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Abstract. Biomass burning is one of the largest sources of at-
mospheric trace gases and aerosols globally. These emissions
have a major impact on the radiative balance of the atmo-
sphere and on air quality, and are thus of significant scientific
and societal interest. Several datasets have been developed
that quantify those emissions on a global grid and offered to
the atmospheric modelling community. However, no study
has yet attempted to systematically quantify the dependence
of the inferred pyrogenic emissions on underlying assump-
tions and input data. Such a sensitivity study is needed for
understanding how well we can currently model those emis-
sions and what the factors are that contribute to uncertainties
in those emission estimates.

Here, we combine various satellite-derived burned area
products, a terrestrial ecosystem model to simulate fuel loads
and the effect of fire on ecosystem dynamics, a model of fuel
combustion, and various emission models that relate com-
busted biomass to the emission of various trace gases and
aerosols. We carry out simulations with varying parameters
for combustion completeness and fuel decomposition rates
within published estimates, four different emissions mod-
els and three different global burned-area products. We find
that variations in combustion completeness and simulated
fuel loads have the largest impact on simulated global emis-
sions for most species, except for some with highly uncer-
tain emission factors. Variation in burned-area estimates also
contribute considerably to emission uncertainties. We con-
clude that global models urgently need more field-based data
for better parameterisation of combustion completeness and
validation of simulated fuel loads, and that further valida-
tion and improvement of burned area information is neces-
sary for accurately modelling global wildfire emissions. The
results are important for chemical transport modelling stud-
ies, and for simulations of biomass burning impacts on the
atmosphere under future climate change scenarios.

1 Introduction

Wildland fires have an important impact on the atmospheric
load of trace gases and aerosols, on air pollution, and climate
(Seiler and Crutzen, 1980; Langmann et al., 2009). Fire has
also been recognized as an important agent in the workings
of the Earth system, because it is an intrinsic feature of most
terrestrial ecosystems and responds both to climate change
and human intervention (Bowman et al., 2009; Arneth et al.,
2010). In response, comprehensive datasets have been de-
veloped that characterize the extent of fires globally from
satellite data (Gŕegoire et al., 2003; Simon et al., 2004; Roy
et al., 2005; Mouillot and Field, 2005; Giglio et al., 2006,
2010; Tansey et al., 2008), as well as the chemical emissions
from those fires (Schultz, 2002; Duncan et al., 2003; Hoelze-
mann et al., 2004; van der Werf et al., 2006, 2010; Schultz
et al., 2008; Mieville et al., 2010). Those data sets can be
used to study the effects of wildfires on air pollution and cli-
mate (Langmann et al., 2009), while others that differenti-
ate between types of biomass burning sources are also useful
for better characterizing the role of fires in the Earth system
(e.g. van der Werf et al., 2010).

The next step forward will be to assess the possible fu-
ture and (pre-instrumental) past impact of wildfires under the
conditions of a changing climate. In contrast to the emis-
sion studies cited above, such an approach requires the use
of a fully prognostic model of wildfire occurrence, which
includes using a dynamic vegetation model for predicting
the accumulation of fuels, to replace the use of satellite re-
mote sensing data. However, while global dynamic vegeta-
tion models exist on a global scale that have been coupled
to predictive fire models (Thonicke et al., 2001, 2010; Arora
and Boer, 2005; Prentice et al., 2011), a comparison of simu-
lated fractional area burned with those inferred from satellite
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data still shows large discrepancies (Thonicke et al., 2001,
2010; Prentice et al., 2011).

Before including fire in comprehensive Earth system mod-
els, it is necessary to assess our current ability to model the
different steps necessary for computing chemical emissions
from wildfires. These steps include characterization of area
burned, quantification of the amount of biomass combusted
per area burned, and amount of chemical species emitted per
unit amount of biomass combusted. Only if we better under-
stand how sensitive simulated emissions are to uncertainties
in each of these steps can we, for example, judge how well
we need to reproduce burned area by prognostic models, or
how accurately we need to simulate fuel loads and combus-
tion factors.

The commonly used approach to compute pyrogenic emis-
sions is to combine information on fire occurrence and extent
with information on available fuel, combustion completeness
(i.e. fraction of fuel combusted in a fire), and conversion rates
of combusted fuel to the emitted amounts of various trace
gases (Seiler and Crutzen, 1980). Relevant observations that
cover the entire earth are available only from satellite remote
sensing. Such products include fire occurrence counts de-
tected by radiant emissions from fires in the middle infrared
(Matson and Dozier, 1981), or the detection of burn scars by
analysing bidirectional surface reflectance (Govaerts et al.,
2002; Roy et al., 2005).

Fuel load is more difficult to derive from remotely sensed
information. Studies using radar or LIDAR are promising but
rely on locally trained image classification (e.g. Mutlu et al.,
2008), or can only sense fuel contained in standing struc-
tures (Saatchi et al., 2007). To the knowledge of the authors
there is no global product of fuel load available that is based
on these techniques. Therefore, ecosystem models are often
used to model fuel load (e.g. van der Werf et al., 2010), which
depends not only on plant type distribution and climate, but
also on the effect of the fires itself (Thonicke et al., 2010).
Observations of the combustion process are even more dif-
ficult to obtain from the field, with the closest being obser-
vations of radiant energy from satellites, which can be used
for estimating the total amount of energy generated by the
fire (Wooster et al., 2005). Since this technique is still under
development (Boschetti and Roy, 2009; Ellicott et al., 2009),
the fraction of fuel combusted in a fire is usually an assumed
or modelled value (Ito and Penner, 2004; Arora and Boer,
2005; Wiedinmyer et al., 2006; Thonicke et al., 2010).

The provision of emission fields for biomass burning
based on global models and satellite observations is al-
ready a useful and important step for the atmospheric mod-
elling community. It allows assessing how important pyro-
genic emissions are for the total atmospheric trace gas or
aerosol load, and their contribution to interannual variations
and episodes (Langmann et al., 2010). Modelled trace gas
fields can be compared to those trace gases that are easy
to observe, such as carbon monoxide, to evaluate chemical
transport and emissions modelling together (Langenfelds et

al., 2002; Kopacz et al., 2010). However, the variety of ap-
proaches to compute emissions leads one to suspect that the
use of different observations and models will yield varying
emission fields, and any comparison between modelled and
observed atmospheric trace gases or aerosol loads needs to
take into account that a whole range of possible emission
fields exists, some of which may lead to better and some to
worse agreement with atmospheric observations. Only if we
narrow down uncertainties for simulating current emissions
can we hope to develop reliable models for assessing the im-
pact of climate change on these emissions.

In this study, we therefore pose the following question:
how sensitive are simulations of chemical emissions from
wildfires to varying assumptions and data currently available
in the published literature?

2 Methods

We combine remotely sensed burned area with modelled fuel
loads from the Lund-Potsdam-Jena General Ecosystem Sim-
ulator (LPJ-GUESS) (Smith et al., 2001). The flux of car-
bon from fire to the atmosphere computed by LPJ-GUESS
is subsequently fed into a set of separate models to com-
pute emissions of various trace gases (Fig. 1). We explore
the sensitivity of modelled chemical emissions to the differ-
ent algorithms and parameterizations for emissions and fuel
combustion, as well as remotely sensed burned area. We also
propagate reported uncertainties in emission factors to the fi-
nal results. Finally, we compare the sensitivity of modelled
emissions to uncertainties in emission factors, to the choice
of emission model and burned area data set, and uncertain-
ties regarding the parameterisations of fuel combustion and
turnover.

