
JSS Journal of Statistical Software
June 2011, Volume 42, Issue 6. http://www.jstatsoft.org/

IndElec: A Software for Analyzing Party Systems

and Electoral Systems

Francisco Antonio Ocaña
University of Granada

Pablo Oñate
University of Valencia

Abstract

IndElec is a software addressed to compute a wide range of indices from electoral
data, which are intended to analyze both party systems and electoral systems in polit-
ical studies. Further, IndElec can calculate such indices from electoral data at several
levels of aggregation, even when the acronyms of some political parties change across
districts. As the amount of information provided by IndElec may be considerable, this
software also aids the user in the analysis of electoral data through three capabilities.
First, IndElec automatically elaborates preliminary descriptive statistical reports of com-
puted indices. Second, IndElec saves the computed information into text files in data
matrix format, which can be directly loaded by any statistical software to facilitate more
sophisticated statistical studies. Third, IndElec provides results in several file formats
(text, CSV, HTML, R) to facilitate their visualization and management by using a wide
range of application softwares (word processors, spreadsheets, web browsers, etc.). Fi-
nally, a graphical user interface is provided for IndElec to manage calculation processes,
but no visualization facility is available in this environment. In fact, both the inputs and
outputs for IndElec are arranged in files with the aforementioned formats.

Keywords: electoral system, disproportionality, party system, party dimensions.

1. Introduction

IndElec is a software intended to compute a wide range of indices measuring characteristics of
party systems and electoral systems in political studies. Among such characteristics, we can
briefly mention the disproportionality of an electoral system and some of the main dimensions
of a party system, such as fragmentation, effective number of parties, concentration, compet-
itiveness, polarization, regionalism, party linkage and volatility. More detailed information
about the indices computed by IndElec, including references, is found in Appendix A.

IndElec was initially developed to carry out the analysis of all the elections held over 1977–

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/27237054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstatsoft.org/

2 IndElec: Analyzing Party Systems and Electoral Systems

Figure 1: Sketch of the use of IndElec in a study.

1999 in Spain, which is available in Oñate and Ocaña (1999). The studied elections were those
for the Spanish parliament, the autonomous region parliaments and the European parliament,
namely 65 elections in total. The high number of considered elections and the different
aggregation levels available in the electoral databases, which were provided by the Spanish
Ministry of the Interior, motivated the initial development of IndElec. However, this software
is now designed to analyze not only the Spanish political system, but also any political system.

From a computational point of view, some of the indices provided by IndElec (disproportion-
ality, effective number of parties, fragmentation, etc.) are computed from a data set drawn
from an election, which is given by the votes and seats obtained by the competing parties.
IndElec also computes volatility indices, which depend on data drawn from two (consecutive)
elections (Pedersen 1979; Bartolini and Mair 2007). Apart from its use like a spreadsheet
with lot of indices implemented, when the electoral data present several levels of aggregation
(state, region, district, etc.), IndElec carries out the calculations of such indices for each of
the districts considered at every level of aggregation. In this data framework, some additional
indices are implemented in IndElec to compare the effects of data aggregation on some char-
acteristics of the studied political system (Cox 1999; Oñate and Ocaña 1999), i.e., regionalism
and party linkage. Summarizing, more than sixty indices can be calculated by IndElec for
each electoral distribution. By the way, IndElec can even learn to distinguish acronyms of
political parties with the user aid, when some political parties present several acronyms across
districts. For instance, this practice is common in Spanish elections, like a strategy, when a
party wants to catch voters’ regionalist feelings (Lago-Penas 2004; Oñate and Ocaña 1999;
Diamandouros and Gunther 2001).

From a technical point of view, IndElec consists of several software libraries and a graphical
user interface (GUI). Much of IndElec is coded in Pascal and its GUI is developed in Object
Pascal (an object-oriented extension of Pascal). Though the current Windows binary release
of IndElec is compiled by using Delphi, IndElec but its GUI could be compiled by the classic
Borland Pascal compiler or any other freeware version (Free Pascal Compiler–Lazarus, etc.)
with minor changes. On the whole, the logic in the programming of IndElec distinguishes
two modules: Dimensi and Volatili. Dimensi includes the indices depending on an election,
and Volatili is focused on those indices associated to two elections.

Journal of Statistical Software 3

The exchange of information between IndElec and the user is conducted mainly through
text files, something like the LATEX way of work. Figure 1 illustrates this idea by showing
a scheme of the use of IndElec. Firstly, the input information and some of the settings for
IndElec (data and other specifications) will be saved into text files by the user. Secondly, the
output information obtained by IndElec, which is made up of computed indices, statistical
analyses and matrices, will also be saved in several text–based files by IndElec. This makes
the use of IndElec easy, because any text editor can manage the files associated to IndElec.
Moreover, to improve upon the readability and integrability of the IndElec output with other
softwares, some additional file formats, such as CSV, HTML and R, are considered.

This manuscript is sketched out as follows. The first sections are focused on the module
Dimensi of IndElec. Indeed Sections 2 and 4 explain the management of Dimensi for the two
considered data frameworks, respectively. In this sense, the implementation of any structure
of data aggregation by means of levels is treated in Section 3. The module Volatili of IndElec
is thus described in Section 5. To illustrate some of the details provided in this manuscript,
two real data examples will be recurrently considered: the Spanish parliamentary elections
held in 2004 and 2000. Finally, the integrability between a statistical software, namely R (R
Development Core Team 2011), and IndElec is exemplified in Section 6.

2. Module Dimensi with aggregated data

The aggregated data framework is given when the available electoral data consists of the
overall numbers or shares of votes and seats for each of competing parties in a given election.
This is the simplest data framework under which IndElec can be used. In fact, IndElec can
thus be viewed like a spreadsheet containing lots of political indices implemented in its code.
To illustrate the usage of the module Dimensi of IndElec, the 2004 Spanish parliamentary
election will be considered in what follows.

The aggregated data for a given election must appear in a text file with extension *.dat. The
information in such a file must be arranged according to the following syntax:

� the first line contains a short description of the electoral data;

� the second line is not taken into account by IndElec;

� each of the following lines contains the acronym, the votes and the seats, for each
competing party. Any of such quantities for any party can be provided as number,
proportion or percentage (the implementation of IndElec takes care of such numeric
settings).

For example, the aggregated data from the 2004 Spanish parliamentary election, which are
contained in the input file da04.dat, are arranged as follows:

Spanish parliamentary election in 2004-March 14-

Party Vote Seat

PP 9763144 148

BNG 208688 2

EAJ-PNV 420980 7

PSOE 11026163 164

...

4 IndElec: Analyzing Party Systems and Electoral Systems

As we can see, IndElec does not require data alignment by columns.

Under the aggregated data framework, IndElec performs the analysis of electoral data and
saves the output information in three files with different formats. On the one hand, it gen-
erates a text file with extension *.out and an HTML file (da04.out and da04.htm, in our
example). Apart from the indices of disproportionality and those of party dimensions but the
volatility, the module Dimensi saves the electoral data ordered according to the votes and
also their corresponding cumulative distributions of votes and seats. Further, to visualize the
disproportionality by parties, it also displays the deviations between votes and seats for each
party. For example, in the output of IndElec for the data file da04.dat, we can distinguish
the following information:

DATA AND DISTRIBUTIONS OF VOTES AND SEATS

No Party Votes Seats %Votes %Seats

1 PSOE 11026163 164 43.268 46.857

2 PP 9763144 148 38.312 42.286

...

