
Revista Informatica Economică nr.2(46)/2008 43

Optimum Criteria for Developing Defined Structures 
 

Ion IVAN, Eugen DUMITRAŞCU, Daniel MILODIN, Dragoş PALAGHIŢĂ 
ionivan@ase.ro, eugen.dumitrascu@cs.ucv.ro, daniel.milodin@ase.ro, dpalaghi-

ta@gmail.com  
Academy of Economic Studies, Bucharest 

 
Basic aspects concerning distributed applications are presented: definition, particulari-

ties and importance. For distributed applications linear, arborescent, graph structures are 
defined with different versions and aggregation methods. Distributed applications have asso-
ciated structures which through their characteristics influence the costs of the stages in the 
development cycle and the exploitation costs transferred to each user. The complexity of the 
defined structures is analyzed. The minimum and maximum criteria are enumerated for opti-
mizing distributed application structures. 
Keywords: data structures, distributed applications, aggregation. 

 
Distributed applications  
A distributed application or a global ap-

plication is an application which includes 
access to data from several nodes of a com-
puter network. The components are executed 
on different nodes, on different platforms 
which are connected to the network.  
Distributed applications are those applica-
tions in which several beneficiaries or users 
in various locations in the territory, access 
resources defined for a computer network 
with a view to finding a solution to an issue. 
Modern perceptions of banking transactions, 
inter-bank transactions, electronic commerce 
activities, training, informing, knowledge 
evaluation activities, conclusion of contracts 
on-line, are only a few of the distributed ap-
plication that should be features of the infor-
mation society. E-learning, e-government, e-
business, virtual organizations and new work 
types implementation development philoso-
phies are all based on the principles of distri-
buted applications. [IVAN06]. 
Each user has his own set of information 
which he has access to. There is information 
which all users have access to, through a 
username and a password. 
The distinctive features of a distributed ap-
plication are: 
• powerful interfaces with can be used by a 
various number of people;  
• an increased degree of generality which 
enables a very large number of people to 
solve their problems 

• user-friendly interfaces which would ena-
ble the elimination of errors when data is 
filled out and of discontinued use 
• security level which would ensure that the 
transaction system is functional; 
• access levels which would provide a satis-
factory solution to security and transparency 
issues 
• an increased level of accuracy and relia-
bility; 
• it would ensure the recording of sufficient 
information to enable the retracing informa-
tion tracks; 
• the components of any distributed applica-
tion contain at least two main parts: the ap-
plication part and the communication part; 
some components also include a special part 
called administrative part which is a means to 
control and monitor the components; 
• a high degree of modularity and the possi-
bility of extension by adding or removing 
software or hardware components; 
• secure operation. 
There are three aspects to the term distributed 
application: 
 application A, whose functionality is di-

vided into n components A1, A2, …, An, 
n∈N, n>1 which interact and cooperate with 
each other; each component is an application 
or a process; 
 Ai components are independent entities 

which run on different computers; 
 Ai components change information 

1 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/27233546?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Revista Informatica Economică nr.2(46)/2008 

 
44

through the network. 
A distributed application includes the 
PROC1, PROC2, … PROCpr  procedures. 
Each procedure is characterized by entry 
points and exit points. The procedure is re-
quested from one or more locations. The pro-
cedure with more exits points has more re-
turn instructions. 
There are programming languages which de-
fine more entry points – entry - for proce-
dures. All situations in which a procedure 
with the entry points, exit points and calls be-
tween procedures occur are presented.  
A procedure with w parameters has the fol-

lowing format PROC(p1, p2, p3, …, pw). 
The figures below indicate various methods 
for procedure calls. 
 

PROC(p1, p2, p3, …, pw)  
Fig.1. Procedure with one entry point and 

one exit point 

PROC(p1, p2, p3, …, pw) …

 
Fig.2. Procedure with one entry point and 

several exit points

 
PROC1(p1, p2, p3, …, pw1) 

 
Call PROC(p1, p2, p3, …, pw) 

PROC2(p1, p2, p3, …, pw2) 
 

Call PROC(p1, p2, p3, …, pw) 

PROCpr(p1, p2, p3, …, pw pr) 
 

Call PROC(p1, p2, p3, …, pw) …

PROC(p1, p2, p3, …, pw) 

 
Fig.3. Procedures which calls the same procedure 

 

PROC(p1, p2, p3, …, pw) 
 

Call PROC(p1, p2, p3, …, pw) 
 

Fig.4. Procedure with one entry point and 
self-call – recursive procedure 

 
Starting from the ideas of procedure and call, 
procedures are nodes in a graph and calls 
generate arcs between the nodes. Considering 
two procedures PROCi and PROCj, the struc-
ture of the call graph of the PROCj procedure 
by PROCi is shown in figure 5. 
 