The purpose of this work is to explore the sensitivity of
modelled wildfire emissions to various key inputs and param-
eterizations, where these imputs are varied within reasonable
bounds based on published data and estimates. This method
mainly serves the purpose of pointing out areas that need fur-
ther refinement or validation. The modelling framework with
its associated flow of information is illustrated in Fig. 1.

We deliberately choose a simple approach to fire mod-
elling, instead of a fully prognostic fire model, in order to
make the chain of factors entering the sensitivity study as
transparent as possible. Instead of computing burned area
and assessing how different parameterisations of the burned-
area model affect the results, we use a variety of burned area
products as input.

2.1 Ecosystem and fuel combustion model

We use LPJ-GUESS to compute the establishment, growth
and mortality of potential natural vegetation, as well as plant
and soil water status and plant litter accumulation on a global
scale (Smith et al., 2001). Carbon, water and surface energy
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Table 1.Plant functional types and fire-related mortality used with LPJ-GUESS.

PFT Shade tolerant Fire-related mortality

Boreal needle-leaved evergreen tree x 0.7
Boreal needle-leaved evergreen tree 0.7
Boreal needle-leaved summergreen tree 0.7
Temperate broad-leaved summergreen tree x 0.9
Temperate broad-leaved summergreen tree 0.9
Temperate broad-leaved evergreen tree x 0.7
Tropical broadleaved evergreen tree x 0.9
Tropical broadleaved evergreen tree 0.9
Tropical broadleaved raingreen tree 0.7
Cool (C3) grass 1.0
Warm (C4) grass 1.0

exchanges are computed on a daily time step, while establish-
ment, growth, allocation, mortality by general disturbance
and competition are simulated with a yearly time step. We
use the global version of LPJ-GUESS with 13 plant func-
tional types (PFTs), comprising nine tree and two grass PFTs
(see Table 1). LPJ-GUESS is used in cohort mode, where
groups of individuals of similar age and size, or “cohorts” are
represented by a single individual. We run LPJ-GUESS with
five patches per grid cell, and a stochastic general patch de-
stroying disturbance with an average return interval of 100 yr.
This general, unspecified disturbance represents other catas-
trophic events than fire (e.g. windfall or insect outbreaks) to
prevent unrealistically high stand ages where no fires occur
(Smith et al., 2001).

As input data we use the gridded Climate Research Unit
TS3.1 monthly observations of diurnal mean temperature,
precipitation and percent of potential (full sunshine) insola-
tion for the period 1901 to 2009 (Mitchell and Jones, 2005;
Jones and Harris, 2011), following a spin-up procedure de-
scribed by Sitch et al. (2003). Annual atmospheric CO2 con-
centration is derived from ice-core data (Etheridge et al.,
1996) and atmospheric measurements obtained at Maona
Loa, Hawaii (Keeling et al., 1995). The model is run on
a global quasi-1-degree equal-area grid with 10 525 non-
glaciated land grid points. The grid has a resolution of 1 de-
gree latitude by 1 degree longitude at the equator, with the
same spacing along lines of equal latitude when away from
the equator.

In variation to the standard LPJ-GUESS model, fire-
related mortality is computed on a monthly time step by
burning each patch with a probability equal to the observed
burned fraction of the corresponding grid cell. If a patch
burns, a random fraction of the cohorts representing woody
PFTs is killed, where the average number of cohorts killed
equals the PFT-dependent fire related mortality (see Table 1).
Grasses are not killed in a fire but are assumed to re-sprout.

Fuel is represented by four classes: live grass, herbaceous
litter (dead grass, leaves or needles), live tree leaves or nee-
dles, and woody litter (i.e. dead trees, stems and branches).

Following Lehsten et al. (2009), plant litter, if not consumed
by fire, decomposes at differential rates, with a turnover time
at 10◦C of 20 yr for woody litter (Weedon et al., 2009), but
2.83 yr for herbaceous litter as in (Sitch et al., 2003). Based
on extensive observations by Shea et al. (1996) from African
savannas, we assume that in each burned patch, 100 % of live
grass and 66 % of the mass of tree leaves are combusted.
The same study reports an average combustion factor for
herbaceous fuel (live grass and leaf litter,ch) of 0.91± 0.03
(n = 13), and for woody litter (cw) of 0.40± 0.08 (n = 12).
For the same ecosystem type, Stocks and Kauffman (1997)
report an average combustion factor for all fuels of 0.83
(n = 30, range 0.44 to 1.00). Because the study reports only
ranges for groups of samples, we assumed that the mean in
each group equals the average of the minimum and maxi-
mum, and do not report a standard error estimate. Assuming
the ratio of woody to herbaceous fuel is 1:3 (based on Shea et
al., 1996), this is consistent with eitherch = 1 andcw = 0.32,
or ch = 0.9 andcw = 0.62, depending on whether we assume
a low or a high estimate for herbaceous fuel.

Combustion factors for forests reported by Ito and Pen-
ner (2004) average 0.27± 0.04 for woody (“coarse”) and
0.90± 0.04 for herbaceous (“fine”) fuels (n = 8; in each
case, we give the standard error of the mean). Data given
by Stocks and Kauffman (1997) for boreal forests average
0.57 (n = 21, range 0.36 to 0.76) for total fuel combustion.
More data on total combustion factors are available from de
Groot et al. (2009) for 128 boreal forest and woodland sites
in Canada. From this study, we derive an average combus-
tion factor for total fuel at the forest floor of 0.58± 0.02. If
we assume a herbaceous combustion factor of 0.9 and equal
amounts of herbaceous and woody fuel, a value of 0.57 for
total combustion factor translates intocw = 0.24.

For simplicity, we assume that no live woody plant mate-
rial is burned in a fire. We also assume that all herbaceous
fuel is consumbed (ch = 1), but define an additional sensitiv-
ity run with ch = 0.9. This value is similar to the data-based
emission model study by Wiedinmyer (2006), who used a
value of 0.9 for forested areas and 0.98 for grasslands.
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LPJ-GUESStemperature
precipitation
radiation
atmosph. CO2

remotely-sensed burned area:
GFED3; MCD45; L3JRC

fuel decomposition
turnover time (yr):
herbaceous    1; 2.85
woody           10; 20

fuel combustion completeness:
herbaceous    0.9; 1.0
woody            0; 0.08; 0.2; 0.4; 1

total biomass
combusted

leaf biomass combusted (life or dead)
(non-leaf) litter combusted

plant-functional type distribution

EM1

EM3

EM4

EM2 MCE

26 species

5 species
PM2.5

PM2.5

Fig. 1. Flow of information used for the sensitivity analysis (thin arrows) between different models (black rectangles). Fixed inputs to the
modified vegetation model LPJ-GUESS in dark blue, variable inputs blue-green, outputs in red, black and green, and emissions shown as grey
arrows. MCE: modified combustion efficiency, EM: emission model. CO2 is global and annual mean, climate inputs gridded and monthly.

For the woody combustion factor,cw, we define reason-
able bounds between 0.2 based on Ito and Penner (2004), de
Groot et al. (2009) and Stocks and Kauffman (1997), and 0.4
based on Shea et al., 1996. To implement woody fuel com-
bustion in LPJ-GUESS, however, the difficulty arises that
woody litter in LPJ-GUESS comprises both woody debris
on the ground and wood in standing dead trees. The fuel load
data reported mostly refer to fuel on the forest floor. Lack
of data makes it difficult to apply a suitable correction fac-
tor. Therefore, we assume that in an extreme case, half of the
woody biomass is in standing trees that do not burn and that
the remaining dead woody biomass has a combustion factor
of 0.2. The resulting case withcw = 0.1 is used as a further
sensitivity test.

