
Adv. Geosci., 11, 21–29, 2007
www.adv-geosci.net/11/21/2007/
© Author(s) 2007. This work is licensed
under a Creative Commons License.

Advances in
Geosciences

Quasi 2D hydrodynamic modelling of the flooded hinterland due to
dyke breaching on the Elbe River

S. Huang, S. Vorogushyn, and K.-E. Lindenschmidt

GFZ GeoForschungsZentrum Potsdam, Section 5.4 – Engineering, Hydrology, Telegrafenberg, 14473 Potsdam, Germany

Received: 15 December 2006 – Revised: 5 April 2007 – Accepted: 4 May 2007 – Published: 16 May 2007

Abstract. In flood modeling, many 1D and 2D combina-
tion and 2D models are used to simulate diversion of wa-
ter from rivers through dyke breaches into the hinterland for
extreme flood events. However, these models are too de-
manding in data requirements and computational resources
which is an important consideration when uncertainty anal-
ysis using Monte Carlo techniques is used to complement
the modeling exercise. The goal of this paper is to show
the development of a quasi-2D modeling approach, which
still calculates the dynamic wave in 1D but the discretisation
of the computational units are in 2D, allowing a better spa-
tial representation of the flow in the hinterland due to dyke
breaching without a large additional expenditure on data pre-
processing and computational time. A 2D representation of
the flow and velocity fields is required to model sediment and
micro-pollutant transport. The model DYNHYD (1D hydro-
dynamics) from the WASP5 modeling package was used as a
basis for the simulations. The model was extended to incor-
porate the quasi-2D approach and a Monte-Carlo Analysis
was used to conduct a flood sensitivity analysis to determine
the sensitivity of parameters and boundary conditions to the
resulting water flow. An extreme flood event on the Elbe
River, Germany, with a possible dyke breach area was used
as a test case. The results show a good similarity with those
obtained from another 1D/2D modeling study.

1 Introduction

Hydrodynamic models are important for the simulation and
prediction of inundation processes due to dyke breaching
during flood events. An array of models of varying com-
plexity levels may be used. Following a categorization in the
number of spatial dimensions, simulations are often carried
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out using one-dimensional (1D) or two-dimensional (2D)
models. 1D hydrodynamic models often solve the St.Venant
full dynamic wave equations which respect to both momen-
tum and mass continuity of water transport through a meshed
system. 2D models are based on shallow water equations to
describe the motion of water (for examples, see D’Alpaos et
al., 1994 and Chua et al., 2001). A combination of both 1D
and 2D approaches have also been used in which the flow
in the main river channel is solved in 1D and the overbank
inundated areas are solved in 2D using the diffusive wave
equation or storage cells (for examples, see Bates and De
Roo, 2000; Han et al., 1998 and Vorogushyn et al., 2007).
2D and 1D/2D combination models are generally computa-
tionally more extensive and have more requirements on input
data and pre-processing than 1D models. This is particularly
a concern when automated methods for parameter optimiza-
tion or Monte-Carlo methods for uncertainty analysis are to
be implemented. However, 1D models are not sufficient to
describe the spatial variability of water depths, velocities and
flows in floodplains, polders and other overbanked inundated
areas during flood events.

Hence, a quasi-2D approach using a 1D hydrodynamic
model is proposed that allows its discretisation to be ex-
tended into the hinterland giving a 2D representation of the
inundation area (see Fig. 1). Aureli et al. (2006) have used
quasi-2D numerical modeling adopting the hydrodynamic
module of the software DHI-Mike 11. We also compared the
results of a dyke breach and hinterland inundation obtained
from a quasi-2D model and a fully-2D finite volume model
and found good agreement between them in the simulation
results.

In this study, the quasi-2D approach can be achieved with
the model DYNHYD, which is part of the WASP5 (Water
Quality Analysis Simulation Program) package developed by
the U.S. Environmental Protection Agency (Ambrose et al.,
1993). DYNHYD solves the 1D equation of continuity and
momentum for a branching or channel-junction (link-node)
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Fig. 1. 1D hydrodynamic channel-junction (link-node) network
allowing a 2D spatial representation of overbank inundated areas
(source: Ambrose et al., 1993).