CUMULATIVE DISTRIBUTIONS OF VOTES AND SEATS

No %Cum. Votes %Cum. Seats

1 43.268 46.857

2 81.579 89.143

3 86.618 90.571

...

PLOT OF DEVIATIONS: %Seats - %Votes

No Party %Deviation

1 PSOE |**** 3.59

2 PP |**** 3.97

3 IU ****| -3.61

4 CIU | -0.42

...

On the other hand, to improve the integration with R, IndElec generates automatically a R
source file which defines some R objects containing the scores of electoral indices computed
by IndElec (R Development Core Team 2011).

3. Defining an aggregation structure in IndElec

Any data aggregation structure given through several levels (discrete aggregation) can be
implemented in IndElec by the user. Levels of aggregation can be considered in electoral
data, when there exists an aggregation structure of geographic units or items (countries,
regions, provinces, districts, etc.) in the area where the studied election is held. According
to such an aggregation structure, an electoral data distribution is thus gathered for each of
those geographic units. Indeed such distributions will make up the data set to be provided to
IndElec.

Journal of Statistical Software 5

From a mathematical point of view, let R1 be the area or overall region where a given election
took place and L be the number of aggregation levels to be considered in this region. Each
level of aggregation, denoted by ` ∈ {1, . . . , L}, is defined by a family F ` = {R`i : i =
1, . . . ,M`} of disjoint geographic units such that

⋃M`
i=1R

`
i = R1, where F1 = {R1} to ensure

consistent notation. These families are assumed nested in such a way that ∀` ∈ {2, . . . , L} and
∀j ∈ {1, . . . ,M`}, then there must exist an unique i ∈ {1, . . . ,M`−1} such that R`−1i ⊇ R`j .

Therefore, such an aggregation structure can be viewed as a set of nested layers, {F ` : ` =
1, . . . , L}, which establish subsequent partitions of the overall region, R1. Notice that the
level of aggregation is determined by ` in a decreasing way. Indeed ` stands for splitting
instead of aggregation.

The aforementioned aggregation structure can be understood by IndElec. To this end, the
user must implement such an aggregation structure by composing some configuration text
files, which must be included in the IndElec setup folder. In fact, IndElec will not understand
an aggregation structure in the provided electoral data, unless such a structure is defined in
IndElec. So the configuration files for defining an aggregation structure will be detailed in
the following paragraphs.

First of all, the main of such configuration files, which must be named indelec.cfg, storages
a scheme of the aggregation structure to be defined, such as follows:

L
nameAgLev1
. . .
nameAgLevL

where nameAgLev` is a character string which names the aggregation level `, ∀` ∈ {1, . . . , L}.
Second, for each ` ∈ {2, . . . , L}, a configuration file named nameAgLev`.txt will contain
the descriptions of the geographic units of the aggregation level `, i.e., the codification of
F ` = {R`i : i = 1, . . . ,M`}. To compose a nameAgLev`.txt file, with ` ∈ {2, . . . , L}, the
syntax to be considered is given from the following guidelines.

� The first line of the file nameAgLev`.txt contains the number of geographic units for the
level `, i.e., M`. So the description of geographic units starts in the second line of this
file.

� Each geographic unit R`i is identified by the code i ∈ {1, . . . ,M`} and its name (a
character string).

� Indeed the description of every geographic unit, R`i , occupies three lines of the
nameAgLev`.txt file. The first line contains the code i of R`i and also the codes of
those geographic units, for higher levels of aggregation, containing R`i . The name of R`i
appears in the second line. The third line is always blank to end the description of R`i .
For example, assume that we have R`i ⊆ R`−1i1

⊆ . . . ⊆ R2
i`−2
⊆ R1. The description of

R`i is then given by the following three lines:

i i1 . . . i`−2
the name of R`i
a blank line

6 IndElec: Analyzing Party Systems and Electoral Systems

17 (the number of regions in Spain)
1 (the code of Andalucia)
ANDALUCIA

(a blank line)
. . .
14 (the code of Pais Vasco)
PAIS_VASCO

. . .

Table 1: A view of the file CCAA.txt, which defines the aggregation level given by the 17 au-
tonomous regions in Spain.

Notice that no code is considered for the highest level of aggregation given by F1 = {R1} (` =
1). Further, apart from the descriptions of geographic units, the nameAgLev`.txt configuration
files specify the nested relationships among the families {F ` : ` = 1, . . . , L}.
Finally, as reality overcomes theory sometimes, IndElec is designed to allow that

⋃M`
i=1R

`
i ⊆

R1, for some aggregation levels. However, this enters only a slight variation into the logic
underlying the theoretic framework considered here.

3.1. An example: Spanish parliamentary elections

In the study of Spanish parliamentary elections, it can be worth considering both regions and
provinces. For the one hand, the provinces are the districts where the electoral rule is applied
on. For the other hand, the regions are political and cultural unions of provinces (they are
called autonomous regions). More information on the political map of Spain is available at
http://www.maps.data-spain.com/

To implement the aggregation structure induced by the Spanish political map, the configura-
tion (text) file indelec.cfg will contain the following elements:

3

Total

CCAA

Prov

This specifies that three aggregation levels (L = 3) can be considered, which stand for the
aggregation levels given by Spain (F1 ≡Total), the autonomous regions (F2 ≡CCAA) and the
provinces (F3 ≡Prov). The geographic units for the aggregation levels given by CCAA and
Prov are thus defined in the text files CCAA.txt and Prov.txt, respectively, whose contents
are sketched in Tables 1 and 2. For instance, notice how the province Alava, which is coded
by integer 1 in Prov.txt, is defined as included in the autonomous region Pais Vasco, which
is coded by 14 in CCAA.txt.

The Spanish parliamentary elections not only provide an example to illustrate the definition
of an aggregation structure in IndElec, but also show how IndElec can be adapted to real
situations partially matching the framework for aggregation structures previously formulated.
In fact, the family F2, made up of the Spanish autonomous regions, satisfies that

⋃17
i=1R

2
i ⊂ R1

(R1 is Spain), because two provinces, namely Ceuta and Melilla, are not considered in
⋃17
i=1R

2
i .

http://www.maps.data-spain.com/

Journal of Statistical Software 7

52 (the number of provinces or subregions in Spain)
1 14 (the code of Alava is 1; it is included in Pais Vasco)
Alava

(a blank line)
. . .
4 1 (the code of Almeria is 4; it is included in Andalucia)
Almeria

. . .

Table 2: A view of the file Prov.txt, which defines the aggregation level given by the
52 provinces in Spain.

Indeed Ceuta and Melilla are endowed by a special legal status (autonomous cities), what
makes that they are not usually considered in the Spanish political map of autonomous regions.
However, they are usually included as provinces.

4. Module Dimensi with levels of data aggregation

In this section, the use of the module Dimensi of IndElec from data with several aggregation
levels will be presented. Roughly speaking, the management of Dimensi in this case can be
viewed as an interactive process, where the user and IndElec exchange information until the
final results (the output files) are obtained. By the way, due to the considerable number of
input and output files involved in this data framework, it is highly recommended to use a
specific folder for each election data set. The exposition in this section will follow the stages to
be accomplished in an IndElec run under the considered data framework. The step–by–step
process so derived is sketched out in Figure 2.

4.1. The database

The electoral data with some aggregation levels must be provided to IndElec in a (input) text
file with extension *.dab. Indeed the considered aggregation structure in the data file should
be previously defined such as is described in Section 3.