In order to assess uncertainties related to the simulation
of fuel loads, we adjusted the turnover time of woody litter
to approximately match observed woody fuel loads in ex-
tratropical forests. The adjustment defined a further parame-
terisation where the standard turnover time for woody litter
was changed from 20 to 4 yr. For this simulation, we use a
mid-range woody combustion factor of 0.30, and the stan-
dard herbeceous combustion factor of 1. The simulated and
observed fuel loads are shown in the results section.

The standard LPJ-GUESS model treats leaf, stem and
branch turnover at annual time steps. In order to realisti-
cally simulate seasonal variations of fuel load, input of dead
leaves into the pool of herbaceous litter and the phenology
of tropical raingreen trees have been modified according to
Lehsten et al. (2009). For summergreen trees, the revised
model uses length of day to predict the date of leaf shed-
ding (White et al., 1997). Here, leaves are shed on the first
day with length less than 10 h, or after 270 days after leaf
shooting when day length is never less than 10 h. In the
autumn, a day length of 10 h occurs between 21 October
(Hainich, Germany, deciduous forest, latitude 51.0◦) and 23
November (Goodwin Creek, Mississippi, deciduous forest,

latitude 34.3◦), the approximate latitude range where sum-
mergreen trees typically grow. The dates coincide with the
time of declining vegetation greenness seen in satellite data
for these two sites (http://fapar.jrc.ec.europa.eu/; Gobron et
al., 2007). For grasses, the soil moisture triggers of the phe-
nology scheme have also been modified similar to raingreen
trees: leaf shoot requires that conditions have been wet for 7
days, while dry conditions for 30 days are sufficient to trigger
leaf senescence.

2.2 Burned area data sets

We use three global multi-annual data sets of burned area:
the global fire emissions database (GFED) version 3 burned
area product (Giglio et al., 2010), the Moderate Resolution
Imaging Spectroradiometer (MODIS) MCD45 burned area
product (Roy et al., 2005), and the L3JRC burned area prod-
uct (Tansey et al., 2008). GFED3 is a monthly multi-sensor
merged product starting in July 1996 and currently ending
December 2010 aggregated at 0.5◦ resolution, MCD45 a
1-km product from April 2000 until November 2010 with
a gap in June 2001 based solely on the series of MODIS
sensors, and L3JRC a 1-km product based on the SPOT-
VEGETATION sensor starting April 2000 and ending March
2007. MCD45 reports up to one burning event per month and
grid cell with an accuracy of several days, while L3JRC re-
ports the date of up to one burning event per pixel for the
season starting in April and ending in March the following
year. From 2001 onwards, GFED3 uses mainly MODIS re-
flectance data as input, the same as MCD45. All three data
sets were aggregated, if necessary, to 0.5 by 0.5 degree spatial
resolution, converted to monthly burned fraction of each grid
cell and used as input to the modified LPJ-GUESS model.
Conversion to the equal-area grid as used by the LPJ-GUESS
model was performed by assigning the burned-area grid cell
that contains the centre of the corresponding LPJ-GUESS
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grid cell. The gap in June 2000 for MCD45 was filled by
using the average burned area for June of all the other years
in the data set.

The L3JRC data where found by Chang and Song (2009)
and Giglio et al. (2010) to significantly overestimate offi-
cial fire statistics for boreal North America, and are much
higher than GFED3 in the boreal zone as a whole (Giglio et
al., 2010). In addition, one atmospheric inversion study by
Kopacz et al. (2010) using the older GFED version 2 emis-
sion fields as a prior, derived posterior CO emissions only
25 % higher than GFED2 for boreal North America, where
the source is almost entirely from biomass burning. GFED2
burned area is of a broadly similar magnitude to GFED3 in
this area. Based on those findings, we need to be cautious
about including this data set in the sensitivity analysis. We
do include it, however, since MCD45 and GFED3 are de-
rived mostly from the same sensor (MODIS), and because a
further published global data set, GLOBCARBON, has sim-
ilar characteristics to L3JRC (Giglio et al., 2010).

2.3 Emission models

The standard approach to modelling emissions from wildfires
established by Seiler and Crutzen (1980) is to assign emis-
sion factors converting combusted biomass to emissions of
chemical species, with different emission factors for differ-
ent ecosystems. Here, we use the latest compilation of such
emission factors by Andreae and Merlet (2001, updated ac-
cording to P. Merlet personal communication, 2008) as Emis-
sion Model 1 (EM1). Emission factors are given ing species
per kg dry mass combusted. To convert output from LPJ-
GUESS to dry matter, we assume a carbon content of 50 %
for all dry, dead biomass (Ragland and Aerts, 1991). Separate
emission factors are given for savanna and grassland, tropi-
cal forest, and extratropical forest. We assign these emission
factors according to the vegetation simulated in LPJ-GUESS
by using the following scheme: the category “savanna and
grassland” is defined where the simulated fraction of grass
LAI over total LAI is greater than 20 %, “tropical forest”
where this fraction is less than 20 % and the dominant simu-
lated PFT is a tropical tree, and “extratropical forest” when
none of the other conditions is met. EM1 is used to simu-
late emissions of CO2, CO, CH4, non-methane hydrocarbons
(NMHCs), total particulate matter (TPM), particulate mat-
ter of 2.5 micron and smaller diameter (PM2.5), NOx, N2O,
NH3, SO2, organic carbon (OC), black carbon (BC), ethane,
propane, C4 and higher alkanes, ethene, propene, C4 and
higher alkenes, methanol, ethanol, formaldehyde, acetalde-
hyde, acetone, benzene, toluene, and xylenes.

An alternative approach to using ecosystem type for dif-
ferentiating between different emission factors is to model
the modified combustion efficiency (MCE) and establish
MCE-dependent emission factors. The MCE is defined as the
amount of carbon emitted as CO2 divided by the sum of car-
bon emitted as CO and CO2. In Emission Model 2 (EM2),

MCE is computed from a linear function of the ratio of com-
busted woody to grass litter, derived from the data presented
by Ward et al. (1996). We decided against using the original
non-linear model by Ward et al. (1996), because it predicts
MCE= 0.85 when all litter is woody, which is much lower
than the lowest ecosystem-specific value implied by the data
of Andreae and Merlet (2001), which is 0.94 for extratrop-
ical forests. Also, Ward et al. (1996) present no data for a
woody litter fraction greater than 0.84 (fuel ratio< 0.16, see
Fig. A1). Their original model is based on fuel present at the
sites, not the amount of fuel burnt in each fire. To obtain the
amount of combusted fuel from their data, we assume that all
grass present at the site burns completely, which is supported
by a combustion factor of 1.0 for one site where almost all
fuel is grass. It is also assumed that the combustion factors
of all other fuel types than grass are the same. To obtain com-
busted woody litter, the combustion factor for fuel other than
grass is then calculated from the reported total combustion
factor using the equationCng ·(T ′

−G′)+G′
= C ·T ′, where

C is total combustion factor,Cng non-grass combustion fac-
tor, T ′ total fuel present, andG′ grass fuel present. We then
useL = Cng ·L′ andG = G′ to obtain combusted woody lit-
ter, L, and combusted grass,G, from woody litter (L′) and
grass (G′) present at the site.

The linear model of the modified combustion efficiency
derived from combusted fuel amounts is:

MCE = 0.898+ 0.062· G/(G + L). (1)

Emission factors as a function of MCE are taken from Ward
et al. (1996) for CO, CH4, NMHCs and PM2.5. The equa-
tion for NMHCs has been taken from Ward (2001), who cites
Ward et al. (1996). We use the definition of the MCE to de-
rive emissions of CO2 from emissions of CO as CO emis-
sions times MCE/(1-MCE) times 44/28, where the latter is
the ratio of molar masses of CO2 and CO, respectively.

