of several heavy metals in
the Yalujiang Estuary, Mar. Environ. Sci., 11, 19–27, 1992 (in
Chinese).

Long, X., Ma, Y.-R., and Qi, L.-M.: In vitro synthesis of High Mg
calcite under ambient conditions and its implication for biomin-
eralization process, Cryst. Growth Des., 11, 2866–2873, 2011.

Mao, X.-Y., Jiang, W.-S., Zhao, P., and Gao, H.-W.: A 3-D numeri-
cal study of salinity variations in the Bohai Sea during the recent
years, Cont. Shelf Res., 28, 2689–2699, 2008.

Marion, G. M., Millero, F. J., Camões, M. F., Spitzer, P., Feistel,
R., and Chen, C.-T. A.: pH of seawater, Mar. Chem., 126, 89–96,
2011.

Miao, J.-B., Liu, X.-Q., and Hsueh, Y.: Study of the formational
mechanism of the Northern Yellow (Huanghai) Sea Cold Water
Mass (I) – Solution of the model, Sci. China Ser. B, 34, 963–976,
1991.

Millero, F. J., Graham, T. B., Huang, F., Bustos-Serrano, H., and
Pierrot, D.: Dissociation constants of carbonic acid in seawater
as a function of salinity and temperature, Mar. Chem., 100, 80–
94, 2006.

Morse, J. W., Arvidson, R. S., and Lüttge, A.: Calcium carbonate
formation and dissolution, Chem. Rev., 107, 342–381, 2007.

Morse, J. W., Andersson, A. J., and Mackenzie, F. T.: Initial re-
sponses of carbonate-rich shelf sediments to rising atmospheric
pCO2 and “ocean acidification”: Role of high Mg-calcites,
Geochim. Cosmochim. Acta, 70, 5814–5830, 2006.

Mucci, A.: The solubility of calcite and aragonite in seawater at var-
ious salinities, temperatures, and one atmosphere total pressure,
Am. J. Sci., 283, 780–799, 1983.

Munday, P. L., Dixson, D. L., McCormick, M. I., Meekan, M., Fer-
raric, M. C. O., and Chivers D. P.: Replenishment of fish pop-
ulations is threatened by ocean acidification, P. Natl. Acad. Sci.
USA, 107, 12930–12934, 2010.

Munday, P. L., Dixson, D. L., Donelson, J. M., Jones, G. P., Pratch-
ett, M. S., Devitsina, G. V., and Døving, K. B.: Ocean acidifi-
cation impairs olfactory discrimination and homing ability of a
marine fish, P. Natl. Acad. Sci. USA, 106, 1848–1852, 2009.

Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R.
A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M.,
Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet,
A., Najjar, R. G., Plattner, G.-K., Rodgers, K. B., Sabine, C.
L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J.,
Weirig, M.-F., Yamanaka, Y., and Yool, A.: Anthropogenic ocean
acidification over the twenty-first century and its impacts on cal-
cifying organisms, Nature, 437, 681–686, 2005.

www.biogeosciences.net/11/1103/2014/ Biogeosciences, 11, 1103–1123, 2014

http://dx.doi.org/10.1029/2002GB001866
http://dx.doi.org/10.1029/2002GL015898
http://dx.doi.org/10.5194/bg-10-4721-2013
http://dx.doi.org/10.1029/2006GL027207
http://dx.doi.org/10.1029/2011GB004095


1122 W.-D. Zhai et al.: pH and carbonate saturation state in North Yellow Sea

Parsons, T. R., Yoshiaki, M., and Lalli, C. M.: A manual of chemical
and biological methods for seawater analysis, Pergamon Press,
Oxford, 1984.

Pelletier, G. J., Lewis, E., and Wallace, D. W. R.: CO2SYS.XLS:
A calculator for the CO2 system in seawater for Microsoft Ex-
cel/VBA, Ver. 16, Washington State Department of Ecology,
Olympia, Washington, 2011.

Qiao, F.-L., Watanabe, M., Yuang, Y.-L., and Wan, Z.-W.: Simu-
lation of Circulation in the Yellow Sea and East China Sea, J.
Hydrodynamics Ser. A, 13, 244–254, 1998 (in Chinese).

Redfield, A. C., Ketchum, B. H., and Richards, F. A.: The influence
of organisms on the composition of seawater, in: The Sea, Vol. 2,
edited by: Hill, M. N., John Wiley and Sons, New York, 26–77,
1963.

Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullis-
ter, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R.,
Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., Ono, T., and
Rios, A. F.: The oceanic sink for anthropogenic CO2. Science,
305, 367–371, 2004.

Salisbury, J., Green, M., Hunt, C., and Campbell, J.: Coastal acidifi-
cation by rivers: A threat to shellfish?, EOS Trans. Am. Geophys.
Union, 89, 513, 2008.