Table 1. Discharge statistics for the gages at Torgau and Luther-
stadt Wittenberg (MQ – mean discharge, MHQ – mean maxi-
mum annual flood, HQ – highest recorded flood event); source:
Geẅasserk̈undliches Jahrbuch, Elbegebiet Teil 1, 2003.
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Table 1: Discharge statistics for the gages at Torgau and Lutherstadt Wittenberg (MQ – 
mean discharge, MHQ – mean maximum annual flood, HQ – highest recorded flood 
event); source: Gewässerkündliches Jahrbuch, Elbegebiet Teil 1, 2003. 

Gage Elbe-km Series MQ MHQ HQ (date)

Torgau 154.2 1936 - 2003 344 1420 4420 (18.08.2002)

L. Wittenberg 214.1 1961 - 2003 369 1410 4120 (18.08.2002)

Discharge (m3/s)

 

Table 2: The co-relationship between different parameters and the water flow. Refer to 
Figure 2b for the location sites.  
 

Coefficient of determination (r2) (%) Locations 
α n (hinterland) n (river) q 

F1 7 <1 8 34 
F3 11 <1 10 28 
D 21 <1 45 30 
A 2 <1 <1 95 
B <1 <1 <1 77 
C <1 <1 <1 90 

 

 

computational network. This model is discretised to the hin-
terland representing the inundation area. Monte-Carlo Anal-
yses were carried out to analyze globally the sensitivity of
selected parameters and boundary conditions on state vari-
ables. The analysis also indicates good model stability for a
wider range of parameter settings and boundary conditions
and the model’s applicability to other test sites.

2 Methods

2.1 Hydrodynamic model DYNHYD

This description of the model DYNHYD has been drawn
from Ambrose et al. (1993), Lindenschmidt et al. (2005)
and Lindenschmidt (2007)1, however, a short excerpt is war-
ranted here. In DYNHYD a river is discretised using a
“channel-junction” scheme. The channels have rectangu-

1Lindenschmidt, K.-E.: Quasi-2D approach in modelling the
transport of contaminated sediments in floodplains during river
flooding – model coupling and uncertainty analysis, Environmen-
tal Engineering Sciences, in review, 2007.

lar cross-sections and calculate the transport of water by the
equations of motion:

∂U

∂t
= −U

∂U

∂x
+ ag + af (1)

whereaf is the frictional acceleration,ag is the gravitational
acceleration along the longitudinal axisx, U is the mean ve-
locity, ∂U/∂t is the local inertia term, or the velocity rate of
change with respect to timet andU∂U/∂x is the convective
inertia term, or the rate of momentum change by mass trans-
fer. The junctions calculate the storage of water described by
the continuity equation:

∂H

∂t
=

1

B
·
∂Q

∂x
(2)

whereB is the channel width,H is the water surface ele-
vation (head),∂H/∂t is the rate of water surface elevation
change with respect to timet, and∂Q/∂x is the rate of water
volume change with respect to distancex. The dischargeQ is
additionally related to river morphology and bottom rough-
ness using Manning’s equation:

Q =
r

2/3
H · A

n

√
∂H

∂x
(3)

whereA is the cross-sectional area of the water flow,n is
the roughness coefficient of the river bed,rH is the hydraulic
radius and∂H/∂x is the slope of the river bed in the longitu-
dinal directionx. Discharge over a weir is calculated by the
weir equation:

Q = α · b · h1.5 (4)

whereα is the weir coefficient,b is the weir breadth andh
is the depth between the upstream water level and the weir
crest. Backwater effects were also taken into consideration
using a submerged weir formula.

