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Abstract. The paper presents an approach to estimate pa-
rameters of a local stationary AR(1) time series model by
maximization of a local likelihood function. The method
is based on a propagation-separation procedure that leads to
data dependent weights defining the local model. Using free
propagation of weights under homogeneity, the method is ca-
pable of separating the time series into intervals of approx-
imate local stationarity. Parameters in different regions will
be significantly different. Therefore the method also serves
as a test for a stationary AR(1) model. The performance of
the method is illustrated by applications to both synthetic
data and real time-series of reconstructed NAO and ENSO
indices and GRIP stable isotopes.

1 Introduction

A frequent use of the first order autoregressive model, AR(1),
in climate applications is conditioned by its simplicity and ef-
ficiency in capturing the inertial nature of climatic phenom-
ena (Hasselmann, 1976). Whereas a choice of a global para-
metric structure for the fitted model is common, it is often
worthwhile to know whether such an approximation provides
an adequate description of the analyzed series. This can be-
come an issue, for example, in null hypothesis testing, when
the fitted model is used to assess whether or not the variabil-
ity recorded in a time series is consistent with a stochastic
origin of this type.

In this paper we propose a method which, using the idea
of structural adaptation, is capable of isolating the periods in
the analyzed data where the parameters of the fitted AR(1)

Correspondence to:D. V. Divine
(dmitry.divine@npolar.no)

model differ significantly. The method is largely based on
ideas implemented in the adaptive weight smoothing (AWS)
procedure for local constant modeling, introduced earlier in
(Polzehl and Spokoiny, 2000) in the context of image denois-
ing. The AWS technique was later successfully generalized
to the case of an arbitrary local linear parametric structure
(Chen et al., 2008) and extended to a broad class of nonpara-
metric models, including e.g. the regression, density, Pois-
son and binary response model. The same idea was applied
to estimation of the tail index parameter, classification, den-
sity and volatility estimation (Polzehl and Spokoiny, 2002).
Theoretical results for exponential families were achieved in
(Polzehl and Spokoiny, 2006).

The paper is presented as follows. In Sect.2 we recall
a global likelihood approach to the estimation of the sought
parameters in the AR(1) model. Section3 introduces the con-
cept of local likelihood. A definition of weights is given in
Sect.4. Sections5 and6 present a numerical implementation
of the method and explain the choice of parameters used, re-
spectively. Examples demonstrating the performance of the
method are shown in Sect.7 followed by brief conclusions in
Sect.8.

2 Global likelihood estimation

The model of the discrete AR(1) process is formulated as

yi = φyi−1 + εi, i = 1, ..., n (1)

whereφ is the autoregressive parameter,yi is the ith ob-
served realization of the AR(1) process andεi are inde-
pendent, Gaussian distributed innovations with zero mean
and varianceσ 2. We assume that the process is weakly-
stationary, that is,|φ| < 1.
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Given parametersφ andσ 2, the likelihood function of the
vectorY = (y1, ..., yn) has the form (Brockwell and Davis,
1998) (see 8.7.2-4):

L(Y |φ, σ 2) = (2πσ 2)−
n
2 ×

× exp

{
−

1

2σ 2
(a1φ

2
+ (1 + φ2)a2 + a3 − 2φa4)

}
(2)

where

a1 = y2
1 a2 =

∑n−1
j=2 y2

j

a3 = y2
n a4 =

∑n
j=2 yjyj−1

(3)

The global maximum likelihood estimates forφ andσ 2

are defined by maximization of the log-likelihood function
log(L(Y |φ, σ 2)). Solving

∂(logL(Y ))

∂σ 2
=

∂(logL(Y ))

∂φ
= 0 (4)

for σ 2 andφ yields after some algebra approximative likeli-
hood estimates ofφ andσ 2 given as

φ̂ =
a4

a2 + a1
; σ̂ 2 =

a2 + a3 − 2φ̂a4

n
. (5)