In the electoral data to be provided to IndElec, let H be the number of aggregation levels,
`1 be the highest level of aggregation and R`1i1 be the overall geographic unit, where H > 1,
1 ≤ `1 < `1 + H − 1 ≤ L and i1 ∈ {1, . . . ,M`1}. As we can see, the notation entered in
Section 3 will be considered in what follows.

The electoral data must be stored in the *.dab text file by following these guidelines.

� The first line of the *.dab file contains a short description of the electoral data.

� The integers H and `1 appear in the following two lines, respectively.

� The integer in the fourth line specifies the overall geographic unit. We have two options:
it may be the code i1 or the value zero. The value zero means that the code i1 will
appear in each of the following data records; otherwise, i1 will not appear in those

8 IndElec: Analyzing Party Systems and Electoral Systems

records. Nevertheless, if `1 = 1, then any nonzero integer could be considered to name
R1.

� The fifth line is blank. This establishes the end of the definition of the aggregation
structure available in our data. Thus the data records of any of the considered electoral
distributions appear sequentially from the sixth line.

� Each party data record occupies H + 2 or H + 3 lines in the *.dab file: H − 1 lines, for
the H − 1 codes describing the considered geographic unit (if the fourth line contains
zero, then an additional line is needed to include i1), and three lines for the acronym,
the votes and the seats, respectively, for such a party in such a geographic unit. Finally,
we must add a blank line in the data file to establish the end of a party data record.

For instance, let us consider a party with acronym PARTY which obtains V votes and S
seats in the geographic unit R`1+τjτ

, for any τ < H and any jτ ∈ {1, . . . ,M`1+τ}. The figures
for V and S can be numbers or shares in the file. Further, assume that the geographic unit
R`1+τjτ

satisfies that R`1+τjτ
⊆ R`1+τ−1jτ−1

⊆ . . . ⊆ R`1+1
j1

⊆ R`1i1 , where js ∈ {1, . . . ,M`1+s},
∀s = 1, . . . , τ . Under these settings, its party record in the *.dab file is stored as follows:

i1 or nil (level `1)
j1 (level `1 + 1)
. . .
jτ−1
jτ (level `1 + τ)
σ(`1 + τ + 1) (level `1 + τ + 1)
. . .
σ(`1 +H − 1) (level `1 +H − 1)
PARTY
V
S
a blank line

For each level `, the code σ(`) is an integer such that σ(`) > M`, which stands for the collapse
of the aggregation level `. IndElec automatically recognizes such codes σ(`), ∀ `, from the
*.dab file.

To illustrate the structure of a *.dab data file, we consider the 2004 Spanish parliamentary
election with the aggregation structure defined in Section 3.1. The corresponding electoral
data are available in the file spain4ag.dab, where its data records are included such as is
described in Table 3.

In these electoral data, we can consider some records for the Spanish worker’s socialist party
(PSOE), which are roughly illustrated in Table 4. This table shows a common practice for
some parties in elections in Spain: the acronym of a party changes across regions or districts
in order to catch the regionalist feelings of potential voters. This means that PSOE–A, PSOE
and PSE–EE, among others, are oficial acronyms of the same political party. This curious
practice presents a serious problem in data analysis, because the parties are usually labeled
in official databases by using several official acronyms. IndElec provides a way to sort out
this problem, which is described in Section 4.2.

Journal of Statistical Software 9

2004 Spanish parliamentary election

3 (the number of considered aggregation levels)
1 (the maximum aggregation level)
1 (the code of Spain)

(a blank line)
. . .
1 (begin the PSOE data record in Almeria)
4

PSOE-A

145868

3

(a blank line: end of the PSOE data record in Almeria)
. . .
1 (the PSOE data record in Andalucia)
99 (any code greater than 52)
2377455

38

99 (the PSOE data record in Spain; any code greater than 17)
99 (any code greater than 52)
PSOE

11026163

164

14 (the PSOE data record in Alava)
1

PSE-EE

56137

2

. . .

Table 3: A view of the text file spain4ag.dab, which contains the data from the 2004 Spanish
parliamentary election at 3 aggregation levels (Spain, autonomous regions and provinces).
PSOE denotes the Spanish worker’s socialist party. Source: the Spanish Ministry of the
Interior.

Acronym Unit # Votes # Seats

PSOE-A Almeŕıa 145868 3
PSOE-A Andalućıa 2377455 38

PSOE Spain 11026163 164

PSE-EE Alava 56137 2

Table 4: Some of the official data records for the Spanish worker’s socialist party in the 2004
Spanish parliamentary election. Source: The Spanish Ministry of the Interior.

10 IndElec: Analyzing Party Systems and Electoral Systems

123 (total number of acronyms)
CC (Canary Island Coalition)
PANE (Regional-wide party)

PSE-EE (Spanish worker’s socialist party)
NO-PANE (State-wide party)

PSOE (Spanish worker’s socialist party)
NO-PANE (state-wide party)

PSOE-A (Spanish worker’s socialist party)
NO-PANE (state-wide party)

PP (Popular Party)
NO-PANE (state-wide party)

. . . (more acronyms)

Table 5: A view of the text file siglas.txt, which contains the acronyms and regionalist
profile of competing parties in the 2004 Spanish parliamentary election.

4.2. Management of acronyms

When the *.dab data file is provided to IndElec (or Dimensi), an information exchange
process is performed between the user and IndElec. In this step–by–step process, on the
one hand, the user teaches IndElec by providing information about parties and, on the other
hand, IndElec eases the user’s work by generating preliminary templates of some input files
to serve in subsequent steps.

First, IndElec extracts all the acronyms from the *.dab file in a text file named siglas.txt.
This file thus contains the acronyms recognized by IndElec from the provided data. However,
the user must supply to IndElec additional information about the parties referred to by the
acronyms in siglas.txt. In fact, the IndElec generated version of siglas.txt is just a
template, where the user must specify whether the acronym belongs to a state–wide party,
labeled by NO-PANE, or to a regional–wide party, labeled by PANE. To this end, the user
will edit siglas.txt and then write down NO-PANE or PANE below each party acronym.
After specifying this information in siglas.txt, the user version of siglas.txt is read by
IndElec to incorporate the regional–national information. For the 2004 Spanish parliamentary
election, the siglas.txt file to be provided to IndElec is described in Table 5.

Second, the problem of the acronym change across districts is solved through IndElec. Math-
ematically speaking, the solution of the problem consists of establishing the quotient set from
the set of party acronyms, which appears in siglas.txt, where the equivalence relation es-
tablishes that the acronyms are equivalent when they are associated to the same political
party. Indeed this quotient set of acronyms is defined from its equivalence classes, which are
the subsets of acronyms belonging to the same party. The solution will be implemented by
the user in the input text file siglaso.txt. In fact, this file will contain the aforementioned
equivalence classes by following this guidelines:

Journal of Statistical Software 11

96 (the number of equivalence classes)
CC (an example of class with one acronym)

(a blank line)
PSOE (the equivalence class of the PSOE party)
PSOE-A (the PSOE acronym in Andalucia)
PSE-EE (the PSOE acronym in the Basque Country)
PSC-PSOE (the PSOE acronym in Cataluna)
PSDEG-PSOE (the PSOE acronym in Galicia)

(a blank line: end of the equivalence class of PSOE)
. . . (more equivalence classes)

Table 6: A view of the text file siglaso.txt, which identifies the set of acronyms considered
for each party competing in the 2004 Spanish parliamentary election.