We use two further models for the emission of PM2.5 based
the work of Janḧall et al. (2010). Emission Model 3 (EM3)
uses a linear relationship between the emission factor for
particle mass and MCE taken from Eq. (10) of Janhäll et
al. (2010), using the MCE from EM2 (see Fig. 1). The emis-
sion factor for EM3, in g per kg dry mass, is:

EFPM2.5 = 86.1− 85.3 · MCE± 3.1. (2)

Emission Model 4 (EM4) uses fixed emission factors for
aerosol mass differentiated between forest, savanna and grass
biomes (Janḧall et al., 2010, Table 4). The values are 11± 6,
6±3 and 5±2 g per kg dry mass, respectively. For EM4, the
three biomes are determined from the simulated grass frac-
tion of LAI as follows: “forest” for up to 20 %, “savanna”
for greater than 20 % and up to 80 %, and “grass” for greater
than 80 %.

The data for particle mass used by Janhäll et al. (2010) are
for a maximum particle size of either 1 or 2.5 microns, with
the majority falling into the PM2.5 category. They report a
small impact of using different size classes on their results.
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2.4 Uncertainties

We assess the sensitivity of simulated emissions to changing
parameters or input data sets by varying them within bounds
consistent with available data or published estimates. The re-
sulting uncertainties in emissions are intended as a first in-
dication of their order of magnitude. We therefore neither
attempt to rank those uncertainties, nor do we combine them
to arrive at an overall uncertainty estimate.

Uncertainties in simulated emissions result from uncer-
tainties in burned area, in the amount of combusted biomass
on the burned surfaces, from differences between emission
models, and from the uncertainties of the emission factor for
a given model. All uncertainties are represented by chang-
ing model parameters, except for those resulting from dif-
ferences in estimated burned area. For this special case, we
need to make assumptions about the spatial correlation of the
error that leads to the difference between burned-area prod-
ucts. At one extreme, we could assume that they are spa-
tially uncorrelated at the grid cell level, in which case the
global uncertainty would be the square root of the summed
error variances over all grid cells. At the other extreme, we
could compute the standard deviation after forming global
sums of each simulation, assuming differences are entirely
due to systematic errors. If, however, differences turned out
to be purely random and uncorrelated between different grid
cells, this latter approach would lead to a large underestimate
of the uncertainty.

Here, we assume that the dominant contributing factor to
uncertainties are systematic differences between methods of
burned-area retrieval, but that the impact of these differences
varies regionally. This is supported by the finding that mag-
nitude and sign of differences between L3JRC, MODIS and
GFED3 vary substantially between large regions, as does
the difference to regional-scale burned-area data (Chang and
Song, 2009). Therefore, we compute the uncertainty for each
of the GFED basis regions (see Fig. A2) separately, and then
use the square root of the squared sum as the global uncer-
tainty estimate. For two regions, Boreal North America and
Boreal Asia, we take the absolute difference between simu-
lations with GFED3 and MCD45 as the uncertainty estimate.
This is to avoid the extremely high burned areas by L3JRC
for those regions. For all the others, we use the sample stan-
dard deviation of the three simulations with different burned
area products (usingn − 1 in the denominator).

We further use the sample standard deviation, but based
on global sums, for emissions of PM2.5, where there are four
emission models available. For other species with only two
emission models, we indicate the range between the high and
the low estimate based on global sums. The same approach
is used for indicating the uncertainty due to fuel combustion
completeness, where the range between the high (cw = 0.4)
and the low esimate (cw = 0.2) is taken. This assumes that
the impact of uncertainties inch on simulated emissions
is small. For the uncertainty due to simulated fuel loads,

we give the range between the average of the two simula-
tion with woody combustion factor 0.2 and 0.4 and standard
turnover time for woody litter on the one hand, and the sim-
ulation with adjusted woody litter turnover time and woody
combustion factor of 0.3 on the other. While two to four sam-
ples are certainly too few to derive a robust margin of error,
this study nevertheless attempts to derive a first estimate of
the contrasting contributors to uncertainties of wildfire chem-
ical emissions.

To estimate the uncertainties resulting from the finite sam-
ple size of emission factors measured in the field, we use the
standard deviations of EM1 as reported by P. Merlet (per-
sonal communication, 2008), with the following provisions:
if error margins are not given (only one or no measurements),
we use twice the higher relative standard deviation of the
emission factors for the other ecosystems, as far as available,
else four times the mean value. If uncertainties are given as
a range (when only two measurements are available), we use
twice the range. We further assume that the uncertainties of
emission factors for different ecosystems are uncorrelated in
order to derive spatial integrals of uncertainty.

3 Results

3.1 Simulated and observed fuel load

A set of nine global simulations was performed with the
ecosystem model LPJ-GUESS, varying the combustion fac-
tors for woody (cw), and for herbaceous fuel (ch), the burned-
area input data, and the rate of decomposition of both lit-
ter types as described in Sect. 2.1. The simulations are listed
in Table 2, together with simulated and observed fuel loads
for different biomes. Observations are pre-burn fuel loads
from experimental fires or wildfires, simulations the average
weighted by burned area over all simulation years, all in tons
dry mass per hectare. In those cases where only ranges of ob-
served values are given, we assume the mean to equal the av-
erage of the minimum and maximum reported values. For the
simulations, the definition of the biomes follows that used by
the emission models: grassland with<20 % LAI fraction of
trees, savanna/savanna woodland between 20 and 80 %, and
forests above that number. Tropical forests are those where
the dominant PFT is a tropical tree. The table also shows the
assumptions used by Wiedinmyer et al. (2006) and the results
of the data-based modelling study by Ito and Penner (2004).

We find that Simulations 3 and 4, representing the assumed
range of the wood combustion factor, approximately repro-
duce the data-based simulations by Ito and Penner (2004) for
savannas and forests, but overestimate woody litter in grass-
lands. Simulated grassland fuel load is also rather sensitive to
cw, because there is still considerable tree and shrub derived
fuel in this category. This may be explained by the fact that
we allowed a relatively high tree fraction in this category.
However, all simulations except 9 significantly overestimate
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Table 2. Simulations with LPJ-GUESS, simulated and observed fuel loads in t dry matter/ha.

Simu- Burned-area Grassland Savanna/savanna woodland Tropical forest Extratropical forest
lation c1

w c2
w data Total fuel Total fuel Herbaceous fuel Total fuel

1 0 1 GFED33 11.4 58.2 4.4 80 220
2 0.1 1 ” 8.4 44.7 4.4 74 210
3 0.2 1 ” 7.1 37.5 4.4 70 196
4 0.4 1 ” 5.9 29.4 4.4 64 178
5 1 1 ” 4.8 19.8 4.4 52 149
6 0.2 1 MCD454 7.1 36.6 4.4 68 198
7 0.2 1 L3JRC5 7.2 40.1 4.7 65 166
8 0.2 0.9 GFED33 7.2 37.6 4.6 70 196
9∗ 0.3 1 ” 4.8 14.3 4.4 21 56

Observations
Shea et al. (1996) 4.7 (n = 14) 3.6 (n = 14)

[1.4] [1.2]
Stocks & Kauffman (1997) 5.8 (n = 56) 60 (n = 27)6

[1.6–12.0] [41]
de Groot et al. (2009)7 42 (n = 46)

[21]
Govender et al. (2006)8 5.1 (n = 1017)

[0.8 - 14.2]
Ito & Penner (2004) (model) 3.7 35.4 1219

Wiedinmyer et al. (2006) (fixed values) 11 170 120

Values in [...] are range or standard deviation.∗ Woody litter turnover time changed from 20 to 4 yr.1 Combustion factor for woody litter.2 Combustion factor for herbacous
litter. 3 9/1996–12/2009.4 MODIS 4/2000–12/2009.5 4/2000–3/2007.6 Data for Canada. Inferred from fuel load divided by combustion completeness (CC); CC range
translated to standard deviation assuming range corresponds to normal distribution between 1/n and (n − 1)/n fractiles.7 Table 3, excl. open woodland category.8 Table 4,
excl. Shea et al. (1996).9 Both forest categories.

total fuel load compared to the field data, even if 100 %
combustion is assumed for both litter categories (Simula-
tion 5). By contrast, simulated fuel loads with the exception
of tropical forests are lower than those used by Wiedinmyer
et al. (2006).