The asymptotic variance estimates of the model parame-
ters can be determined using the Fisher information matrix
for the log-likelihood logL(Y |φ, σ 2). Using the expecta-

tions E(a1) = E(a3) =
σ2

1−φ2 , E(a2) =
(n−2)σ2

1−φ2 and

E(a4) =
(n−1)φσ2

1−φ2 this leads to

Iφ,σ2 = −Eφ,σ2

 ∂2 logL(Y|φ,σ2)

(∂φ)2
∂2 logL(Y|φ,σ2)

∂φ∂σ2

∂2 logL(Y|φ,σ2)

∂φ∂σ2
∂2 logL(Y|φ,σ2)

(∂σ2)2


=

(
n−1
1−φ2 0

0 n−2
2σ4

)
(6)

Inverting Iφ,σ2 yields the asymptotic covariance matrix for
{φ, σ 2

} as

I−1
φ,σ2 =

(
1−φ2

n−1 0

0 2σ4

n−2

)
. (7)

Respective asymptotic confidence intervals (CI) forφ̂ andσ̂ 2

can now be obtained employing the asymptotic normality of
the estimates.

3 Local likelihood and its estimation using structural
adaptation

A global parametric structure considered in the previous
section is generally too restrictive. To allow for possible
variability in the model coefficients we introduce a local
parametric structure to the model. The most general way
of describing a local model is based on weights assigned
to each observation used. Let, for a fixedt , a nonneg-
ative weightwi=wi(t)≤1 be assigned to the observations
yi at ti, i=1, .., n. The local, or weighted, maximum log-
likelihood estimate is, in this case, introduced as{

φ̂(t), σ̂ 2(t)
}

= arg supφ,σ2

n∑
i=1

wi(t) logp(yi |φ, σ 2)

where logp(yi |φ, σ 2) denotes the contribution to the global
log-likelihood function at any given pointti , given by

logp(yi |φ, σ 2) = −
1

2
log(2πσ 2) − (8)

−
1

2σ 2
(yi − φyi−1)

2
; i = 2, ..., n.

The principal idea of the approach proposed in (Polzehl
and Spokoiny, 2000) is to use a structural assumption of lo-
cal homogeneity to determine data dependent weightswi(tj )

that define the local likelihood. Weightswi(tj ) are obtained
using a sequence of likelihood ratio tests for the hypothesis
that the parameters at timestj andti coincide.

For any local model characterized by a set of weights
W(t)=(w1(t), ..., wn(t)), the local log-likelihood defined by
these weights is

L(W(t), φ, σ 2) = −
N(t)

2
log(2πσ 2) − (9)

−
1

2σ 2
(R1(t) + φ2R2(t) − 2φS(t)),

were

N(t)=

n∑
j=1

wj (t); S(t)=

n∑
j=1

wj (t)yjyj−1;

R1(t)=

n∑
j=2

wj (t)y
2
j ; R2(t) =

n∑
j=2

wj (t)y
2
j−1. (10)

Maximization of this weighted log-likelihood with respect to
φ andσ 2 yields the local Maximum Likelihood estimates

φ̂(t) =
S(t)

R2(t)
and σ̂ 2(t) =

R1(t)R2(t) − S(t)2

N(t)R2(t)
. (11)

Let us assume that the time series is stationary within some
local vicinity U(ti) of time ti . If we knew the neighbor-
hood U(ti) in advance, we would define local weights as
wij=wj (ti)=Itj ∈U(ti ), whereI denotes the indicator func-
tion, and use them to estimate the model parameters. Such
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knowledge is usually not available, but information on a
suitable local modelW(ti) can be inferred from estimates{
φ̂(t), σ̂ 2(t)

}
. Assume that we have estimates in all ob-

served time pointstj . We can use this information to infer
on the neighborhoodU(ti) by testing the hypothesis

H :

{
φ(ti), σ

2(ti)
}

=

{
φ(tj ), σ

2(tj )
}

. (12)