� the first line of siglaso.txt contains the number of equivalence classes of acronyms
and,

� for any equivalence class of acronyms, each acronym appears in a line of siglaso.txt
and the end of its description is points out by a blank line.

For example, in the 2004 Spanish parliamentary election, the final version of siglaso.txt to
be provided to IndElec is described in Table 6.

As the construction of siglaso.txt from scratch can be laborious for the user, IndElec
provides a preliminary version of siglaso.txt to be only modified by using any text editor,
where the acronyms considered at the highest level of aggregation are distinguished.

Finally, as some polarization indices can be obtained by IndElec, the (left–right) ideolog-
ical scores in the interval [0, 10], for every party, must be supplied in the input text file
siglapo.txt. The syntax of this file is inspired on that of siglaso.txt. In fact, to easily
obtain siglapo.txt, we can modify siglaso.txt by adding such party scores in the first
line of any record, where now each party is viewed as an equivalence class of acronyms in
siglaso.txt. However, the equivalence classes in siglapo.txt are not necessarily equal to
those in siglaso.txt.

In the 2004 Spanish parliamentary election, the input file siglapo.txt is illustrated in Ta-
ble 7.

4.3. Ouput files

From data with several levels of aggregation, IndElec computes lot of political indices for
each electoral distribution (set of pairs, votes and seats, for every party) associated to each
of the geographic units in every aggregation level. Further, IndElec computes other political
indices quantifying properties of party systems changing across the geographic aggregation
(regionalism and party linkage, mainly). For example, in the 2004 Spanish parliamentary
election, IndElec considers 70 electoral distributions (Spain +17 regions +52 provinces) and
carries out 121 comparative studies (regions & Spain, provinces & region, provinces & Spain).

IndElec stored the vast amount of output information with a statistical report in the text file
result.out. This report, which includes, among other measures, descriptive statistics, some

12 IndElec: Analyzing Party Systems and Electoral Systems

96

5.69 (the CC ideological score)
CC

4.27 (the PSOE ideological score)
PSOE

PSOE-A

PSE-EE

PSC-PSOE

PSDEG-PSOE

. . .

Table 7: A view of the text file siglapo.txt, which enters the ideological scores for the
parties in the 2004 Spanish parliamentary election.

exploratory statistics (median, quartiles), covariance and correlation matrices, is automati-
cally elaborated by IndElec to provide a first approach of the results. Moreover, the contents
of result.out are available in both CSV and HTML formats. For the HTML format, IndElec
additionally generates a version of result.out with frames which is available in resultf.htm

(the version without frame is given by result.htm).

In order to facilitate the statistical analysis of the results derived by IndElec, they are orga-
nized in two data matrices (data frames, in the R terminology), which are stored in two kind of
files. IndElec automatically generates both the text and CSV formats for the aforementioned
files. In fact, the output files matriREG.* will contain the computed indices of regionalism
and party linkage and the files matrizDD.*, the rest of indices derived by Dimensi. Therefore,
these output files can be loaded as data file to any statistical software (R, S, SPSS, etc.), in
order to perform sophisticated statistical analysis from the results derived by IndElec.

5. The module Volatili

Volatili is the module of IndElec addressed to calculate the volatility indices (Pedersen 1979;
Katz, Rattinger, and Pedersen 1997). Associated to two elections held in two dates (years, for
instance) rather than to one election, such as is the case with Dimensi, the implementation of
volatility indices in IndElec was carried out in a special software module, which utilizes the
internal calculations (binary files, etc.) previously obtained by Dimensi for each election. The
implemented indices in Volatility are the total volatility indices proposed by Pedersen (1979)
and a generalization of the bloc volatility indices suggested by Bartolini and Mair (2007).
Moreover, the two data frameworks previously considered (aggregated data and data with
aggregation levels) can be also managed by Volatili.

In political studies, volatility is a dimension quantifying the changing patterns in a party
system, i.e., the total transfer of votes among political parties or blocs of parties between
two consecutive elections. Pedersen (1979) suggested an index that quantifies such transfers
among parties: the index of total volatility. The Pedersen volatility measure (PVM) became
more sophisticated when Bartolini and Mair (2007) tried to explain the electoral change taking

Journal of Statistical Software 13

Figure 2: Management of the module Dimensi of IndElec from data with aggregation levels.
The integers stands for the order in the step–by–step process for an IndElec run.

into the alignment of parties according to two ideological blocs, namely the left–wing parties
and the right–wing parties. These authors thus defined the indices of (inter) bloc volatility
and intra–bloc volatility.

A state of the art of the PVM can be found in Katz et al. (1997), where the broad range
of its current applications and some suggestions about this dimension are pointed out. Such
suggestions have motivated the generalization of the bloc volatility indices in IndElec by
letting any number of blocs. To this end, the user will specify both the number of blocs and
the character standing for each of such blocs in the configuration text file simbolos.afi,
which must appear in the IndElec setup path. The syntax for simbolos.afi is sketched out
as follows:

� the first line contains the number of blocs;

� each considered bloc is specified in a line by a character.

For example, if the user wants to consider those blocs in Bartolini and Mair (2007) (the
left–wing parties and the right–wing parties), the file simbolos.afi will be as follows:

2

R

L

14 IndElec: Analyzing Party Systems and Electoral Systems

5.1. Party experienced increments for volatility indices

Though the PVM formula is very simple, some computational problems can arise when it is
calculated from real data in practice. The main problems appear when the sets of competing
parties in both considered elections, respectively, are not identical, such as is theoretically
assumed in the PVM formula (Pedersen 1979). This problem arises when, for example,
there are changes of party acronyms, merging of parties into coalitions or splitting former
parties into new parties, etc. over both consecutive elections. The increments in votes or
seats experienced by some parties, between both considered elections, are not so evident in
such situations. Therefore, the PVM formula, which depends on such party experienced
increments, could not be computed properly from some real data in practice.

These computational problems are solved in Bartolini and Mair (2007, Appendix 1, pp. 311–
312) and Ocaña (2007). Bartolini and Mair propose a set of guidelines describing how to do
in a wide range of such problematic situations, where the sets of competing parties are not
identical. Once these guidelines are applied to our data, the equality of the sets of competing
parties in both elections can be assumed in the so transformed electoral data. To sort out this
problem, IndElec provides the way of implementing the Bartolini and Mair’s rules by means
of a input text file with extension *.ivo. Moreover, the alternative approximative volatility
formulae developed by Ocaña (2007) are also implemented in IndElec.