Shamberger, K. E. F., Feely, R. A., Sabine, C. L., Atkinson, M. J.,
DeCarlo, E. H., Mackenzie, F. T., Drupp, P. S., and Butterfield,
D. A.: Calcification and organic production on a Hawaiian coral
reef, Mar. Chem., 127, 64–75, 2011.

State Oceanic Administration of China: Bulletin of Marine Envi-
ronmental Status of China in 2011,http://www.soa.gov.cn/zwgk/
hygb/, last access date: 2014-02-22, 2012 (in Chinese).

Steuber, T. and Rauch, M.: Evolution of the Mg / Ca ratio of Creta-
ceous seawater: Implications from the composition of biological
low-Mg calcite, Mar. Geol., 217, 199–213, 2005.

Sunda, W. G. and Cai, W.-J.: Eutrophication induced CO2-
acidification of subsurface coastal waters: interactive effects
of temperature, salinity, and atmosphericpCO2, Environ. Sci.
Technol., 46, 10651–10659, 2012.

Sundquist, E. T., Plummer, L. N., and Wigley, T. M. L.: Carbon
dioxide in the ocean surface: the homogenous buffer factor, Sci-
ence, 204, 1203–1205, 1979.

Sweeney, C., Gloor, E., Jacobson, A. R., Key, R. M., McKin-
ley, G., Sarmiento, J. L., and Wanninkhof, R.: Constrain-
ing global air-sea gas exchange for CO2 with recent bomb
14C measurements, Global Biogeochem. Cy., 21, GB2015,
doi:10.1029/2006GB002784, 2007.

Taguchi, F. and Fujiwara, T.: Carbon dioxide stored and acidified
low oxygen bottom waters in coastal seas, Japan, Estuar. Coast.
Shelf Sci., 86, 429–433, 2010.

Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W., and
Sutherland, S. C.: Seasonal variation of CO2 and nutrients in
the high-latitude surface ocean: a comparative study, Global Bio-
geochem. Cy., 7, 843–878, 1993.

Tan, S.-C., Shi, G.-Y., Shi, J.-H., Gao, H.-W., and Yao, X.: Correla-
tion of Asian dust with chlorophyll and primary productivity in
the coastal seas of China during the period from 1998 to 2008, J.
Geophys. Res., 116, G02029, doi:10.1029/2010JG001456, 2011.

Thomas, H., Prowe, A. E. F., van Heuven, S., Bozec, Y., de Baar,
H. J. W., Schiettecatte, L.-S., Suykens, K., Koné, M., Borges,
A. V., Lima, I. D., and Doney, S. C.: Rapid decline of the CO2
buffering capacity in the North Sea and implications for the

North Atlantic Ocean, Global Biogeochem. Cy., 21, GB4001,
doi:10.1029/2006GB002825, 2007.

Turley, C. and Gattuso, J.-P.: Future biological and ecosystem im-
pacts of ocean acidification and their socioeconomic-policy im-
plications, Curr. Opin. Environ. Sustain., 4, 278–286, 2012.

Wang, H.-J., Yang, Z.-S., Saito, Y., Liu, J.-P., Sun, X.-X., and Wang
Y.: Stepwise decreases of the Huanghe (Yellow River) sediment
load (1950–2005): impacts of climate change and human activi-
ties, Global Planet. Chang., 57, 331–354, 2007.

Wang, Y.-C, Liu, Z., Gao, H.-W., Ju, L., and Guo, X.-Y.: Response
of salinity distribution around the Yellow River mouth to abrupt
changes in river discharge, Cont. Shelf Res., 31, 685–694, 2011.

Wang, X.-L., Zhang, L.-J., Su, Z., Li, Y., Zhang, X.-S., and Gao,
H.-W.: The conservative and non-conservative behaviors of to-
tal alkalinity in the Huanghe estuary, J. Ocean Univ. China, 35,
1063–1066, 2005 (in Chinese).

Wanninkhof, R.: Relationship between wind speed and gas ex-
change over the ocean, J. Geophys. Res., 97, 7373–7382, 1992.

Wei, H., Tian, T., Zhou, F., and Zhao, L.: Numerical studies on the
water exchange of the Bohai Sea: simulation of the half-life time
by dispersion model, J. Ocean Uni. Qingdao, 32, 519–525, 2002
(in Chinese).

WMO/GAW: The state of greenhouse gases in the atmosphere
based on global observations through 2011, WMO Greenhouse
Gas Bulletin, No.8, 1–4, 2012.

Wong, G. T. F.: Removal of nitrite interference in the Winkler deter-
mination of dissolved oxygen in seawater, Mar. Chem., 130/131,
28–32, 2012.

Woosley, R. J., Millero, F. J., and Grosell, M.: The solubility of fish-
produced high magnesium calcite in seawater, J. Geophys. Res.,
117, C04018, doi:10.1029/2011JC007599, 2012.