A weight wij can be assigned based on the value of a test
statistic Tij , assigning zero weights if

{
φ(ti), σ

2(ti)
}

and{
φ(tj ), σ

2(tj )
}

are significantly different.
This can be embedded into an iterative procedure. At each

iteration (k) we restrict positive weights to observations at
timestj with |tj − ti |<h(k), starting with a very small initial
bandwidth(h(0)) and increasing the bandwidth with each it-
eration. Testing along the entire time-series yields a set of
weightsW(ti) that determines a local model inti and hence
a new estimate of

{
φ(t), σ 2(t)

}
in ti .

We define a test statisticsTij by a local likelihood ratio
test for the hypothesis of equal parameters at timesti andtj .

Given estimates
{
φ̂i, σ̂

2
i

}
and

{
φ̂j , σ̂

2
j

}
at timesti andtj , the

difference between the local log-likelihoods evaluated for the
two estimates employing the weighting schemeWi is

Tij = L(W, φ̂i, σ̂
2
i , φ̂j , σ̂

2
j )

=
Ni

2
log(

σ̂ 2
j

σ̂ 2
i

) − R1i(
1

2σ̂ 2
i

−
1

2σ̂ 2
j

) −

−
1

2σ̂ 2
i

(φ̂2
i R2i − 2φ̂iSi) +

1

2σ̂ 2
j

(φ̂2
j R2i − 2φ̂jSi). (13)

The value ofTij is used to define a statistical penalty. That
is, if Tij is sufficiently larger than some prescribed valueλ,
the parameters at timeti andtj are significantly different and
therefore the corresponding weight is set to zero. The pro-
cess of finding the local models and estimating the local like-
lihoods is implemented in an iterative procedure, formally
presented below in Sect.5.

Approximate confidence limits for the parameters
{
φ, σ 2

}
at everyti can be established using an equivalent of Eq. (7)
for the local likelihood and assuming asymptotic normality
of the estimates. This yields approximate variances ofφ̂(t)

andσ̂ 2(t) as

Vφ(t) =

∑n
j=2 wj (t)

2

N(t)2
(1 − φ̂(t)2) and

Vσ2(t) =

∑n
j=2 wj (t)

2

N(t)2
2σ̂ 4(t) (14)

The correspondent 100(1 − α)% CIs are given byφ̂(t) ±

Zα/2
√

Vφ(t) andσ̂ 2(t)±Zα/2
√

Vσ2(t) on φ̂(t) andσ̂ 2(t), re-
spectively, whereZα/2 denotes theα/2 quantile of the stan-
dard Gaussian distribution. These intervals are approxima-
tive in the sense that they are centered at mean parameter val-
ues within the set of time points with positive weightswi(tj ).

They are, as usual for any nonparametric estimates, not ad-
justed for a potential bias. Additionally the asymptotic for
σ 2 is very slow.

Note that in a homogeneous situation with a free exten-
sion of every local model during the iterative process, local

MLE’s
{
φ̂(t), σ̂ 2(t)

}
and their variances converge asymptot-

ically to their global MLE estimates, as given by Eqs.5 and
7.

4 Definition of weights

For every pair(i, j), the weight wij is constructed on
the base of two independent quantities: a location penalty
lij=

∣∣ρ(ti, tj )/h
∣∣2 and a statistical penaltys(k)

ij =Tij/λ. Here
h andρ(ti, tj )=|ti−tj | denote, respectively, the bandwidth
and the Euclidean distance between the design pointsti and
tj . The parameterλ can be treated as the critical value for the
test statisticsTij and defined empirically to satisfy a propa-
gation criteria in the homogeneous case (see below). The
weights are thereby defined as

wij = Kloc(lij )Kst (sij ) (15)

with Kloc andKst being two positive kernel functions. We
present the definitions of kernels later in Sect.6.

