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Abstract

In this paper we use chaos theory to predict the Hellenic Euro election results in the form of time series for Hellenic political 
parties New Democracy (ND), Panhellenic Socialistic Movement (PASOK), Hellenic Communistic Party (KKE),  Coalition 
of the Radical Left (SYRIZA) and (Popular Orthodox Rally) LAOS, using the properties of the reconstructed strange attrac-
tor of the corresponding non linear system, creating a new scientific field called “DemoscopoPhysics”. For this purpose we 
found the optimal delay time, the correlation and embedding dimension with the method of Grassberger and Procassia. With 
the help of topological properties of the corresponding strange attractor we achieved up to a 60 time steps out of sample 
prediction of the public survey.

Keywords: DemoscopoPhysics, Chaos, Forecasting Model.

Journal of Engineering Science and Technology Review 2 (1) (2009) 104-111

JOURNAL OF
Engineering Science and 
Technology Review

www.jestr.org

1. Introduction 

The present work proposes the use, for the first time, Physical 
models especially methods from non linear analysis, chaos theory, 
in order to predict and study the Euro election results of Hellas, 
defining the new scientific term called “DemoscopoPhysics” in 
the sense of application of physics models to social phenomena 
modelling. The term DemoscopoPhysics consists from two words 
Demoscopie and Physics. The first word is a Hellenic ancient 
word that means political survey. This work was inspired from 
the emerging field of economophysics while mainly consists of 
autonomous mathematical physics models that apply to the finan-
cial markets. Now we try to use them particular aspects of the 
complex nonlinear dynamics of political survey in order to pre-
dict the Hellenic Euro election results. The idea to apply chaotic 
analysis on samples concerning election results seems to be valid, 
since the election system is a complex system, like the system of 
economy and can be influenced by similar factors. Another point 
is that the political shocks and financial crisis are phenomena fre-
quently happened, which are innate elements in chaotic systems 
so for their predictability it can be used the chaos theory. The idea 
is to analyze not the given dynamic system, which remains mostly 
unknown, but an image-system with the same topology that pre-
serves the main characteristics of the genuine. 

2. Public Survey Time Series

To construct the time series we have taken into account the as-
sessment vote from public surveys in Hellas from 16-1-2007 to 
23-04-2009 the estimation of the election behavior of the unclari-
fied vote based on previous elections. The number of raw data is 
36 for each political party, and each data is the average value of 4 
polling companies with relative error 1%. In order to reconstruct 
of the equivalent phase space from experimental data the time-
series that serves as experimental data should be constituted by 
sampled points of equal time-distances For this purpose we inter-
polate with cubic spline so we take N=1000 points with a sample 
rate of 0.92day. The raw data and the interpolated public survey 
time series of the ND political party are shown at Fig.1, covering 
the period from 16-1-2007 to 23-04-2009. The  sampling rate was 
Δt=0.92 days for all time series.

3. State Space Reconstruction 

For a scalar time series, in our case the gallop poll time series the 
phase space can be reconstructed using the methods of delays. The 
basic idea in the method of delays is that the evolution of any sin-
gle variable of a system is determined by the other variables with 
which it interacts. Information about the relevant variables is thus 
implicitly contained in the history of any single variable. On the 
basis of this an “equivalent” phase space can be reconstructed by 
assigning an element of the time series xi and its successive delays 
as coordinates of a new vector time series     . To construct a    *  E-mail address: lmagafas@otenet.gr 
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vector    , i=1 to N, in the m dimensional phase space we use 
the following equation [1-3]:

(1)

The Figs, 2, 3, 4, 5 shown the time series for PASOK, KKE, 
SYRIZA, LAOS, political parties respectively

represents a point to the m dimensional phase space in 
which the attractor is embedded each time, where τ is the time 
delay τ=iΔt. The element xi represents a value of the examined 
scalar time series in time, corresponding to the i-th component 
of the time series. The dimension m of the re-constructed phase 
space is considered as the sufficient di-mension for recovering the 
object without distorting any of its topological properties, thus it 
may be different from the true dimension of the space where this 
object lies. Use of this method reduces phase space reconstruction 
to the prob-lem of proper determining suitable values of m and τ. 
The next step is to find time delay (τ) and embedding dimension 
(m) without using any other information apart from the his-torical 
values of the indexes. This is why the methodology is labelled as a 
stochastic one. We can calculate the time delay by using the aver-

age mutual [4-6] information presented in equation (2):

(2)

In this equation, P(xi) is the probability of value xi and P(xi, 
xi+τ) denotes joint probability. I(τ) shows the information (in bits) 

Figure 1.   Interpolated time series for ND  public survey for period 16-1-2007 
to 23-04-2009, (black line) and raw data (red dots).