PROCi PROCj

 
Fig.5. Call of procedure PROCj by procedure 

PROCi 

 
Each structure has the following features: 
• homogeneity – all structures have the 

same number of incident arcs to the inside 
and the same number of incident arcs on the 
outside; 
• node complexity – each node has his own 
complexity; 
• hierarchy – organization of the structure 
on levels; 
• flows between the nodes are characterized 
by intensity or reference frequency 
The quality features of the structure are: 
• accessibility – all nodes are accessed by 
means of an access procedure which com-
plies with a certain rule, in the same way you 
access an arborescent structure: in disorder: 
left – root – right, in pre-order: root – left – 
right, in post-order: left – right – root; 
• testability –  the ability of observing the 
behavior of the element in the structure on 
different entries;  
• interchangeability – the ability to replace a 
node with another node which has at least an 
equivalent performance to the replaced node; 
• finitude – the number of references in an 
accepted closed interval, limitation of the du-



Revista Informatica Economică nr.2(46)/2008 45

ration of the execution;  
• correctness – the ability to arrive at the 
expected results for the specified entry data; 
• generality – the ability to process any 
combination of entry data of an interval. If, n 
∈  [10, 20] and xi ∈  [1, 100],  the average 
calculation program must provide accurate 
results for series of no matter how many 
numbers between 10 and 20 and for any val-
ues between 1 and 100; 
• determinism – the same results are arrived 
at, each time the same entry data is 
processes; 
• stability – the structure’s ability to react: 
low entry variations result in low exit varia-
tions are obtained, high entry variations re-
sult in high exit variations; the ability of the 
structure to maintain elements on the same 
levels and to maintain the connections be-
tween the nodes through: structural stability 
– the position of the elements and of the con-
nections, and behavior stability – low entry, 
low exit; 
• accuracy – focuses on receiving no errors 
or on keeping them within acceptable limits 
set out by the quality standards; 
• consistency – the extent to which entry or 
exit data comply with a series of conditions 
pertaining to the absence of variation and 
contradiction; 
• correlation – which characterizes entry or 
exit data which can be compared to other 
similar data; 
• relevancy – the nodes are kept in a condi-
tion which enables the user to always find the 

necessary information; 
• opportunity – the ability of the nodes as 
applications to meets the requirements of the 
user; 
• validity – the ability of nodes applications 
to generate the desired results. 

 
2. Defined structures 
The defined structure corresponds to the con-
cept according to which the structure of an 
application does not change once it was set. 
The structure assumes interdependent com-
ponents and elements.  
The defined structure types are: 
• linear structures; 
• tree structures; 
• graph structures. 
The defined structure streams are: 
• un-oriented ; 
• one-dimensional oriented; 
• two-dimensional oriented. 
A linear structure with n nodes X1, X2, …Xn, 
is defined like in figure 6. Each node Xi is 
connected with an oriented arc to node Xi+1, 
where Xi represents procedures or modules of 
the distributed linear structured application. 
The procedures or modules are called in se-
ries or cascade. In case a procedure or mod-
ule doesn’t work the whole application be-
comes nonfunctional. 

 

X1 X2 X3 Xn …
 

Fig.6. Linear defined structure 
 

An arborescent structure with n nodes X1, 
X2, …Xn, like in figure 7 is defined. Each 
node Xi with i>1 has a parent and it is con-
nected with an oriented arc to node Xj, on the 
inferior level. The procedures or modules are 
called in hierarchical order. In case a proce-
dure or module does not work then all its 
descendent procedures will not work. 
A graph structure with n nodes X1, X2, …Xn, 

like in figure 8 is defined. Each node Xi is 
connected with an oriented arc to any struc-
ture node Xj. In case a procedure or module 
doesn’t work the application continues to 
work if the node that failed to work does not 
determine the isolation of other nodes, mean-
ing that the paths between nodes remain va-
lid. 