5 Numerical implementation

The computational steps to analyze a time-series using the
proposed technique are as follows:

1. Initialization
Specify the initial bandwidth(h(0)) and compute, for
everyi=2, ..., n, the weightsw(1)

ij =Kloc(l
(1)
ij ) and statis-

ticsN
(1)
i , S

(1)
i , R

(1)
1i , R

(1)
2i as defined in Eq. (10). Obtain

initial estimates ofφ(1)
i andσ

2(1)
i using Eq. (11).

2. Adaptation
At each iteration stepk compute for every pair
i, j=2, ..., n the location and statistical penalties

l
(k)
ij = ((ti − tj )/h(k))2

s
(k)
ij = T

(k−1)
ij /λ

and obtain a new set of weights as
w

(k)
ij =Kloc(l

(k)
ij )Kst (s

(k)
ij ). This specifies the local

model atti by W
(k)
i =

{
w

(k)
i2 , ..., w

(k)
in

}
.

3. Local estimation
Compute new estimates of the sought parameteresφ

(k)
i

andσ
2(k)
i (Eq. 11) for iteration stepk. Increase the ac-

tual bandwidthh(k) by some specified factora>1 to
widen the search radius for the next iteration.
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4. Stopping
Stop the procedure if the bandwidth reaches the speci-
fied limit hmax, otherwise continue with the adaptation
step.

6 Choice of parameters

The proposed method involves several parameters and ker-
nel functions that are to be specified. The most important is
λ which scales the statistical penalty and defines its contribu-
tion to the weighting scheme at each particular point. Ifλ is
too large, this contribution is negligible and leads to a kernel
estimate with bandwidthhmax. Too small values ofλ, in turn,
lead to overpenalization and may result in a random segmen-
tation. We therefore suggest to chose a minimal value of
λ satisfying a propagation condition (Polzehl and Spokoiny,
2006). This implies, in a completely homogeneous situation,
a free extension of every local model during the iterative pro-
cess. More specifically, ifφ(t)≡φ andσ 2(t) ≡ σ 2 , we re-
quest at each iteration stepk and for a specified constantα>0
that

E|φ̂(k)
− φ| ≤ (1 + α)E|φ̆(k)

− φ| (16)

E|σ̂ (k)
− σ | ≤ (1 + α)E|σ̆ (k)

− σ |. (17)

Hereφ̆(k) andσ̆ (k) denote the nonadaptive kernel estimate
of φ employing the bandwidthh(k) from stepk. Then, if
hmax is sufficiently large, the resulting local estimates ofφ

and σ 2 will employ the same local weighting scheme and
will with a high probability coincide in every point with the
global estimates. Note that the soughtλ does not depend
on the unknown parameterφ and therefore can be approxi-
mately found by simulations. For convenience, the value ofλ

is introduced in the programming code via the quantile of the
χ2 distribution with two degrees of freedom and probability
pλ. A value ofpλ=0.7 was found to obey the propagation
condition for a prespecified value ofα=0.1 by simulation in
a homogeneous situation.

The minimal bandwidth,h(0), which determines the
method’s resolution, should be reasonably small. The mini-
mal value ofh(0) in the model is 2, to ensure identifiability of
parameters. Nevertheless, to improve stability we suggest us-
ing h(0)

=3, which is set as a default in the implementation.
The maximal bandwidthhmax controls the numerical com-
plexity of the algorithm. Ideally, a sufficient value ofhmax is
comparable to the size of the maximal homogeneous region
in the analyzed data. However, since this is not known a pri-
ori, hmax equal to the length of the time-series can be used
instead. It ensures a convergence of the algorithm in terms of
convergence of the statistical penaltiesKs(sij ) to 1, if ti and
tj are in the same homogeneous region, or 0, if they belong to
regions with different parameters, respectively. Factora con-
trols the growth rate of the local neighborhood in the course
of the iterative process for every pointxi . By default we use
the value ofa=1.25.