2.2 Adaptations to DYNYHD for quasi-2D flood mod-
elling

In this algorithm the inlet and outlet discharges of a dyke
are controlled by a “virtual” weir. This algorithm was first
developed for floodplains (see Lindenschmidt, 20071; Lin-
denschmidt et al., 2006) and polders (see Huang et al., 2007)
and has been extended here for dyke breach areas. Due to the
condition of water continuity and stability requirements wa-
ter levels in the discretisation elements cannot fall dry, hence
an extension to the model was implemented to capture the
flooding and emptying of the hinterland during a flood simu-
lation. During low flows when dyke breaching does not occur
a small amount of water is allowed to leak through the weir
from the river into the hinterland to prevent the discretised
elements depicting the hinterland from becoming dry. This
volume is very minute compared to the discharge in the river
so that the error in the simulations is insignificant. To simu-
late a dyke breach, the weir is opened by lowering the weir
crest to the level of the hinterland ground level.
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Fig. 2. The study area and the inundation hinterland(a) and the discretisation with junctions and channels of the studied hinterland(b).

3 Study site and model setup

The study site is the middle course of the Elbe River in
Germany between the gages at Torgau (Elbe-km 154.2) and
Lutherstadt Wittenberg (Elbe-km 214.1). This stretch of
the river is heavily modified with dykes running along both
sides for most of the flow distance. Characteristics of the
discharges recorded at the gages at Torgau and Lutherstadt
Wittenberg are given in Table 1. Dyke breaching only be-
tween Elbe-km 154.2 and Elbe-km 192 was considered for
the modeling exercise. There are no major tributaries flow-
ing into the Elbe in this reach. High water level readings
and the water level readings from the gage at Mauken (at
Elbe-km 184.5) were used to compare measurements with
hydrodynamic simulations. Model calibration and validation
was carried out in another study (Lindenschmidt and Huang,
20072) with data from flood events in which breaching did
not occur. Data from the Torgau gage during the most severe
flood recorded (August 2002) was used as a boundary con-

2Lindenschmidt, K.-E. and Huang, S.: Simulating sediment and
micro-pollutant transport in polder systems using a quasi-2D flood
model, in preparation, 2007.

dition. The information on dyke breaches and the inundation
area was drawn from the results of the 1D/2D simulation in
this area (Vorogushyn et al., 2007). This model consists of a
1D hydrodynamic (St. Venant equation) model for the Elbe
River, a dyke breach model to predict dyke breaching and
a 2D storage-cell model for the simulation of inundation be-
hind the dyke in the hinterland. The dyke breach model simu-
lated the breach locations due to overtopping based on the ap-
proach of Apel et al. (2004). From the results of this model,
the dykes around Elbe-km 158 (upstream breach area) and
between Elbe-km 173 and 179 (downstream breach area)
are prone to breaching and the inundation area is shown in
Fig. 2a. This model was used for comparison with simula-
tions in this study and to test the performance of the quasi-2D
modeling approach.

3.1 Input data

The model of the river reach was set up on the basis of
cross-sectional profiles available every 500 m along the river
from which initial hydraulic radii and segment water vol-
umes were derived. The time frame of the modeled flow
event is 13–22 August 2002, and the discharge recordings
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from the Torgau gage were used for the upper boundary con-
dition of the hydrodynamic model.

3.2 Discretisation

The discretisation of channels and junctions with inlet and
outlet weirs is shown for the river and inundated hinterland
in Fig. 2b. There are three pairs of weirs set for the simula-
tion of breaches. Each pair constituents an inlet and an outlet
for water flow. The inlet weir controls the water flowing into
the hinterland and the outlet weir is used to simulate the back
water after the flood peak in the river has passed and water
flows from the hinterland back into the river. The first pair of
weirs, which are near the river section A shown in Fig. 2b,
represent the breaches on the upstream portion of the reach
around Elbe-km 158 on the fourth day of the simulation. The
breaches on the downstream portion of the studied reach (be-
tween Elbe-km 173 and 179) were simulated by another two
pairs of weirs near the river channel B and C, which eroded
on the first and third simulation days, respectively. There is
another weir set between the two parts of the hinterland to
compensate for the difference in the average elevation of the
hinterland land surfaces between these two parts (an average
of 77.5 m and 79.5 m was calculated from a 50 m resolution
digital elevation model for the northern and southern parts,
respectively).

The simulation results are output on an hourly time step.
A longitudinal profile of the maximum water level attained
during the flood and the water level hydrograph recorded at
Mauken (Elbe-km 184.5) were available for testing of the
hydrodynamic model.