Figure 2.   Interpolated time series for PASOK public survey for period from 
16-1-2007 to 23-04-2009, (black line) and raw data (red dots).

Figure 3.   Interpolated time series of KKE public survey for period from 
16-1-2007 to 23-04-2009, (black line) and raw data (red dots).

Figure 4.   Interpolated time series of SYRIZA public survey for period from 
16-1-2007 to 23-04-2009, (black line) and raw data (red dots).

Figure 5.   Interpolated time series of LAOS public survey for period from 
16-1-2007 to 23-04-2009, (black line) and raw data (red dots).
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being extracted from the value in time xi about the value in time 
xi+τ. The time delay is calculated by using the first minimum of the 
mutual information [2]. Mutual information against the time de-
lays for the time series of ND, PASOK, KKE, SYRIZA and LAOS 
political parties are presented in Figs. 6, 7, 8, 9, 10, respectively.

From Fig .6 we find that the nadir of Mutual Information for 
ND time series ia at τ=37.

From Fig 7 we find that the nadir of Mutual Information for 
PASOK time series is at τ=20.

From Fig. 8 we find that the nadir of Mutual Information for 
KKE time series is at τ=28.

From Fig 9 we find that the nadir of Mutual Information for 
SYN time series is at τ=40.

From Fig .10 we find that the nadir of Mutual Information for 
LAOS time series is at τ=23.

With the above method we found the τ as the time neces-
sary to cancel the correlation between two time series values to 
be 37, 20, 28, 40, 23 time steps for ND, PASOK, KKE, SYRIZA 
and LAOS, respectively. One method to determine the presence 
of chaos is to calculate the fractal dimension, which will be non 
integer for chaotic systems. Even though there exists a number of 
definitions for the dimension of a fractal object (Box counting di-
mension, Information Dimension, etc.), the correlation dimension 
was found to be the most efficient for practical applications [7, 8]. 
Firstly, we calculate the correlation integral for the time series for 
lim r0 and N∞ by using equation (3) [2]:

(3)
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Figure 6.  Mutual Information (I) vs time delay (τ) for ND political party.

Figure 7. Mutual Information (I) vs time delay (τ) for PASOK political party.
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Figure 8. Mutual Information (I) vs time delay (τ) for KKE political party.

Figure 9.  Mutual Information (I) vs time delay (τ) for SYRIZA political 
party.

Figure 10.  Mutual Information (I) vs time delay (τ) for LAOS political 
party.
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In this equation, the summation counts the number of pairs   
for which the distance, (Euclidean norm),   i s 

less than r, in an m dimensional Euclidean space. Η is the Heavi-
side step function, with H(u) = 1 for u > 0, and H(u) = 0 for u ≤ 0, 
where   , Ν denotes the number of points and 
expressed in equation (4):

(4)

Where r is the radius of the sphere centered on Xi or Xj. If the 
time series is characterized by an attractor, then for positive values 
of r, the correlation function is related to the radius with a power law  
C(r)~αrv, where α is a constant and ν is the correlation dimension or 
the slope of the log2Cm(r) versus log2 r plot. Since the data set will 
be continuous, r cannot get to close to zero. To handle this situation, 
from the log2C(r) versus log2r plots we select the apparently linear 
portion of the graph. The slope of this portion will approximate ν. 
Practically, one computes the correlation integral for increasing em-
bedding dimension m and calculates the related ν(m) in the scaling 
region. Using the appropriate delay times for each political party 
i.e, 37, 20, 28, 40, 23 time steps for ND, PASOK, KKE, SYRIZA 
and LAOS, respectively, we reconstruct the phase space for ND. 
The correlation integral C(r), by definition is the limit of correlation 
sum of equation (3) for embedding dimensions m=1..10. is shown 
in Fig 11(a), while in Fig.11 (b), the corresponding average slopes 
v are given as a function of the embedding dimension m, indicating 
that for high values of m, v tends to saturate at the non integer value 
of v=1.6. The embedding dimension m is found to be m ≥ 2[v]+1=3 
where [v] is the integer part of v [2].