The kernel functions used in constructing the local weight-
ing scheme should satisfy two main criteria: be non-
negative and non-increasing. For calculating the statisti-
cal penalty we useKst (u)=e−uIu≤5. A good alternative
is Kst (u)=Iu∈[0,1/4)+4/3(1 − u)Iu∈[1/4,1) leading to better
sensitivity and an earlier stabilization of the estimates. The
localization kernel used in calculating the location penalty
is Kloc(u)=(1−u)+. Numerical experiments with different
kernel designs have demonstrated that the shape of the loca-
tion kernels has only minor influence on the resulting esti-
mates.

7 Case studies

We will in this section present results obtained by applying
the AWS method to both synthetic and real data sets. The
goal is to test the behavior of the algorithm and demonstrate
the overall performance of the method. We first run a series
of simulations using synthetic data assessing how a good-
ness of fit varies depending on the properties of the test series
(Sect.7.1). Then two simple examples with synthetic time-
series where the parametersφ andσ 2 are piecewise constant
and linearly changing are presented in Sect.7.2. The other
three examples in SectS.7.3, 7.4 and7.5 show the applica-
tion of the proposed method to time-series widely used in
climate studies: the NAO and ENSONiño − 3 indices and
GRIP oxygen isotope data (see further details below).

Appropriateness of the AR(1) model is often checked by
default in geophysical applications. We fitted the global
AR(1) model to the sample time-series using thearmcov
MatLab function utilizing a modified covariance method.
The cumulative periodogram test for randomness of the
residuals (Box et al., 1994) did not reject stationarity of the
proposed model for describing the analyzed time-series of
NAO andNiño − 3, although it was not the case for the last
example of oxygen isotope record from Greenland ice core
shown in Sect.7.5. This is in contradiction to our findings
indicating that the default test is not sensitive enough.

The results of our analysis are visualized in a four-
components visual display, see Figs. 4–8. It comprises the
analyzed time-series itself (top left panel), estimatedφ and
σ 2 of a signal (top right and bottom left panels, respectively)
and a sum of weightsN(t) at the last iteration step (bottom
right panel).

7.1 Performance analysis

To evaluate the performance of the algorithm we ran a se-
ries of numerical simulations. The test data was a composite
signal constructed concatenating two equal length AR(1) se-
quences, such thatφ2=φ1±1φ, whereφ1 ∈ U(−1, 1) and
φ2 ∈ (−1, 1). For each numerical experiment two parame-
ters were assigned: the length of the composite time-series
n and the difference1φ of the autocorrelation coefficients.
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Fig. 1. A family curve showing the 95% quantiles of the distribu-
tion of 1000 AICC-based goodness of fit values (see text for details)
for AWS estimates of the autocorrelation structure in synthetic se-
ries. The series of lengthn are constructed by concatenating equal
length segments withσ2

=1 and AR(1) autocorrelation coefficient
differing in 1φ (shown from the right) between the segments.

We ran 80 experiments in total for{n=100,200,...,1000;
1φ=0.1,0.2,...,0.8} using M=1000 independent generated
series for each pair{n, 1φ}. For convenienceσ 2 was set
to 1 andE(y0)=0.

A goodness of fit measure is established on the basis of the
corrected Akaike’s information criterion (AICC,Burnham
and Anderson, 2002). We ran the program twice for each
particular synthetic series withpλ=0.7 and 1.0, which in the
second case implies a global MLE estimate of

{
φ(t), σ 2(t)

}
.