For Simulation 9, where litter decomposition rates were
delibrately adjusted to better match field-observed total fuel
in extratropical forests, total fuel load in savannas and sa-
vanna woodlands is still higher than observed. For all sim-
ulations, simulated herbaceous fuel in savannas is lower but
still in reasonable agreement with observations. The com-
bustion factor for herbaceous fuel has only a small impact
on simulated fuel load when varied within plausible bounds
(Simulation 3 vs. 8).

The use of L3JRC burned area leads to considerably lower
simulated fuel loads in extratropical forests due to higher
burned area (Simulations 3 and 7), more than the effect of
doubling the wood combustion factor (Simulations 3 and 4).
In savannas, use of L3JRC increases simulated fuel loads due
to the lower burned area in the relevant areas (Giglio et al.,
2010). Results with the other two burned area products are
very similar between each other.

3.2 Sensitivity to combustion factor and fuel load

Simulated carbon emissions from wildfires – independent of
chemical species, computed before the application of one of
the emission models – are highly sensitive to the choice of the
combustion factor for woody fuel (Fig. 2). Within the plausi-
ble range ofcw between 0.2 and 0.4, fire emissions increase
by approximately 25 % for Africa and 40 % for the remaining
part of the globe. We find a non-linear relationship with di-
minishing returns, which we attribute to the effect of repeated
fires. If we assume that all woody fuel not consumed in a sin-
gle fire year eventually decomposes, we would expect a lin-
ear increase between the points withcw = 0 and 1. The simu-
lated amount, however, is considerably higher for intermedi-
ate values. The impact of the non-linear response is also more
pronounced for Africa (difference of 364 TgC yr−1 or 25 %
of emissions against linear response atcw = 0.4, compared
to 224 TgC yr−1 or 18 % for rest-of-world, Fig. 2), which we
attribute to the higher fire frequency in Africa.

Similar to fuel loads, simulated emissions are rather insen-
sitive to the choice of the combustion factor for herbaceous
fuel (Fig. 2, red symbols). Simulation 9, with faster turnover
time for woody litter better matching observed fuel loads, re-
sults in CO emissions about one third lower than the standard
case, or GFED3. Note that the standard case hascw = 0.2,
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Fig. 2.Sensitivity of average global fire emissions 1997–2009. The
horizontal lines show GFED3 emissions during the same period.
Blue symbols: combustion efficiency for herbaceous fuel reduced
from 1 to 0.9. Red symbols: litter turnover adjusted to match ob-
served fuel loads.

but the one with faster woody litter turnovercw = 0.3. The
contribution of herbaceous fuel can be inferred from emis-
sions at the pointcw = 0: those emissions contribute about
half (atcw = 0.2) to one third (cw = 0.4) to the global total.

We also find that the value ofcw = 0.2 (Simulation 3 of
Table 2) with GFED3 burned area gives results that are clos-
est to the emission estimates of GFED3 (Fig. 2). This value
of 0.2 is retained throughout the remainder of this text and for
further sensitivity analyses, where dependence of emissions
of chemical species on burned area observations or emission
model are considered.

Another way of assessing the impact of different combus-
tion factors and fuel loads is to compare the simulated emis-
sions with GFED3 burned area and EM1 with those com-
puted by van der Werf et al. (2010), who used the same
burned-area data and emission model. While LPJ-GUESS
simulates the vegetation present at each site as natural vege-
tation, the CASA model as used by van der Werf et al. (2010)
uses observed vegetation distribution as an external input to
the model. CASA also includes peat fires, deforestation and
agricultural waste burning explicitly, while LPJ-GUESS sim-
ulates all observed fires as wildfires with no live biomass
burned. In the case of deforestation fires, this leads to an un-
derestimate of emissions because felling and burning of trees
is not simulated. Table 3 shows the LPJ-GUESS and GFED3
CO emissions for wildfires and agricultural burning, as well
as total emissions for GFED3. For a definition of the regions
see (Giglio et al., 2010) and Fig. A2.

Global emissions are 33 % higher for LPJ-GUESS com-
pared to GFED3, about equal for Northern Hemisphere
Africa, and 30 % higher for Southern Hemisphere Africa.
Boreal North America is also higher by 43 %, while Boreal
Asia is in close agreement. Southeast and Equatorial Asia are

again somewhat higher for LPJ-GUESS when only consider-
ing wildfires and agricultural burning, but here the GFED3
total emissions are much higher due to the contribution from
peat fires. The region that stands out in this comparison is
Central Asia, where LPJ-GUESS emissions are an order of
magnitude higher than GFED3. As Fig. 3 reveals, the region
(cf. Fig. A2) has high simulated CO emissions especially in
regions known to be dominated by agricultural fields (Ra-
mankutty and Foley, 1999). One explanation for the discrep-
ancy in emissions is that LPJ-GUESS simulates only poten-
tial natural vegetation, leading to overestimated fuel loads.
This also explains why Europe and Temperate North Amer-
ica have much higher simulated emissions for LPJ-GUESS.
There is, however, reasonable agreement for the major emis-
sion regions, such as Africa, Australia, and South America.

3.3 Sensitivity to burned area

With a much different burned area detection algorithm than
GFED3 or MODIS MCD45 (Roy and Boschetti, 2009), the
L3JRC product (Tansey et al., 2008) leads to much higher
emissions in the mid to high latitudes (Boreal and Temper-
ate North America, Europe, Boreal and Central Asia; Ta-
ble 3). The differences are by order of magnitude of emis-
sions, as opposed to the much smaller differences between
the two MODIS or predominantly MODIS-based products.
For Africa, however, L3JRC emissions are somewhat lower
than MODIS or GFED3 emissions, which corresponds to
lower burned area in the region (Roy and Boschetti, 2009).
MODIS and GFED3, on the other hand, are again very simi-
lar for this region.

A comparison shown in Fig. 4 reveals not only large dif-
ferences in magnitude but also in interannual variability be-
tween simulations with different burned area data. For ex-
ample, for Africa (Fig. 4a), interannual variability is much
larger for MODIS (standard deviation 2001–2009: 13.1 Tg)
than for GFED3 burned area (8.3 Tg). For L3JRC, even tem-
poral maxima and minima change sign compared to the other
products: note for example that 2005 for Africa is a minimum
for L3JRC, and a maximum for the other products, or 2002
in the boreal zone, which is a pronounced temporal minimum
in L3JRC, but not for any of the other data sets (Fig. 4a, b).
On a global scale (Fig. 4c), GFED3 and MODIS lead to very
similar results, however, with L3JRC standing out as much
higher. The difference between GFED3 emissions and emis-
sions from LPJ-GUESS with GFED3 burned area for 1997
can be attributed again to peat fires, which were especially
wide-spread during the 1997/1998 El Niño (Page et al., 2002;
Langenfelds et al., 2002).