 



Revista Informatica Economică nr.2(46)/2008 

 
46

X1 

X4 X5 

X3 X2 

X6 X7 

….. ….. ….. …..  
Fig.7. Arborscent defined structure. 

 
X1 

X2 X6 

X3 

X4 

X5 

 
Fig.8. Graph defined structure 

 
Defining structures for distributed applica-
tions means: 
• identifying the modules; 
• defining the relationships between mod-
ules; 
• defining the structure type; 
• defining operations between nodes. 
The structure is considered defined when: 
• all processing functions have been de-
fined; 
• all the requirements have been placed in 
correspondence with the modules; 
• all the variables have been specified; 
• all the modules have been built; 
• all the algorithms have been established. 
Redefining distributed application structures 
means: 
• adding new nodes; 
• eliminating nodes; 
• changing node position from level k to 
level k+1 or from level k to level k-1; 

• modifying the content of a node; 
• changing the node position in the level. 
The probability to modify the structure in the 
development cycle is under a level that en-
sures the stability of the structure. The de-
fined structure is a structure with a low mod-
ification probability. 
Premises must be created in order to develop 
well defined structures, meaning those struc-
tures that don’t suffer modifications while 
the development cycle unfolds. The come-
backs to previous stages are only because of 
incorrect or incomplete operations which re-
duce the quality of realized components. 
The well defined structure generates detailed 
specifications and comebacks appear because 
the differences between the growth of de-
tailed specifications and the way in which the 
stage in question is realized. A comeback 
means working on a module. If the structure 
is not defined and it is an ordinary construc-
tion, the work is done based on the specifica-
tions and on the module with high expenses. 
The stability of the structure is demonstrated 
using an arborescent structure. The com-
plexity of the structure is computed based in 
the number NRNp of weighted nodes and the 
number NRAp of weighted arcs. For a binary 
arborescent structure the number of nodes 
and arcs is computed based on the number of 
levels, niv, of the tree. 
The number of nodes on a level k is 2k-1. The 
weight is given by the level on which the 
node is placed, k. So the next formula is de-
duced used for computing the number of 
weighted nodes of a binary tree: 

∑
=

−⋅=
niv

k

kkNRNp
1

12  

The number of incident arcs in the nodes on 
level k is given by the number of nodes on 
that level, the only exception being level 1 
where there is no incident side. The formula 
used to compute the number of weighted arcs 
is deduced: 

∑
=

−⋅=
niv

k

kkNRAp
2

12  

The Mc Cabe complexity for a binary 
weighted arborescent structure is: 



Revista Informatica Economică nr.2(46)/2008 47

 C=NRAp – NRNp + 2= ∑
=

−⋅
niv

k

kk
2

12  -∑
=

−⋅
niv

k

kk
1

12 + 2 = 1 

 
where: 
NRNp – number of weighted nodes; 
NRAp – number of weighted arcs; 
niv – number of levels. 
It is observed that for a binary weighted ar-
borescent structure which has a maximum 
number of nodes on each level the complexi-
ty is constant and equal to 1.  
A binary arborescent structure with 3 levels 
like in figure 9 is considered. 
 

Level 1X1 

X4 X5 

X3 X2 

X6 X7 

Level 2

Level 3

 
Fig.9. Arborescent structure with 3 levels. 

 
For this structure: 

17432211 =⋅+⋅+⋅=NRNp  
164322 =⋅+⋅=NRAp  

C = NRAp-NRNp+2=16-17+2=1 
If in this structure another node is added the 
number of levels is increased by 1, but the 
structure is not complete, meaning it does not 
have a maximum number of nodes on level 4, 
and so: 

2114432211 =⋅+⋅+⋅+⋅=NRNp  
20144322 =⋅+⋅+⋅=NRAp  

C = NRAp-NRNp+2=20-21+2=1 
 

Level 1X1 

X4 X5 

X3 X2 

X6 X7 

Level 4

Level 3

X8 

Level 2

Fig.10. Adding a new node in a binary  
arborescent structure with 3 levels. 