The corresponding AICCAWS and AICCg measures were cal-
culated using RSSyi

, the residual sum of squares between the
series and its fitted values

AICC = 2k + n[log(
2πRSSyi

n
) + 1] +

2k(k + 1)

n − k − 1
,

wherek denotes the effective number of parameters in the fit-
ted model. For the global AR(1) model we havek=2 while
for the AWS approach this number is random. Instead of this
random value we used the effective number of parameters in
the true underlying model which is 4. This number is larger
than or equal to the expected effective number of parame-
ters, so that our estimate will in most cases be larger or equal
to the AICC using the correct value of (k). Each numerical
experiment with{n, 1φ} yielded in total 1000 values of the
test statistics AICCAWS − AICCg scaled, for convenience,
on the length of the seriesn. We then used the 95% quan-
tile of the empirical distribution of (AICCAWS − AICCg)/n

as a conservative estimate of the relative skill of the method
in identifying the autocorrelation structure of the data. Note
that Fig.1 shows that the AICC-derived goodness of fit is
preferentially negative, suggesting that the choice of the pro-
posed technique within this particular ensemble of numerical
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Fig. 2. Same as in Figure1 but for the goodness of fit measure based
on RMSE of the estimatedφ (see text for details).

experiments is at least as relevant as the use of the common
global MLE method. Usually for smalln and small1φ we
do not detect nonstationarity, and the resulting estimate coin-
cides with the global estimate. What we see in these cases in
Fig. 1 is the effect of overestimating AICCAWS by usingk=4
instead of the correctk=2 if nonstationarity was not detected.

This approach however does not demonstrate if the method
does detect the presence of jumps in the parameters of the
modeled series. Using our prior knowledge of the experi-
mental design we define a second goodness of fit measure
from the RMS error of the estimatedφ relative to the true
one. For each run of AWS inm=1, ...,M with {n, 1φ},
RMSE{n,1φ}

m , the root mean square error inφ of the esti-

mated model
{
φ̂(t), σ̂ 2(t)

}
was calculated. A simple ap-

proach to quantify the capability of the method to capture
the sudden change inφ for a given{n, 1φ}, is to compare
the RMSE{n,1φ} with 1φ. The respective goodness of fit
statistics is defined as

g{n,1φ} =
1φ

2RMSE{n,1φ}
(18)

with g>1 being a critical value, implying that the procedure
has successfully separated the two segments with different
correlation structures.

Figure2 displays the family curve with estimated values
of Q0.95

RMSE{n,1φ} for different values of1φ. HereQ0.95
RMSE{n,1φ}

denotes the 95% quantile of the empirical distribution of
RMSE{n,1φ} for a given{n, 1φ}. We see that for a relatively
short (about 200 points) time-series the method guarantees
separation only if the step in the autocorrelation coefficient
is sufficiently large (above 0.7). These numerical estimates
are in reasonably good agreement with a simple inference
about the expected performance of the method. These can be
drawn from the asymptotic 95% confidence intervals forφ in
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596 D. V. Divine et al.: AWS for estimating the autocorrelation in a time-series

50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0

0.1

0.2

0.9

n

C
I 0.

95

Fig. 3. Double width of the 95% confidence interval (CI95%) for
the global maximum likelihood estimate ofφ for different values of
a time-series lengthn and with autocorrelation coefficientφ.

case of the global MLE (see Eq.7 and Fig.3). One should
note, however, that this numerical experiment disregards the
actual values ofφ1 andφ2, whereas the width of the confi-
dence interval forφ̂ varies substantially withφ andn. Fig-
ure2 therefore provides the mean estimates of the goodness
of fit as the whole range of possible (φ1,φ2) is considered.

7.2 Synthetic time-series

A simple synthetic series containingn=1500 data points is
constructed by concatenation of segments of different lengths
with locally constantφ andσ 2. The AWS results are shown
in Fig.4. The figure demonstrates the ability of the method to
successfully localize discontinuities in the model parameters
by a propagation of weights within homogeneous regions.
Note that despite some discrepancy between the true (dotted
lines) and estimated (solid lines) values ofφ andσ 2, a good
agreement is generally reached.

Figure5 shows the second example where the method is
applied to a series of lengthn=1000 withσ 2

=1 andφ chang-
ing linearly from –0.99 to 0.99. Forhmax=n the method
yields piecewise constant estimates ofφ andσ 2, in accor-
dance with the structural assumption of local stationarity.
Note that the magnitudes of jumps inφ and the correspon-
dent segment lengths are close to the minimal detectable ones
for the considered1φ

n
, as Fig.2 shows.