3.3 Local sensitivity analysis

Prior to the Monte-Carlo analysis, a sensitivity analysis was
carried out to check the response of the system by varying
different parameters. The parameters include:

1. Weir coefficientα from the weir discharge equation.
The percentage deviations inα may also represent the
percentage deviation in weir breadthb, since both are
multiplicative values in the weir equation. Onlyα was
used in the MOCA due to the linear compensatory ef-
fect ofα andb on output variables (e.g. a 10% increase
in α can be compensated by a 10% decrease inb).

2. Roughness coefficientn of the channel bed from Man-
ning’s equation

3. Percentage deviations in the discharge boundary condi-
tion q at the Torgau gage

The elasticityε was used to quantify the local sensitivity of
the input parameters:

ε =
∂O

∂P
·
P

O
(5)

where:O = model output value;P = input parameter value.
A base simulation is first run, with resultObase, using a base
parameter valuePbase, after which the parameter is then in-
creased by a certain fractionx designed asPx which gives
the resultOx . The elasticity then becomes:

ε ≈
1O

1P
·
P

O
=

(Ox − Obase)

(Px − Pbase)
·

Pbase

Obase
(6)

SincePx=(1+x)·Pbasethe equation reduces to:

ε =
1

x

(
Ox − Obase

Obase

)
(7)

An elasticity value is calculated for each parameter used,
which were increased by 10% separately for each single run.
Hence,x equals 0.1 and the equation reduces to:

ε = 10 ·

(
Ox − Obase

Obase

)
(8)

3.4 Global sensitivity analysis

Global sensitivity analysis apportions the output uncertainty
to the uncertainty in the input factors, described typically
by probability distribution functions that cover the factors’
range of existence (Saltelli et al., 2000). Here, the results
from a Monte Carlo Analysis of 1000 model runs were an-
alyzed to see the co-relationship among those variables and
their contributions to the result. For the MOCA, the model-
ing system was run 1000 times for which a new set of val-
ues for the parameters were generated randomly from nor-
mal probability distributions for each simulation run. A final
MOCA was carried out in which all of the parameters were
varied together to see the total effects on the output distribu-
tion after 1000 simulations.

The parametersα, n and q were incremented or decre-
mented within a±10% deviation range. Then values were
selected from normal distributions with ranges 1.17 to 1.43
for α, 0.034 to 0.042 forn (variation of roughness coeffi-
cients in hinterland calculated for different land-use types,
see Vorogushyn et al., 2007) and−0.1 to 0.1 forq (typical
error range for discharge measurements, see Herschy, 1995;
Lindenschmidt et al., 2005). Figure 3 shows the hydrograph
used at the boundary condition at Torgau. The box-whisker
plots illustrate the±10% deviations used in the discharge
values for the MOCA. Note that the range of deviations in-
creases with larger discharges.

To better interpret the behavior of uncertainty propagation
through the modeling process and the contribution of the er-
ror of each input value to the overall uncertainty in the model
predictive outcome, the coefficient of variationCV was used
to standardize the input and output normal distributions for
comparison of the MOCA results:

CV =
Standard deviation

mean
(9)
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Fig. 3. Hydrograph of boundary condition at Torgau with box-
whisker plots indicating the range in the discharge deviation, which
depict the minimum, maximum, medium and lower and upper quar-
tiles of each sample group.

Fig. 4. Longitudinal profile of simulation day 5.2 and the high water
marks, indicating the maximum water level attained.

4 Results and discussion

4.1 Hydrograph simulations

The first step in the model adaptation was to model the actual
conditions of the August 2002 flood. A longitudinal profile
of measured maximum water levels attained during this flood
event was available for comparison of the hydrodynamic
model results. Figure 4 shows good agreement between the
simulated profiles at a simulation time of 5.2 days. The Man-
ning’s roughness coefficient between 0.030 to 0.040 s/m1/3

provided the best fit of the simulations to the data. This value
is somewhat higher than the one of 0.025 s/m1/3 calibrated
for the 1D/2D simulation by Vorogushyn et al. (2007). The
water levels recorded at the gage at Mauken provided tempo-
ral data for a comparison between measurements and simula-

Fig. 5. Measured and simulated water levels at the gage Mauken.