Not surprisingly, the spatial patterns of simulated wildfire
emissions are dominated by the spatial patterns of the burned
area product used. As GFED3 is mainly based on MODIS
data from early 2000 onwards, those spatial patterns fall into
two groups, with MODIS MCD45 and GFED3 as one, and
L3JRC as the other (see Fig. 4 for the example of CO). A
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Fig. 3. CO emissions in gC m−2 yr−1 for cw = 0.2 and Emission Model 1, average 2001–2006. Upper panel: GFED3 burned area. Lower
panel: L3JRC burned area.

regional breakdown of the emissions (Table 3) also shows
great similarity between GFED and MODIS, with the ex-
ception of some areas with minor contributions: Equatorial
Asia, notably Boreal North America, where MODIS is close
to half of GFED3, and Europe and Southeast Asia where this
difference is reversed. The different burned area for Equa-
torial Asia was already noted by Giglio et al. (2010), where
GFED3 reports generally much higher values. This was at-
tributed to a mapping algorithm more resistant to cloud and
aerosol contamination, leaving fewer undetected burned pix-
els.

3.4 Emission models

Simulated emissions are found to be rather sensitive to the
choice of emission model, as is shown in Fig. 5. Annual car-
bon emissions for EM1 are 6655 Tg CO2 (92.9 % of carbon
emissions), 315 Tg CO (6.8 %), 14 Tg methane (0.5 %) and
18 Tg non-methane hydrocarbons (0.6 %), whereas for EM2
the figures are 8886 Tg CO2 (90.4 %), 415 Tg CO (8.6 %),
15 Tg methane (0.6 %), and 15 Tg NMHCs (0.4 %). The cal-
culation assumes an average molar mass per carbon atom of
20 g for NMHCs derived from the data by P. Merlet (personal
communication, 2008) for tropical grasslands and savannas.
EM2 thus predicts a considerably lower combustion effi-
ciency for wildfires with much higher CO emissions, while

EM1 yields a smaller combustion efficiency, but with fires
producing considerably more NMHCs relative to methane.

In general, the choice of emission model impacts more the
magnitude and less the geographical breakdown of emissions
(Fig. 5). At least for CO and methane, the share of emissions
going to Africa is somewhat higher for EM2 (CO: 56 %,
methane: 55 %) than for EM1 (CO: 52 %, methane: 51 %).
For aerosols (PM2.5), there are also some notable redistri-
butions in emissions: For EM4, most emissions come from
Africa (60 %) and Southeast Asia and Oceania (11 %), with
the boreal and temperate zones only contributing 10 % each.
EM1, at the other end of the spectrum, allocates only 47 % to
Africa, but 18 % each to the boreal and temperate zones, and
only 8 % to Southeast Asia and Oceania. We further find that
choice of emission model generally has only a small effect
on interannual variations of emissions (results not shown).

3.5 Contributions to emission uncertainties

We compare our best-guess estimate of global chemical
emissions, for which we use EM1,cw = 0.2 and GFED3
burned area, with uncertainty ranges resulting from uncer-
tainties in emission factor, emission model, fuel combustion,
simulated fuel load, or burned area (Table 4; see Sect. 2.4).
Since this is only a first attempt to characterize uncertainty
ranges of chemical emissions from wildfires, we do not
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Fig. 4. Annual CO emissions in Tg forcw = 0.2 and Emission
Model 1, for different burned area data sets and for fast litter decom-
position, as well as GFED3 emissions.(a) Boreal Asia and North
America.(b) Africa. (c) Globe.

include an estimate of overall uncertainty, nor do we base
our best guess on the average across emission models and
burned area products.

Considering only orders of magnitude, we find that the dif-
ferent factors contribute about equal levels of uncertainty to
the simulated emissions. Only for CO2, the emission model
has a minor effect on uncertainties. Notable is a rather high
contribution from simulated fuel loads.

There are cases, however, where emission factor uncer-
tainty has a similar or larger impact on emissions than any of
the other factors. The simulated emissions of propane, SO2,

xylenes, ethanol and acetaldehyde depend more strongly on
uncertainties in emission model than on fuel load and com-
bustion. Propane has a much higher emission factor for trop-
ical forest (1.04 kg g−1 dry matter, P. Merlet, personal com-
munication, 2008) than for savanna and grassland (0.086) or
extratropical forest (0.27), but this high factor for tropical
forests is based on only two measurements. Xylenes have
the highest estimated emission factor for extratropical forest
(0.2) based on only one measurement (vs. 0.043 and 0.087
for the other biomes), and ethanol has only one measure-
ment for extratropical forest and none for the other ecosys-
tems. For acetaldehyde, the situation is similar to propane,
with only two measurements from tropical forests, but a more
than four times higher emission factor than for savannas and
grasslands. Other cases with relatively large uncertainties due
to emission factors are NOx, NH3, ethene, propene, benzene,
toluene, methanol, formaldehyde, and acteone.

We find a remarkably large difference between the two
emission models for CO, resulting in a range of 100 Tg yr−1,
twice as much as the effect of the uncertainty of the emis-
sion factor of EM1. We combine both emission factor and
emission model uncertainty and assume they are uncorre-
lated to derive the overall influence on uncertainties through
the choice of emission model. We thus arrive at the follow-
ing indicative esimates for the five main groups of emitted
species (CO2, CO, CH4, NHMCs and particulate matter):
about 50 % estimated uncertainty from fuel load, 30 to 40 %
from fuel combustion, 25 % from burned area, and 20 to 30 %
from emissions modelling. Exceptions are CO2, with 5 %,
and CO with 36 % uncertainty from emission modelling.

4 Discussion

Even though some of the results have been presented in terms
of uncertainties, it must be stressed that the reported ranges
are only first estimates. These estimates have been derived
from what is essentially a sensitivity analysis of chemical
emissions from wildfires to plausible scenarios of parameter,
model or input data choice. The first issue to discuss is there-
fore how the models used here compare with other global
modelling efforts of wildfire emissions.

We find that the standard simulation agrees reasonably
well with emissions by GFED3, while at the same time ap-
pears to overestimate fuel loads compared to field data. Other
models, however, have used or re-produced similar or higher
fuel loads. Combustion factors are similar to other studies or
to observations, as shown in Sect. 2.1. Choice of the combus-
tion factor for herbaceous fuel has generally little impact on
overall emissions, because it is rather well constrained by the
data. However, reducing simulated fuel loads to agree more
closely with observations (Simulation 9) results in strongly
reduced emissions. Van der Werf et al. (2010) report that
regional atmospheric inversion studies for Africa as well
as Alaska and Canada indicate rather good agreement with
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Table 3. Average annual CO emissions in Tg 2001–2006 with LPJ-GUESS and Emission Model 1 using different remotely sensed burned
area products: GFED3 (Giglio et al., 2010), L3JRC (Tansey et al., 2008), and MODIS MCD45 (Roy et al., 2005). Last 2 columns show
emissions by GFED3. Wildfires (Wildf.) exclude deforestation, peat fires and agricultural waste burning (Agric.).

Model LPJ-GUESS + EM1 GFED3∗

Burned area product GFED3 MODIS L3JRC GFED3

Types of fires Wildfires + Agric. Fires Wildf.+Agric. All

Boreal North America 20.2 12.8 93.1 14.1 14.2
Temperate North America 4.2 5.9 53.1 1.5 1.5
Central America 1.6 1.7 4.6 1.8 3.3
Northern Hemisph. South America 2.8 2.4 3.6 1.9 3.5
Southern Hemisph. South America 26.5 24.0 37.1 17.9 48.7
Europe 1.5 3.5 26.9 0.8 0.8
Middle East 0.9 1.3 6.6 0.4 0.3
Northern Hemisphere Africa 60.5 62.2 41.5 60.0 67.8
Southern Hemisphere Africa 103.4 102.9 79.7 79.6 85.1
Boreal Asia 29.4 28.5 137.9 27.8 26.8
Central Asia 42.8 51.1 167.2 5.9 6.2
Southeast Asia 5.9 8.4 6.9 6.0 16.6
Equatorial Asia 1.8 0.4 0.2 1.8 50.1
Australia and New Zeeland 18.4 14.1 15.8 19.9 20.5
Global 319.9 319.3 674.0 239.2 346.3

∗ van der Werf et al. (2010).