Though the *.ivo input file will depend on the considered electoral data framework, it always
includes the implementation of the party experienced increments by following a common
syntax for both data frameworks. This syntax establishes that any increment for a party
(party, coalition, etc.) is included in a *.ivo file by following these guidelines:

� the first line, for such an increment, contains the character of the bloc where the incre-
ment must be included for the bloc volatility indices;

� from the second line, each of the acronyms of parties in the second election, for such an
increment, will appear in a line of the input file;

� the end of the above list of acronyms for the second election is established by a blank
line (the first blank line);

� after the first blank line, each of acronyms of parties in the first election, for the con-
sidered increment, will appear in a line of the input file;

� the end of the above list of acronyms for the first election is given by a blank line (the
second blank line);

For example, assume that the i–th increment experienced by parties between two elections is
given by p2 parties (acronyms) from the second election and p1 parties (acronyms) from the
fist election. Further, suppose that such an increment is in the b–th bloc for the bloc volatility
indices. The IndElec user can implement such an increment by composing the following
contents in the corresponding *.ivo input file:

Journal of Statistical Software 15

Character of the bloc b

Party
(2)
i1

(the acronym of the i1–th party in the 2nd election)

. . . (more parties of this increment in the 2nd election)

Party
(2)
ip2

(the acronym of the ip2–th party in the 2nd election)

(the first blank line)

Party
(1)
j1

(the acronym of the j1–th party in the 1st election)

. . . (more parties of this increment in the 1st election)

Party
(1)
jp1

(the acronym of the jp1–th party in the 1st election

(the second blank line)

It makes that IndElec incorporates the increment given by

p2∑
k=1

F
(
Party

(2)
ik

)
−

p1∑
h=1

F
(
Party

(1)
jh

)
,

into the volatility formulae, where F (Party
(t)
`) stands for the vote or seat share of the party

named by the acronym Party
(t)
` , which is the `–th party in the t–th election (t=1,2). Notice

that either p1 or p2 may be zero and that two blank lines must always apear for each increment.
Moreover, when the electoral data presents several levels of aggregation, it is not necessary to
specify the acronyms of a party across the districts. IndElec learns such information from the
corresponding siglaso.txt files for both considered elections, respectively, where Dimensi
must have been previously applied.

5.2. Usage of Volatili

Roughly speaking, the usages of the module Volatili for the electoral data frameworks man-
aged by IndElec, data aggregated and data with aggregation levels, present nonsignificant
differences. However, some big differences arise, whether the programming of Volatili is taken
into account for both data frameworks. As a user guide of Volatili, this section is focused on
its usage and, then, it will contain an unified description of Volatili as compared to Dimensi
for both cases.

The aforementioned similarity in the Volatili usage is due to the computational design. In-
deed Volatili requires the previous execution of Dimensi for each of both studied elections.
The binary files so generated by Dimensi for each election, which depend on the electoral
data framework, provides the information needed to start Volatili calculations. In fact, in
order to calculate volatility indices, the only specific information for Volatili is given by the
party experienced increments, between both studied elections, which are needed to apply the
volatility formulae (Bartolini and Mair 2007).

The input file

Such as was established in previous section, the party increments between both elections are
implemented into an *.ivo text file. Further, the considered electoral data framework enters
only a tiny difference in the information saved in such a file, which is located in its first four
lines. Indeed the syntax of this header of the *.ivo file is given by the following guidelines:

� The first line contains the path of the folder where the data from the second election
are stored. In a similar way, the third line contains that path of the first election.

16 IndElec: Analyzing Party Systems and Electoral Systems

� The fifth line is always blank.

� The party increments are thus arranged from the sixth line.

� The differences by the data framework are found in the second and fourth lines of the
header of the *.ivo file. If the electoral data are aggregated, then the name of the data
file (without its extension *.dat) will appear below its corresponding election working
path. If the electoral data presents several aggregation levels, then a number labeling
each election will appear below each election path (the year, for instance).

This way the content of any *.ivo text file is sketched out as follows:

the path for the 2nd election
the data file name or a label, for the 2nd election
the path for the 1st election
the data file name or a label, for the 1st election

(a blank line)
Now, the descriptions of party increments. . .

Output files

The output information of Volatili follows the same idea of the output files of Dimensi. First,
the scores of volatility indices are saved in report style into text and HTML formats; the
CSV format is also available for disaggregated data. Such report files are named as the *.ivo

file with the extensions *.res, *.htm and *.csv, respectively. Second, for aggregated data,
IndElec also generates automatically a R source file which defines some R objects containing
the volatility scores computed by IndElec (R Development Core Team 2011). Third, the
computed volatility indices are saved in data matrix style in text and CSV formats with a
common name, matVolat.

6. Using R and IndElec

This section will illustrate the integration of the statistical software R (R Development Core
Team 2011) and IndElec through some data examples, according to both electoral data frame-
works considered in this paper. Indeed IndElec provides a significant level of integrability
with any statistical software, such as has been explained across this paper. However, IndElec
provides some additional facilities to R users, which are illustrated in this section.

Roughly speaking, this section will demonstrate how a data frame can be (1) exported from
R, (2) analyzed in IndElec and then (3) the so obtained results imported to R. Indeed the
emphasis will be on the steps (1) and (3), because the step (2) has already been treated in
previous sections. Further, taking into account the two modules of IndElec, Dimensi and
Volatili, the step (3) is accomplished in the same way. However, as the electoral data files
considered by Volatili must have been previously taken by Dimensi, the step (1) can only
be explained for Dimensi. Notice that the relevant information needed by Volatili is only
provided by the input file of the party increments (see Section 5.1). Therefore, the examples
in this section will only illustrate the interactions of the module Dimensi of IndElec and R.

Journal of Statistical Software 17

6.1. Aggregated electoral data

Consider the aggregated electoral data from the 2004 Spanish parliamentary election, which
are presented in Section 2. Assume that these data are stored in a R data frame named rdaf.

The R data frame rdaf could be easily obtained from the data file da04.dat described in
Section 2. To this end, the sentence in R

R> rdaf <- read.table(file = "da04.dat", header = TRUE, skip = 1)

reads da04.dat and skips its first line (it is a short data description). The three inherited
variables (columns) of rdaf are named as Party, Vote and Seat, respectively.

In this framework, the input file for IndElec from a given R data frame is derived by the
R function Adata2IndElec, which is provided in the IndElec distribution. This function
creates the data file in the form that the module Dimensi needs from a standard R data frame
containing aggregated electoral data. Its header is given by

Adata2IndElec(dataName = "", acronyms, votes, seats, sTitle = "")

where dataName is a character string containing the input data filename for IndElec to be
created, acronyms is a string vector of the acronyms of the parties competing in the considered
election, votes and seats are numeric vectors containing the votes and seats, respectively,
of the considered parties, and sTitle is a character string containing a short description of
the electoral data. For instance, taking into account the proposed example, the R sentence

R> Adata2IndElec("da04n", rdaf$Party, rdaf$Vote, rdaf$Seat,

+ "2004 Spanish parliamentary election")

will generate the input data file da04n.dat for IndElec in the R working directory from the
data frame rdaf.

The contents of da04n.dat and da04.dat are equal. Therefore, the same conclusion holds
for their corresponding output files.

The outputs of IndElec from da04n.dat would be arranged in several files with different for-
mats, such as is explained in Section 2. Indeed IndElec would derive the following output files:
da04n.out, da04n.htm and da04n.R, which all contain the same results but with different
formats. Particularly, da04n.R would be a R source file which defines the results by IndElec
from rdaf as a R list.

6.2. Disaggregated electoral data

This section will illustrate how IndElec can be applied on data with aggregation levels stored
as a data frame in R. In this data framework, two different situations can be considered.

1. The available electoral data, which are saved in the given R data frame, are only those
of the lowest level of aggregation. This means that an aggregation process is needed to
obtain the electoral data for the rest of levels of aggregation.

2. The electoral data for all aggregation levels are available in the given R data frame.

18 IndElec: Analyzing Party Systems and Electoral Systems

Figure 3: Map of the artificial state considered in the example of Section 6.2. Possible levels
of aggregation: state, region, subregion and district.

To obtain the input data file for IndElec, two R functions, namely DA2IndElec and DO2IndElec,
are provided in the IndElec distribution, for both situations, respectively. Nevertheless, the
aforementioned situations on the available data determine only which of the provided R func-
tion must be considered. In fact, the rest of steps to accomplish the task proposed in this
section are the same for both situations. Because of this, we will only present an example of
the first situation, which is artificial to make extensive use of R.