Wu, D.-X., Mu, L., Li, Q., Bao, X.-W., and Wan, X.-Q.: Character-
istics of long-term variations of sea water salinity in the Bohai
Sea and the possible controls, Prog. Nat. Sci., 14, 191–195, 2004
(in Chinese).

Xia, B. and Zhang, L.-J.: Carbon distribution and fluxes of 16 rivers
discharging into the Bohai Sea in summer, Acta Oceanol. Sin.,
30 (3), 43–54, doi:10.1007/s13131-011-0118-3, 2011.

Xu, X.-M., Zhai, W.-D., and Wu, J.-H.: Effects of CO2-driven ocean
acidification on the calcification and respiration ofRuditapes
philippinarum, Acta Oceanol. Sin., 35 (5), 112–120, 2013 (in
Chinese).

Yamamoto, S., Kayanne, H., Terai, M., Watanabe, A., Kato, K.,
Negishi, A., and Nozaki, K.: Threshold of carbonate saturation
state determined by CO2 control experiment, Biogeosciences, 9,
1441–1450, doi:10.5194/bg-9-1441-2012, 2012.

Yamamoto-Kawai, M., McLaughlin, F. A., Carmack, E. C., Nishino,
S., and Shimada, K.: Aragonite undersaturation in the Arctic
Ocean: Effects of ocean acidification and sea ice melt, Science,
326, 1098–1100, 2009.

Yang, G.-P., Zhang, H.-H., Su, L.-P., and Zhou, L.-M.: Biogenic
emission of dimethylsulfide (DMS) from the North Yellow Sea,
China and its contribution to sulfate in aerosol during summer,
Atmos. Environ., 43, 2196–2203, 2009.

Yuan, D.-L., Zhu, J.-R., Li, C.-Y., and Hu, D.-X.: Cross-shelf cir-
culation in the Yellow and East China Seas indicated by MODIS
satellite observations, J. Mar. Syst., 70, 134–149, 2008.

Biogeosciences, 11, 1103–1123, 2014 www.biogeosciences.net/11/1103/2014/

http://www.soa.gov.cn/zwgk/hygb/
http://www.soa.gov.cn/zwgk/hygb/
http://dx.doi.org/10.1029/2006GB002784
http://dx.doi.org/10.1029/2010JG001456
http://dx.doi.org/10.1029/2006GB002825
http://dx.doi.org/10.1029/2011JC007599
http://dx.doi.org/10.1007/s13131-011-0118-3
http://dx.doi.org/10.5194/bg-9-1441-2012


W.-D. Zhai et al.: pH and carbonate saturation state in North Yellow Sea 1123

Zeebe, R. E. and Wolf-Gladrow, D.: CO2 in seawater: Eqiulibrium,
kinetics, isotopes, Elsevier Oceanography Series, 65, 346 pp.,
2001.

Zhai, W.-D., Zhao, H.-D., Zheng, N., and Xu, Y.: Coastal acidifica-
tion in summer bottom oxygen-depleted waters in northwestern-
northern Bohai Sea from June to August in 2011, Chinese Sci.
Bull., 57, 1062–1068, 2012.

Zhai, W. D., Dai, M., and Cai, W.-J.: Coupling of surfacepCO2
and dissolved oxygen in the northern South China Sea: impacts
of contrasting coastal processes, Biogeosciences, 6, 2589–2598,
doi:10.5194/bg-6-2589-2009, 2009.

Zhang, J.: Impact of drainage basin weathering upon riverine chem-
istry, in: Biogeochemical Studies of Major Chinese Estuaries –
Element Transfer and Environment, edited by: Zhang, J., China
Ocean Press, Beijing, 1–15, 1997 (in Chinese).

Zhang, J., Yu, Z.-G., Liu, S.-M., Xu, H., and Liu, M.-G.: Dynam-
ics of nutrient elements in three estuaries of North China: the
Luanhe, Shuangtaizihe, and Yalujiang, Estuaries, 20, 110–123,
1997.

Zhang, J.: Nutrient elements in large Chinese estuaries, Cont. Shelf
Res., 16, 1023–1045, 1996.

Zhang, J.: Atmospheric wet deposition of nutrient elements: cor-
relation with harmful biological blooms in Northwest Pacific
coastal zones, Ambio, 23, 464–468, 1994.

Zhang, S.-W., Xia, C.-S., and Yuan, Y.-L.: A physical-biochemical
coupling model of Yellow Sea cold water mass, Prog. Nat. Sci.,
12, 315–319, 2002 (in Chinese).

Zhao, B.-R.: A study of the circulations of the northern Yellow Sea
cold water mass – Effects of tidal mixing on them, Oceanol. Lim-
nol. Sin., 27, 429–435, 1996 (in Chinese).

www.biogeosciences.net/11/1103/2014/ Biogeosciences, 11, 1103–1123, 2014

http://dx.doi.org/10.5194/bg-6-2589-2009