7.3 Reconstructed winter NAO index

Figure6 shows the AWS analysis of the winter (December
through March) North Atlantic Oscillation (NAO) index re-
construction for the period 1500–1997 published in (Luter-
bacher et al., 2002) (the series is available in the World
Data Center for Paleoclimatology athttp://www.ncdc.noaa.
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Fig. 4. Synthetic time-series with piecewise constantφ andσ2 (top
left); AWS estimates of the autocorrelation coefficient (solid lines,
top right) and variance (solid lines, bottom left); sum of weights,
N(t) (bottom right). Dotted lines show the true values ofφ and
σ2 used when modeling the time-series. Dashed lines outline the
confidence limits for the estimates ofφ andσ2. A p-value of the
Shapiro-Wilk test for normality of the residuals is shown above the
left bottom panel.

gov/paleo/wdc-paleo.html). The NAO is the dominant pat-
tern of atmospheric circulation variability over the North At-
lantic basin, having large impacts on weather and climate in
the North Atlantic region and surrounding continents. The
NAO index, which is defined as the time-averaged difference
of sea level pressure (SLP) between Iceland and the Azores,
reflects the strength of the westerly across the Atlantic basin
into Europe (note that there also exist alternative definitions
of the NAO index, see for examplevan Loon and Rogers,
1978).

Luterbacher et al.(2002) provide a proxy- and early instru-
mental data based reconstruction of the seasonal and monthly
NAO indices. We used winter means for the earlier part of the
record for 1500–1668 and derived mean December through
March indices from the respective monthly means for the rest
of the period.

The estimatedφ is close to zero for the first four hundred
years of the reconstruction period. Around the turn of the
20th century, however, the lag-1 autocorrelation coefficient
undergoes an excursion from zero towards more positive val-
ues. A tendency for the winter NAO to show a behavior
close to a Gaussian noise during the 19th century have al-
ready been reported earlier.Hurrell and van Loon(1997)
came to this conclusion when analyzing a spectrum of the
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Fig. 5. Same as in Fig.4 but for synthetic time-series withσ2
=1

andφ changing linearly from –0.99 to 0.99.

instrumental station-based winter-mean NAO SLP index for
the shorter period of 1864–1996. Weak positiveφ in the 20th
century reflects a tendency for the NAO to have a slightly
“red” spectrum, what can be attributed to the enhanced vari-
ability at decadal scale in the 20th century (Hurrell and van
Loon, 1997). Note that the change in̂φ is accompanied by
the increase in the estimated variance, which can also be as-
cribed to strengthening of the decadal variability in the NAO.
A simple AR(1) model fitted to the data, despite being ade-
quate for the analyzed time-series on average, is not capable
of capturing the quasi-oscillatory behavior in the data. Yet
it may provide an indication that the character of the depen-
dence in the analyzed series has changed.

7.4 Reconstructed boreal winterNiño − 3 index

The next example shows the application of AWS to the re-
constructed boreal winterNiño−3 index (Mann et al., 2000)
covering the period 1650–1980 (data fromhttp://www.ncdc.
noaa.gov/paleo/wdc-paleo.html). The Niño − 3 index is
based on the eastern tropical Pacific sea surface tempera-
tures and serves as one of the indicators of the global El
Nino/Southern Oscillation (ENSO) variability. Positive and
negative values of theNiño − 3 index indicate El Nĩno
(warm) and La Nĩna (cold) episodes, respectively.