Consider a state which consists of two regions, named by Region1 and Region2. Region2 is
divided into Subregion1 and Subregion2 (yellow color in Figure 3). Further, these subregions
are split in five districts, which are labeled by an index: three districts (1, 2 and 5) in
Subregion1 and two districts (3 and 4) in Subregion2. To visualize the so defined aggregation
structure in this artificial state, its map is depicted in Figure 3.

Theoretically, four levels of aggregation are assumed in such a state, namely F1 ≡State,
F2 ≡Region, F3 ≡Subregion and F4 ≡District, where the notation in Section 3 is considered.
However, to illustrate the sophistication of IndElec, we will consider that the election under
study was held only in Region2, and then that its corresponding electoral data are drawn
from each if its districts. Taking into account the general framework in Section 4, in our
problem, the highest level of aggregation is thus Region, with `1 = 2, for the regional unit
Region2, labeled by i1 = 2, and three aggregation levels are considered in the electoral data,
H = 3, namely Region, Subregion and District. Nevertheless, we will assume that the available
electoral data are only given by those of the District level (the first situation above).

Step 0. For the election held in Region2, its electoral data drawn from each of its districts
are going to be generated in R. Consider 3 parties competing across the five districts of
Region2, where the parties are labeled by Pa, for any a = 1, 2, 3, for instance. Assume that
the distributions of the numbers of votes and seats are Poisson with parameters 20 and 3,
respectively, for instance. As the information (description) on the considered districts must
be joined to each data record, the variables of the electoral data frame can be generated in R
as follows:

R> noDat <- 3 * 5

R> Parties <- gl(3, 1, label = c("P1", "P2", "P3"), length = noDat)

Journal of Statistical Software 19

R> LDistri <- gl(5, 3, length = noDat)

R> LSubreg <- gl(2, 2 * 3, length = noDat)

R> LRegion <- rep(2, noDat)

R> v <- rpois(n = noDat, lambda = 20)

R> s <- rpois(n = noDat, lambda = 3)

R> rdatD <- data.frame(LRegion, LSubreg, LDistri, Parties, v, s)

This way the R data frame rdatD contains the electoral data obtained by each of parties in
each of the five districts, i.e.,

LRegion LSubreg LDistri Parties v s

1 2 1 1 P1 19 8 (P1 in district 1)
2 2 1 1 P2 33 4 (P2 in district 1)
3 2 1 1 P3 22 5 (P3 in district 1)
4 2 1 2 P1 19 6 (P1 in district 2)

.
14 2 1 5 P2 19 1 (P2 in district 5)
15 2 1 5 P3 28 5 (P3 in district 5)

This data generation process is generalized in the R source file exampAg.R, which is available
in the IndElec distribution.

Step 1. Once the disaggregated electoral data are available in a data frame, namely rdatD,
the input data file for IndElec can be made by using one of the ad hoc R functions, DA2IndElec
or DO2IndElec. These functions are managed in the same way. In fact, the only difference
between both R functions is found in the electoral data in the R data frame. On the one
hand, when the available electoral data are only those of the lowest level of aggregation, and
thus a data aggregation process must be carried out to obtain the electoral data for the rest
of levels, DA2IndElec must be executed. On the other hand, when all electoral data are
available, DO2IndElec must be executed instead. Therefore, in our example we must consider

DA2IndElec(dataName = "", l1, agLevels, parties, votes, seats, sTitle = "")

where dataName is a character string containing the name of the input file to be created, l1
is the index of the highest level of aggregation, agLevels is a list containing the aggregation
levels sorted in decreasing order of aggregation (each aggregation level is coded by a R factor),
parties is a vector of strings (R factor) of party acronyms, votes and seats are numeric
vectors containing the votes and seats of the competing parties, respectively, and sTitle is a
short description of the electoral data, which will be included in the first line of the input file
to be generated. For instance, taking into account the considered example, the R sentence

R> DA2IndElec("Regi2D", 2, list(rdatD$LRegi, rdatD$LSubreg, rdatD$LDistri),

+ rdatD$Parties, rdatD$v, rdatD$s, sTitle="Region2 election")

will generate the data file Regi2D.dab for IndElec in the R working directory from the disag-
gregated electoral data contained in the data frame rdatD.

Step 3. IndElec must be prepared to understand the aggregation structured in the electoral
data to be analyzed, such as is established in Section 3. To this end, we must modify the
file indelec.cfg to define the potential levels of aggregation to be considered in the artificial
state (Figure 3), such as follows

20 IndElec: Analyzing Party Systems and Electoral Systems

4

State

Region

Subreg

District

This implies that the four levels of aggregation are defined in the configuration files named as
Region.txt, Subreg.txt and District.txt. In fact, the region level is defined in Region.txt

as follows

2

1

Region1

2

Region2

The subregion level is defined in Subreg.txt as follows

3

1 2

Subregion1

2 2

Subregion2

3 1 (it is not necessary)
Region1

Finally, the district level is defined in District.txt as follows

6

1 1 2

District1

. . .
3 2 2

District3

. . .
5 1 2

District5

6 3 1 (it is not necessary)
Region1

These configuration files make possible the analysis of the data file Regi2D.dab by using
IndElec (see Section 4).

Journal of Statistical Software 21

Step 4. After the Dimensi step–by–step run (Figure 2), a lot of output files are generated by
IndElec (see Section 4.3) with different purposes. Among such output files, the matriREG.*

and matrizDD.* files let import the IndElec results to R. For instance, taking into account
the CSV matrix files, the results are stored in two R data frames as follows:

R> rOutDD <- read.csv("matrizDD.csv")

R> rOutRL <- read.csv("matriREG.csv")

where rOutRL contains of the regional and party linkage indices and rOutDD, the rest of indices
computed by IndElec.

7. Conclusions

This paper presents a software devoted to help the political researcher in the analysis of party
systems and electoral systems. IndElec can calculate more than fifty political indices mea-
suring characteristics of electoral systems and party systems, from electoral data. However,
IndElec is flexible, because it can be adapted with the user aid to several situations arising
when real electoral data are considered in a study (the presence of aggregation levels in data,
party with several acronyms across districts, among others). Nevertheless, its development is
always in progress (Oñate and Ocaña 2000, 2005; Ocaña and Oñate 2006; Ocaña 2007).

Finally, an important point is the integrability of the IndElec output with other softwares
(word processor, spreadsheet, statistical softwares, etc.), which is achieved through the con-
sidered output file styles. On the one hand, the readability of the IndElec output is provided
through the report–style files. Apart from providing an inspection tool to the user, they also
let composing texts in the input files. On the other hand, the vast amount of scores obtained
from disaggregated electoral data can be analyzed by any statistical software through the
matrix–style output files. Moreover, R’s users can easily manage the IndElec output derived
such as described in Section 6.

Acknowledgments

The authors are indebted to Micah Altman, the referees and Achim Zeileis for constructive
criticism and useful comments in the original versions of both the software and the manuscript.

References

Arian A, Weiss S (1969). “Split-Ticket Voting in Israel.” Western Political Quarterly, 24,
375–389.

Bartolini S, Mair P (2007). Identity, Competition and Electoral Availability: The Stabilization
of European Electorates 1885–1985. 2nd edition. ECPR Press, Essex.

Chhibber P, Kollman K (1998). “Party Aggregation and the Number of Parties in India and
the United States.” American Political Science Review, 92, 329–342.