Fig. 6. Water levels in the river and hinterland. See Fig. 2b for
locations A to G.

tion results which shows a good fit in Fig. 5. The simulations
are somewhat overestimated, because the diversion of water
due to dyke breaching is not included.

4.2 Dyke breach

Figure 6 shows the simulated water heads in the hinterland
and the adjacent river sections. It presents a plausible water
flow behavior in the hinterland and capping of the discharge
hydrograph in the main river channel. The difference in the
filling times of the flood waters traveling between locations
D and G (refer to Fig. 2b) illustrates the spatial differentia-
tion that can be obtained using the quasi-2D approach. The
travel time of the water through the south hinterland area be-
tween points D and G is approximately 7 h, while through the
north hinterland area between points F3 and F2 it is 6 h af-
ter the downstream dyke breaches. Vorogushyn et al. (2007)
give flood depths of the hinterland in every 12 h increments

www.adv-geosci.net/11/21/2007/ Adv. Geosci., 11, 21–29, 2007
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Fig. 7. Comparison of water balances for upstream and downstream
dyke breaches between the 1D/2D modelling and quasi-2D mod-
elling.

Fig. 8. The total water balance in the hinterland when each parame-
ter was increased by 10% for the entire reach with breaching dykes.

and it is found that the water can only reach G after breach-
ing in 36 h and F2 in 48 h. Hence it is obvious that the wa-
ter travels faster in the quasi-2D model which may be due
to the lower roughness values used for the hinterland sur-
faces and the averaging of the terrain elevations in the two
hinterland areas. To compare the result, the water balances
between the upstream and downstream breaches, which indi-
cate how much water is flowing through the breaches into the
hinterland, were calculated for each modeling approach (see
Fig. 7). The flow through the most upstream breach on Day 4
seems very abrupt for the 1D/2D model. Erosion of the dyke

Fig. 9. Water flowing through the upstream breaches at Elbe-km
158 when each parameter is increased by 10%.

Fig. 10. Elasticity analysis for the river channel; parameter sensi-
tivity on water level.

for the 1D/2D model is an instantaneous process, whereas
dyke erosion is allowed for in the quasi-2D model by suc-
cessively lowering the weir crest over a six hour time frame.
The flow behavior was similar for both modeling systems for
the two most downstream dyke breaches during Day 1 and
3. The last breach occurred on Day 4 in the upstream breach
area which leads to much more water flowing into the upper
hinterland. The quasi-2D model simulated the back flow of
water from the hinterland to the river more rapidly and ear-
lier, which may also explain the rapid water flow through the
hinterland.

4.3 Local sensitivity analysis

Figure 8 shows the water balance of the inundated areas from
simulations, each with one parameter increased by 10%. The
parametersq andn have a slightly larger sensitivity on the
result thanα but in general, all three parameters are relatively
equally sensitive on the water balance of the river-hinterland
system which justifies incorporating all three in the MOCA
analysis.
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Fig. 11. Probability distribution of mean water flow during the first breach at F1 by varying alpha(a), roughness(b), boundary condition
deviation(c) and all of these three parameters(d).

The sensitivity of the three parameters on water flow
through the dyke breaches is similar as on the water balance
(see Fig. 9). For the upstream breach area, the most sensitive
parameter is the deviation in the boundary conditions, next is
roughness, and least important isα. These effects are also re-
flected in the elasticity analysis of each parameter on flow in
the hinterland areas (data not shown). In this case, the elas-
ticity remains fairly constant equaling about 1, which means
a 10% increase of a parameter leads to a 10% increase in the
result. It is also noticed that on the onset of water flow into
or out of the hinterland, the elasticity on flow of each param-
eter varies greater than during other periods, and the outflow
is much more sensitive to parameter change than the inflow
because the hinterland fills faster and the water flows back to
the river earlier.

In addition, the water head along the whole river channel
was analyzed. The major parameters influencing the head are
the roughness and boundary condition deviations, because
the water volume in the hinterland is not significantly large
compared to the river flow (see Fig. 10, which shows the elas-
ticity along the river when all of the dyke breaches occurred).