 

It is observed that in this case the complexity 
is still 1. 
This complexity remains constant only if the 
structure is homogenous and the maximum 
number of descendents of each node is the 
same. 
The stability of distributed applications de-
fined structures is a very important characte-
ristic. The distributed technology becomes 
day by day more robust but still immature, 
because of increasingly focused research on 
optimal technologies, secure and which make 
applications easier to implement. As a conse-
quence it is necessary to know the weak 
points of technologies to correct problems in 
order to obtain stable structures. 
The application simplifying process is meant 
to find the redundant methods, to account the 
reusable components, to pick the best algo-
rithms used to find solutions to the problem 
that needs solving, establishing patterns for 
interfaces and processes, identifying the dy-
namical data stream. 
The main objective is to establish the defined 
structure through allocated processes to solv-
ing the problems. Often, memory or resource 
exceeding undermine stability and viability 
of the defined structure. The stability of the 
algorithm that forms the base of the applica-
tions in the structure must be validated in the 
same time. 
The stability characteristic assumes: 
• a correctly defined structure; 
• a homogenous structure; 
• a low complexity structure, or constant 
even if the structure is modified; 
• a viable and robust structure; 
• a structure in which the modules have a 
high degree of security; 
• a defect tolerant structure; 
• a structure easy to maintain in time an to 
which future modifications are very small or 
inexistent; 
• a portable structure. 
The methods to increase the stability of a de-
fined structure are: 



Revista Informatica Economică nr.2(46)/2008 

 
48

• ensuring the homogeneity of the connec-
tions between modules; 
• giving nodes the same specific quality 
characteristic levels will result in a good ag-
gregated product; 
• the creation of structure versions and se-
lecting the one that corresponds to a crite-
rion; 
• testing the structure behavior and improv-
ing it; 
• the complete defining of the problem and 
ensuring a high generality degree including 
all situations such that new elements will not 
appear in the problem; 
• the computation of complexity for the 
structures and selecting the structure with the 
lowest complexity; 
• aggregating structures that are stable to 
obtain a stable structure. 
The optimization of defined distributed ap-
plication structures represents a debating 
problem in the software field, by minimizing 
or maximizing several criteria which form 
the base of optimization. 

 
3. The minimization problem 
The minimization problem corresponds to the 
situation in which the performance criterion 
leads to selecting the solution which has the 
smallest criterion value.  
An optimization process influenced by the 
F1, F2, ...Fn factors dynamics is considered. 
The optimum criterion pursue the implemen-
tation cost resulting variable level minimiza-
tion, the transaction duration minimization, 
or the simultaneous user number resulting 
variable, maximizing the information securi-
ty level. 
The analytical optimum criterion form is: 

),...,,(
max
min

21 nxxxf
⎭
⎬
⎫

⎩
⎨
⎧

 

where: 
n – number of independent variables in-
cluded in the optimization model; 
xi – the independent variable that corresponds 
to a factor Fi which influences the optimiza-
tion process. 
The value of n depends on: 
• the capacity to measure the levels of the xi 

variables associated to Fi factors; 
• the importance given to the variables, 
knowing that numerous independent va-
riables influence insignificantly the optimiza-
tion process, fact for which are not included 
in models.   
The analytical forms associated to optimum 
criterion are:  
• the linear form 

∑
=

⋅
⎭
⎬
⎫

⎩
⎨
⎧ n

i
ii xa

1max
min

 

where: 
ai – real importance coefficient with ai∈[0, 

1] and ∑
=

=
n

i
ia

1

1; 

n – number of variables considered signifi-
cant in the optimization process; 
xi – the measured level associated to the Fi 
influence factor. 
• the quadratic form 

∑
=

⋅
⎭
⎬
⎫

⎩
⎨
⎧ n

i
ii xa

1

2

max
min

 

where: 
ai – real importance coefficient with ai∈[0, 

1] and ∑
=

=
n

i
ia

1

1; 

n – number of variables considered signifi-
cant in the optimization process; 
xi – the measured level associated to the Fi 
influence factor. 
• the polynomial form 

∑
=

⋅
⎭
⎬
⎫

⎩
⎨
⎧ n

i

i
ii xa

0max
min

 

where: 
ai – real importance coefficient with ai∈[0, 

1] and ∑
=

=
n

1i
i 1a ; 

n – number of variables considered signifi-
cant in the optimization process; 
xi – the measured level associated to the Fi 
influence factor. 
The models associated with distributed appli-
cations must consider:  
• k number of users; 
• the xij level associated to factor Fi record-
ed for user j. 
 