22 IndElec: Analyzing Party Systems and Electoral Systems

Cox GW (1999). “Electoral Rules and Electoral Coordination.” Annual Review of Political
Science, 2, 145–161.

Cox GW, Shugart MS (1996). “Strategic Voting under Proportional Representation.” Journal
of Law Economics and Organisations, 12(2), 299–324.

Diamandouros N, Gunther R (eds.) (2001). Parties, Politics and Democracy in the New
Southern Europe. Johns Hopkins University Press, Baltimore.

Gallagher M (1991). “Proportionality, Disproportionality and Electoral Systems.” Electoral
Studies, 10(1), 33–51.

Hazan RY (1997). Centre Parties: Polarization and Competition in European Parliamentary
Democracies. Pinter, London.

Katz RS, Rattinger H, Pedersen MN (1997). “The Dynamics of European Party Systems.”
European Journal of Political Research, 31(1), 83–97.

Kesselman M (1966). “French Local Politics: A Statistical Examination of Grass Root Con-
sensus.” American Political Science Review, 60(4), 963–973.

Laakso M, Taagepera R (1979). “Effective Number of Parties. A Measure with Application
to West Europe.” Comparative Political Studies, 12(1), 3–27.

Lago-Penas I (2004). “Cleavages and Thresholds: The Political Consequences of Electoral
Laws in the Spanish Autonomous Communities, 1980–2000.” Electoral Studies, 23, 23–43.

Lijphart A (1994). Electoral Systems and Party Systems: A Study of Twenty–Seven Democ-
racies, 1945–1990. Oxford University Press, Oxford.

Loosemore J, Hanby VJ (1971). “The Theoretical Limits of Maximum Distortion: Some
Analytic Expressions for Electoral Systems.” British Journal of Political Science, 1(4),
467–477.

Mackie TT, Rose R (1982). The International Almanac of Electoral History. McMillan,
London.

Mackie TT, Rose R (1991). The International Almanac of Electoral History. Congressional
Quarterly Press, Washington.

Moenius J, Kasuya Y (2004). “Measuring Party Linkage across Districts. Some Party System
Inflation Indices and Their Properties.” Party Politics, 10(5), 543–564.

Molinar J (1991). “Counting the Number of Parties: An Alternative Index.” American
Political Science Review, 85(4), 1383–1391.

Ocaña FA (2007). “An Approximation Problem in Computing Electoral Volatility.” Applied
Mathematics and Computation, 192(2), 299–310.

Ocaña FA, Oñate P (2006). “Las Arenas Electorales en España y la Normalidad de la Convo-
catoria de Marzo de 2004.” In J Molins, P Oñate (eds.), Elecciones y Competición Electoral
en la España Multinivel, pp. 23–77. Centro de Investigaciones Sociológicas, Madrid.

Journal of Statistical Software 23

Oñate P, Ocaña FA (1999). Análisis de Datos Electorales, volume 27 of Cuadernos Metodológi-
cos. Centro de Investigaciones Sociológicas, Madrid.

Oñate P, Ocaña FA (2000). “Elecciones de Marzo de 2000: ¿Cuánto Cambio Electoral?”
Revista de Estudios Poĺıticos, 110, 297–336.

Oñate P, Ocaña FA (2005). “Las Elecciones de Marzo de 2004 y los Sistemas de Partidos en
España: ¿Tanto Cambio Electoral?” Revista Española de Ciencia Poĺıtica, 13, 159–182.

Pedersen MN (1979). “The Dynamics of European Party Systems: Changing Patterns of
Electoral Volatility.” European Journal of Political Research, 7, 1–26.

Pennisi A (1998). “Disproportionality Indexes and Robustness of Proportional Allocation
Methods.” Electoral Studies, 17(1), 3–19.

Rae DW (1971). The Political Consequences of Electoral Laws. 2nd edition. Yale University
Press, New Haven.

R Development Core Team (2011). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

Sani G, Sartori G (1983). “Polarization, Fragmentation and Competition in Western Democ-
racies.” In H Daalder, P Mair (eds.), Western European Party Systems: Continuity and
Change, pp. 307–340. Sage Publications, Beverly Hills.

Sartori G (2005). Parties and Party Systems: A Framework of Analysis. 2nd edition. ECPR
Press, Essex.

Taagepera R, Grofman B (2003). “Mapping the Indices of Seats-Votes Disproportionality and
Inter-Election Volatility.” Party Politics, 9(6), 659–677.

Theil H (1969). “The Desired Political Entropy.” American Political Science Review, 63(2),
521–525.

Tukey JW (1977). Exploratory Data Analysis. Addison–Wesley, Reading Massachusetts.

Wildgen JK (1971). “The Measurement of Hyperfractionalization.” Comparative Political
Studies, 4(2), 233–243.

http://www.R-project.org/
http://www.R-project.org/

24 IndElec: Analyzing Party Systems and Electoral Systems

A. Indices computed by IndElec: Formulae and references

This appendix gathers information on the main political indices computed by IndElec, namely
their formulae and some of their references.

First of all, consider a given election under study. Let I = {1, . . . , N} be the set of parties
competing in such an election and {(Vi, Si) : i ∈ I} be the joint distribution of votes and seats,
expressed in percentages, which summarizes the electoral results obtained by these parties.
Further, to ease notation, pi will denote the proportion of votes or seats, indistinctively, for
the i–th political party, for any i ∈ I.

Though only necessary for some indices, we will consider that the competing parties are or-
dered according to their obtained votes such as follows: Vi ≥ Vi+1, ∀ 1 ≤ i < N . However, the
distortion yielded by the electoral system makes that this order is not necessarily maintained
for their seats.

In some elections, the number of parties, N , can be extremely high and, thus, lot of parties
have no seat. Under such circumstances, some indices may present unappropriate behaviors
(Lijphart 1994), since a high proportion of parties with no seat is involved in the calculation
of such indices. Because of this, some alternatives for N into the formulas of some political
indices, which are proposed in the literature, have been implemented in IndElec.

� Lijphart (1994) suggests NL = max{J ∈ I : VJ > 0.5}.

� Oñate and Ocaña (1999) consider two alternatives: NS = min
{
J ∈ I :

∑J
i=1 Si = 100

}
and N+ = max {J ∈ I : Si > 0, ∀ i = 1, . . . , J}.

Indices of disproportionality

� Sainte–Laguë index:
∑
i∈I

(Vi−Si)2
Vi

.

� Rae index (Rae 1971): R(N) = 1
N

∑N
i=1 |Vi − Si|.

� Modified Rae index (Lijphart 1994): R(NL).

� Loosemore & Hanby index (Loosemore and Hanby 1971): LH = 1
2

∑
i∈I |Vi − Si|.

� Mackie & Rose index (Mackie and Rose 1982, 1991): 100− LH.

� Grofman indices (Taagepera and Grofman 2003): 1
N∗

∑
i∈I |Vi − Si|.

� Largest deviation index (Lijphart 1994): max{|Vi − Si| : i ∈ I}.

� Least squares index (Gallagher 1991): G(N) =
√

1
2

∑N
i=1 (Vi − Si)2.

� Modified least squares index (Lijphart 1994): G(NL).

� Robust L1–norm based index (Pennisi 1998):
∑
i∈I

∣∣∣SiVi − 1
∣∣∣.

� Robust L2–norm based index (Pennisi 1998):
∑
i∈I

(
Si
Vi
− 1

)2
.

� Robust L∞–norm based index (Pennisi 1998): max
{∣∣∣SiVi − 1

∣∣∣ : i ∈ I
}

.