4.4 Global sensitivity analysis

In this study, all the parametersα, n andq were used together
in the Monte-Carlo analyses. Figure 11 shows the probability
distributions of water flow at F1 (refer to Fig. 2b) by varying
each parameter separately or all three together. The mean
value of these distributions does not differ much, ranging
from 11.8 to 12.0 cms. However, the three variables together
can lead to a wider range in the distribution. Both roughness
and the deviations in boundary conditions contribute more
uncertainty (broader distribution) to the result than does the
weir coefficient.

Figure 12 gives the CVs for each breach and the adjacent
river channels. At all locations, there is an increasing trend in
the CVs when all parameters are implemented in the MOCA.
This is due to the increase in the number of varying param-
eters in the model which leads to an increased spread in the
distributions of the simulated results.α influences the results
the least in both hinterland and river channels. The boundary
condition is the main factor affecting the water flow through
the river-hinterland system in the main channel. Bothn and
q play important roles in controlling flow through the hinter-
land.

www.adv-geosci.net/11/21/2007/ Adv. Geosci., 11, 21–29, 2007
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Table 2. The co-relationship between different parameters and the
water flow. Refer to Fig. 2b for the location sites.

Locations
Coefficient of determination (r2) (%)

α n (hinterland) n (river) q

F1 7 <1 8 34
F3 11 <1 10 28
D 21 <1 45 30
A 2 <1 <1 95
B <1 <1 <1 77
C <1 <1 <1 90

Fig. 12. Coefficient of variations for four different Monte Carlo
analyses by varying: i) alpha only; ii) roughness only; iii) boundary
condition only and iv) varying all three factors simultaneously.

The co-relationship between the parameters and resulting
variables can be explored using plots of scattered dots with
the parameter values plotted in the x-axis against the vari-
able values on the y-axis (see examples in Fig. 13). All the
MOCA runs were used in whichα, n andq were varied. The
slope of the line indicates how the parameter values correlate
with their respective variable results. Figure 13a shows the
scatter plots of the parameterα plotted with the correspond-
ing value of water flow at location D. A linear regression
was plotted from which the coefficient of determinationr2

was calculated. For the water flow in the southern hinter-
land area in the vicinity of the dyke breach, 21%, 45% and
30% (the latter not shown) of the total variation of the wa-
ter flow values can be accounted for by a linear relationship
with values ofα, n, andq, respectively. Table 2 summarizes
the total variation on water flow at different locations in the
river-hinterland system. Only the roughness coefficient in the
river correlates significantly with water flows. The roughness

in the hinterland surfaces is not sensitive to the flows in the
system since the flow through the dyke breaches is domi-
nated by the weir and river discharges. It is obvious that the
boundary condition is the most sensitive factor to the water
volumes in river channels and the effects of weir discharge
and bottom roughness are stronger in the hinterland, espe-
cially at the location D during the third breach. This is due
to the high water level in the main channel at Day 4, so that
h in the weir equation is very large.

5 Conclusion and outlook

Several conclusions can be drawn from this study:

1. The quasi-2D approach is applicable in capturing the
flood dynamics of a river reach in which dyke breach-
ing has occurred. The 2D representation allows future
modeling studies of sediment transport to quantify sedi-
mentation and re-suspension during filling and draining
of the hinterland.

2. The water balance at breach locations from the quasi-
2D modeling results compared well with those obtained
from the 1D/2D model from Vorogushyn et al. (2007).
Flood water travels faster in the quasi-2D model due to
the lower values used for bottom roughness in the hin-
terland and due to the averaging of the hinterland sur-
face elevations.

3. The uncertainty in the bottom roughness and the bound-
ary conditions contribute more significantly to the un-
certainty of flow characteristics throughout the river-
hinterland system than the parameters controlling dis-
charge through the dyke breach.

Further study based on this modeling exercise will focus
on the uncertainty analysis of the parameters, but with dif-
ferent tools, such as SIMLAB, which is also designed for
Monte-Carlo analysis. The water quality model TOXI will
be added to simulate the transport and fate of sediments and
heavy metals in the inundated areas. Furthermore, the pold-
ers in the river system will also be included to see the influ-
ence of dyke breaches and the polder control for peak dis-
charge capping. Finally, this modeling section will be ex-
tended to the gage at Wittenberg to check the effects of hy-
drograph capping by dyke breaches and polder control on a
larger scale.