Revista Informatica Economică nr.2(46)/2008 49

The analytical forms associated to optimum 
criterion for distributed applications are: 
• the linear form 

∑∑
= =

⋅
⎭
⎬
⎫

⎩
⎨
⎧ n

i

k

j
ijij xa

1 1max
min

 

where: 
n – number of variables considered signifi-
cant in the optimization process; 
k – user number; 
aij –  real importance coefficient for user j 

with aij∈[0, 1] and ∑
=

=
k

j
ja

1
1; 

xij – measured level associated to the Fi regis-
tered for user j. 
• the quadratic form 

∑∑
= =

⋅
⎭
⎬
⎫

⎩
⎨
⎧ n

i

k

j
ijij xa

1 1

2

max
min

, where: 

n – number of variables considered signifi-
cant in the optimization process; 
k – user number; 
aij – real importance coefficient with aij∈[0, 

1] and ∑
=

=
k

j
ja

1
1; 

xij – measured level associated to the Fi regis-
tered for user j. 
• the polynomial form 

∑∑
= =

⋅
⎭
⎬
⎫

⎩
⎨
⎧ n

i

k

j

i
ijij xa

0 1max
min

, where: 

n – number of variables considered signifi-
cant in the optimization process; 
k – user number; 
aij – real importance coefficient with aij∈[0, 

1] and ∑
=

=
k

j
ja

1

1; 

xij – measured level associated to the Fi regis-
tered for user j. 
 
From one period to another depending on the 
pursued objectives the criterion is changing 
because of this it is needed to restart the op-
timization process. 
Considering the initial structure Str0 and the 
Stri structure which results after the modifi-
cations required in stage Ei of the develop-
ment cycle of the distributed application. 
If: 
niv – the number of levels in the structure; 
Compi – the number of modules on level i; 
Supi – the number of components that move 
from level i to the upper one; 
Infi – the number of components that move 
from level i to the inferior one, 
The linear optimum criterion for a defined 
structure which includes these variables is: 

∑ ∑ ∑
= = =

⋅+⋅+⋅+⋅
niv

i

niv

i

niv

i
iii InfaSupaCompaniva

1 1 1
4321{min}  

The non linear optimum criterion for a defined structure which includes these variables is: 

∑ ∑
= =

−⋅+−⋅+⋅
niv

i

niv

i
iiii InfCompaSupCompaniva

1 1

2
3

2
21 )()({min}  

For structure Str0 in figure 11, where niv = 3 
Compi = {1, 2, 6},  with i= 3..1  
After the modification the system becomes 
like in figure 12, where niv = 5, Compi = 
{1,1,3,1,3}, with i= 5..1 . 

The models are calculated: 
• linear optimum for a defined structure 
which includes these variables is: 

42143

21
1 1 1

4321

495)00310()00000(

)31311(5{min}

aaaaa

aaInfaSupaCompaniva
niv

i

niv

i

niv

i
iii

⋅+⋅+⋅=++++⋅+++++⋅+

+++++⋅+⋅=⋅+⋅+⋅+⋅ ∑ ∑ ∑
= = =  

• nonlinear optimum for a defined structure which includes these variables is: 

321
22222

3

22222
21

1 1

2
3

2
21

11215])03()01()33()11()01[(

])03()01()03()01()01[(5

)()({min}

aaaa

aa

InfCompaSupCompaniva
niv

i

niv

i
iiii

⋅+⋅+⋅=−+−+−+−+−⋅+

+−+−+−+−+−⋅+⋅=

=−⋅+−⋅+⋅ ∑ ∑
= =

 



Revista Informatica Economică nr.2(46)/2008 

 
50

 
Fig.11. Arborescent defined structure 

 

These models give the same importance to 
the moving process indifferently of the level 
on which it is executed. 
In reality the movement from an inferior lev-
el to a superior one or the other way around 
requires programming efforts, supplementary 
testing and implementation costs. This is why 
it is necessary to make a differentiation using 
coefficients.  
The optimum linear criterion for a defined 
structure includes these variables with the 
importance level movement differentiation 
is: 

∑ ∑ ∑
= = =

⋅+⋅+⋅+⋅
niv

i

niv

i

niv

i
iiiiii InfdSupcCompbniva

1 1 1

{min}  

The optimum nonlinear criterion for a de-
fined structure includes these variables with 

the importance level movement differentia-
tion is: 