Applying the same procedure for PASOK political party we 
show in Fig 12 (a) the relation between log2C(r) and log2r for dif-
ferent embedding dimensions m, while in Fig.12 (b), the corre-
sponding average slopes v are given as a function of the embed-
ding dimension m indicating that for high values of m, v tends to 
saturate at the non integer value of v=1.53. The embedding dimen-
sion m is found to be m ≥ 2[v]+1=3 [2].

For KKE we show in Fig 13 (a) the relation between log2C(r) 
and log2r for different embedding dimensions m, while in Fig.13 
(b), the corresponding average slopes v are given as a function of 
the embedding dimension m indicating that for high values of m, 
v tends to saturate at the non integer value of v=1.28. The embed-
ding dimension m is found to be m ≥ 2[v]+1=3 [2].
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Figure 11.   (a) Relation between log2C(r) and log2r for different embedding 
dimensions m. (b) Correlation dimension v vs. embedding  dimen-
sion m for ND.

Figure 12.   (a) Relation between log2C(r) and log2r for different embedding 
dimensions m. (b) Correlation dimension v vs. embedding dimen-
sion m for PASOK.
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For SYRIZA we show in Fig 14 (a) the relation between log2 
C(r) and log2r for different embedding dimensions m, while in 
Fig.14 (b), the corresponding average slopes v are given as a func-
tion of the embedding dimension m indicating that for high values 
of m, v tends to saturate at the non integer value of v=1.29. The 
embedding dimension m is found to be m ≥ 2[v]+1=3 [2].

For LAOS we show in Fig 15 (a) the relation between log2 
C(r) and log2r for different embedding dimensions m while in 
Fig.15 (b), the corresponding average slopes v are given as a func-
tion of the embedding dimension m indicating that for high values 

of m, v tends to saturate at the non integer value of v=1.23. The 
embedding dimension m is found to be m ≥ 2[v]+1=3 [2].

Table 1 shows the results from previous analysis

We can see from Table 1 that the smaller political parts have 
smaller correlation dimension. We can interpret it that the smaller 
are more robust to keep there voters but on the other hand they 
cannot adapt changes as the larger parties do.

4. Time Series Prediction 

The next step is to predict evolution of the percentages of votes 
for each political party, by computing weighted average of evolu-
tion of close neighbors of the predicted state in the reconstructed 

Figure 13.   (a) Relation between log2C(r) and log2r for different embedding 
dimensions m. (b) Correlation dimension v vs. embedding dimen-
sion m for KKE.

Figure 14.   (a) Relation between log2C(r) and log2r for different embedding 
dimensions m. (b) Correlation dimension v vs. embedding dimen-
sion m for SYRIZA.

Figure 15.   (a) Relation between log2C(r) and log2r for different embedding 
dimensions m. (b) Correlation dimension v vs. embedding dimen-
sion m for LAOS.

Political parties Correlation dimension ν

ND 1.60

PASOK 1.53

KKE 1.28

SYRIZA 1.29

LAOS 1.23

Table 1. The correlation dimension for Greek political parties.
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phase space [9-12]. The reconstructed m-dimensional signal pro-
jected into the state space can exhibit a range of trajectories, some 
of which have structures or patterns that can be used for system 
prediction and modeling. Essentially, in order to predict k steps into 
the future from the last m-dimensional vector point          we have 
to find all the nearest neighbors                in the ε-neighborhood of 
this point. To be more specific, let                  be the set of points 
within ε of           (i.e. the ε-ball). Thus any point in                 is    
closer to the             than ε. All these points             come from the 
previous trajectories of the system and hence we can follow their 
evolution k-steps into the future               . The final prediction for 
the point            is obtained by averaging over all                     
jections k-steps into the future. The algorithm can be written as

(5)

where   denotes the number of nearest neigh-
bors in the neighborhood of the point   [2. As an example 
we suppose that we want tο predict k=2 steps ahead. The basic 
principle of the prediction model is visualized in Fig 16. The blue 
dot   represents the last known sample, from which we want 
to predict one and two steps into the future. The blue circles rep-
resent ε-neighborhoods in which three nearest neighbors were 
found.