Figure7 reveals a substantial decrease inφ̂ between the
two intervals of not rejected local stationarity with respect to
the AR(1) model fitted to the reconstructedNiño − 3 index.
The change most likely occurred around 1800, and is accom-
panied by a rise in the estimated value ofσ 2. We suggest
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Fig. 6. Reconstructed winter NAO index (top left); AWS estimates
of the autocorrelation coefficient (top right) and variance (bottom
left); sum of weights,N(t) (bottom right). Dashed lines outline the
confidence limits for the estimates ofφ andσ2.
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Fig. 7. Same as in Fig.6 but for the reconstructed boreal winter
Niño − 3 index.
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Fig. 8. Same as in Fig.6 but for the resampled GRIPδ18O series.

that this provides an indication of a change in the character
of the dependence in the correlation structure of the analyzed
series. During the first half of the considered period the re-
constructedNiño − 3 index exhibits a negative trend which
levels out in the early 19th century. We note that the presence
of this long-term trend component is not consistent with the
simple model fitted to the data and partly accounts for the
elevated values of̂φ before 1800.

The tendency towards decreased ENSO variability before
1850 has been argued for in previous proxy-based ENSO
studies (see for exampleStahle and Cleaveland, 1993). Mann
et al.(2000), in turn, came to a similar conclusion having ap-
plied the evolutive spectral analysis to the sameNiño − 3
index reconstruction. The analysis revealed an enhanced in-
terannual variability after the mid 19th century, which also
agrees well with our estimates.

7.5 GRIP oxygen isotope series

In the last example we apply the AWS technique to GRIP
(Greenland Ice Core Project) ice coreδ18O series (Johnsen,
1999) which serves, to a large extent, as an indicator of past
temperature changes at the core site. The analyzed part of
the record covers some 60 000 years and is originally un-
evenly sampled in time. We resampled the time-series using
100 year bins and calculated the normalized anomalies. The
time increment of 100 years for the procedure is chosen so
that at least one data point falls within the resampling inter-
val in the oldest part of the series under consideration. In the
upper part of the core the data density is higher, varying be-

tween 25 data points per bin in the 20th century to 5 at the
termination of the last glacial period around 12 000 years BP.

Figure8 suggest an increase in the serial autocorrelation
coefficient GRIPδ18O with the onset of the Holocene ac-
companied by a decrease in the estimated variance. This re-
sult represents a combined effect of actual climate variabil-
ity and a bias introduced in the series by data interpolation.
On one hand, the Holocene is characterized by a more sta-
ble climate compared with the last glacial period punctuated
by a series of abrupt warmings – the so-called Dansgaard-
Oeschger oscillations (Dansgaard et al., 1993). On the other
hand the resampling is known to alter the series autocovari-
ance structure by bringing additional dependence to the data
(Schulz and Stattegger, 1997). The latter effect will natu-
rally be more pronounced in the uppermost part of the ice
core series where the sampling density in the time domain is
higher and each point in the resampled series is an average
over a number of original observations. As a reference we es-
timated the autocorrelation using the RedFit package (Schulz
and Mudelsee, 2002) which fits the AR(1) model directly to
an unevenly spaced time series. The separate analysis of the
Holocene and glacial parts of the original GRIPδ18O series
yields the values ofφ of 0.01 and 0.87, respectively, which
are below the corresponding AWS estimates.

8 Conclusions

We presented a method which employs the idea of structural
adaptation for fitting an AR(1) model to a time-series. The
approach utilizes an assumption of a local stationary AR pro-
cess. This is used to simultaneously generate local weighting
schemes, i.e. a local model, and to estimate the parameters of
the AR(1) model as functions of time by weighted maximum
likelihood. The proposed procedure leads, for a large maxi-
mum bandwidth (hmax) to a local constant approximation of
these parameter functions. This seems appropriate if periods
of local stationarity are separated by shorter periods of rapid
change. The approach implicitly provides a test for global
stationarity, i.e. leads to the global AR(1) model if stationar-
ity cannot be rejected.

An implementation of the AWS method is available from
the authors as a package (acoraws) for the R-Project for Sta-
tistical Computing (R Development Core Team, 2005).
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