∑ ∑
= =

−⋅+−⋅+⋅
niv

i

niv

i
iiiiii InfCompcSupCompbniva

1 1

22 )()({min}

 
Fig.12. Arborescent modified defined struc-

ture 
 

The optimum criteria for minimizing distri-
buted application structures are: 
• the minimization of program development 
costs; 
• the minimization of transaction duration 
for applications which realize transactions on 
databases; 
• the minimization of the access duration 
representing the minimization of web pages 
loading time in the client browser; 

• the minimization of storage place occu-
pied by the application; 
• the minimization of host information sto-
rage space level, by file archiving, like files 
with documents, by transforming Word or 
PDF into HTML files with reduced size, by 
transforming files that contain images from a 
large dimension format in a format that takes 
up a smaller amount of storage space on the 
disk; 
• the minimization of the traveled path in 
order to arrive at the requested resource, by 
rearranging the page structure and the tree 
links or graph of the web application; the 
length of the path as number of selections 
must be minimal. 
A minimization process of the traversed path 
in a web application to arrive at the desired 
resource is presented, such that the number 
of selections in this type of tree structured 
application will be kept to a minimum. 
A web application is considered to be used 
for presenting and commercializing IT prod-
ucts. The information page structure and the 
links between them given by the traveled 
path are reproduced in figure 13. For each 
node the accessing frequency is written down 
for the specific information contained within 
it.

 

A 

B 

C 

D E 
F 

G H I

A 

B C

D E F G H I



Revista Informatica Economică nr.2(46)/2008 51

 

Hard disks

KeyboardProcessors

Optical units

MotherboardMouse

Monitors 30

100 300 

15 2000 500 5  
Fig.13. The initial structure of the web application 

The average length of the path from the root 
to the leaf nodes is given by the relation: 

∑

∑

=

=

⋅
= NRO

i
i

NRO

i
ii

frecv

nivelfrecv
L

1

1  

where: 

NRO – number of tree nodes attached to the 
application; 
frecvi – the access frequency for node i; 
niveli – the level on which node i is placed. 

 
For the given application structure the aver-
age length of the path is: 

844.2
2950
8390

550020001530010030
3535003200031523002100130

==
++++++

⋅+⋅+⋅+⋅+⋅+⋅+⋅
=L  

  
Rearranging the pages in the structure is 
made considering the frequency, the pages 
with higher frequency will be paced closer to 
the root and the ones with lower access fre-

quency will be placed closer to the leaf 
nodes. 
After the rearrangement is completed the ap-
plication structure is presented in figure 14: 

 

Mouse 

MonitorsHard disks

Optical units

MotherboardProcessors 

Keyboards 2000

500 300 

100 30 15 5  
Fig.14. The new structure of the web application 

 
The average path length for the new structure is: 

373.1
2950
4050

550020001530010030
3531533031002300250012000

==
++++++

⋅+⋅+⋅+⋅+⋅+⋅+⋅
=L  

 
It is observed the average length of the path 
for the rearranged structure is smaller. 
The files storage space required on the host 
or application server is given by the formula: 

∑
=

=
NRF

i
iFILFIL

1
)()(  

where: 
NRF – number of files present on the server; 
FIi – file i; 

FI – the set of files on the host U
NRF

i
iFIFI

1=

= ; 

L(FIi) – the length or size of file FIi; 
L(FI) – the total length or size of the files. 
 
In order to minimize the total file storage 
space it is proceeded to the transformation of 
files to other formats or archiving existing 
documents. In this manner .doc or .xsl files 



Revista Informatica Economică nr.2(46)/2008 

 
52

are compressed using .zip or .rar archiving 
formats, .pdf documents are transformed in 
.html pages. Image files with high resolution 
are transformed din files with smaller resolu-
tions in the order of kilo bytes. 
So, the total space decreases and the size of 
the set of transformed files FI’ is a lot smaller 
then the initial space taken by the un-
transformed set of files FI: 

L(FI’) << L(FI) 
The optimization criteria presented for mini-
mization are applied at developer level but at 
host level as well. 
Developer level optimization is a stage which 
must be processed after the application im-
plementation stage or even in the implemen-
tation stage with regard to the experience of 
the programmer or application developer. In 
application development teams there are ex-
perienced individuals in programming and 
code optimization, they are responsible for 
suggesting optimization methods or even op-
timized reimplementation of application 
modules. 