Edited by: K.-E. Lindenschmidt
Reviewed by: P. Krause and H. Apel
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Fig. 13. Co-relationship between the river water flow at location D (y-axis) and(a) α, (b) n in the adjacent river reach.
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ment and associated uncertainty, Nat. Hazards Earth Syst. Sci.,
4, 295–308, 2004,
http://www.nat-hazards-earth-syst-sci.net/4/295/2004/.

Aureli, A., Maranzoni, A., Mignosa, P., and Ziveri, C.: Flood haz-
ard mapping by means of filly-2D and quasi-2D numerical mod-
eling: a case study, in: Floods, from defence to management,
edited by: van Alphen, J., van Beek, E., and Taal, M., 3rd Iinter-
national Symposium on Flood Defence, Nijmegen, Netherlands,
Taylor & Francis/Balkema, ISBN 0415391199. Blain, pp. 373–
382, 2006.

Bates, P. D. and De Roo, A. P. J.: A simple raster-based model for
flood inumdation simulation, J. Hydrol., 236(1–2), 54–77, 2000.

Chua, L., Merting, F., and Holz, K. P.: River inundation mod-
elling for risk analysis, 1st International Conference on River
Basin Management, edited by: Falconer, R. A. and Blain, W.
R., pp. 373–382, 2001.

D’alpaos, L., Defina, A., and Mattichio, B.: 2D finite element mod-
eling of flooding due to river bank collapse, Proc. Modeling of
Flood Propagation Over Initially Dry Areas, American Society
of Civil Engineers (ASCE), edited by: Molinaro, P. and Natale,
L., 60–71, 1994.

Han, K. Y., Lee, J. T., and Park, J. H.: Flood inundation analysis
resulting from levee break, Journal of Hydraulic Research, In-
ternational Association for Hydraulic Research (IAHR), 36(5),
747–759, 1998.

Herschy, R. W.: Streamflow measurement, 2nd edition, E & FN
Spon, an imprint of Chapman & Hall, UK, 1995.

Huang, S., Rauberg, J., Apel, H., and Lindenschmidt, K.-E.: The
effectiveness of polder systems on peak discharge capping of
floods along the middle reaches of the Elbe River in Germany,
Hydrol. Earth Syst. Sci. Discuss., 4, 211–241, 2007,
http://www.hydrol-earth-syst-sci-discuss.net/4/211/2007/.

Lindenschmidt, K.-E., Rauberg, J., and Hesser, F.: Extending un-
certainty analysis of a hydrodynamic – water quality modeling
system using High Level Architecture (HLA), Water Quality Re-
search Journal of Canada, 40(1), 59–70, 2005.

Lindenschmidt, K.-E., Rauberg, J., and Hohmann, R.: Stofftrans-
port im Fluss- und Auenbereich bei Hochwasser: Quasi-2D hy-
drodynamische Simulation und Unsicherheitsanalyse, Gas- und
Wasserfach: Wasser und Abwasser, 147(11), 720–729, 2006.

Saltelli, A., Chan, K., and Scott, E. M.: Sensitivity analysis, John
Wiley & Sons, Ltd., pp. 10, 2000.

Vorogushyn, S., Apel, H., Lindenschmidt, K.-E., and Merz, B.:
Coupling 1D hydrodynamic, dike beach and inundation models
for large-scale flood risk assessment along the Elbe River, Pro-
ceedings for 7th International Conference on Hydroinformatics
HIC 2006, Nice, France, 4–8 September 2006, Research Pub-
lishing Services, ISBN: 81-903170-2-4, pp. 481–488, 2007.

www.adv-geosci.net/11/21/2007/ Adv. Geosci., 11, 21–29, 2007

http://www.epa.gov/ceampubl/swater/wasp/
http://www.nat-hazards-earth-syst-sci.net/4/295/2004/
http://www.hydrol-earth-syst-sci-discuss.net/4/211/2007/