Journal of Statistical Software 25

Bias in the electoral system

Cox and Shugart (1996) describe the filtering associated to an electoral system through a
simple linear regression model given by Si = a + bVi + εi, ∀ i ∈ I. Indeed these authors
proposed to quantify the bias of an electoral system by the least squares (LS) estimate of
the slope b. However, taking into account that the considered linear model is an excessive
simplification in practice (the classic hypotheses on the model residuals may not be satisfied),
some alternatives for the estimation of b were proposed in Oñate and Ocaña (1999). Some of
such alternatives, which are based on EDA (Tukey 1977), propose to quantify the bias of the
electoral system through the Tukey estimation (T) of b.

� Cox & Shugart (CS) index (Cox and Shugart 1996): b̂LS(N).

� Modified CS index (Lijphart 1994; Oñate and Ocaña 1999): b̂LS(N+).

� End–modified CS index (Lijphart 1994; Oñate and Ocaña 1999): b̂LS(NS).

� EDA version of CS index (Oñate and Ocaña 1999): b̂T (N).

� Modified EDA CS index (Oñate and Ocaña 1999): b̂T (N+).

� End–modified EDA CS index (Oñate and Ocaña 1999): b̂T (NS).

� 0.5%–modified EDA CS index (Oñate and Ocaña 1999): b̂T (NL).

Party system dimensions

Fragmentation, Concentration and Competitiveness

� Fragmentation (Rae 1971): 1−
∑
i∈I p

2
i .

� Concentration (Sartori 2005): p1 + p2.

� Competitiveness (Sartori 2005): p1 − p2.

Effective number of parties (ENP)

(Laakso and Taagepera 1979; Kesselman 1966; Theil 1969; Wildgen 1971; Molinar 1991)

� Laakso & Taagepera indices: N∗ =
(∑

i∈I p
2
i

)−1
.

� Kesselman & Wildgen indices: exp (−
∑
i∈I pi ln(pi)).

� Molinar indices: 1 +N∗2
∑N
j=2 p

2
j .

Polarization

� Sartori index (Sartori 2005; Sani and Sartori 1983): Range(ideological scores).

26 IndElec: Analyzing Party Systems and Electoral Systems

� Weighted polarization (Hazan 1997): Variance(ideological scores).

Volatility

(Arian and Weiss 1969; Pedersen 1979; Bartolini and Mair 2007; Ocaña 2007)

The volatility indices depend upon two elections held in two dates, which are denoted by the
superscripts [t] and [t+ 1].

� Total volatility: TV = 1/2
∑
i |p

[t]
i − p

[t+1]
i |.

� Bloc volatility: BV = TV (for the blocs of parties).

� Intra–bloc volatility: TV −BV .

� Arian & Weiss index: 1
N

∑
i(p

[t]
i − p

[t+1]
i)2.

Data with levels of aggregation

IndElec can work when electoral data present several levels of aggregation, such as is described
in Section 3. In this sense, not only all the aforementioned indices can be re–calculated, but
also new indices can be considered.

On the one hand, let ` be an aggregation level and R`J be one of its geographic units, i.e., R`J ∈
F `. The electoral data obtained by the parties I in the geographic unit R`J can be summarized
by its corresponding joint distribution of votes and seats, expressed in percentages, denoted
by {(Vi(R`J), Si(R

`
J)) : i ∈ I}. It follows that the aforementioned indices can be computed for

each unit R`J ,.

On the other hand, let `U < `L be any two aggregation levels and R`UjU be a geographic unit of

the aggregation level `U , i.e., R`UjU ∈ F
`U . In this framework, we can consider those geographic

units of the aggregation level `L which are contained in R`UjU , i.e.,

F `L(R`UjU) = {R`Lj ∈ F
`L : R`Lj ⊆ R

`U
jU
} .

Further, let IR be the set of regionalist parties (they are labeled as PANE in IndElec), where
IR ⊂ I. The following indices are only computed by IndElec when the electoral data presents
several aggregation levels.

Regionalism

(Oñate and Ocaña 1999)

� Regionalist vote at the upper level item: V R(R`UjU) =
∑
i∈IR Vi(R

`U
jU

).

� Regionalist vote at a lower level item: V R(R`Lj).

� Differentiated regionalist vote: V R(R`Lj)− V R(R`UjU).

� Differentiated regional vote: 1
2

∑
i∈I |Vi(R

`U
jU

)− Vi(R`Lj)|.

Journal of Statistical Software 27

� Modified differentiated regional vote: 1
2

∑
i∈I |V̄i(`L;R`UjU)− Vi(R`Lj)|.

where V̄i(`L;R`UjU) = average
{
Vi(R

`L
j) : R`Lj ∈ F `L(R`UjU)

}
, ∀ i ∈ I.

Party linkage

(Chhibber and Kollman 1998; Cox 1999; Moenius and Kasuya 2004)

� ENP at the upper level item: Ne(R`UjU).

� Average ENP in the lower aggregation level: Ne(`L;R`UjU).

� Cox inflation rate:
(
Ne(R`UjU)−Ne(`L;R`UjU)

)
/Ne(R`UjU).

� Moenius & Kasuya inflation rate:
(
Ne(R`UjU)−Ne(`L;R`UjU)

)
/Ne(`L;R`UjU).

� Weighted average ENP in the lower aggregation level: Ñe(`L;R`UjU).

� Weighted Cox inflation rate:
(
Ne(R`UjU)− Ñe(`L;R`UjU)

)
/Ne(R`UjU).

� Weighted Moenius & Kasuya inflation rate:
(
Ne(R`UjU)− Ñe(`L;R`UjU)

)
/Ñe(`L;R`UjU).

� Chhibber & Kollman inflation measure: Ne(R`UjU)−Ne(R`Lj).

� Cox inflation measure:
(
Ne(R`UjU)−Ne(R`Lj)

)
/Ne(R`UjU).

� Moenius & Kasuya inflation measure:
(
Ne(R`UjU)−Ne(R`Lj)

)
/Ne(R`Lj).

whereNe(R`j) is the effective number of electoral parties atR`j ,Ne(`L;R`UjU) = average{Ne(R`Lj) :

R`Lj ∈ F `L(R`UjU)} and Ñe(`L;R`UjU) = average{Ne(R`Lj) : R`Lj ∈ F `L(R`UjU); weights =
percentages of vote}.

Affiliation:

Francisco Antonio Ocaña
Department of Statistics and Operations Research
University of Granada
18071 Granada, Spain
E-mail: focana@ugr.es
URL: http://www.ugr.es/~focana/

mailto:focana@ugr.es
http://www.ugr.es/~focana/

28 IndElec: Analyzing Party Systems and Electoral Systems

Pablo Oñate
Department of Constitutional Law and Political Science
University of Valencia
46071 Valencia, Spain
E-mail: Pablo.Onate@uv.es

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 42, Issue 6 Submitted: 2007-02-05
June 2011 Accepted: 2007-08-07

mailto:Pablo.Onate@uv.es
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Module Dimensi with aggregated data
	Defining an aggregation structure in IndElec
	An example: Spanish parliamentary elections

	Module Dimensi with levels of data aggregation
	The database
	Management of acronyms
	Ouput files

	The module Volatili
	Party experienced increments for volatility indices
	Usage of Volatili

	Using R and IndElec
	Aggregated electoral data
	Disaggregated electoral data

	Conclusions
	Indices computed by IndElec: Formulae and references