 
4. The maximization problem 
The maximum problem corresponds to the 
situation in which the performance criterion 
leads to the selection from the possible solu-
tions of the one with the highest value. 
The optimum criteria for maximizing the dis-
tributed application structures are: 
• the maximization of the degree of satisfac-
tion of the user by receiving the requested in-
formation from the application; 
• the maximization of the application mod-
ules degree of reuse; 
• the maximization of the diversity of client 
request coverage; 
• the maximization of application stability. 
The maximization of user satisfaction degree 
is given by the report: 

NRUT
NRUSGS =  

where: 
NRUS – the number of users who had suc-
cessfully finished an operation or an applica-
tion transition; 
NRUT – total number of users. 
 

For an e-commerce application there are us-
ers who successfully find the desired product 
and buy it online, there are users that leave 
the application without finishing their tasks 
or before even starting to use the application. 
In these cases the degree of user satisfaction 
is computed with the formula: 

NRUSNRUIPNRUII

AS
GS

NRUS

i
i

++
=

∑
=1  

where: 
ASi – the number of actions completed suc-
cessfully by user i; 
NRUII – the number of users that quit the ap-
plication at the beginning; 
NRUIP – the number of users that quit the 
applications while it is ongoing; 
NRUS – the number of users that successfully 
finish their tasks and then leave the applica-
tion; 
 
The web application structure optimization to 
increase the degree of user satisfaction is rea-
lized by reducing the number of levels in a 
tree like structured application. 
This is done by counting the nodes from the 
root to the leaves, more precisely the access-
ing frequencies of the pages in the applica-
tion. 
This optimization method by maximizing the 
degree of user satisfaction is reduced to mi-
nimizing the length of the path followed in 
the application, like the web application with 
a tree like structure. This method was pre-
sented in the minimization problem. 

 
5. Aggregated optimization criteria for de-
fined structures 
To posses a complete image of a defined 
structure belonging to a distributed applica-
tion, it is needed to develop an aggregation 
process. 
For ncrit optimum criteria denoted by K1, K2, 
... Kncrit, building KA aggregated criterion is 
done by: 
• simple sum of the criteria: 

∑
=

=
ncrit

i
iKKA

1

 



Revista Informatica Economică nr.2(46)/2008 53

• the weighted average of the criteria, where 
each criterion has importance coefficients Hi, 

with Hi∈[0, 1] and 1
1

=∑
=

ncrit

i
iH : 

∑
=

⋅=
ncrit

i
ii KHKA

1
 

• simple arithmetical average of the criteria: 

ncrit

K
KA

ncrit

i
i∑

== 1 , with ncrit≠ 0 

• arithmetic average of the weighted crite-
ria: 

ncrit

KH
KA

ncrit

i
ii∑

=

⋅
= 1 , with ncrit≠ 0 

• simple geometrical average of the criteria: 

ncrit
ncrit

i
iKKA ∏

=

=
1

, with 0
1

>∏
=

ncrit

i
iK  

• weighted geometrical average: 

ncrit
ncrit

i

H
i

iKKA ∏
=

=
1

, with 0
1

>∏
=

ncrit

i

H
i

iK  

The distributed applications assume develop-
ers, users and hosts. For each of the individu-
als the defined structure criteria is different in 
the optimization process. The developer cri-
terion, the user criterion, and the host crite-
rion are considered. The global optimization 
idea converges to aggregating the three crite-
ria. 
It is observed that the objective function as-
sociated with the optimization process over-
sees obtaining a structure that corresponds to 
specific requirements: 
• the developer: programming effort, reuti-
lization degree, costs; 
• the user: transaction duration, use cost, 
maintenance costs, operation costs; 
• the host: the server storing resource, 
channel occupation degree (access frequency 
function). 
By consulting the specialists’ importance 
coefficients are obtained for the three criteria 
H1 – the developer criterion, H2 – the user 
criterion, H3 – the host criterion. 
The aggregated criterion KAGR is given by 
the relation: 

KGHKUHKEHKAGR ⋅+⋅+⋅= 321  
where: 
KE – the analytical expression for the devel-
oper criterion; 
KU – the analytical expression for the user 
criterion; 
KG – the analytical expression for the host 
criterion. 
 