The next step in the algorithm is to check that the projections, 
one and two steps into the past, of the points in  are also 
nearest neighbors of the two previous readings  and   

, respectively. This criterion excludes unrelated trajec-
tories that enter and leave the ε-neighborhood of  but do 
not “track back” to ε-neighborhoods of   and 
thus making them un-suitable for prediction. Assuming that any 
nearest neighbors have been found and checked using the criterion 
detailed previously, we project their trajectories into the future and 
average them to get results for   and  . We used 
the values of τ and m from our previous analysis so the appropri-
ate time delays τ as before. We use as embedding dimension the 
2*m = 6 [13] for all predictions. Actual and predicted time series 
for k=60 time steps ahead are presented at Figs 17, 18, 19, 20, 21, 
for ND, PASOK, KKE, SYRIZA, LAOS, respectively.

,
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Figure 16.   Basic prediction principle of the simple deterministic model.
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Figure 17.  Actual (black line) and predicted (red line) time series for n=60 
time steps ahead or ND political party. The parameters are m=6, 
τ=37, number of near neighborhoods, nn=35.

Figure 18.  Actual (black line) and predicted (red line) time series for n=60 
time steps ahead for PASOK political party. The parameters are 
m=6, τ=20, number of near neighborhoods, nn=8.

Figure 19.  Actual (black line) and predicted (red line) time series for n=60 
time steps ahead for KKE political party. The parameters are m=6, 
τ=28, number of near neighborhoods, nn=3.
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At table 2 we present our out of sample estimation about polit-
ical survey estimation for two characteristic dates The first 25/5/09 
corresponds to 33 time steps ahead while the second 7/6/2009 (Eu-
ropean election date) corresponds to 50 time steps ahead.

At this point we mark that until 23/4/2009 we had not data 
for Ecological Party. This political party, generally speaking, is 
in cognation with Coalition of the Radical Left (SYRIZA) so its 
presence can affect SYRIZA’s percentage.

5. Conclusions

In this paper, we use a chaotic analysis to predict Hellenic Euro 
election results. After estimating the dependence of correlation di-
mension on embedding dimension, we point out that the system 
is a deterministic chaotic. A separate attractor for each political 
party, embedded in 3-D space, is derived from the analysis. How-
ever the election system is obviously a complex multi-variable 
system with strong inter-relation between variables. In this sense, 
we have model each separate time series and never the whole elec-
tion system, whose attractor is obviously much more complex. 
From absolute values of correlation dimension we see that the 
smaller political parts have smaller correlation dimension. We 
can interpret it that the smaller are more robust to keep there vot-
ers but on the other hand they cannot adapt changes as the larger 
parties do. From reconstruction of the systems’ strange attractors, 
we achieve a 60 time steps out of sample prediction. As the time 
horizon increases the prediction becomes weak. This depends on 
strange attractor’s structure and the number of raw data. As this 
number increases the influence of cubic spline is reduced and the 
results will be more precise. As seen before the in sample predic-
tion works well so we believe that the out of sample prediction 
gives satisfactory results. Of course if we could include data for 
Ecological Party our prediction will be more accurate. Using tools 
and principles from Physics as the number of freedoms and the 
topological properties of strange attractor we try modeling an open 
humanitarian systems as a National and Euro election system are. 
Of course this is a preliminary effort. To establish a new term as 
DemoscopoPhysics we need more data for testing and more tools 
from Physics to apply as entropy and criticality and phase transi-
tion are. The future researches may concentrate on the alternative 
models (i.e. parametric and nonparametric ones) for prediction. 
In addi-tion, to reflect the time-scaling effects and wavelet theory 
which can be combined with the chaos theory. 

Figure 20.  Actual (black line) and predicted (red line) time series for n=60 
time steps ahead for SYRIZA political party. The parameters are 
m=6, τ=40, number of near neighborhoods, nn=20.

Figure 21.  Actual (black line) and predicted (red line) time series for n=60 
time steps ahead for LAOS political party. The parameters are 
m=6, τ=23, number of near neighborhoods, nn=3.

Political 
parties

25/5/2009
political survey 
estimation %

7/6/2009
political survey 
estimation %

ND 32.98420 32.33710

PASOK 39.21590 37.19480

KKE 8.72589 8.52282

SYRIZA 7.54657 7.48410

LAOS 6.64646 6.81252

Table 2. Political survey estimation
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