GFED3. Based on those comparisons, we would expect the
emissions of Simulation 9 to be too low.

There might be a number of factors contributing to this ap-
parent contradiction. Firstly, fuel loads in savannas strongly
depend on mean annual rainfall (Govender et al., 2006), and
the precipitation data used by LPJ-GUESS has to rely on
a rather sparse network of stations in most of those areas
(Mitchell and Jones, 2005). Also, the LAI fraction of trees
and shrubs assumed in this study for the savanna/savanna
woodland category (20 to 80 %) is somewhat higher then that
assumed for example by the International Geosphere Bio-
sphere Program (10 to 60 %, Friedl et al., 2002). Simulated
total fuel in LPJ-GUESS is similar to other modelling stud-
ies, but should be thought of as representing not only surface
fuels, but also fuels in killed shrubs or short trees, for exam-
ple, that contribute to emissions but are not captured by the
field data cited. It could also represent collected fuel wood
(van der Werf et al., 2010), which was estimated to amount to
10 % of savanna emissions in Africa (Williams et al., 2007).
Fuel wood likewise contributes to emissions but does not ap-
pear in fuel load data for African savannas. Possibly, LPJ-
GUESS effectively accounts for these effects by assuming a
higher woody fuel load than is in fact found on the ground.

Another explanation, which has been discussed before,
states that part of what is simulated as fuel in LPJ-GUESS
is wood contained in dead standing trees that do not burn or
contribute to emissions. If we assume half of the modelled
woody fuel is indead standing trees and halve the combus-
tion factor for woody fuel from the plausible range of 0.2 to

0.4 to values between 0.1 and 0.2, we obtain the following
results (Simulations 2 and 3, see Table 2): simulated woody
fuel in savannas is between 33 and 40 t/ha, and surface litter
between 16 and 20 t/ha. Simulation 3, resulting in 16 t/ha,
also has similar emissions to GFED3. While this is still too
high compared to observations, a combination of both pro-
posed factors, a systematic difference in the tree fraction be-
tween simulations and observations, and possible biases be-
tween actual and observed rainfall might be able to explain
the difference.

For the sensitivity to emission factors we used ranges de-
fined by one standard deviation reported by P. Merlet (per-
sonal communication, 2008). Whether these ranges repre-
sent the plausible range of emission factors can be addressed
by comparing results with different emission models against
the propagation of uncertainties in emission factors. We find
that propagation of uncertainties might somewhat under-
estimate the impact of varying emission factors within a
full plausible range, in one case (CO) even substantially.
However, we need to bear in mind that the model of MCE
used in EM2 was derived from data from African savan-
nas only and might be less applicable in e.g. boreal forests.
We therefore assume that the sensitivity of emissions to
emission models can be reasonably approximated by vary-
ing the emission factor within the reported one standard de-
viation of the mean. However, we must also note that using a
more process based model of emission factors, as presented
by van Leeuwen and van der Werf (2011), it might become
possible to model emission factors more accurately, if it turns
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Table 4.Global wildfire emissions in Tg yr−1 with Emission Model 1,cw = 0.2 and GFED3 burned area (best guess), and uncertainties from
various factors. “Higher alkenes” and “higher alkanes” with a least 4 C atoms. OC: organic carbon. BC: black carbon. NMHCs: non-methane
hydrocarbons. TPM: total particulate matter. PM2.5 particulate matter up to 2.5 micron.

Uncertainty resulting from:

Species Best guess1 emission factor1 emission model1 fuel combustion1 fuel load1 burned area2

CO2 6656 271 230 2123 3273 1681
CO 315 50 100 112 169 79
CH4 14.4 2.8 0.9 5.6 8.2 3.2
NMHCs 18.5 4.9 3.5 6.7 10.0 4.3
TPM 44.2 10.2 – 15.8 23.7 12.1
PM2.5 29.3 6.8 3.7 11.0 16.3 8.0
NOx 9.75 3.45 – 3.30 5.03 2.65
N2O 0.89 0.30 – 0.29 0.44 0.23
NH3 3.85 1.77 – 1.37 2.07 1.08
SO2 2.26 3.09 – 0.85 1.26 0.61
OC 18.4 4.1 – 6.8 10.2 5.5
BC 2.04 0.52 – 0.68 1.04 0.52
ethene 4.20 1.43 – 1.48 2.23 0.99
ethane 2.24 0.65 – 0.89 1.30 0.47
propene 2.20 0.78 – 0.85 1.25 0.43
propane 1.25 2.82 – 0.56 0.79 0.16
higher alkenes 2.01 0.45 – 0.71 1.07 0.50
higher alkanes 0.78 0.19 – 0.29 0.44 0.22
benzene 1.40 0.57 – 0.49 0.75 0.38
toluene 0.95 0.46 – 0.34 0.51 0.26
xylenes 0.33 0.31 – 0.13 0.19 0.10
methanol 7.50 3.66 – 2.68 4.00 1.67
ethanol 0.05 0.06 – 0.02 0.03 0.01
formaldehyde 5.18 2.12 – 2.06 3.02 1.25
acetaldehyde 3.80 2.55 – 1.54 2.23 0.69
acetone 2.22 0.79 – 0.76 1.15 0.56

1 1997–2009.2 2001–2006. Range based on two samples shown initalics.

out that other factors than fuel composition or biome are bet-
ter predictors.

The remaining question is whether the rather wide range
of burned-area estimates used in this study (L3JRC was ex-
cluded for the boreal zone) can be considered a plausible
uncertainty estimate. Had we used only L3JRC and MCD45,
the burned-area based uncertainty of CO2 emission would
have dropped from 1680 to 240 TgC yr−1. However, both
these data sets are mainly based on data from the same
satellite sensor, so that the regional differences between the
two cannot be expected to be a good estimator of uncer-
tainties. For example, Chang and Song (2009) showed that
MCD45 underestimates monthly burned area by 44 % for
Canada, 53 % for the United States (US), and 27 % for China
against regional estimates. On the other hand, L3JRC over-
estimates by factors of 1.5 and 4 for US and China, respec-
tively (for Canada and Alaska, L3JRC does not enter the un-
certainty calculation). For Africa, however, L3JRC underes-
timates burned area compared to analyses of high-resolution

images (Roy and Boschetti, 2009). We therefore assume that
the uncertainty estimate for the impact of burned area is rea-
sonable, even if somewhat high.

A new finding is that there is not only a large bias be-
tween L3JRC and the other two satellite products, but that
interannual variability simulated using L3JRC differs signif-
icantly from using the predominantly MODIS-based prod-
ucts. Therefore, further validation of satellite burned area
also needs to consider how reliably interannual variations are
reproduced.