The multi-criterion optimization algorithm 
implies: 
• defining the initial solution  
• evaluating the three criteria; 
• evaluating the global criterion; 
• making modifications at structure level 
according to the requirements of the devel-
oper; 
• making modifications at structure level 
according to the requirements of the user; 
• making modifications at structure level 
according to the requirements of the host; 
• guaranteeing the process finality by mak-
ing limited modifications to the three criteria. 
In the end of the optimization process an ap-
plication is obtained with improved characte-
ristics, independent of the selected software 
criteria set. By all of this the producer aims 
the effect maximization, concentrating only 
on the most important characteristics. The 
reason is given by limited resource quantities 
and the value of the quality cost report 
[IVAN07]. 
The effective optimization is just a stage in 
this complex process, as it is preceded by the 
identification of the areas that improved lead 
to developing an application with a quality 
level that corresponds to the user’s require-
ments [IVAN07]. 
At the developer’s or programmers level the 
effort optimization is completed by: 
• reusing the authentication modules or pro-
cedures  
• reusing the database access procedures; 
• avoiding the transmission of large infor-
mation quantities for processing through spe-
cific GET or POST methods; 
• shrinking the HTML sources by using 
XML, XSLT, XSL, CSS files; 



Revista Informatica Economică nr.2(46)/2008 

 
54

• using dynamical components for pages 
like JSP, ASP or ASP.NET; 
• writing code using optimal algorithms; 
• using image compression and file archiv-
ing algorithms. 
At user level optimization is realized by: 
• minimizing the transaction duration; 
• minimizing the use cost; 
• minimizing the maintenance costs; 
• minimizing the operation costs. 
At host level the optimization is made by mi-
nimizing the required server storage space. 
These three criteria (developer, user, host) 
aggregated, form the base of the global opti-
mization criterion. 

 
6. Conclusions 
The importance of distributed applications is 
grater and grater in the informatics society. 
Currently almost every application has a dis-
tributed architecture. 
The enumeration of the structures, properties, 
advantages and disadvantages of distributed 
applications facilitate selecting the best struc-
ture in a certain problem. Only after this 
stage the optimization process comes up 
which reefers to the number of nodes, links 
between nodes, node loading and sizing the 
data stream. 
The optimization process is iterative and 
complex. It is applied to a working applica-
tion from which obtaining high levels of per-
formance is required according to certain op-
timum criteria. These optimum criteria form 
the base of optimization methods which as-
sume the minimization or maximization of 
certain problems. Optimization is realized by 
measuring certain quality evaluation indica-
tors and by applying the optimization me-
thods that lead to improved values for the in-
dicators. 
Optimizing distributed applications means 
defining several application structures with 
personal characteristics, to which different 
optimization criteria, and determining the 
minimum or maximum values for certain me-
trics or certain quality indicators. 
The continuous increase of the application in 
the distributed domain and their growing di-
versity assumes a careful and continuous se-

lection in order to ensure customer satisfac-
tion in any domain. 
The developed informational society  oper-
ates with distributed applications which use a 
complex structure this enforces continuing 
concentrating the research efforts to finding 
ways for ensuring the quality growth of these 
applications. 

 
Bibliography 
[BOIA00] Florin Mircea BOIAN - Progra-
marea distribuită în Internet-metode şi 
aplicaţii, Editura Albastră - Grupul microIn-
formatica, Cluj-Napoca, 2000 
[IVAN06] Ion IVAN , Eugen 
DUMITRAŞCU, Marius POPA, Evaluating 
the Effects of the Optimization on the Quality 
of Distributed Applications, Economic Com-
putation and Economic Cybernetics Studies 
and Research, vol. 40, nr. 3-4, 2006, pg. 73 - 
85, ISSN 0424-267X.   
[IVAN07] Ion IVAN, Cătălin BOJA, Practi-
ca optimizării aplicaţiilor informatice, Editu-
ra ASE, Bucureşti, 2007, ISBN 978-973-594-
932-7 
[IVBO05] Ion IVAN, Catalin BOJA, Mana-
gementul calităţii proiectelor TIC, Editura 
ASE , Bucureşti, 2005, ISBN 973-594-558-4.  
[IVBO06] Ion IVAN, Cătalin BOJA - Anali-
za Metricilor Software, Studii şi Cercetări de 
Calcul Economic şi Cibernetică Economică, 
vol. 40, nr. 1, 2006, pg.65 - 78, ISSN 0585-
7511 
[IVPO05] Ion IVAN, Marius POPA, Entităţi 
text, dezvoltare, evaluare, analiză, Editura 
ASE, Bucureşti, 2005, ISBN 973-594-663-7 