This study shows a high sensitivity of emissions to un-
certainties in burned area data, which is relevant in the
context of climate change and the need for projections of
chemical emissions from wildfires. As far as modelling
burned area is concerned, the results from global fire mod-
els are promising, but their application remains a substantial
challenge. For example, Thonicke et al. (2010) report frac-
tional area burned in southern Europe and Turkey similar to
African savannas. However, in GFED3 only central Portugal
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Fig. 5. Average emissions 1997–2009 region of(a) CO; and of
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rope, Middle East and Central Asia. Southeast Asia and Oceania:
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has areas with values between 5 and 10 % yr−1, with the rest
of the region closer to 1 % yr−1. By comparison, African sa-
vannas burn between 10 and 30 % of their area each year.
While the model by Thonicke et al. (2010) is more pro-
cess based, Kloster et al. (2010) show results of simulated
burned area using the much simpler approaches of Thon-
icke et al. (2001) and Arora and Boer (2005) and find rea-
sonable broad agreement with L3JRC and GFED2 (Giglio et
al., 2006). However, Giglio et al. (2010) found that GFED3
agrees substantially better with independent data than either
GFED2 or L3JRC. This has consequences for model eval-
uation: for example, the model by Arora and Boer (2005)
simulates twice to 6 times the GFED2 burned area for Eu-
rope, but GFED3 has 75 % less burned area in the same re-
gion than GFED2 (Giglio et al., 2010). Because no model-
predicted burned area can be expected to have lower uncer-
tainty than the best observations – as they rely on observa-
tional evidence for their design – we believe that further vali-
dation and improvement of remotely sensed products is nec-
essary for improved prediction of burned area and fire emis-
sions. Apart from that, we need further efforts for designing,
parameterising and refining predictive fire models that can

be tested against burned-area observations at various spatial
scales (Lehsten et al. 2010).

Overall, we find that in order to arrive at a predictive ca-
pability for the impacts of climate change on wildfire emis-
sions, the main priority is to obtain more data on combus-
tion factors and in particular factors that characterize the as-
sociated weather and fuel moisture conditions, as the cur-
rently available data seriously limit modelling capability (Ito
and Penner, 2004; Wiedinmyer et al., 2010). This includes
improved precipitation data as the main driver for fuel load
(Govender et al. 2006). The next highest priority would be a
systematic comparison of global and regional data on burned
area, and a systematic improvement of burned-area models to
better match well-validated observations. Finally, the range
of emissions reported here could not only be tested against
atmospheric inversions of relatively long-lived chemical trac-
ers such as CO (Kopacz et al., 2010), but ultimately parame-
ters of the emission model could be constrained directly via
inverse modellling, similar to the technique used in Carbon
Cycle Data Assimilation (Rayner et al., 2005).

5 Conclusions

We have presented a framework for exploring the sensitivity
of global chemical emissions from wildfires to various un-
certain model inputs and parameterisations. Simulated fuel
loads were comparable to other modelling studies, but higher
than observed for African savannas. We have dicusssed sev-
eral factors that could explain the difference. We concluded
that modelled fuel loads still contribute to a large uncertainty
in the estimated wildfire emissions.

The study futher highlights the need for models of com-
bustion completeness as a function of climatic conditions,
possibly in conjunction with reliable models of fire intensity,
and the need for better models of emission factors for several
species. For the main emitting species, however, the main
issue is accurate modelling of burned area and combusted
biomass, crucial for assessing fire emissions in past or future
environments.

Our results can be used by the atmospheric modelling
community to consider a range of emission scenarios rather
than a fixed one, reflecting the uncertainty range due to
current modelling capabilities. Modelling different emission
scenarios together with chemical transport can be used to
further constrain emissions, given suitable observations and
long-lived tracers.

We conclude that model-based prediction of chemical
emissions from wildfire, either for present or future condi-
tions, still carries a high degree of uncertainty.

All emission fields presented are available on request by
the corresponding author.
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aerosol emissions from vegetation fires: particle number and
mass emission factors and size distributions, Atmos. Chem.
Phys., 10, 1427–1439,doi:10.5194/acp-10-1427-2010, 2010.

Jones, P. D. and Harris, I.: CRU Time Series (TS) high resolution
gridded datasets, NCAS British Atmospheric Data Centre, 2011.

Keeling, C. D., Whorf, T. P., Wahlen, M., and Vanderplicht, J.: Inter-
annual extremes in the rate of rise of carbon dioxide since 1980,
Nature, 375, 666–670, 1995.

Kloster, S., Mahowald, N. M., Randerson, J. T., Thornton, P. E.,
Hoffman, F. M., Levis, S., Lawrence, P. J., Feddema, J. J., Ole-
son, K. W., and Lawrence, D. M.: Fire dynamics during the
20th century simulated by the Community Land Model, Biogeo-
sciences, 7, 1877–1902,doi:10.5194/Bg-7-1877-2010, 2010.

Kopacz, M., Jacob, D. J., Fisher, J. A., Logan, J. A., Zhang, L.,
Megretskaia, I. A., Yantosca, R. M., Singh, K., Henze, D. K.,
Burrows, J. P., Buchwitz, M., Khlystova, I., McMillan, W. W.,
Gille, J. C., Edwards, D. P., Eldering, A., Thouret, V., and
Nedelec, P.: Global estimates of CO sources with high resolu-
tion by adjoint inversion of multiple satellite datasets (MOPITT,
AIRS, SCIAMACHY, TES), Atmos. Chem. Phys., 10, 855–876,
doi:10.5194/acp-10-855-2010, 2010.

Langenfelds, R. L., Francey, R. J., Pak, B. C., Steele, L. P., Lloyd,
J., Trudinger, C. M., and Allison, C. E.: Interannual growth rate
variations of atmospheric CO2 and itsδ13C, H2, CH4, and CO
between 1992 and 1999 linked to biomass burning, Global Bio-
geochem. Cy., 16, 1048–1069, 2002.

www.atmos-chem-phys.net/12/6845/2012/ Atmos. Chem. Phys., 12, 6845–6861, 2012

http://dx.doi.org/10.1038/Ngeo905
http://dx.doi.org/10.1029/2005jg000042
http://dx.doi.org/10.1029/2008jd011645
http://dx.doi.org/10.1126/Science.1163886
http://dx.doi.org/10.1029/2008jd011361
http://dx.doi.org/10.1139/X08-19
http://dx.doi.org/10.1029/2002jd002378
http://dx.doi.org/10.1029/2009gl038581
http://dx.doi.org/10.1080/0143116021000044850
http://dx.doi.org/10.5194/acp-6-957-2006
http://dx.doi.org/10.5194/bg-7-1171-2010
http://dx.doi.org/10.1111/J.1365-2664.2006.01184.X
http://dx.doi.org/10.1029/2003jd003666
http://dx.doi.org/10.1029/2003jd004423
http://dx.doi.org/10.5194/acp-10-1427-2010
http://dx.doi.org/10.5194/Bg-7-1877-2010
http://dx.doi.org/10.5194/acp-10-855-2010


6860 W. Knorr et al.: Determinants of global wildfire emissions

Langmann, B., Duncan, B., Textor, C., Trentmann, J., and van der
Werf, G. R.: Vegetation fire emissions and their impact on air
pollution and climate, Atmos. Environ., 43, 107–116, 2009.

Lehsten, V., Tansey, K., Balzter, H., Thonicke, K., Spessa, A.,
Weber, U., Smith, B., and Arneth, A.: Estimating carbon
emissions from African wildfires, Biogeosciences, 6, 349–360,
doi:10.5194/bg-6-349-2009, 2009.

Lehsten, V., Harmand, P., Palumbo, I., and Arneth, A.: Mod-
elling burned area in Africa, Biogeosciences, 7, 3199–3214,
doi:10.5194/Bg-7-3199-20, 2010.

Matson, M. and Dozier, J.: Identification of Subresolution High-
Temperature Sources Using a Thermal Ir Sensor, Photogramm.
Eng. Rem. S, 47, 1311–1318, 1981.

Mieville, A., Granier, C., Liousse, C., Guillaume, B., Mouillot, F.,
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